Recalibration of path integration in hippocampal place cells

Hippocampal place cells are spatially tuned neurons that serve as elements of a ‘cognitive map’ in the mammalian brain 1 . To detect the animal’s location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks 2 , 3 and mea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature (London) Ročník 566; číslo 7745; s. 533 - 537
Hlavní autoři: Jayakumar, Ravikrishnan P., Madhav, Manu S., Savelli, Francesco, Blair, Hugh T., Cowan, Noah J., Knierim, James J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.02.2019
Nature Publishing Group
Témata:
ISSN:0028-0836, 1476-4687, 1476-4687
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hippocampal place cells are spatially tuned neurons that serve as elements of a ‘cognitive map’ in the mammalian brain 1 . To detect the animal’s location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks 2 , 3 and measuring the distance and direction that the animal has travelled from previously occupied locations 4 – 7 . The latter mechanism—known as path integration—requires a finely tuned gain factor that relates the animal’s self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates 8 , 9 . Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant 9 – 14 , but behavioural evidence in humans suggests that the gain is modifiable 15 . Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system 4 , 8 , 16 – 19 , but also rapidly fine-tune the integration computation itself. Evidence from hippocampal place cells shows that path-integration gain, previously thought to be a constant factor in the computation of location, is flexible and can be rapidly fine-tuned.
AbstractList Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain . To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks and measuring the distance and direction that the animal has travelled from previously occupied locations . The latter mechanism-known as path integration-requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates . Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant , but behavioural evidence in humans suggests that the gain is modifiable . Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system , but also rapidly fine-tune the integration computation itself.
Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain.sup.1. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks.sup.2,3 and measuring the distance and direction that the animal has travelled from previously occupied locations.sup.4-7. The latter mechanism--known as path integration--requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates.sup.8,9. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant.sup.9-14, but behavioural evidence in humans suggests that the gain is modifiable.sup.15. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system.sup.4,8,16-19, but also rapidly fine-tune the integration computation itself.
Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks and measuring the distance and direction that the animal has travelled from previously occupied locations. The latter mechanism-known as path integration-requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant, but behavioural evidence in humans suggests that the gain is modifiable. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system, but also rapidly fine-tune the integration computation itself.
Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain1. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks2,3 and measuring the distance and direction that the animal has travelled from previously occupied locations4-7. The latter mechanism-known as path integration-requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates8,9. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant9-14, but behavioural evidence in humans suggests that the gain is modifiable15. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system4,8,16-19, but also rapidly fine-tune the integration computation itself.Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain1. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks2,3 and measuring the distance and direction that the animal has travelled from previously occupied locations4-7. The latter mechanism-known as path integration-requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates8,9. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant9-14, but behavioural evidence in humans suggests that the gain is modifiable15. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system4,8,16-19, but also rapidly fine-tune the integration computation itself.
Hippocampal place cells are spatially tuned neurons that serve as elements of a “cognitive map” in the mammalian brain1. To detect the animal’s location, place cells are thought to rely upon two interacting mechanisms: sensing the animal’s position relative to familiar landmarks2,3 and measuring the distance and direction that the animal has traveled from previously occupied locations4–7. The latter mechanism, known as path integration, requires a finely tuned gain factor that relates the animal’s self-movement to the updating of position on the internal cognitive map, with external landmarks necessary to correct positional error that accumulates8,9. Path-integration-based models of hippocampal place cells and entorhinal grid cells treat the path integration gain as a constant9–14, but behavioral evidence in humans suggests that the gain is modifiable15. Here we show physiological evidence from hippocampal place cells that the path integration gain is indeed a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In a novel, augmented reality system, visual landmarks were moved in proportion to the animal’s movement on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path integration gain, as estimated from the place cells after the landmarks were extinguished. We propose that this rapid plasticity keeps the positional update in register with the animal’s movement in the external world over behavioral timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path integration system4,8,16–19, but also rapidly fine-tune the integration computation itself.
Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain.sup.1. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks.sup.2,3 and measuring the distance and direction that the animal has travelled from previously occupied locations.sup.4-7. The latter mechanism--known as path integration--requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates.sup.8,9. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant.sup.9-14, but behavioural evidence in humans suggests that the gain is modifiable.sup.15. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system.sup.4,8,16-19, but also rapidly fine-tune the integration computation itself. Evidence from hippocampal place cells shows that path-integration gain, previously thought to be a constant factor in the computation of location, is flexible and can be rapidly fine-tuned.
Hippocampal place cells are spatially tuned neurons that serve as elements of a ‘cognitive map’ in the mammalian brain 1 . To detect the animal’s location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks 2 , 3 and measuring the distance and direction that the animal has travelled from previously occupied locations 4 – 7 . The latter mechanism—known as path integration—requires a finely tuned gain factor that relates the animal’s self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates 8 , 9 . Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant 9 – 14 , but behavioural evidence in humans suggests that the gain is modifiable 15 . Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system 4 , 8 , 16 – 19 , but also rapidly fine-tune the integration computation itself. Evidence from hippocampal place cells shows that path-integration gain, previously thought to be a constant factor in the computation of location, is flexible and can be rapidly fine-tuned.
Audience Academic
Author Knierim, James J.
Madhav, Manu S.
Blair, Hugh T.
Jayakumar, Ravikrishnan P.
Savelli, Francesco
Cowan, Noah J.
AuthorAffiliation 3 Department of Psychology, UCLA, Los Angeles, CA
4 Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD
1 Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD
2 Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
AuthorAffiliation_xml – name: 3 Department of Psychology, UCLA, Los Angeles, CA
– name: 4 Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD
– name: 2 Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
– name: 1 Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD
Author_xml – sequence: 1
  givenname: Ravikrishnan P.
  surname: Jayakumar
  fullname: Jayakumar, Ravikrishnan P.
  organization: Department of Mechanical Engineering, Johns Hopkins University
– sequence: 2
  givenname: Manu S.
  surname: Madhav
  fullname: Madhav, Manu S.
  email: manusmad@gmail.com
  organization: Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University
– sequence: 3
  givenname: Francesco
  surname: Savelli
  fullname: Savelli, Francesco
  organization: Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University
– sequence: 4
  givenname: Hugh T.
  surname: Blair
  fullname: Blair, Hugh T.
  organization: Department of Psychology, UCLA
– sequence: 5
  givenname: Noah J.
  surname: Cowan
  fullname: Cowan, Noah J.
  organization: Department of Mechanical Engineering, Johns Hopkins University, Laboratory for Computational Sensing and Robotics, Johns Hopkins University
– sequence: 6
  givenname: James J.
  surname: Knierim
  fullname: Knierim, James J.
  organization: Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30742074$$D View this record in MEDLINE/PubMed
BookMark eNp9kltrFDEcxYNU7Lb6AXyRQV_0YWpukwsUoRQvhYJQ-x4y2cxsymwyncyIfnv_4251t6wSciH5nZPbOUFHMUWP0EuCzwhm6n3mpFKixESXWDNdsidoQbgUJRdKHqEFxlSVWDFxjE5yvsMYV0TyZ-iYYckp1AU6v_HOdqEe7BhSLFJT9HZcFSGOvt3OhVisQt8nZ9e97Yq-s84Xznddfo6eNrbL_sW2P0W3nz7eXn4pr79-vrq8uC5dpdlYUsK40JqQJW5IVUNplpIJS7RuLJcKmgo8GVGVpgzXuqGswRYGNcc1Zafow8a2n-q1Xzofx8F2ph_C2g4_TbLB7K_EsDJt-m6EoJpTBQZvtwZDup98Hs065PkGNvo0ZUOJkphWVHBA3zxC79I0RLjdTKlKMox3qNZ23oTYJNjXzabmopKCcikVBqo8QLU-ejgk_GQTYHqPf32Ad324N7vQ2QEIytKvgzvo-m5PAMzof4ytnXI2V99u9tlXuy_954kf8gKA3ABuSDkPvjEujL9jAqcInSHYzMk0m2QaSKaZk2kYKMkj5YP5_zR0o8nAxtYPfz_j36JfBrPwRA
CitedBy_id crossref_primary_10_1002_hipo_23197
crossref_primary_10_1016_j_jneumeth_2020_108667
crossref_primary_10_1126_science_abg1278
crossref_primary_10_7554_eLife_89851_3
crossref_primary_10_7554_eLife_97433
crossref_primary_10_1016_j_neuron_2021_09_055
crossref_primary_10_1016_j_neuron_2024_08_007
crossref_primary_10_1089_cyber_2022_0124
crossref_primary_10_1242_jeb_243558
crossref_primary_10_1016_j_tics_2020_10_004
crossref_primary_10_1016_j_cell_2020_09_061
crossref_primary_10_1038_s41467_023_42642_3
crossref_primary_10_7554_eLife_95764_4
crossref_primary_10_3389_fpsyg_2025_1521487
crossref_primary_10_1177_02783649211048931
crossref_primary_10_3389_fpsyg_2023_1260425
crossref_primary_10_3917_enf2_211_0005
crossref_primary_10_1016_j_cell_2022_11_022
crossref_primary_10_1146_annurev_neuro_101419_011117
crossref_primary_10_1038_s41583_025_00970_x
crossref_primary_10_1038_s41593_025_02054_6
crossref_primary_10_1002_hipo_23265
crossref_primary_10_7554_eLife_89851
crossref_primary_10_1016_j_cell_2025_01_032
crossref_primary_10_7554_eLife_95764
crossref_primary_10_1007_s00422_020_00823_z
crossref_primary_10_7554_eLife_97433_3
crossref_primary_10_1002_brb3_2070
crossref_primary_10_1016_j_conb_2020_03_009
crossref_primary_10_3389_fpsyg_2020_571394
crossref_primary_10_1038_s41586_023_05813_2
crossref_primary_10_1038_s41593_025_02045_7
crossref_primary_10_1002_advs_202401670
crossref_primary_10_1038_s41593_024_01681_9
crossref_primary_10_1007_s10827_024_00891_1
crossref_primary_10_3389_fnsys_2022_896251
crossref_primary_10_1073_pnas_2020698118
crossref_primary_10_1038_s41593_025_02038_6
crossref_primary_10_3758_s13423_022_02216_8
crossref_primary_10_1016_j_neuron_2020_10_034
crossref_primary_10_1016_j_cub_2023_10_018
crossref_primary_10_1002_jdn_10169
crossref_primary_10_1016_j_bpsgos_2023_07_008
crossref_primary_10_1016_j_cub_2020_07_006
crossref_primary_10_1146_annurev_neuro_072116_031516
crossref_primary_10_1016_j_cogpsych_2020_101307
crossref_primary_10_1038_s41593_020_0646_2
crossref_primary_10_1002_hipo_23281
crossref_primary_10_1016_j_conb_2022_102568
crossref_primary_10_1016_j_neunet_2019_09_002
crossref_primary_10_1146_annurev_control_060117_104856
crossref_primary_10_1242_jeb_188912
crossref_primary_10_7554_eLife_62578
crossref_primary_10_3758_s13420_023_00618_9
crossref_primary_10_1073_pnas_2214539120
crossref_primary_10_1137_21M1390220
crossref_primary_10_1016_j_jneumeth_2021_109453
crossref_primary_10_7554_eLife_69841
crossref_primary_10_3390_s21237988
crossref_primary_10_1016_j_jneumeth_2021_109336
crossref_primary_10_1108_AJIM_01_2025_0045
Cites_doi 10.1242/jeb.199.1.201
10.1002/hipo.10173
10.1038/nrn1932
10.1201/9781420042467.ch5
10.1073/pnas.1011843108
10.1002/hipo.20327
10.1126/science.1232655
10.1126/science.1126912
10.1038/nature08499
10.1016/j.conb.2006.08.016
10.1523/JNEUROSCI.23-08-03478.2003
10.1007/BF00450672
10.1523/JNEUROSCI.17-15-05900.1997
10.1002/hipo.20374
10.1038/s41593-017-0039-3
10.1016/j.neuron.2016.06.027
10.1146/annurev.ne.13.030190.002155
10.1523/JNEUROSCI.18-18-07411.1998
10.1152/jn.1998.80.1.425
10.1146/annurev.ne.04.030181.001421
10.1523/JNEUROSCI.0693-05.2005
10.1242/jeb.01371
10.1002/hipo.20509
10.1016/j.cell.2015.12.015
10.1523/JNEUROSCI.4353-05.2006
10.1038/nature14622
10.1016/j.celrep.2018.01.005
10.1016/j.neuron.2015.03.039
10.1038/nn.4653
10.1002/hipo.20114
10.1152/jn.1998.79.2.1017
10.1073/pnas.1215834110
10.1152/jn.01046.2012
10.1523/JNEUROSCI.19-01-00274.1999
10.1038/nn.4658
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
COPYRIGHT 2019 Nature Publishing Group
Copyright Nature Publishing Group Feb 28, 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: Copyright Nature Publishing Group Feb 28, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-019-0939-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
ProQuest - Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Agricultural Science Database
MEDLINE - Academic






Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 537
ExternalDocumentID PMC6629428
A576247780
30742074
10_1038_s41586_019_0939_3
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R21 NS095075
– fundername: NIMH NIH HHS
  grantid: R01 MH079511
– fundername: NINDS NIH HHS
  grantid: R01 NS102537
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZY4
~8M
~G0
ACMFV
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c593t-213469911d0f15b5b5fd736a199fa478fa45ace31859230b9f23f0a0b9b40b23
IEDL.DBID P5Z
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459769100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Tue Nov 04 02:05:12 EST 2025
Sun Nov 09 09:53:35 EST 2025
Tue Oct 07 06:53:17 EDT 2025
Tue Nov 11 10:08:17 EST 2025
Sat Nov 29 11:43:20 EST 2025
Tue Jun 10 15:32:22 EDT 2025
Tue Nov 04 17:17:22 EST 2025
Thu Nov 13 15:36:56 EST 2025
Mon Jul 21 06:02:47 EDT 2025
Sat Nov 29 02:38:46 EST 2025
Tue Nov 18 22:20:34 EST 2025
Fri Feb 21 02:38:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7745
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-213469911d0f15b5b5fd736a199fa478fa45ace31859230b9f23f0a0b9b40b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions. J.J.K., N.J.C., and H.T.B. conceived and all authors designed the study. J.J.K. and N.J.C. advised on all aspects of the experiments and analysis. F.S. made key contributions to the analysis and interpretation of the data and provided supervision over data acquisition and analysis. R.P.J. and M.S.M. designed and constructed the apparatus, performed experiments, and analyzed the data. R.P.J., M.S.M., N.J.C., and J.J.K. wrote the paper and F.S. and H.T.B. provided critical feedback.
The primary and senior authors contributed equally
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6629428
PMID 30742074
PQID 2188573004
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6629428
proquest_miscellaneous_2187025264
proquest_journals_2188573004
gale_infotracmisc_A576247780
gale_infotracgeneralonefile_A576247780
gale_infotraccpiq_576247780
gale_infotracacademiconefile_A576247780
gale_incontextgauss_ISR_A576247780
pubmed_primary_30742074
crossref_citationtrail_10_1038_s41586_019_0939_3
crossref_primary_10_1038_s41586_019_0939_3
springer_journals_10_1038_s41586_019_0939_3
PublicationCentury 2000
PublicationDate 20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 2
  year: 2019
  text: 20190201
  day: 1
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References MaurerAPVanRhoadsSRSutherlandGRLipaPMcNaughtonBLSelf-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampusHippocampus20051584185210.1002/hipo.20114
WittlingerMWehnerRWolfHThe ant odometer: Stepping on stilts and stumpsScience2006312196519672006Sci...312.1965W1:CAS:528:DC%2BD28XmsVahu7Y%3D10.1126/science.1126912
BastianAJLearning to predict the future: the cerebellum adapts feedforward movement controlCurr. Opin. Neurobiol.2006166456491:CAS:528:DC%2BD28Xht1Cls7vN10.1016/j.conb.2006.08.016
BurgessNBarryCO’KeefeJAn oscillatory interference model of grid cell firingHippocampus20071780181210.1002/hipo.20327
TcheangLBulthoffHHBurgessNVisual influence on path integration in darkness indicates a multimodal representation of large-scale spaceProc. Natl Acad. Sci. USA2011108115211572011PNAS..108.1152T1:CAS:528:DC%2BC3MXhtlWqsLo%3D10.1073/pnas.1011843108
Flandrin, P., Francois, A. & Chassande-Mottin, E. in Applications in Time-Frequency Signal Processing (ed. Papandreou-Suppappola, A.) 179–204 (CRC Press, Boca Raton, 2002).
KloostermanFLaytonSPChenZWilsonMABayesian decoding using unsorted spikes in the rat hippocampusJ. Neurophysiol.201411121722710.1152/jn.01046.2012
GallistelCRLearning, development, and conceptual change. The organization of learning1990Cambridge, MAMIT Press
HardcastleKGanguliSGiocomoLMEnvironmental boundaries as an error correction mechanism for grid cellsNeuron2015868278391:CAS:528:DC%2BC2MXms1ynsLo%3D10.1016/j.neuron.2015.03.039
KnierimJJKudrimotiHSMcNaughtonBLInteractions between idiothetic cues and external landmarks in the control of place cells and head direction cellsJ. Neurophysiol.1998804254461:STN:280:DyaK1czisFWgsQ%3D%3D10.1152/jn.1998.80.1.425
RavassardPMultisensory control of hippocampal spatiotemporal selectivityScience2013340134213462013Sci...340.1342R1:CAS:528:DC%2BC3sXptFKjsL4%3D10.1126/science.1232655
ChenGKingJABurgessNO’KeefeJHow vision and movement combine in the hippocampal place codeProc. Natl Acad. Sci. USA20131103783832013PNAS..110..378C1:CAS:528:DC%2BC3sXnsFeiuw%3D%3D10.1073/pnas.1215834110
Skaggs, W. E., McNaughton, B. L., Gothard, K. M. & Markus, E. J. in Advances in Neural Information Processing Systems5 (eds. Hanson, S. J., Cowan, J. D. & Giles, C. L.) 1030–1037 (NIPS, 1992).
KropffECarmichaelJEMoserM-BMoserEISpeed cells in the medial entorhinal cortexNature20155234194242015Natur.523..419K1:CAS:528:DC%2BC2MXhtFyltLrK10.1038/nature14622
CullenKETaubeJSOur sense of direction: Progress, controversies and challengesNat. Neurosci.201720146514731:CAS:528:DC%2BC2sXhslansbzP10.1038/nn.4658
CsicsvariJHiraseHCzurkóAMamiyaABuzsákiGOscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving ratJ. Neurosci.1999192742871:CAS:528:DyaK1MXkvFOqtA%3D%3D10.1523/JNEUROSCI.19-01-00274.1999
Campbell, M. G. et al. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nat. Neurosci. 21, 1096–1106 (2018).
HasselmoMEGiocomoLMZilliEAGrid cell firing may arise from interference of theta frequency membrane potential oscillations in single neuronsHippocampus2007171252127110.1002/hipo.20374
SamsonovichAMcNaughtonBPath integration and cognitive mapping in a continuous attractor neural network modelJ. Neurosci.199717590059201:CAS:528:DyaK2sXkvFymsr8%3D10.1523/JNEUROSCI.17-15-05900.1997
Quigley, M. et al. ROS: an open-source Robot Operating System. In ICRA Workshop on Open Source Software (IEEE, 2009).
HarveyCDCollmanFDombeckDATankDWIntracellular dynamics of hippocampal place cells during virtual navigationNature20094619419462009Natur.461..941H1:CAS:528:DC%2BD1MXhtlCqs73J10.1038/nature08499
AcharyaLCausal influence of visual cues on hippocampal article causal influence of visual cues on hippocampal directional selectivityCell20161641972071:CAS:528:DC%2BC2MXitVKjt7rF10.1016/j.cell.2015.12.015
WehnerRMenzelRDo insects have cognitive maps?Annu. Rev. Neurosci.1990134034141:STN:280:DyaK3c3isFKiug%3D%3D10.1146/annurev.ne.13.030190.002155
BrownENFrankLMTangDQuirkMC& Wilson, M. a. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cellsJ. Neurosci.199818741174251:CAS:528:DyaK1cXmt1Sjtbk%3D10.1523/JNEUROSCI.18-18-07411.1998
MoserEIMoserM-BMcNaughtonBLSpatial representation in the hippocampal formation: a historyNat. Neurosci.201720144814641:CAS:528:DC%2BC2sXhslansbzO10.1038/nn.4653
HinmanJRBrandonMPClimerJRChapmanGWHasselmoMEMultiple running speed signals in medial entorhinal cortexNeuron2016916666791:CAS:528:DC%2BC28XhtFOlt7zL10.1016/j.neuron.2016.06.027
TennantSAStellate cells in the medial entorhinal cortex are required for spatial learningCell Rep.201822131313241:CAS:528:DC%2BC1cXitVahsL8%3D10.1016/j.celrep.2018.01.005
MittelstaedtMLMittelstaedtHHoming by path integration in a mammalNaturwissenschaften1980675665671980NW.....67..566M10.1007/BF00450672
ZugaroMBArleoABerthozAWienerSIRapid spatial reorientation and head direction cellsJ. Neurosci.200323347834821:CAS:528:DC%2BD3sXjsFSktL0%3D10.1523/JNEUROSCI.23-08-03478.2003
GilMImpaired path integration in mice with disrupted grid cell firingNat. Neurosci.20182181931:CAS:528:DC%2BC1cXltVyiurw%3D10.1038/s41593-017-0039-3
EtienneASJefferyKJPath integration in mammalsHippocampus20041418019210.1002/hipo.10173
FuhsMCTouretzkyDSA spin glass model of path integration in rat medial entorhinal cortexJ. Neurosci.200626426642761:CAS:528:DC%2BD28XktlCltbY%3D10.1523/JNEUROSCI.4353-05.2006
McNaughtonBLBattagliaFPJensenOMoserEIMoserMBPath integration and the neural basis of the ‘cognitive map’Nat. Rev. Neurosci.200676636781:CAS:528:DC%2BD28XntFCgsbs%3D10.1038/nrn1932
BlairHTGuptaKZhangKConversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cellsHippocampus2008181239125510.1002/hipo.20509
O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, Oxford, 1978).
TerrazasASelf-motion and the hippocampal spatial metricJ. Neurosci.200525808580961:CAS:528:DC%2BD2MXhtVakt77L10.1523/JNEUROSCI.0693-05.2005
MilesFALisbergerSGPlasticity in the vestibulo-ocular reflex: a new hypothesisAnnu. Rev. Neurosci.198142732991:STN:280:DyaL3M7ot1OhtQ%3D%3D10.1146/annurev.ne.04.030181.001421
HölscherCSchneeADahmenHSetiaLMallotHARats are able to navigate in virtual environmentsJ. Exp. Biol.200520856156910.1242/jeb.01371
ZhangKGinzburgIMcNaughtonBLSejnowskiTJInterpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cellsJ. Neurophysiol.199879101710441:STN:280:DyaK1c7jtVKksA%3D%3D10.1152/jn.1998.79.2.1017
EtienneASMaurerRSéguinotVPath integration in mammals and its interaction with visual landmarksJ. Exp. Biol.19961992012091:STN:280:DyaK287kslGlug%3D%3D8576691
AP Maurer (939_CR29) 2005; 15
J Csicsvari (939_CR34) 1999; 19
MC Fuhs (939_CR10) 2006; 26
EN Brown (939_CR38) 1998; 18
M Wittlinger (939_CR6) 2006; 312
A Samsonovich (939_CR9) 1997; 17
AS Etienne (939_CR19) 1996; 199
KE Cullen (939_CR30) 2017; 20
ML Mittelstaedt (939_CR7) 1980; 67
SA Tennant (939_CR22) 2018; 22
CD Harvey (939_CR24) 2009; 461
AJ Bastian (939_CR26) 2006; 16
939_CR40
AS Etienne (939_CR4) 2004; 14
K Zhang (939_CR36) 1998; 79
939_CR1
M Gil (939_CR21) 2018; 21
P Ravassard (939_CR25) 2013; 340
G Chen (939_CR3) 2013; 110
BL McNaughton (939_CR11) 2006; 7
E Kropff (939_CR31) 2015; 523
K Hardcastle (939_CR18) 2015; 86
R Wehner (939_CR5) 1990; 13
L Acharya (939_CR2) 2016; 164
L Tcheang (939_CR15) 2011; 108
EI Moser (939_CR20) 2017; 20
C Hölscher (939_CR23) 2005; 208
FA Miles (939_CR27) 1981; 4
JR Hinman (939_CR32) 2016; 91
939_CR39
HT Blair (939_CR13) 2008; 18
939_CR35
F Kloosterman (939_CR37) 2014; 111
MB Zugaro (939_CR17) 2003; 23
939_CR33
N Burgess (939_CR14) 2007; 17
CR Gallistel (939_CR8) 1990
JJ Knierim (939_CR16) 1998; 80
ME Hasselmo (939_CR12) 2007; 17
A Terrazas (939_CR28) 2005; 25
References_xml – reference: WehnerRMenzelRDo insects have cognitive maps?Annu. Rev. Neurosci.1990134034141:STN:280:DyaK3c3isFKiug%3D%3D10.1146/annurev.ne.13.030190.002155
– reference: WittlingerMWehnerRWolfHThe ant odometer: Stepping on stilts and stumpsScience2006312196519672006Sci...312.1965W1:CAS:528:DC%2BD28XmsVahu7Y%3D10.1126/science.1126912
– reference: HarveyCDCollmanFDombeckDATankDWIntracellular dynamics of hippocampal place cells during virtual navigationNature20094619419462009Natur.461..941H1:CAS:528:DC%2BD1MXhtlCqs73J10.1038/nature08499
– reference: TcheangLBulthoffHHBurgessNVisual influence on path integration in darkness indicates a multimodal representation of large-scale spaceProc. Natl Acad. Sci. USA2011108115211572011PNAS..108.1152T1:CAS:528:DC%2BC3MXhtlWqsLo%3D10.1073/pnas.1011843108
– reference: EtienneASMaurerRSéguinotVPath integration in mammals and its interaction with visual landmarksJ. Exp. Biol.19961992012091:STN:280:DyaK287kslGlug%3D%3D8576691
– reference: RavassardPMultisensory control of hippocampal spatiotemporal selectivityScience2013340134213462013Sci...340.1342R1:CAS:528:DC%2BC3sXptFKjsL4%3D10.1126/science.1232655
– reference: MaurerAPVanRhoadsSRSutherlandGRLipaPMcNaughtonBLSelf-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampusHippocampus20051584185210.1002/hipo.20114
– reference: KropffECarmichaelJEMoserM-BMoserEISpeed cells in the medial entorhinal cortexNature20155234194242015Natur.523..419K1:CAS:528:DC%2BC2MXhtFyltLrK10.1038/nature14622
– reference: KloostermanFLaytonSPChenZWilsonMABayesian decoding using unsorted spikes in the rat hippocampusJ. Neurophysiol.201411121722710.1152/jn.01046.2012
– reference: SamsonovichAMcNaughtonBPath integration and cognitive mapping in a continuous attractor neural network modelJ. Neurosci.199717590059201:CAS:528:DyaK2sXkvFymsr8%3D10.1523/JNEUROSCI.17-15-05900.1997
– reference: MilesFALisbergerSGPlasticity in the vestibulo-ocular reflex: a new hypothesisAnnu. Rev. Neurosci.198142732991:STN:280:DyaL3M7ot1OhtQ%3D%3D10.1146/annurev.ne.04.030181.001421
– reference: ChenGKingJABurgessNO’KeefeJHow vision and movement combine in the hippocampal place codeProc. Natl Acad. Sci. USA20131103783832013PNAS..110..378C1:CAS:528:DC%2BC3sXnsFeiuw%3D%3D10.1073/pnas.1215834110
– reference: BastianAJLearning to predict the future: the cerebellum adapts feedforward movement controlCurr. Opin. Neurobiol.2006166456491:CAS:528:DC%2BD28Xht1Cls7vN10.1016/j.conb.2006.08.016
– reference: Quigley, M. et al. ROS: an open-source Robot Operating System. In ICRA Workshop on Open Source Software (IEEE, 2009).
– reference: EtienneASJefferyKJPath integration in mammalsHippocampus20041418019210.1002/hipo.10173
– reference: HölscherCSchneeADahmenHSetiaLMallotHARats are able to navigate in virtual environmentsJ. Exp. Biol.200520856156910.1242/jeb.01371
– reference: AcharyaLCausal influence of visual cues on hippocampal article causal influence of visual cues on hippocampal directional selectivityCell20161641972071:CAS:528:DC%2BC2MXitVKjt7rF10.1016/j.cell.2015.12.015
– reference: Flandrin, P., Francois, A. & Chassande-Mottin, E. in Applications in Time-Frequency Signal Processing (ed. Papandreou-Suppappola, A.) 179–204 (CRC Press, Boca Raton, 2002).
– reference: O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, Oxford, 1978).
– reference: BurgessNBarryCO’KeefeJAn oscillatory interference model of grid cell firingHippocampus20071780181210.1002/hipo.20327
– reference: GilMImpaired path integration in mice with disrupted grid cell firingNat. Neurosci.20182181931:CAS:528:DC%2BC1cXltVyiurw%3D10.1038/s41593-017-0039-3
– reference: BlairHTGuptaKZhangKConversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cellsHippocampus2008181239125510.1002/hipo.20509
– reference: Campbell, M. G. et al. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nat. Neurosci. 21, 1096–1106 (2018).
– reference: HasselmoMEGiocomoLMZilliEAGrid cell firing may arise from interference of theta frequency membrane potential oscillations in single neuronsHippocampus2007171252127110.1002/hipo.20374
– reference: ZugaroMBArleoABerthozAWienerSIRapid spatial reorientation and head direction cellsJ. Neurosci.200323347834821:CAS:528:DC%2BD3sXjsFSktL0%3D10.1523/JNEUROSCI.23-08-03478.2003
– reference: HardcastleKGanguliSGiocomoLMEnvironmental boundaries as an error correction mechanism for grid cellsNeuron2015868278391:CAS:528:DC%2BC2MXms1ynsLo%3D10.1016/j.neuron.2015.03.039
– reference: HinmanJRBrandonMPClimerJRChapmanGWHasselmoMEMultiple running speed signals in medial entorhinal cortexNeuron2016916666791:CAS:528:DC%2BC28XhtFOlt7zL10.1016/j.neuron.2016.06.027
– reference: TerrazasASelf-motion and the hippocampal spatial metricJ. Neurosci.200525808580961:CAS:528:DC%2BD2MXhtVakt77L10.1523/JNEUROSCI.0693-05.2005
– reference: ZhangKGinzburgIMcNaughtonBLSejnowskiTJInterpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cellsJ. Neurophysiol.199879101710441:STN:280:DyaK1c7jtVKksA%3D%3D10.1152/jn.1998.79.2.1017
– reference: FuhsMCTouretzkyDSA spin glass model of path integration in rat medial entorhinal cortexJ. Neurosci.200626426642761:CAS:528:DC%2BD28XktlCltbY%3D10.1523/JNEUROSCI.4353-05.2006
– reference: Skaggs, W. E., McNaughton, B. L., Gothard, K. M. & Markus, E. J. in Advances in Neural Information Processing Systems5 (eds. Hanson, S. J., Cowan, J. D. & Giles, C. L.) 1030–1037 (NIPS, 1992).
– reference: BrownENFrankLMTangDQuirkMC& Wilson, M. a. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cellsJ. Neurosci.199818741174251:CAS:528:DyaK1cXmt1Sjtbk%3D10.1523/JNEUROSCI.18-18-07411.1998
– reference: MoserEIMoserM-BMcNaughtonBLSpatial representation in the hippocampal formation: a historyNat. Neurosci.201720144814641:CAS:528:DC%2BC2sXhslansbzO10.1038/nn.4653
– reference: KnierimJJKudrimotiHSMcNaughtonBLInteractions between idiothetic cues and external landmarks in the control of place cells and head direction cellsJ. Neurophysiol.1998804254461:STN:280:DyaK1czisFWgsQ%3D%3D10.1152/jn.1998.80.1.425
– reference: TennantSAStellate cells in the medial entorhinal cortex are required for spatial learningCell Rep.201822131313241:CAS:528:DC%2BC1cXitVahsL8%3D10.1016/j.celrep.2018.01.005
– reference: CsicsvariJHiraseHCzurkóAMamiyaABuzsákiGOscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving ratJ. Neurosci.1999192742871:CAS:528:DyaK1MXkvFOqtA%3D%3D10.1523/JNEUROSCI.19-01-00274.1999
– reference: GallistelCRLearning, development, and conceptual change. The organization of learning1990Cambridge, MAMIT Press
– reference: McNaughtonBLBattagliaFPJensenOMoserEIMoserMBPath integration and the neural basis of the ‘cognitive map’Nat. Rev. Neurosci.200676636781:CAS:528:DC%2BD28XntFCgsbs%3D10.1038/nrn1932
– reference: MittelstaedtMLMittelstaedtHHoming by path integration in a mammalNaturwissenschaften1980675665671980NW.....67..566M10.1007/BF00450672
– reference: CullenKETaubeJSOur sense of direction: Progress, controversies and challengesNat. Neurosci.201720146514731:CAS:528:DC%2BC2sXhslansbzP10.1038/nn.4658
– volume: 199
  start-page: 201
  year: 1996
  ident: 939_CR19
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.199.1.201
– volume: 14
  start-page: 180
  year: 2004
  ident: 939_CR4
  publication-title: Hippocampus
  doi: 10.1002/hipo.10173
– volume: 7
  start-page: 663
  year: 2006
  ident: 939_CR11
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1932
– ident: 939_CR39
  doi: 10.1201/9781420042467.ch5
– ident: 939_CR40
– volume: 108
  start-page: 1152
  year: 2011
  ident: 939_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1011843108
– volume: 17
  start-page: 801
  year: 2007
  ident: 939_CR14
  publication-title: Hippocampus
  doi: 10.1002/hipo.20327
– volume: 340
  start-page: 1342
  year: 2013
  ident: 939_CR25
  publication-title: Science
  doi: 10.1126/science.1232655
– volume: 312
  start-page: 1965
  year: 2006
  ident: 939_CR6
  publication-title: Science
  doi: 10.1126/science.1126912
– volume: 461
  start-page: 941
  year: 2009
  ident: 939_CR24
  publication-title: Nature
  doi: 10.1038/nature08499
– volume: 16
  start-page: 645
  year: 2006
  ident: 939_CR26
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2006.08.016
– volume: 23
  start-page: 3478
  year: 2003
  ident: 939_CR17
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-08-03478.2003
– volume: 67
  start-page: 566
  year: 1980
  ident: 939_CR7
  publication-title: Naturwissenschaften
  doi: 10.1007/BF00450672
– volume: 17
  start-page: 5900
  year: 1997
  ident: 939_CR9
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-15-05900.1997
– volume: 17
  start-page: 1252
  year: 2007
  ident: 939_CR12
  publication-title: Hippocampus
  doi: 10.1002/hipo.20374
– volume: 21
  start-page: 81
  year: 2018
  ident: 939_CR21
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0039-3
– volume: 91
  start-page: 666
  year: 2016
  ident: 939_CR32
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.06.027
– ident: 939_CR1
– volume: 13
  start-page: 403
  year: 1990
  ident: 939_CR5
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.13.030190.002155
– volume: 18
  start-page: 7411
  year: 1998
  ident: 939_CR38
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-18-07411.1998
– volume: 80
  start-page: 425
  year: 1998
  ident: 939_CR16
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.80.1.425
– volume: 4
  start-page: 273
  year: 1981
  ident: 939_CR27
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.04.030181.001421
– volume: 25
  start-page: 8085
  year: 2005
  ident: 939_CR28
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0693-05.2005
– volume: 208
  start-page: 561
  year: 2005
  ident: 939_CR23
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01371
– ident: 939_CR35
– ident: 939_CR33
– volume-title: Learning, development, and conceptual change. The organization of learning
  year: 1990
  ident: 939_CR8
– volume: 18
  start-page: 1239
  year: 2008
  ident: 939_CR13
  publication-title: Hippocampus
  doi: 10.1002/hipo.20509
– volume: 164
  start-page: 197
  year: 2016
  ident: 939_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.015
– volume: 26
  start-page: 4266
  year: 2006
  ident: 939_CR10
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4353-05.2006
– volume: 523
  start-page: 419
  year: 2015
  ident: 939_CR31
  publication-title: Nature
  doi: 10.1038/nature14622
– volume: 22
  start-page: 1313
  year: 2018
  ident: 939_CR22
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.005
– volume: 86
  start-page: 827
  year: 2015
  ident: 939_CR18
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.039
– volume: 20
  start-page: 1448
  year: 2017
  ident: 939_CR20
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4653
– volume: 15
  start-page: 841
  year: 2005
  ident: 939_CR29
  publication-title: Hippocampus
  doi: 10.1002/hipo.20114
– volume: 79
  start-page: 1017
  year: 1998
  ident: 939_CR36
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.79.2.1017
– volume: 110
  start-page: 378
  year: 2013
  ident: 939_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1215834110
– volume: 111
  start-page: 217
  year: 2014
  ident: 939_CR37
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01046.2012
– volume: 19
  start-page: 274
  year: 1999
  ident: 939_CR34
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-01-00274.1999
– volume: 20
  start-page: 1465
  year: 2017
  ident: 939_CR30
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4658
SSID ssj0005174
Score 2.5532115
Snippet Hippocampal place cells are spatially tuned neurons that serve as elements of a ‘cognitive map’ in the mammalian brain 1 . To detect the animal’s location,...
Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain . To detect the animal's location, place...
Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain.sup.1. To detect the animal's location,...
Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain. To detect the animal's location, place...
Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain1. To detect the animal's location, place...
Hippocampal place cells are spatially tuned neurons that serve as elements of a “cognitive map” in the mammalian brain1. To detect the animal’s location, place...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 533
SubjectTerms 631/378/1595/1554
631/378/1595/3922
631/378/2629/2630
631/601/18
639/166/988
64
Animal models
Animal orientation
Animal spatial behavior
Animals
Augmented reality
Brain
Brain research
Cognitive ability
Cognitive maps
Cognitive models
Cues
Error correction
Feedback, Physiological
Grid Cells - cytology
Grid Cells - physiology
Hippocampus
Hippocampus (Brain)
Hippocampus - cytology
Hippocampus - physiology
Humanities and Social Sciences
Hypotheses
Integration
Laboratories
Landmarks
Letter
Male
multidisciplinary
Neuronal Plasticity - physiology
Neurons
Place Cells - cytology
Place Cells - physiology
Position measurement
Position sensing
Rats
Rats, Long-Evans
Science
Science (multidisciplinary)
Spatial Navigation - physiology
Spatial Processing - physiology
Visual signals
Title Recalibration of path integration in hippocampal place cells
URI https://link.springer.com/article/10.1038/s41586-019-0939-3
https://www.ncbi.nlm.nih.gov/pubmed/30742074
https://www.proquest.com/docview/2188573004
https://www.proquest.com/docview/2187025264
https://pubmed.ncbi.nlm.nih.gov/PMC6629428
Volume 566
WOSCitedRecordID wos000459769100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8N2CRetsG-MliVTdM-FUjjJHakSRMg0CZGVxWEqr1YiZNAJZQE0u7v353jtKTaeJmqntL6kta5893ZvvwO4C1LU41z5qT92HfI4DlR6CknVAlVCFRC6aJ95z_4YCDG42hoFtxqk1bZ2kRtqNNS0Rr5LroiERC4uv-1unaoahTtrpoSGiuwRigJNDCHwa9FiscSCnO7q8nEbo2OS9BcmhKGWOSwjl9ats633NNy6uTS_ql2S0eP_rdDj-GhCUjtvUaDNuBeVmzCA50YqupN2DCDv7Y_GITqj0_gCwabsZ5ok1jtMrepsLHdQk_Qd5PCvpxUFXpKtDdXtk79smmXoH4KZ0eHZwffHFOGwVFBxKYOYb6FGEb2UzfvBwm-8pSzMO5HUR77XCAJ8Br0GDZGi24S5R7L3RgPEt9NPPYMVouyyF6AHXGlvIQnecyFHwkvDpLUD1mWMR-juphb4LYykMpAlFOljCupt8qZkI3YJIpNktgks-DT_JSqwee4i_kNCVYS7kVBiTUX8ayu5ffTkdzDeZfncy5cC94bprzEH1exeU4Bu0BQWR3OrQ6nqibX8lbru07rRSOkv11mu8OI41t1m1v9kca-1HKhPBa8njfTmZQzV2TlTPNwjGgx4rXgeaO181vEaEkE3xbwjj7PGQh1vNtSTC41-ngYehHOWS343Gr-4m_9886_vLsTW7Du6aFIaULbsDq9mWWv4L76PZ3UNz1Y4aNzomOuqUAqDvo9WNs_HAxH-Ol4fwfpiXtM1DvR9KemQ6K8oac9bR7-AHICWhU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aBghegI1b2ICAuKNoaZzEsQRCEzCtWqkQVKhvluMkW6QpyZYWxI_iP3KOk7RLBXvbA6paVfVJW9vnZvvLdwCesiQxPGdOMlC-Qw7PEaGnnVDHVCFQR9oU7fs-4uNxNJ2KL2vwu7sXhmCVnU80jjopNe2R72AoigIiV_ffVycOVY2i09WuhEajFgfpr5-4ZKvfDT_i_D7zvL1Pkw_7TltVwNGBYDOHKMxCzIoGiZsNghgfWcJZqAZCZMrnEb4EStPWYIDJjxuLzGOZq_BN7Lsx8Rygx7-EveKEIONTvkSUrJA-d4eoLNqpMU5GtHQnfBITDuuFwdVgcCYariI1V45rTRTcu_Gfjd9NuN6m2_ZuYx8bsJYWm3DFwF51vQkbrWur7Zct__arW_AWU2llthFIae0ys6lss90Ra9BneWEf5VWFeQB602PbANtsOgOpb8PkIrpzB9aLskjvgS241l7M40zxyBeRp4I48UOWpszHnFVxC9xuyqVuCdipDsixNEAAFslGSyRqiSQtkcyC14tLqoZ95DzhJ6RHklg9CoINHap5Xcvht69yF1eVns955FrwohXKSvxxrdq7MLALRATWk9zqSeoqP5FnWp_3Wg-bSfrb12z3BNF76X5zp66y9Z61XOqqBY8XzXQlIQKLtJwbGY75OubzFtxtjGQxRIw2fPBpAe-Zz0KAONX7LUV-ZLjVw9ATuCK34E1naMu_9c-Rv39-Jx7B1f3J55EcDccHW3DNM16AAFHbsD47nacP4LL-Mcvr04fGn9ggL9j-_gAusqh1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3rb9MwED9N4yG-ABuvsAEB8RooahoncSyB0MSoqDZVFZvQtC-W4yRbpCnNlhbEn8Z_x52TtEsF-7YPqGoV9S4P2_eyffkdwEuWJAbnzEn6ynfI4Dki9LQT6pgqBOpIm6J93_f4aBQdHorxCvxu34WhtMrWJhpDnUw0rZH30BVFAYGr-72sSYsY7ww-lWcOVZCinda2nEYtIrvpr584fas-DndwrF953uDLweevTlNhwNGBYFOH4MxCjJD6iZv1gxg_WcJZqPpCZMrnEf4EStMyYYCBkBuLzGOZq_Ag9t2YMA_Q-l_jeA2a942Do0V2yRIAdLuhyqJehT4zomk85Sox4bCOS1x2DBc843LW5tLWrfGIgzv_cV_ehdtNGG5v13qzBitpsQ43TDqsrtZhrTF5lf22weXeugcfMMRWZnmBhNmeZDaVc7ZbwA36Ly_sk7wsMT5AK3tqm4Q3m_ZGqvtwcBXNeQCrxaRIH4EtuNZezONM8cgXkaeCOPFDlqbMx1hWcQvcdvilboDZqT7IqTQJAiyStcRIlBhJEiOZBe_mp5Q1KsllzC9IpiShfRQ01sdqVlVyuP9NbuNs0_M5j1wL3jRM2QRvrlXzdgY2gQDCOpwbHU5d5mfyAvV1h3pcD9LfLrPZYUSrprvkVnRlY1UruZBbC57PyXQmZQoW6WRmeDjG8RjnW_CwVph5FzFaCMKvBbyjSnMGwlrvUor8xGCuh6EncKZuwftW6RaP9c-ef3x5I57BTVQ7uTcc7W7ALc8YBMqT2oTV6fksfQLX9Y9pXp0_NabFBnnF6vcHPyqxaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recalibration+of+path+integration+in+hippocampal+place+cells&rft.jtitle=Nature+%28London%29&rft.au=Jayakumar%2C+Ravikrishnan+P&rft.au=Madhav%2C+Manu+S&rft.au=Savelli%2C+Francesco&rft.au=Blair%2C+Hugh+T&rft.date=2019-02-01&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=566&rft.issue=7745&rft.spage=533&rft_id=info:doi/10.1038%2Fs41586-019-0939-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon