Recalibration of path integration in hippocampal place cells
Hippocampal place cells are spatially tuned neurons that serve as elements of a ‘cognitive map’ in the mammalian brain 1 . To detect the animal’s location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks 2 , 3 and mea...
Gespeichert in:
| Veröffentlicht in: | Nature (London) Jg. 566; H. 7745; S. 533 - 537 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.02.2019
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hippocampal place cells are spatially tuned neurons that serve as elements of a ‘cognitive map’ in the mammalian brain
1
. To detect the animal’s location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks
2
,
3
and measuring the distance and direction that the animal has travelled from previously occupied locations
4
–
7
. The latter mechanism—known as path integration—requires a finely tuned gain factor that relates the animal’s self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates
8
,
9
. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant
9
–
14
, but behavioural evidence in humans suggests that the gain is modifiable
15
. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system
4
,
8
,
16
–
19
, but also rapidly fine-tune the integration computation itself.
Evidence from hippocampal place cells shows that path-integration gain, previously thought to be a constant factor in the computation of location, is flexible and can be rapidly fine-tuned. |
|---|---|
| AbstractList | Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain.sup.1. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks.sup.2,3 and measuring the distance and direction that the animal has travelled from previously occupied locations.sup.4-7. The latter mechanism--known as path integration--requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates.sup.8,9. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant.sup.9-14, but behavioural evidence in humans suggests that the gain is modifiable.sup.15. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system.sup.4,8,16-19, but also rapidly fine-tune the integration computation itself. Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain . To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks and measuring the distance and direction that the animal has travelled from previously occupied locations . The latter mechanism-known as path integration-requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates . Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant , but behavioural evidence in humans suggests that the gain is modifiable . Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system , but also rapidly fine-tune the integration computation itself. Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks and measuring the distance and direction that the animal has travelled from previously occupied locations. The latter mechanism-known as path integration-requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant, but behavioural evidence in humans suggests that the gain is modifiable. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system, but also rapidly fine-tune the integration computation itself. Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain1. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks2,3 and measuring the distance and direction that the animal has travelled from previously occupied locations4-7. The latter mechanism-known as path integration-requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates8,9. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant9-14, but behavioural evidence in humans suggests that the gain is modifiable15. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system4,8,16-19, but also rapidly fine-tune the integration computation itself.Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain1. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks2,3 and measuring the distance and direction that the animal has travelled from previously occupied locations4-7. The latter mechanism-known as path integration-requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates8,9. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant9-14, but behavioural evidence in humans suggests that the gain is modifiable15. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system4,8,16-19, but also rapidly fine-tune the integration computation itself. Hippocampal place cells are spatially tuned neurons that serve as elements of a “cognitive map” in the mammalian brain1. To detect the animal’s location, place cells are thought to rely upon two interacting mechanisms: sensing the animal’s position relative to familiar landmarks2,3 and measuring the distance and direction that the animal has traveled from previously occupied locations4–7. The latter mechanism, known as path integration, requires a finely tuned gain factor that relates the animal’s self-movement to the updating of position on the internal cognitive map, with external landmarks necessary to correct positional error that accumulates8,9. Path-integration-based models of hippocampal place cells and entorhinal grid cells treat the path integration gain as a constant9–14, but behavioral evidence in humans suggests that the gain is modifiable15. Here we show physiological evidence from hippocampal place cells that the path integration gain is indeed a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In a novel, augmented reality system, visual landmarks were moved in proportion to the animal’s movement on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path integration gain, as estimated from the place cells after the landmarks were extinguished. We propose that this rapid plasticity keeps the positional update in register with the animal’s movement in the external world over behavioral timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path integration system4,8,16–19, but also rapidly fine-tune the integration computation itself. Hippocampal place cells are spatially tuned neurons that serve as elements of a ‘cognitive map’ in the mammalian brain 1 . To detect the animal’s location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks 2 , 3 and measuring the distance and direction that the animal has travelled from previously occupied locations 4 – 7 . The latter mechanism—known as path integration—requires a finely tuned gain factor that relates the animal’s self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates 8 , 9 . Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant 9 – 14 , but behavioural evidence in humans suggests that the gain is modifiable 15 . Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system 4 , 8 , 16 – 19 , but also rapidly fine-tune the integration computation itself. Evidence from hippocampal place cells shows that path-integration gain, previously thought to be a constant factor in the computation of location, is flexible and can be rapidly fine-tuned. Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain.sup.1. To detect the animal's location, place cells are thought to rely upon two interacting mechanisms: sensing the position of the animal relative to familiar landmarks.sup.2,3 and measuring the distance and direction that the animal has travelled from previously occupied locations.sup.4-7. The latter mechanism--known as path integration--requires a finely tuned gain factor that relates the animal's self-movement to the updating of position on the internal cognitive map, as well as external landmarks to correct the positional error that accumulates.sup.8,9. Models of hippocampal place cells and entorhinal grid cells based on path integration treat the path-integration gain as a constant.sup.9-14, but behavioural evidence in humans suggests that the gain is modifiable.sup.15. Here we show, using physiological evidence from rat hippocampal place cells, that the path-integration gain is a highly plastic variable that can be altered by persistent conflict between self-motion cues and feedback from external landmarks. In an augmented-reality system, visual landmarks were moved in proportion to the movement of a rat on a circular track, creating continuous conflict with path integration. Sustained exposure to this cue conflict resulted in predictable and prolonged recalibration of the path-integration gain, as estimated from the place cells after the landmarks were turned off. We propose that this rapid plasticity keeps the positional update in register with the movement of the rat in the external world over behavioural timescales. These results also demonstrate that visual landmarks not only provide a signal to correct cumulative error in the path-integration system.sup.4,8,16-19, but also rapidly fine-tune the integration computation itself. Evidence from hippocampal place cells shows that path-integration gain, previously thought to be a constant factor in the computation of location, is flexible and can be rapidly fine-tuned. |
| Audience | Academic |
| Author | Knierim, James J. Madhav, Manu S. Blair, Hugh T. Jayakumar, Ravikrishnan P. Savelli, Francesco Cowan, Noah J. |
| AuthorAffiliation | 3 Department of Psychology, UCLA, Los Angeles, CA 4 Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 1 Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 2 Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD |
| AuthorAffiliation_xml | – name: 3 Department of Psychology, UCLA, Los Angeles, CA – name: 4 Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD – name: 2 Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD – name: 1 Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD |
| Author_xml | – sequence: 1 givenname: Ravikrishnan P. surname: Jayakumar fullname: Jayakumar, Ravikrishnan P. organization: Department of Mechanical Engineering, Johns Hopkins University – sequence: 2 givenname: Manu S. surname: Madhav fullname: Madhav, Manu S. email: manusmad@gmail.com organization: Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University – sequence: 3 givenname: Francesco surname: Savelli fullname: Savelli, Francesco organization: Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University – sequence: 4 givenname: Hugh T. surname: Blair fullname: Blair, Hugh T. organization: Department of Psychology, UCLA – sequence: 5 givenname: Noah J. surname: Cowan fullname: Cowan, Noah J. organization: Department of Mechanical Engineering, Johns Hopkins University, Laboratory for Computational Sensing and Robotics, Johns Hopkins University – sequence: 6 givenname: James J. surname: Knierim fullname: Knierim, James J. organization: Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30742074$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kltrFDEcxYNU7Lb6AXyRQV_0YWpukwsUoRQvhYJQ-x4y2cxsymwyncyIfnv_4251t6wSciH5nZPbOUFHMUWP0EuCzwhm6n3mpFKixESXWDNdsidoQbgUJRdKHqEFxlSVWDFxjE5yvsMYV0TyZ-iYYckp1AU6v_HOdqEe7BhSLFJT9HZcFSGOvt3OhVisQt8nZ9e97Yq-s84Xznddfo6eNrbL_sW2P0W3nz7eXn4pr79-vrq8uC5dpdlYUsK40JqQJW5IVUNplpIJS7RuLJcKmgo8GVGVpgzXuqGswRYGNcc1Zafow8a2n-q1Xzofx8F2ph_C2g4_TbLB7K_EsDJt-m6EoJpTBQZvtwZDup98Hs065PkGNvo0ZUOJkphWVHBA3zxC79I0RLjdTKlKMox3qNZ23oTYJNjXzabmopKCcikVBqo8QLU-ejgk_GQTYHqPf32Ad324N7vQ2QEIytKvgzvo-m5PAMzof4ytnXI2V99u9tlXuy_954kf8gKA3ABuSDkPvjEujL9jAqcInSHYzMk0m2QaSKaZk2kYKMkj5YP5_zR0o8nAxtYPfz_j36JfBrPwRA |
| CitedBy_id | crossref_primary_10_1002_hipo_23197 crossref_primary_10_1016_j_jneumeth_2020_108667 crossref_primary_10_1126_science_abg1278 crossref_primary_10_7554_eLife_89851_3 crossref_primary_10_7554_eLife_97433 crossref_primary_10_1016_j_neuron_2021_09_055 crossref_primary_10_1016_j_neuron_2024_08_007 crossref_primary_10_1089_cyber_2022_0124 crossref_primary_10_1242_jeb_243558 crossref_primary_10_1016_j_tics_2020_10_004 crossref_primary_10_1016_j_cell_2020_09_061 crossref_primary_10_1038_s41467_023_42642_3 crossref_primary_10_7554_eLife_95764_4 crossref_primary_10_3389_fpsyg_2025_1521487 crossref_primary_10_1177_02783649211048931 crossref_primary_10_3389_fpsyg_2023_1260425 crossref_primary_10_3917_enf2_211_0005 crossref_primary_10_1016_j_cell_2022_11_022 crossref_primary_10_1146_annurev_neuro_101419_011117 crossref_primary_10_1038_s41583_025_00970_x crossref_primary_10_1038_s41593_025_02054_6 crossref_primary_10_1002_hipo_23265 crossref_primary_10_7554_eLife_89851 crossref_primary_10_1016_j_cell_2025_01_032 crossref_primary_10_7554_eLife_95764 crossref_primary_10_1007_s00422_020_00823_z crossref_primary_10_7554_eLife_97433_3 crossref_primary_10_1002_brb3_2070 crossref_primary_10_1016_j_conb_2020_03_009 crossref_primary_10_3389_fpsyg_2020_571394 crossref_primary_10_1038_s41586_023_05813_2 crossref_primary_10_1038_s41593_025_02045_7 crossref_primary_10_1002_advs_202401670 crossref_primary_10_1038_s41593_024_01681_9 crossref_primary_10_1007_s10827_024_00891_1 crossref_primary_10_3389_fnsys_2022_896251 crossref_primary_10_1073_pnas_2020698118 crossref_primary_10_1038_s41593_025_02038_6 crossref_primary_10_3758_s13423_022_02216_8 crossref_primary_10_1016_j_neuron_2020_10_034 crossref_primary_10_1016_j_cub_2023_10_018 crossref_primary_10_1002_jdn_10169 crossref_primary_10_1016_j_bpsgos_2023_07_008 crossref_primary_10_1016_j_cub_2020_07_006 crossref_primary_10_1146_annurev_neuro_072116_031516 crossref_primary_10_1016_j_cogpsych_2020_101307 crossref_primary_10_1038_s41593_020_0646_2 crossref_primary_10_1002_hipo_23281 crossref_primary_10_1016_j_conb_2022_102568 crossref_primary_10_1016_j_neunet_2019_09_002 crossref_primary_10_1146_annurev_control_060117_104856 crossref_primary_10_1242_jeb_188912 crossref_primary_10_7554_eLife_62578 crossref_primary_10_3758_s13420_023_00618_9 crossref_primary_10_1073_pnas_2214539120 crossref_primary_10_1137_21M1390220 crossref_primary_10_1016_j_jneumeth_2021_109453 crossref_primary_10_7554_eLife_69841 crossref_primary_10_3390_s21237988 crossref_primary_10_1016_j_jneumeth_2021_109336 crossref_primary_10_1108_AJIM_01_2025_0045 |
| Cites_doi | 10.1242/jeb.199.1.201 10.1002/hipo.10173 10.1038/nrn1932 10.1201/9781420042467.ch5 10.1073/pnas.1011843108 10.1002/hipo.20327 10.1126/science.1232655 10.1126/science.1126912 10.1038/nature08499 10.1016/j.conb.2006.08.016 10.1523/JNEUROSCI.23-08-03478.2003 10.1007/BF00450672 10.1523/JNEUROSCI.17-15-05900.1997 10.1002/hipo.20374 10.1038/s41593-017-0039-3 10.1016/j.neuron.2016.06.027 10.1146/annurev.ne.13.030190.002155 10.1523/JNEUROSCI.18-18-07411.1998 10.1152/jn.1998.80.1.425 10.1146/annurev.ne.04.030181.001421 10.1523/JNEUROSCI.0693-05.2005 10.1242/jeb.01371 10.1002/hipo.20509 10.1016/j.cell.2015.12.015 10.1523/JNEUROSCI.4353-05.2006 10.1038/nature14622 10.1016/j.celrep.2018.01.005 10.1016/j.neuron.2015.03.039 10.1038/nn.4653 10.1002/hipo.20114 10.1152/jn.1998.79.2.1017 10.1073/pnas.1215834110 10.1152/jn.01046.2012 10.1523/JNEUROSCI.19-01-00274.1999 10.1038/nn.4658 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 COPYRIGHT 2019 Nature Publishing Group Copyright Nature Publishing Group Feb 28, 2019 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: COPYRIGHT 2019 Nature Publishing Group – notice: Copyright Nature Publishing Group Feb 28, 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
| DOI | 10.1038/s41586-019-0939-3 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database Proquest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 537 |
| ExternalDocumentID | PMC6629428 A576247780 30742074 10_1038_s41586_019_0939_3 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R21 NS095075 – fundername: NIMH NIH HHS grantid: R01 MH079511 – fundername: NINDS NIH HHS grantid: R01 NS102537 |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZY4 ~8M ~G0 ACMFV AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
| ID | FETCH-LOGICAL-c593t-213469911d0f15b5b5fd736a199fa478fa45ace31859230b9f23f0a0b9b40b23 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459769100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Nov 04 02:05:12 EST 2025 Sun Nov 09 09:53:35 EST 2025 Tue Oct 07 06:53:17 EDT 2025 Tue Nov 11 10:08:17 EST 2025 Sat Nov 29 11:43:20 EST 2025 Tue Jun 10 15:32:22 EDT 2025 Tue Nov 04 17:17:22 EST 2025 Thu Nov 13 15:36:56 EST 2025 Mon Jul 21 06:02:47 EDT 2025 Sat Nov 29 02:38:46 EST 2025 Tue Nov 18 22:20:34 EST 2025 Fri Feb 21 02:38:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7745 |
| Language | English |
| License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c593t-213469911d0f15b5b5fd736a199fa478fa45ace31859230b9f23f0a0b9b40b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions. J.J.K., N.J.C., and H.T.B. conceived and all authors designed the study. J.J.K. and N.J.C. advised on all aspects of the experiments and analysis. F.S. made key contributions to the analysis and interpretation of the data and provided supervision over data acquisition and analysis. R.P.J. and M.S.M. designed and constructed the apparatus, performed experiments, and analyzed the data. R.P.J., M.S.M., N.J.C., and J.J.K. wrote the paper and F.S. and H.T.B. provided critical feedback. The primary and senior authors contributed equally |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6629428 |
| PMID | 30742074 |
| PQID | 2188573004 |
| PQPubID | 40569 |
| PageCount | 5 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6629428 proquest_miscellaneous_2187025264 proquest_journals_2188573004 gale_infotracmisc_A576247780 gale_infotracgeneralonefile_A576247780 gale_infotraccpiq_576247780 gale_infotracacademiconefile_A576247780 gale_incontextgauss_ISR_A576247780 pubmed_primary_30742074 crossref_citationtrail_10_1038_s41586_019_0939_3 crossref_primary_10_1038_s41586_019_0939_3 springer_journals_10_1038_s41586_019_0939_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20190201 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 2 year: 2019 text: 20190201 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | MaurerAPVanRhoadsSRSutherlandGRLipaPMcNaughtonBLSelf-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampusHippocampus20051584185210.1002/hipo.20114 WittlingerMWehnerRWolfHThe ant odometer: Stepping on stilts and stumpsScience2006312196519672006Sci...312.1965W1:CAS:528:DC%2BD28XmsVahu7Y%3D10.1126/science.1126912 BastianAJLearning to predict the future: the cerebellum adapts feedforward movement controlCurr. Opin. Neurobiol.2006166456491:CAS:528:DC%2BD28Xht1Cls7vN10.1016/j.conb.2006.08.016 BurgessNBarryCO’KeefeJAn oscillatory interference model of grid cell firingHippocampus20071780181210.1002/hipo.20327 TcheangLBulthoffHHBurgessNVisual influence on path integration in darkness indicates a multimodal representation of large-scale spaceProc. Natl Acad. Sci. USA2011108115211572011PNAS..108.1152T1:CAS:528:DC%2BC3MXhtlWqsLo%3D10.1073/pnas.1011843108 Flandrin, P., Francois, A. & Chassande-Mottin, E. in Applications in Time-Frequency Signal Processing (ed. Papandreou-Suppappola, A.) 179–204 (CRC Press, Boca Raton, 2002). KloostermanFLaytonSPChenZWilsonMABayesian decoding using unsorted spikes in the rat hippocampusJ. Neurophysiol.201411121722710.1152/jn.01046.2012 GallistelCRLearning, development, and conceptual change. The organization of learning1990Cambridge, MAMIT Press HardcastleKGanguliSGiocomoLMEnvironmental boundaries as an error correction mechanism for grid cellsNeuron2015868278391:CAS:528:DC%2BC2MXms1ynsLo%3D10.1016/j.neuron.2015.03.039 KnierimJJKudrimotiHSMcNaughtonBLInteractions between idiothetic cues and external landmarks in the control of place cells and head direction cellsJ. Neurophysiol.1998804254461:STN:280:DyaK1czisFWgsQ%3D%3D10.1152/jn.1998.80.1.425 RavassardPMultisensory control of hippocampal spatiotemporal selectivityScience2013340134213462013Sci...340.1342R1:CAS:528:DC%2BC3sXptFKjsL4%3D10.1126/science.1232655 ChenGKingJABurgessNO’KeefeJHow vision and movement combine in the hippocampal place codeProc. Natl Acad. Sci. USA20131103783832013PNAS..110..378C1:CAS:528:DC%2BC3sXnsFeiuw%3D%3D10.1073/pnas.1215834110 Skaggs, W. E., McNaughton, B. L., Gothard, K. M. & Markus, E. J. in Advances in Neural Information Processing Systems5 (eds. Hanson, S. J., Cowan, J. D. & Giles, C. L.) 1030–1037 (NIPS, 1992). KropffECarmichaelJEMoserM-BMoserEISpeed cells in the medial entorhinal cortexNature20155234194242015Natur.523..419K1:CAS:528:DC%2BC2MXhtFyltLrK10.1038/nature14622 CullenKETaubeJSOur sense of direction: Progress, controversies and challengesNat. Neurosci.201720146514731:CAS:528:DC%2BC2sXhslansbzP10.1038/nn.4658 CsicsvariJHiraseHCzurkóAMamiyaABuzsákiGOscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving ratJ. Neurosci.1999192742871:CAS:528:DyaK1MXkvFOqtA%3D%3D10.1523/JNEUROSCI.19-01-00274.1999 Campbell, M. G. et al. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nat. Neurosci. 21, 1096–1106 (2018). HasselmoMEGiocomoLMZilliEAGrid cell firing may arise from interference of theta frequency membrane potential oscillations in single neuronsHippocampus2007171252127110.1002/hipo.20374 SamsonovichAMcNaughtonBPath integration and cognitive mapping in a continuous attractor neural network modelJ. Neurosci.199717590059201:CAS:528:DyaK2sXkvFymsr8%3D10.1523/JNEUROSCI.17-15-05900.1997 Quigley, M. et al. ROS: an open-source Robot Operating System. In ICRA Workshop on Open Source Software (IEEE, 2009). HarveyCDCollmanFDombeckDATankDWIntracellular dynamics of hippocampal place cells during virtual navigationNature20094619419462009Natur.461..941H1:CAS:528:DC%2BD1MXhtlCqs73J10.1038/nature08499 AcharyaLCausal influence of visual cues on hippocampal article causal influence of visual cues on hippocampal directional selectivityCell20161641972071:CAS:528:DC%2BC2MXitVKjt7rF10.1016/j.cell.2015.12.015 WehnerRMenzelRDo insects have cognitive maps?Annu. Rev. Neurosci.1990134034141:STN:280:DyaK3c3isFKiug%3D%3D10.1146/annurev.ne.13.030190.002155 BrownENFrankLMTangDQuirkMC& Wilson, M. a. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cellsJ. Neurosci.199818741174251:CAS:528:DyaK1cXmt1Sjtbk%3D10.1523/JNEUROSCI.18-18-07411.1998 MoserEIMoserM-BMcNaughtonBLSpatial representation in the hippocampal formation: a historyNat. Neurosci.201720144814641:CAS:528:DC%2BC2sXhslansbzO10.1038/nn.4653 HinmanJRBrandonMPClimerJRChapmanGWHasselmoMEMultiple running speed signals in medial entorhinal cortexNeuron2016916666791:CAS:528:DC%2BC28XhtFOlt7zL10.1016/j.neuron.2016.06.027 TennantSAStellate cells in the medial entorhinal cortex are required for spatial learningCell Rep.201822131313241:CAS:528:DC%2BC1cXitVahsL8%3D10.1016/j.celrep.2018.01.005 MittelstaedtMLMittelstaedtHHoming by path integration in a mammalNaturwissenschaften1980675665671980NW.....67..566M10.1007/BF00450672 ZugaroMBArleoABerthozAWienerSIRapid spatial reorientation and head direction cellsJ. Neurosci.200323347834821:CAS:528:DC%2BD3sXjsFSktL0%3D10.1523/JNEUROSCI.23-08-03478.2003 GilMImpaired path integration in mice with disrupted grid cell firingNat. Neurosci.20182181931:CAS:528:DC%2BC1cXltVyiurw%3D10.1038/s41593-017-0039-3 EtienneASJefferyKJPath integration in mammalsHippocampus20041418019210.1002/hipo.10173 FuhsMCTouretzkyDSA spin glass model of path integration in rat medial entorhinal cortexJ. Neurosci.200626426642761:CAS:528:DC%2BD28XktlCltbY%3D10.1523/JNEUROSCI.4353-05.2006 McNaughtonBLBattagliaFPJensenOMoserEIMoserMBPath integration and the neural basis of the ‘cognitive map’Nat. Rev. Neurosci.200676636781:CAS:528:DC%2BD28XntFCgsbs%3D10.1038/nrn1932 BlairHTGuptaKZhangKConversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cellsHippocampus2008181239125510.1002/hipo.20509 O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, Oxford, 1978). TerrazasASelf-motion and the hippocampal spatial metricJ. Neurosci.200525808580961:CAS:528:DC%2BD2MXhtVakt77L10.1523/JNEUROSCI.0693-05.2005 MilesFALisbergerSGPlasticity in the vestibulo-ocular reflex: a new hypothesisAnnu. Rev. Neurosci.198142732991:STN:280:DyaL3M7ot1OhtQ%3D%3D10.1146/annurev.ne.04.030181.001421 HölscherCSchneeADahmenHSetiaLMallotHARats are able to navigate in virtual environmentsJ. Exp. Biol.200520856156910.1242/jeb.01371 ZhangKGinzburgIMcNaughtonBLSejnowskiTJInterpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cellsJ. Neurophysiol.199879101710441:STN:280:DyaK1c7jtVKksA%3D%3D10.1152/jn.1998.79.2.1017 EtienneASMaurerRSéguinotVPath integration in mammals and its interaction with visual landmarksJ. Exp. Biol.19961992012091:STN:280:DyaK287kslGlug%3D%3D8576691 AP Maurer (939_CR29) 2005; 15 J Csicsvari (939_CR34) 1999; 19 MC Fuhs (939_CR10) 2006; 26 EN Brown (939_CR38) 1998; 18 M Wittlinger (939_CR6) 2006; 312 A Samsonovich (939_CR9) 1997; 17 AS Etienne (939_CR19) 1996; 199 KE Cullen (939_CR30) 2017; 20 ML Mittelstaedt (939_CR7) 1980; 67 SA Tennant (939_CR22) 2018; 22 CD Harvey (939_CR24) 2009; 461 AJ Bastian (939_CR26) 2006; 16 939_CR40 AS Etienne (939_CR4) 2004; 14 K Zhang (939_CR36) 1998; 79 939_CR1 M Gil (939_CR21) 2018; 21 P Ravassard (939_CR25) 2013; 340 G Chen (939_CR3) 2013; 110 BL McNaughton (939_CR11) 2006; 7 E Kropff (939_CR31) 2015; 523 K Hardcastle (939_CR18) 2015; 86 R Wehner (939_CR5) 1990; 13 L Acharya (939_CR2) 2016; 164 L Tcheang (939_CR15) 2011; 108 EI Moser (939_CR20) 2017; 20 C Hölscher (939_CR23) 2005; 208 FA Miles (939_CR27) 1981; 4 JR Hinman (939_CR32) 2016; 91 939_CR39 HT Blair (939_CR13) 2008; 18 939_CR35 F Kloosterman (939_CR37) 2014; 111 MB Zugaro (939_CR17) 2003; 23 939_CR33 N Burgess (939_CR14) 2007; 17 CR Gallistel (939_CR8) 1990 JJ Knierim (939_CR16) 1998; 80 ME Hasselmo (939_CR12) 2007; 17 A Terrazas (939_CR28) 2005; 25 |
| References_xml | – reference: WehnerRMenzelRDo insects have cognitive maps?Annu. Rev. Neurosci.1990134034141:STN:280:DyaK3c3isFKiug%3D%3D10.1146/annurev.ne.13.030190.002155 – reference: WittlingerMWehnerRWolfHThe ant odometer: Stepping on stilts and stumpsScience2006312196519672006Sci...312.1965W1:CAS:528:DC%2BD28XmsVahu7Y%3D10.1126/science.1126912 – reference: HarveyCDCollmanFDombeckDATankDWIntracellular dynamics of hippocampal place cells during virtual navigationNature20094619419462009Natur.461..941H1:CAS:528:DC%2BD1MXhtlCqs73J10.1038/nature08499 – reference: TcheangLBulthoffHHBurgessNVisual influence on path integration in darkness indicates a multimodal representation of large-scale spaceProc. Natl Acad. Sci. USA2011108115211572011PNAS..108.1152T1:CAS:528:DC%2BC3MXhtlWqsLo%3D10.1073/pnas.1011843108 – reference: EtienneASMaurerRSéguinotVPath integration in mammals and its interaction with visual landmarksJ. Exp. Biol.19961992012091:STN:280:DyaK287kslGlug%3D%3D8576691 – reference: RavassardPMultisensory control of hippocampal spatiotemporal selectivityScience2013340134213462013Sci...340.1342R1:CAS:528:DC%2BC3sXptFKjsL4%3D10.1126/science.1232655 – reference: MaurerAPVanRhoadsSRSutherlandGRLipaPMcNaughtonBLSelf-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampusHippocampus20051584185210.1002/hipo.20114 – reference: KropffECarmichaelJEMoserM-BMoserEISpeed cells in the medial entorhinal cortexNature20155234194242015Natur.523..419K1:CAS:528:DC%2BC2MXhtFyltLrK10.1038/nature14622 – reference: KloostermanFLaytonSPChenZWilsonMABayesian decoding using unsorted spikes in the rat hippocampusJ. Neurophysiol.201411121722710.1152/jn.01046.2012 – reference: SamsonovichAMcNaughtonBPath integration and cognitive mapping in a continuous attractor neural network modelJ. Neurosci.199717590059201:CAS:528:DyaK2sXkvFymsr8%3D10.1523/JNEUROSCI.17-15-05900.1997 – reference: MilesFALisbergerSGPlasticity in the vestibulo-ocular reflex: a new hypothesisAnnu. Rev. Neurosci.198142732991:STN:280:DyaL3M7ot1OhtQ%3D%3D10.1146/annurev.ne.04.030181.001421 – reference: ChenGKingJABurgessNO’KeefeJHow vision and movement combine in the hippocampal place codeProc. Natl Acad. Sci. USA20131103783832013PNAS..110..378C1:CAS:528:DC%2BC3sXnsFeiuw%3D%3D10.1073/pnas.1215834110 – reference: BastianAJLearning to predict the future: the cerebellum adapts feedforward movement controlCurr. Opin. Neurobiol.2006166456491:CAS:528:DC%2BD28Xht1Cls7vN10.1016/j.conb.2006.08.016 – reference: Quigley, M. et al. ROS: an open-source Robot Operating System. In ICRA Workshop on Open Source Software (IEEE, 2009). – reference: EtienneASJefferyKJPath integration in mammalsHippocampus20041418019210.1002/hipo.10173 – reference: HölscherCSchneeADahmenHSetiaLMallotHARats are able to navigate in virtual environmentsJ. Exp. Biol.200520856156910.1242/jeb.01371 – reference: AcharyaLCausal influence of visual cues on hippocampal article causal influence of visual cues on hippocampal directional selectivityCell20161641972071:CAS:528:DC%2BC2MXitVKjt7rF10.1016/j.cell.2015.12.015 – reference: Flandrin, P., Francois, A. & Chassande-Mottin, E. in Applications in Time-Frequency Signal Processing (ed. Papandreou-Suppappola, A.) 179–204 (CRC Press, Boca Raton, 2002). – reference: O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, Oxford, 1978). – reference: BurgessNBarryCO’KeefeJAn oscillatory interference model of grid cell firingHippocampus20071780181210.1002/hipo.20327 – reference: GilMImpaired path integration in mice with disrupted grid cell firingNat. Neurosci.20182181931:CAS:528:DC%2BC1cXltVyiurw%3D10.1038/s41593-017-0039-3 – reference: BlairHTGuptaKZhangKConversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cellsHippocampus2008181239125510.1002/hipo.20509 – reference: Campbell, M. G. et al. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nat. Neurosci. 21, 1096–1106 (2018). – reference: HasselmoMEGiocomoLMZilliEAGrid cell firing may arise from interference of theta frequency membrane potential oscillations in single neuronsHippocampus2007171252127110.1002/hipo.20374 – reference: ZugaroMBArleoABerthozAWienerSIRapid spatial reorientation and head direction cellsJ. Neurosci.200323347834821:CAS:528:DC%2BD3sXjsFSktL0%3D10.1523/JNEUROSCI.23-08-03478.2003 – reference: HardcastleKGanguliSGiocomoLMEnvironmental boundaries as an error correction mechanism for grid cellsNeuron2015868278391:CAS:528:DC%2BC2MXms1ynsLo%3D10.1016/j.neuron.2015.03.039 – reference: HinmanJRBrandonMPClimerJRChapmanGWHasselmoMEMultiple running speed signals in medial entorhinal cortexNeuron2016916666791:CAS:528:DC%2BC28XhtFOlt7zL10.1016/j.neuron.2016.06.027 – reference: TerrazasASelf-motion and the hippocampal spatial metricJ. Neurosci.200525808580961:CAS:528:DC%2BD2MXhtVakt77L10.1523/JNEUROSCI.0693-05.2005 – reference: ZhangKGinzburgIMcNaughtonBLSejnowskiTJInterpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cellsJ. Neurophysiol.199879101710441:STN:280:DyaK1c7jtVKksA%3D%3D10.1152/jn.1998.79.2.1017 – reference: FuhsMCTouretzkyDSA spin glass model of path integration in rat medial entorhinal cortexJ. Neurosci.200626426642761:CAS:528:DC%2BD28XktlCltbY%3D10.1523/JNEUROSCI.4353-05.2006 – reference: Skaggs, W. E., McNaughton, B. L., Gothard, K. M. & Markus, E. J. in Advances in Neural Information Processing Systems5 (eds. Hanson, S. J., Cowan, J. D. & Giles, C. L.) 1030–1037 (NIPS, 1992). – reference: BrownENFrankLMTangDQuirkMC& Wilson, M. a. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cellsJ. Neurosci.199818741174251:CAS:528:DyaK1cXmt1Sjtbk%3D10.1523/JNEUROSCI.18-18-07411.1998 – reference: MoserEIMoserM-BMcNaughtonBLSpatial representation in the hippocampal formation: a historyNat. Neurosci.201720144814641:CAS:528:DC%2BC2sXhslansbzO10.1038/nn.4653 – reference: KnierimJJKudrimotiHSMcNaughtonBLInteractions between idiothetic cues and external landmarks in the control of place cells and head direction cellsJ. Neurophysiol.1998804254461:STN:280:DyaK1czisFWgsQ%3D%3D10.1152/jn.1998.80.1.425 – reference: TennantSAStellate cells in the medial entorhinal cortex are required for spatial learningCell Rep.201822131313241:CAS:528:DC%2BC1cXitVahsL8%3D10.1016/j.celrep.2018.01.005 – reference: CsicsvariJHiraseHCzurkóAMamiyaABuzsákiGOscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving ratJ. Neurosci.1999192742871:CAS:528:DyaK1MXkvFOqtA%3D%3D10.1523/JNEUROSCI.19-01-00274.1999 – reference: GallistelCRLearning, development, and conceptual change. The organization of learning1990Cambridge, MAMIT Press – reference: McNaughtonBLBattagliaFPJensenOMoserEIMoserMBPath integration and the neural basis of the ‘cognitive map’Nat. Rev. Neurosci.200676636781:CAS:528:DC%2BD28XntFCgsbs%3D10.1038/nrn1932 – reference: MittelstaedtMLMittelstaedtHHoming by path integration in a mammalNaturwissenschaften1980675665671980NW.....67..566M10.1007/BF00450672 – reference: CullenKETaubeJSOur sense of direction: Progress, controversies and challengesNat. Neurosci.201720146514731:CAS:528:DC%2BC2sXhslansbzP10.1038/nn.4658 – volume: 199 start-page: 201 year: 1996 ident: 939_CR19 publication-title: J. Exp. Biol. doi: 10.1242/jeb.199.1.201 – volume: 14 start-page: 180 year: 2004 ident: 939_CR4 publication-title: Hippocampus doi: 10.1002/hipo.10173 – volume: 7 start-page: 663 year: 2006 ident: 939_CR11 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1932 – ident: 939_CR39 doi: 10.1201/9781420042467.ch5 – ident: 939_CR40 – volume: 108 start-page: 1152 year: 2011 ident: 939_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1011843108 – volume: 17 start-page: 801 year: 2007 ident: 939_CR14 publication-title: Hippocampus doi: 10.1002/hipo.20327 – volume: 340 start-page: 1342 year: 2013 ident: 939_CR25 publication-title: Science doi: 10.1126/science.1232655 – volume: 312 start-page: 1965 year: 2006 ident: 939_CR6 publication-title: Science doi: 10.1126/science.1126912 – volume: 461 start-page: 941 year: 2009 ident: 939_CR24 publication-title: Nature doi: 10.1038/nature08499 – volume: 16 start-page: 645 year: 2006 ident: 939_CR26 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2006.08.016 – volume: 23 start-page: 3478 year: 2003 ident: 939_CR17 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-08-03478.2003 – volume: 67 start-page: 566 year: 1980 ident: 939_CR7 publication-title: Naturwissenschaften doi: 10.1007/BF00450672 – volume: 17 start-page: 5900 year: 1997 ident: 939_CR9 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-15-05900.1997 – volume: 17 start-page: 1252 year: 2007 ident: 939_CR12 publication-title: Hippocampus doi: 10.1002/hipo.20374 – volume: 21 start-page: 81 year: 2018 ident: 939_CR21 publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0039-3 – volume: 91 start-page: 666 year: 2016 ident: 939_CR32 publication-title: Neuron doi: 10.1016/j.neuron.2016.06.027 – ident: 939_CR1 – volume: 13 start-page: 403 year: 1990 ident: 939_CR5 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.13.030190.002155 – volume: 18 start-page: 7411 year: 1998 ident: 939_CR38 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-18-07411.1998 – volume: 80 start-page: 425 year: 1998 ident: 939_CR16 publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.80.1.425 – volume: 4 start-page: 273 year: 1981 ident: 939_CR27 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.04.030181.001421 – volume: 25 start-page: 8085 year: 2005 ident: 939_CR28 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0693-05.2005 – volume: 208 start-page: 561 year: 2005 ident: 939_CR23 publication-title: J. Exp. Biol. doi: 10.1242/jeb.01371 – ident: 939_CR35 – ident: 939_CR33 – volume-title: Learning, development, and conceptual change. The organization of learning year: 1990 ident: 939_CR8 – volume: 18 start-page: 1239 year: 2008 ident: 939_CR13 publication-title: Hippocampus doi: 10.1002/hipo.20509 – volume: 164 start-page: 197 year: 2016 ident: 939_CR2 publication-title: Cell doi: 10.1016/j.cell.2015.12.015 – volume: 26 start-page: 4266 year: 2006 ident: 939_CR10 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4353-05.2006 – volume: 523 start-page: 419 year: 2015 ident: 939_CR31 publication-title: Nature doi: 10.1038/nature14622 – volume: 22 start-page: 1313 year: 2018 ident: 939_CR22 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.005 – volume: 86 start-page: 827 year: 2015 ident: 939_CR18 publication-title: Neuron doi: 10.1016/j.neuron.2015.03.039 – volume: 20 start-page: 1448 year: 2017 ident: 939_CR20 publication-title: Nat. Neurosci. doi: 10.1038/nn.4653 – volume: 15 start-page: 841 year: 2005 ident: 939_CR29 publication-title: Hippocampus doi: 10.1002/hipo.20114 – volume: 79 start-page: 1017 year: 1998 ident: 939_CR36 publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.79.2.1017 – volume: 110 start-page: 378 year: 2013 ident: 939_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1215834110 – volume: 111 start-page: 217 year: 2014 ident: 939_CR37 publication-title: J. Neurophysiol. doi: 10.1152/jn.01046.2012 – volume: 19 start-page: 274 year: 1999 ident: 939_CR34 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-01-00274.1999 – volume: 20 start-page: 1465 year: 2017 ident: 939_CR30 publication-title: Nat. Neurosci. doi: 10.1038/nn.4658 |
| SSID | ssj0005174 |
| Score | 2.5532115 |
| Snippet | Hippocampal place cells are spatially tuned neurons that serve as elements of a ‘cognitive map’ in the mammalian brain
1
. To detect the animal’s location,... Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain . To detect the animal's location, place... Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain.sup.1. To detect the animal's location,... Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain. To detect the animal's location, place... Hippocampal place cells are spatially tuned neurons that serve as elements of a 'cognitive map' in the mammalian brain1. To detect the animal's location, place... Hippocampal place cells are spatially tuned neurons that serve as elements of a “cognitive map” in the mammalian brain1. To detect the animal’s location, place... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 533 |
| SubjectTerms | 631/378/1595/1554 631/378/1595/3922 631/378/2629/2630 631/601/18 639/166/988 64 Animal models Animal orientation Animal spatial behavior Animals Augmented reality Brain Brain research Cognitive ability Cognitive maps Cognitive models Cues Error correction Feedback, Physiological Grid Cells - cytology Grid Cells - physiology Hippocampus Hippocampus (Brain) Hippocampus - cytology Hippocampus - physiology Humanities and Social Sciences Hypotheses Integration Laboratories Landmarks Letter Male multidisciplinary Neuronal Plasticity - physiology Neurons Place Cells - cytology Place Cells - physiology Position measurement Position sensing Rats Rats, Long-Evans Science Science (multidisciplinary) Spatial Navigation - physiology Spatial Processing - physiology Visual signals |
| Title | Recalibration of path integration in hippocampal place cells |
| URI | https://link.springer.com/article/10.1038/s41586-019-0939-3 https://www.ncbi.nlm.nih.gov/pubmed/30742074 https://www.proquest.com/docview/2188573004 https://www.proquest.com/docview/2187025264 https://pubmed.ncbi.nlm.nih.gov/PMC6629428 |
| Volume | 566 |
| WOSCitedRecordID | wos000459769100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WdoO9bGv35bUL3hj7xKtj2ZYMg9GWlo3SLKRlhL0IW7baQLHTOtnfvztZTuqw9WWEHE50diLf6e6kO_8E8IZlacxUEnk5jcIwSbUn8jDCQC4WCS9YFGvfbDbBBwMxHidDu-BW27LK1iYaQ51XitbId9EViYjA1cOv0yuPdo2i7KrdQmMNNgglgQbmMPq1LPFYQWFus5pM7NbouATNpalgiCUe6_ilVet8wz2tlk6u5E-NWzp6-L8degQPbEDq7jUatAl3inIL7pnCUFVvwaYd_LX73iJUf3gMXzDYTM1Em8TqVtqljY3dFnqCvpuU7sVkOkVPifbm0jWlXy5lCeoncHZ0eHbwzbPbMHgqStjMI8y3GMPIfu7rfpThS-ecxWk_SXQacoEkwmvQY9gYLfpZogOm_RQPstDPAvYU1suqLJ6DmxO0TqgyHVFKOQ-F0hlHJ83RLOA8LHDAb2UglYUop50yLqVJlTMhG7FJFJsksUnmwMfFKdMGn-M25tckWEm4FyUV1pyn87qW309Hcg_nXUHIufAdeGeZdIU_rlL7nAJ2gaCyOpzbHU41nVzJG61vO63njZD-dpmdDiOOb9VtbvVHWvtSy6XyOPBq0UxnUs1cWVRzw8MxosWI14FnjdYubhGjJRF8O8A7-rxgINTxbks5uTDo43EcJDhndeBTq_nLv_XPO__i9k5sw_3ADEUqE9qB9dn1vHgJd9Xv2aS-7sEaH_0kOuaGCqTioN-Djf3DwXCEn473PyM98Y-JBieG_jB0SJQ39LRnzMMfXuFZ-A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aBoi9ABswwgYExB1FS-MkdiQQmoBp1UaFRh_6ZiVOvEWakmxpQfwo_iPnOEm7VLC3PaCqVVWftLV9bra_fAfgOUvikKkocFKyQj-KtSNSP8BELhQRz1gQatcUm-CjkZhMom8r8Lu7F4ZglZ1PNI46LRXtke9gKBIBkav7H6szh6pG0elqV0KjUYuD7NdPXLLVH4afcX5feN7el_GnfaetKuCoIGJThyjMQsyKBqmrB0GCD51yFsaDKNKxzwW-BLGircEAkx83ibTHtBvjm8R3E-I5QI9_Dd04JwQZn_AFomSJ9Lk7RGVip8Y4KWjpTvgkFjmsFwaXg8GFaLiM1Fw6rjVRcO_2fzZ-d-BWm27bu419rMNKVmzADQN7VfUGrLeurbZft_zbb-7Ce0ylY7ONQEprl9qmss12R6xBn-WFfZJXFeYB6E1PbQNss-kMpL4H46vozn1YLcoiewB2SsRBvkp0QAfmqS-UTjimIBydHq4yPQvcbsqlagnYqQ7IqTRAACZkoyUStUSSlkhmwdv5JVXDPnKZ8DPSI0msHgXBho7jWV3L4fcjuYurSs_nXLgWvGqFdIk_ruL2LgzsAhGB9SS3epKqys_khdaXvdbjZpL-9jXbPUH0Xqrf3KmrbL1nLRe6asHTeTNdSYjAIitnRoZjvo75vAWbjZHMh4jRhg8-LeA985kLEKd6v6XITwy3ehh6Ea7ILXjXGdrib_1z5B9e3okncHN__PVQHg5HB1uw5hkvQICobVidns-yR3Bd_Zjm9flj409skFdsf38ALE2oWA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6axkW8ABu3sAEBcUdR0ziOEwmEJkZFNVRVbA8TL1bixFukKcmWFsRP499xjpO0SwV72wOqWkX1ycX2udon3wF4zpI4YCriTkpS6EexdsLU5-jIBWEkMsYD7ZpiE2IyCQ8Po-ka_O7ehaG0yk4nGkWdlorWyAdoikJO4Or-QLdpEdPd0cfq1KEKUrTT2pXTaFhkL_v1E8O3-sN4F-f6heeNPh98-uK0FQYcxSM2cwjOLEAPaZi6esgT_OhUsCAeRpGOfRHiD48VLRNydITcJNIe026MB4nvJoR5gNr_isBrUNw35d-X2SUrANDdhioLBzXazJDCeMpVYpHDeiZx1TCcs4yrWZsrW7fGIo5u_cdjeRtutm64vdPIzQasZcUmXDPpsKrehI1W5dX26xaX-80deI8udmyWF4iZ7VLbVM7Z7gA36L-8sI_zqkL_ALXsiW0S3mzaG6nvwsFldOcerBdlkT0AOyVAIV8lmtNGeuqHSicCXROByhCjT88Ct5t-qVpgdqoPciJNggALZcMxEjlGEsdIZsHbxSlVg0pyEfEz4ilJaB8FzfVRPK9rOd7_Jncw2vR8IULXglctkS7x5ipu387ALhBAWI9yq0epqvxUnmt92Ws9aibpb5fZ7hGiVlP95o51ZatVa7nkWwueLprpTMoULLJybmgE-vHo51twvxGYxRAxWgjCrwWiJ0oLAsJa77cU-bHBXA8CL8JI3YJ3ndAtH-ufI__w4k48gesodvLreLK3BTc8oxAoT2ob1mdn8-wRXFU_Znl99tioFhvkJYvfHz8isUs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recalibration+of+path+integration+in+hippocampal+place+cells&rft.jtitle=Nature+%28London%29&rft.au=Jayakumar%2C+Ravikrishnan+P&rft.au=Madhav%2C+Manu+S&rft.au=Savelli%2C+Francesco&rft.au=Blair%2C+Hugh+T&rft.date=2019-02-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=566&rft.issue=7745&rft.spage=533&rft.epage=2&rft_id=info:doi/10.1038%2Fs41586-019-0939-3&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |