Internal-external cross-validation helped to evaluate the generalizability of prediction models in large clustered datasets

To illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets. We developed eight Cox regression models to estimate the risk of heart failure using a large population-level dataset. These models differed in the number of predi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:JOURNAL OF CLINICAL EPIDEMIOLOGY Ročník 137; s. 83 - 91
Hlavní autoři: Takada, Toshihiko, Nijman, Steven, Denaxas, Spiros, Snell, Kym I.E., Uijl, Alicia, Nguyen, Tri-Long, Asselbergs, Folkert W., Debray, Thomas P.A.
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.09.2021
Elsevier Limited
Témata:
ISSN:0895-4356, 1878-5921, 1878-5921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets. We developed eight Cox regression models to estimate the risk of heart failure using a large population-level dataset. These models differed in the number of predictors, the functional form of the predictor effects (non-linear effects and interaction) and the estimation method (maximum likelihood and penalization). Internal-external cross-validation was used to evaluate the models’ generalizability across the included general practices. Among 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart failure during a median follow-up time of 5.8 years. For discrimination, the simplest prediction model yielded a good concordance statistic, which was not much improved by adopting complex strategies. Between-practice heterogeneity in discrimination was similar in all models. For calibration, the simplest model performed satisfactorily. Although accounting for non-linear effects and interaction slightly improved the calibration slope, it also led to more heterogeneity in the observed/expected ratio. Similar results were found in a second case study involving patients with stroke. In large clustered datasets, prediction model studies may adopt internal-external cross-validation to evaluate the generalizability of competing models, and to identify promising modelling strategies.
AbstractList AbstractObjectiveTo illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets. Study Design and SettingWe developed eight Cox regression models to estimate the risk of heart failure using a large population-level dataset. These models differed in the number of predictors, the functional form of the predictor effects (non-linear effects and interaction) and the estimation method (maximum likelihood and penalization). Internal-external cross-validation was used to evaluate the models’ generalizability across the included general practices. ResultsAmong 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart failure during a median follow-up time of 5.8 years. For discrimination, the simplest prediction model yielded a good concordance statistic, which was not much improved by adopting complex strategies. Between-practice heterogeneity in discrimination was similar in all models. For calibration, the simplest model performed satisfactorily. Although accounting for non-linear effects and interaction slightly improved the calibration slope, it also led to more heterogeneity in the observed/expected ratio. Similar results were found in a second case study involving patients with stroke. ConclusionIn large clustered datasets, prediction model studies may adopt internal-external cross-validation to evaluate the generalizability of competing models, and to identify promising modelling strategies.
To illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets. We developed eight Cox regression models to estimate the risk of heart failure using a large population-level dataset. These models differed in the number of predictors, the functional form of the predictor effects (non-linear effects and interaction) and the estimation method (maximum likelihood and penalization). Internal-external cross-validation was used to evaluate the models’ generalizability across the included general practices. Among 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart failure during a median follow-up time of 5.8 years. For discrimination, the simplest prediction model yielded a good concordance statistic, which was not much improved by adopting complex strategies. Between-practice heterogeneity in discrimination was similar in all models. For calibration, the simplest model performed satisfactorily. Although accounting for non-linear effects and interaction slightly improved the calibration slope, it also led to more heterogeneity in the observed/expected ratio. Similar results were found in a second case study involving patients with stroke. In large clustered datasets, prediction model studies may adopt internal-external cross-validation to evaluate the generalizability of competing models, and to identify promising modelling strategies.
ObjectiveTo illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets.Study Design and SettingWe developed eight Cox regression models to estimate the risk of heart failure using a large population-level dataset. These models differed in the number of predictors, the functional form of the predictor effects (non-linear effects and interaction) and the estimation method (maximum likelihood and penalization). Internal-external cross-validation was used to evaluate the models’ generalizability across the included general practices.ResultsAmong 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart failure during a median follow-up time of 5.8 years. For discrimination, the simplest prediction model yielded a good concordance statistic, which was not much improved by adopting complex strategies. Between-practice heterogeneity in discrimination was similar in all models. For calibration, the simplest model performed satisfactorily. Although accounting for non-linear effects and interaction slightly improved the calibration slope, it also led to more heterogeneity in the observed/expected ratio. Similar results were found in a second case study involving patients with stroke.ConclusionIn large clustered datasets, prediction model studies may adopt internal-external cross-validation to evaluate the generalizability of competing models, and to identify promising modelling strategies.
To illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets.OBJECTIVETo illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets.We developed eight Cox regression models to estimate the risk of heart failure using a large population-level dataset. These models differed in the number of predictors, the functional form of the predictor effects (non-linear effects and interaction) and the estimation method (maximum likelihood and penalization). Internal-external cross-validation was used to evaluate the models' generalizability across the included general practices.STUDY DESIGN AND SETTINGWe developed eight Cox regression models to estimate the risk of heart failure using a large population-level dataset. These models differed in the number of predictors, the functional form of the predictor effects (non-linear effects and interaction) and the estimation method (maximum likelihood and penalization). Internal-external cross-validation was used to evaluate the models' generalizability across the included general practices.Among 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart failure during a median follow-up time of 5.8 years. For discrimination, the simplest prediction model yielded a good concordance statistic, which was not much improved by adopting complex strategies. Between-practice heterogeneity in discrimination was similar in all models. For calibration, the simplest model performed satisfactorily. Although accounting for non-linear effects and interaction slightly improved the calibration slope, it also led to more heterogeneity in the observed/expected ratio. Similar results were found in a second case study involving patients with stroke.RESULTSAmong 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart failure during a median follow-up time of 5.8 years. For discrimination, the simplest prediction model yielded a good concordance statistic, which was not much improved by adopting complex strategies. Between-practice heterogeneity in discrimination was similar in all models. For calibration, the simplest model performed satisfactorily. Although accounting for non-linear effects and interaction slightly improved the calibration slope, it also led to more heterogeneity in the observed/expected ratio. Similar results were found in a second case study involving patients with stroke.In large clustered datasets, prediction model studies may adopt internal-external cross-validation to evaluate the generalizability of competing models, and to identify promising modelling strategies.CONCLUSIONIn large clustered datasets, prediction model studies may adopt internal-external cross-validation to evaluate the generalizability of competing models, and to identify promising modelling strategies.
Author Nijman, Steven
Debray, Thomas P.A.
Takada, Toshihiko
Snell, Kym I.E.
Denaxas, Spiros
Nguyen, Tri-Long
Uijl, Alicia
Asselbergs, Folkert W.
Author_xml – sequence: 1
  givenname: Toshihiko
  orcidid: 0000-0002-8032-6224
  surname: Takada
  fullname: Takada, Toshihiko
  organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
– sequence: 2
  givenname: Steven
  orcidid: 0000-0001-6798-2078
  surname: Nijman
  fullname: Nijman, Steven
  organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
– sequence: 3
  givenname: Spiros
  orcidid: 0000-0001-9612-7791
  surname: Denaxas
  fullname: Denaxas, Spiros
  organization: Health Data Research UK and Institute of Health Informatics, University College London, Gibbs Building, 215 Euston Road, London, NW1 2BE, United Kingdom
– sequence: 4
  givenname: Kym I.E.
  orcidid: 0000-0001-9373-6591
  surname: Snell
  fullname: Snell, Kym I.E.
  organization: Centre for Prognosis Research, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
– sequence: 5
  givenname: Alicia
  orcidid: 0000-0003-2835-7741
  surname: Uijl
  fullname: Uijl, Alicia
  organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
– sequence: 6
  givenname: Tri-Long
  orcidid: 0000-0002-6376-7212
  surname: Nguyen
  fullname: Nguyen, Tri-Long
  organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
– sequence: 7
  givenname: Folkert W.
  surname: Asselbergs
  fullname: Asselbergs, Folkert W.
  organization: Health Data Research UK and Institute of Health Informatics, University College London, Gibbs Building, 215 Euston Road, London, NW1 2BE, United Kingdom
– sequence: 8
  givenname: Thomas P.A.
  orcidid: 0000-0002-1790-2719
  surname: Debray
  fullname: Debray, Thomas P.A.
  email: t.debray@umcutrecht.nl
  organization: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33836256$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNqNkktv1DAUhS1URKeFv1BZYsMmgx9xnEgIgSoelSqxANaW49y0nnriYDuFgT-PM48uZkFZ2br6zrn2PfcMnQx-AIQuKFlSQqvXq-XKODvAaJeMMLokfEmYeIIWtJZ1IRpGT9CC1I0oSi6qU3QW44oQKokUz9Ap5zWvmKgW6M_VkCAM2hXwa3fBJvgYi3vtbKeT9QO-BTdCh5PHkKuTToDTLeAbGCBk6rdurbNpg32PxwCdNVvV2nfgIrYDdjrcADZuirlDNsq2OkKKz9HTXrsIL_bnOfr-8cO3y8_F9ZdPV5fvrwuT_5GKThCqGQfgXa3bSmrTS647ycu6p7rvy64tW0JMWZGKS2kaaXTNoNai6RttND9Hxc43_oRxatUY7FqHjfLaqn3pLt9AVYKUtMn8qx0_Bv9jgpjU2kYDzukB_BQVE5SyshENz-jLI3Tlp3mKMyUFETVtykxd7KmpXUP38IBDDBl4swO2sw_QK2PTdvgpaOsUJWpOXa3UIXU1p64IVzn1LK-O5IcOjwrf7YQ5Kbi3EFQ0FgaTQwxgkuq8fdzi7ZHFTFmj3R1sID6Mg6rIFFFf552cV5LRvI5Elv82-J8X_AUsMvhG
CitedBy_id crossref_primary_10_1136_jnnp_2022_329937
crossref_primary_10_1093_eurheartj_ehae326
crossref_primary_10_2196_58732
crossref_primary_10_1016_j_euroneuro_2024_08_005
crossref_primary_10_1109_ACCESS_2022_3178382
crossref_primary_10_1007_s11307_023_01832_7
crossref_primary_10_2147_CCID_S542866
crossref_primary_10_1186_s12916_022_02439_5
crossref_primary_10_1186_s41512_022_00133_x
crossref_primary_10_3390_jcm14134531
crossref_primary_10_1186_s12916_023_02779_w
crossref_primary_10_1016_j_microb_2024_100208
crossref_primary_10_1016_j_clnesp_2022_10_010
crossref_primary_10_1093_ageing_afae045
crossref_primary_10_1136_bmj_2022_071058
crossref_primary_10_2139_ssrn_5355430
crossref_primary_10_1016_j_jddst_2025_107554
crossref_primary_10_1186_s41512_024_00171_7
crossref_primary_10_2196_59634
crossref_primary_10_1007_s00068_023_02351_4
crossref_primary_10_1093_aje_kwae401
crossref_primary_10_3390_biomedicines11102704
crossref_primary_10_1177_09622802251345486
crossref_primary_10_1136_bmj_2023_074819
crossref_primary_10_1186_s12888_022_03986_0
crossref_primary_10_1186_s12916_025_04048_4
crossref_primary_10_1093_eurjpc_zwad383
crossref_primary_10_1177_15459683241237975
crossref_primary_10_1016_j_jclinepi_2021_12_017
crossref_primary_10_1136_bmjment_2024_301226
crossref_primary_10_3390_jcm12175681
crossref_primary_10_1136_bmj_2023_078276
crossref_primary_10_1016_j_jclinepi_2023_02_021
crossref_primary_10_1177_00220345241237448
Cites_doi 10.1136/bmj.i2416
10.1214/18-STS646
10.1186/s41512-019-0059-4
10.1186/1471-2288-14-3
10.1093/ije/dys188
10.1093/jamia/ocz105
10.1186/1745-6215-12-101
10.7326/0003-4819-144-3-200602070-00009
10.1177/0962280216666564
10.1161/RES.0b013e31824da8ad
10.1016/j.jclinepi.2019.02.004
10.1002/sim.5732
10.1371/journal.pmed.1001886
10.1016/j.jacc.2010.05.049
10.1016/j.ypmed.2020.105986
10.1002/bimj.201400004
10.1177/0962280217705678
10.1016/j.jclinepi.2014.06.018
10.1002/bimj.201800289
10.1136/bmj.i3140
10.1016/j.jclinepi.2015.05.009
10.1001/jamacardio.2016.3956
10.1002/ejhf.1350
10.18637/jss.v039.i05
10.1177/0962280218785504
10.1161/CIRCHEARTFAILURE.111.964841
10.1002/sim.5844
10.1371/journal.pone.0202344
10.1136/openhrt-2014-000222
10.1136/bmj.i6460
ContentType Journal Article
Publication
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021. The Authors
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7RV
7T2
7T7
7TK
7U7
7U9
7X7
7XB
88C
88E
8AO
8C1
8FD
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
K9.
KB0
M0S
M0T
M1P
M2O
M7N
MBDVC
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
ADTPV
BZJLE
D8T
STUKM
DOI 10.1016/j.jclinepi.2021.03.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Health and Safety Science Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Healthcare Administration Database
PML(ProQuest Medical Library)
ProQuest Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Research Library (Corporate)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
SwePub
SwePub Other
SWEPUB Freely available online
SwePub Other full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
Health & Safety Science Abstracts
ProQuest Public Health
ProQuest Central Basic
Toxicology Abstracts
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-5921
EndPage 91
ExternalDocumentID oai_swepub_ki_se_650419
33836256
10_1016_j_jclinepi_2021_03_025
S0895435621001074
1_s2_0_S0895435621001074
Genre Validation Study
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/K006584/1
– fundername: Department of Health
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8G5
8P~
9JM
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYJJ
AAYWO
ABBQC
ABFNM
ABIVO
ABJNI
ABLJU
ABMAC
ABMMH
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
AQUVI
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
D-I
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HEH
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
L7B
M0T
M1P
M29
M2O
M3W
M41
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OD~
OHT
OO0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PRBVW
PROAC
PSQYO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSB
SSH
SSO
SSZ
SV3
T5K
UAP
UKHRP
WOW
WUQ
X7M
XPP
YHZ
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
AKYCK
F3I
LCYCR
ZA5
9DU
AAYXX
AFFHD
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T2
7T7
7TK
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ADTPV
BZJLE
D8T
STUKM
ID FETCH-LOGICAL-c592t-d501a23ee3d8ab67acf73ad7348f1aff4db4b00c4606377c97ca82e8a59f9aca3
IEDL.DBID 7RV
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704355400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-4356
1878-5921
IngestDate Tue Nov 25 03:31:10 EST 2025
Sat Sep 27 19:26:25 EDT 2025
Sat Nov 29 14:34:18 EST 2025
Mon Jul 21 06:00:05 EDT 2025
Sat Nov 29 07:13:55 EST 2025
Tue Nov 18 22:36:40 EST 2025
Fri Feb 23 02:44:42 EST 2024
Tue Feb 25 20:07:51 EST 2025
Tue Oct 14 19:36:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Validation
Heterogeneity
Model comparison
Discrimination
Calibration
Prediction model
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-d501a23ee3d8ab67acf73ad7348f1aff4db4b00c4606377c97ca82e8a59f9aca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-8032-6224
0000-0002-6376-7212
0000-0003-2835-7741
0000-0001-6798-2078
0000-0002-1790-2719
0000-0001-9612-7791
0000-0001-9373-6591
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id
PMID 33836256
PQID 2575058194
PQPubID 105585
PageCount 9
ParticipantIDs swepub_primary_oai_swepub_ki_se_650419
proquest_miscellaneous_2511249593
proquest_journals_2575058194
pubmed_primary_33836256
crossref_citationtrail_10_1016_j_jclinepi_2021_03_025
crossref_primary_10_1016_j_jclinepi_2021_03_025
elsevier_sciencedirect_doi_10_1016_j_jclinepi_2021_03_025
elsevier_clinicalkeyesjournals_1_s2_0_S0895435621001074
elsevier_clinicalkey_doi_10_1016_j_jclinepi_2021_03_025
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Elmsford
PublicationTitle JOURNAL OF CLINICAL EPIDEMIOLOGY
PublicationTitleAlternate J Clin Epidemiol
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Damen, Hooft, Schuit, Debray, Collins, Tzoulaki (bib0009) 2016; 353
Sandercock, Niewada, Czlonkowska (bib0025) 2011; 12
Snell, Hua, Debray, Ensor, Look, Moons (bib0008) 2016; 69
(bib0022) 2019
Agarwal, Chambless, Ballantyne, Astor, Bertoni, Chang (bib0010) 2012; 5
Debray, Moons, Ahmed, Koffijberg, Riley (bib0002) 2013; 32
Resche-Rigon, White (bib0019) 2018; 27
Ioannidis, Tzoulaki (bib0026) 2012; 110
Burgess, White, Resche-Rigon, Wood (bib0033) 2013; 32
Debray, Damen, Riley, Snell, Reitsma, Hooft (bib0007) 2019; 28
Hippisley-Cox, Coupland (bib0011) 2015; 5
Debray, Vergouwe, Koffijberg, Nieboer, Steyerberg, Moons (bib0021) 2015; 68
Debray, de Jong, Moons, Riley (bib0004) 2019; 3
Wood, Royston, White (bib0031) 2015; 57
Denaxas, Gonzalez-Izquierdo, Direk, Fitzpatrick, Fatemifar, Banerjee (bib0013) 2019; 26
CALIBER. Available at
Simon, Friedman, Hastie, Tibshirani (bib0020) 2011; 39
Uijl, Koudstaal, Direk, Denaxas, Groenwold, Banerjee (bib0015) 2019; 21
The English Indices of Deprivation 2019. Available at
Ahmed, Debray, Moons, Riley (bib0006) 2014; 14
Smith, Newton-Cheh, Almgren, Struck, Morgenthaler, Bergmann (bib0012) 2010; 56
Steele, Denaxas, Shah, Hemingway, Luscombe (bib0029) 2018; 13
Frizzell, Liang, Schulte, Yancy, Heidenreich, Hernandez (bib0028) 2017; 2
Reilly, Evans (bib0001) 2006; 144
Date accessed: October 19, 2020.
Snell, Ensor, Debray, Moons, Riley (bib0024) 2018; 27
Mertens, Banzato, de Wreede (bib0032) 2020; 62
Christodoulou, Ma, Collins, Steyerberg, Verbakel, Van Calster (bib0030) 2019; 110
Debray, Damen, Snell, Ensor, Hooft, Reitsma (bib0023) 2017; 356
van Bussel, Hoevenaar-Blom, Poortvliet, Gussekloo, van Dalen, van Gool (bib0027) 2020; 132
Debray, Riley, Rovers, Reitsma, Moons, Cochrane (bib0003) 2015; 12
Riley, Ensor, Snell, Debray, Altman, Moons (bib0005) 2016; 353
Denaxas, George, Herrett, Shah, Kalra, Hingorani (bib0014) 2012; 41
Audigier, White, Jolani, Debray, Quartagno, Carpenter (bib34) 2018; 33
Yang, Negishi, Otahal, Marwick (bib0016) 2015; 2
Wood (10.1016/j.jclinepi.2021.03.025_bib0031) 2015; 57
Hippisley-Cox (10.1016/j.jclinepi.2021.03.025_bib0011) 2015; 5
Ioannidis (10.1016/j.jclinepi.2021.03.025_bib0026) 2012; 110
Debray (10.1016/j.jclinepi.2021.03.025_bib0007) 2019; 28
10.1016/j.jclinepi.2021.03.025_bib0018
Reilly (10.1016/j.jclinepi.2021.03.025_bib0001) 2006; 144
Yang (10.1016/j.jclinepi.2021.03.025_bib0016) 2015; 2
Agarwal (10.1016/j.jclinepi.2021.03.025_bib0010) 2012; 5
10.1016/j.jclinepi.2021.03.025_bib0017
Sandercock (10.1016/j.jclinepi.2021.03.025_bib0025) 2011; 12
Steele (10.1016/j.jclinepi.2021.03.025_bib0029) 2018; 13
(10.1016/j.jclinepi.2021.03.025_bib0022) 2019
Snell (10.1016/j.jclinepi.2021.03.025_bib0008) 2016; 69
Frizzell (10.1016/j.jclinepi.2021.03.025_bib0028) 2017; 2
Debray (10.1016/j.jclinepi.2021.03.025_bib0003) 2015; 12
Simon (10.1016/j.jclinepi.2021.03.025_bib0020) 2011; 39
Uijl (10.1016/j.jclinepi.2021.03.025_bib0015) 2019; 21
Debray (10.1016/j.jclinepi.2021.03.025_bib0002) 2013; 32
Debray (10.1016/j.jclinepi.2021.03.025_bib0004) 2019; 3
Mertens (10.1016/j.jclinepi.2021.03.025_bib0032) 2020; 62
Denaxas (10.1016/j.jclinepi.2021.03.025_bib0013) 2019; 26
van Bussel (10.1016/j.jclinepi.2021.03.025_bib0027) 2020; 132
Ahmed (10.1016/j.jclinepi.2021.03.025_bib0006) 2014; 14
Debray (10.1016/j.jclinepi.2021.03.025_bib0021) 2015; 68
Smith (10.1016/j.jclinepi.2021.03.025_bib0012) 2010; 56
Resche-Rigon (10.1016/j.jclinepi.2021.03.025_bib0019) 2018; 27
Damen (10.1016/j.jclinepi.2021.03.025_bib0009) 2016; 353
Denaxas (10.1016/j.jclinepi.2021.03.025_bib0014) 2012; 41
Christodoulou (10.1016/j.jclinepi.2021.03.025_bib0030) 2019; 110
Snell (10.1016/j.jclinepi.2021.03.025_bib0024) 2018; 27
Audigier (10.1016/j.jclinepi.2021.03.025_bib34) 2018; 33
Debray (10.1016/j.jclinepi.2021.03.025_bib0023) 2017; 356
Riley (10.1016/j.jclinepi.2021.03.025_bib0005) 2016; 353
Burgess (10.1016/j.jclinepi.2021.03.025_bib0033) 2013; 32
References_xml – volume: 27
  start-page: 1634
  year: 2018
  end-page: 1649
  ident: bib0019
  article-title: Multiple imputation by chained equations for systematically and sporadically missing multilevel data
  publication-title: Stat Methods Med Res
– reference: . Date accessed: October 19, 2020.
– volume: 12
  start-page: 101
  year: 2011
  ident: bib0025
  article-title: International Stroke Trial Collaborative G. The International Stroke Trial database
  publication-title: Trials
– volume: 356
  start-page: i6460
  year: 2017
  ident: bib0023
  article-title: A guide to systematic review and meta-analysis of prediction model performance
  publication-title: BMJ
– volume: 110
  start-page: 12
  year: 2019
  end-page: 22
  ident: bib0030
  article-title: A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models
  publication-title: J Clin Epidemiol
– volume: 5
  start-page: 422
  year: 2012
  end-page: 429
  ident: bib0010
  article-title: Prediction of incident heart failure in general practice: the Atherosclerosis Risk in Communities (ARIC) Study
  publication-title: Circ Heart Fail
– volume: 5
  year: 2015
  ident: bib0011
  article-title: Development and validation of risk prediction equations to estimate future risk of heart failure in patients with diabetes: a prospective cohort study
  publication-title: BMJ Open
– volume: 13
  year: 2018
  ident: bib0029
  article-title: Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease
  publication-title: PLoS One
– volume: 12
  year: 2015
  ident: bib0003
  article-title: Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use
  publication-title: PLoS Med
– reference: The English Indices of Deprivation 2019. Available at:
– volume: 39
  start-page: 1
  year: 2011
  end-page: 13
  ident: bib0020
  article-title: Regularization paths for cox's proportional hazards model via coordinate descent
  publication-title: J Stat Softw
– year: 2019
  ident: bib0022
  article-title: Prognosis research in health care: concepts, methods, and impact
– volume: 26
  start-page: 1545
  year: 2019
  end-page: 1559
  ident: bib0013
  article-title: UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER
  publication-title: J Am Med Inform Assoc
– volume: 132
  year: 2020
  ident: bib0027
  article-title: Predictive value of traditional risk factors for cardiovascular disease in older people: A systematic review
  publication-title: Prev Med
– volume: 41
  start-page: 1625
  year: 2012
  end-page: 1638
  ident: bib0014
  article-title: Data resource profile: cardiovascular disease research using linked bespoke studies and electronic health records (CALIBER)
  publication-title: Int J Epidemiol
– volume: 2
  start-page: 204
  year: 2017
  end-page: 209
  ident: bib0028
  article-title: Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches
  publication-title: JAMA Cardiol
– volume: 14
  start-page: 3
  year: 2014
  ident: bib0006
  article-title: Developing and validating risk prediction models in an individual participant data meta-analysis
  publication-title: BMC Med Res Methodol
– volume: 144
  start-page: 201
  year: 2006
  end-page: 209
  ident: bib0001
  article-title: Translating clinical research into clinical practice: impact of using prediction rules to make decisions
  publication-title: Ann Intern Med
– volume: 32
  start-page: 3158
  year: 2013
  end-page: 3180
  ident: bib0002
  article-title: A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis
  publication-title: Stat Med
– volume: 2
  year: 2015
  ident: bib0016
  article-title: Clinical prediction of incident heart failure risk: a systematic review and meta-analysis
  publication-title: Open Heart
– volume: 353
  start-page: i2416
  year: 2016
  ident: bib0009
  article-title: Prediction models for cardiovascular disease risk in the general population: systematic review
  publication-title: BMJ
– volume: 21
  start-page: 1197
  year: 2019
  end-page: 1206
  ident: bib0015
  article-title: Risk factors for incident heart failure in age- and sex-specific strata: a population-based cohort using linked electronic health records
  publication-title: Eur J Heart Fail
– volume: 56
  start-page: 1712
  year: 2010
  end-page: 1719
  ident: bib0012
  article-title: Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation
  publication-title: J Am Coll Cardiol
– volume: 110
  start-page: 658
  year: 2012
  end-page: 662
  ident: bib0026
  article-title: Minimal and null predictive effects for the most popular blood biomarkers of cardiovascular disease
  publication-title: Circ Res
– volume: 33
  start-page: 160
  year: 2018
  end-page: 183
  ident: bib34
  article-title: Multiple imputation for multilevel data with continuous and binary variables
  publication-title: Statistical Science
– volume: 28
  start-page: 2768
  year: 2019
  end-page: 2786
  ident: bib0007
  article-title: A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes
  publication-title: Stat Methods Med Res
– volume: 27
  start-page: 3505
  year: 2018
  end-page: 3522
  ident: bib0024
  article-title: Meta-analysis of prediction model performance across multiple studies: Which scale helps ensure between-study normality for the C-statistic and calibration measures?
  publication-title: Stat Methods Med Res
– volume: 68
  start-page: 279
  year: 2015
  end-page: 289
  ident: bib0021
  article-title: A new framework to enhance the interpretation of external validation studies of clinical prediction models
  publication-title: J Clin Epidemiol
– reference: CALIBER. Available at:
– volume: 69
  start-page: 40
  year: 2016
  end-page: 50
  ident: bib0008
  article-title: Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model
  publication-title: J Clin Epidemiol
– volume: 62
  start-page: 724
  year: 2020
  end-page: 741
  ident: bib0032
  article-title: Construction and assessment of prediction rules for binary outcome in the presence of missing predictor data using multiple imputation and cross-validation: Methodological approach and data-based evaluation
  publication-title: Biom J
– volume: 3
  start-page: 13
  year: 2019
  ident: bib0004
  article-title: Evidence synthesis in prognosis research
  publication-title: Diagn Progn Res
– volume: 32
  start-page: 4499
  year: 2013
  end-page: 4514
  ident: bib0033
  article-title: Combining multiple imputation and meta-analysis with individual participant data
  publication-title: Stat Med
– volume: 353
  start-page: i3140
  year: 2016
  ident: bib0005
  article-title: External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges
  publication-title: BMJ
– volume: 57
  start-page: 614
  year: 2015
  end-page: 632
  ident: bib0031
  article-title: The estimation and use of predictions for the assessment of model performance using large samples with multiply imputed data
  publication-title: Biom J
– volume: 353
  start-page: i2416
  year: 2016
  ident: 10.1016/j.jclinepi.2021.03.025_bib0009
  article-title: Prediction models for cardiovascular disease risk in the general population: systematic review
  publication-title: BMJ
  doi: 10.1136/bmj.i2416
– volume: 33
  start-page: 160
  issue: 2
  year: 2018
  ident: 10.1016/j.jclinepi.2021.03.025_bib34
  article-title: Multiple imputation for multilevel data with continuous and binary variables
  publication-title: Statistical Science
  doi: 10.1214/18-STS646
– volume: 3
  start-page: 13
  year: 2019
  ident: 10.1016/j.jclinepi.2021.03.025_bib0004
  article-title: Evidence synthesis in prognosis research
  publication-title: Diagn Progn Res
  doi: 10.1186/s41512-019-0059-4
– volume: 14
  start-page: 3
  year: 2014
  ident: 10.1016/j.jclinepi.2021.03.025_bib0006
  article-title: Developing and validating risk prediction models in an individual participant data meta-analysis
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-14-3
– volume: 41
  start-page: 1625
  year: 2012
  ident: 10.1016/j.jclinepi.2021.03.025_bib0014
  article-title: Data resource profile: cardiovascular disease research using linked bespoke studies and electronic health records (CALIBER)
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dys188
– volume: 26
  start-page: 1545
  year: 2019
  ident: 10.1016/j.jclinepi.2021.03.025_bib0013
  article-title: UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocz105
– volume: 12
  start-page: 101
  year: 2011
  ident: 10.1016/j.jclinepi.2021.03.025_bib0025
  article-title: International Stroke Trial Collaborative G. The International Stroke Trial database
  publication-title: Trials
  doi: 10.1186/1745-6215-12-101
– volume: 144
  start-page: 201
  year: 2006
  ident: 10.1016/j.jclinepi.2021.03.025_bib0001
  article-title: Translating clinical research into clinical practice: impact of using prediction rules to make decisions
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-144-3-200602070-00009
– volume: 27
  start-page: 1634
  year: 2018
  ident: 10.1016/j.jclinepi.2021.03.025_bib0019
  article-title: Multiple imputation by chained equations for systematically and sporadically missing multilevel data
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216666564
– volume: 110
  start-page: 658
  year: 2012
  ident: 10.1016/j.jclinepi.2021.03.025_bib0026
  article-title: Minimal and null predictive effects for the most popular blood biomarkers of cardiovascular disease
  publication-title: Circ Res
  doi: 10.1161/RES.0b013e31824da8ad
– volume: 110
  start-page: 12
  year: 2019
  ident: 10.1016/j.jclinepi.2021.03.025_bib0030
  article-title: A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2019.02.004
– volume: 32
  start-page: 3158
  year: 2013
  ident: 10.1016/j.jclinepi.2021.03.025_bib0002
  article-title: A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis
  publication-title: Stat Med
  doi: 10.1002/sim.5732
– volume: 12
  year: 2015
  ident: 10.1016/j.jclinepi.2021.03.025_bib0003
  article-title: Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001886
– volume: 56
  start-page: 1712
  year: 2010
  ident: 10.1016/j.jclinepi.2021.03.025_bib0012
  article-title: Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2010.05.049
– volume: 132
  year: 2020
  ident: 10.1016/j.jclinepi.2021.03.025_bib0027
  article-title: Predictive value of traditional risk factors for cardiovascular disease in older people: A systematic review
  publication-title: Prev Med
  doi: 10.1016/j.ypmed.2020.105986
– volume: 57
  start-page: 614
  year: 2015
  ident: 10.1016/j.jclinepi.2021.03.025_bib0031
  article-title: The estimation and use of predictions for the assessment of model performance using large samples with multiply imputed data
  publication-title: Biom J
  doi: 10.1002/bimj.201400004
– ident: 10.1016/j.jclinepi.2021.03.025_bib0018
– volume: 27
  start-page: 3505
  year: 2018
  ident: 10.1016/j.jclinepi.2021.03.025_bib0024
  article-title: Meta-analysis of prediction model performance across multiple studies: Which scale helps ensure between-study normality for the C-statistic and calibration measures?
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280217705678
– year: 2019
  ident: 10.1016/j.jclinepi.2021.03.025_bib0022
– volume: 68
  start-page: 279
  year: 2015
  ident: 10.1016/j.jclinepi.2021.03.025_bib0021
  article-title: A new framework to enhance the interpretation of external validation studies of clinical prediction models
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2014.06.018
– volume: 62
  start-page: 724
  year: 2020
  ident: 10.1016/j.jclinepi.2021.03.025_bib0032
  article-title: Construction and assessment of prediction rules for binary outcome in the presence of missing predictor data using multiple imputation and cross-validation: Methodological approach and data-based evaluation
  publication-title: Biom J
  doi: 10.1002/bimj.201800289
– volume: 353
  start-page: i3140
  year: 2016
  ident: 10.1016/j.jclinepi.2021.03.025_bib0005
  article-title: External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges
  publication-title: BMJ
  doi: 10.1136/bmj.i3140
– volume: 69
  start-page: 40
  year: 2016
  ident: 10.1016/j.jclinepi.2021.03.025_bib0008
  article-title: Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2015.05.009
– volume: 2
  start-page: 204
  year: 2017
  ident: 10.1016/j.jclinepi.2021.03.025_bib0028
  article-title: Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2016.3956
– volume: 21
  start-page: 1197
  year: 2019
  ident: 10.1016/j.jclinepi.2021.03.025_bib0015
  article-title: Risk factors for incident heart failure in age- and sex-specific strata: a population-based cohort using linked electronic health records
  publication-title: Eur J Heart Fail
  doi: 10.1002/ejhf.1350
– volume: 5
  year: 2015
  ident: 10.1016/j.jclinepi.2021.03.025_bib0011
  article-title: Development and validation of risk prediction equations to estimate future risk of heart failure in patients with diabetes: a prospective cohort study
  publication-title: BMJ Open
– volume: 39
  start-page: 1
  year: 2011
  ident: 10.1016/j.jclinepi.2021.03.025_bib0020
  article-title: Regularization paths for cox's proportional hazards model via coordinate descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v039.i05
– volume: 28
  start-page: 2768
  year: 2019
  ident: 10.1016/j.jclinepi.2021.03.025_bib0007
  article-title: A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280218785504
– volume: 5
  start-page: 422
  year: 2012
  ident: 10.1016/j.jclinepi.2021.03.025_bib0010
  article-title: Prediction of incident heart failure in general practice: the Atherosclerosis Risk in Communities (ARIC) Study
  publication-title: Circ Heart Fail
  doi: 10.1161/CIRCHEARTFAILURE.111.964841
– volume: 32
  start-page: 4499
  year: 2013
  ident: 10.1016/j.jclinepi.2021.03.025_bib0033
  article-title: Combining multiple imputation and meta-analysis with individual participant data
  publication-title: Stat Med
  doi: 10.1002/sim.5844
– volume: 13
  year: 2018
  ident: 10.1016/j.jclinepi.2021.03.025_bib0029
  article-title: Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0202344
– volume: 2
  year: 2015
  ident: 10.1016/j.jclinepi.2021.03.025_bib0016
  article-title: Clinical prediction of incident heart failure risk: a systematic review and meta-analysis
  publication-title: Open Heart
  doi: 10.1136/openhrt-2014-000222
– volume: 356
  start-page: i6460
  year: 2017
  ident: 10.1016/j.jclinepi.2021.03.025_bib0023
  article-title: A guide to systematic review and meta-analysis of prediction model performance
  publication-title: BMJ
  doi: 10.1136/bmj.i6460
– ident: 10.1016/j.jclinepi.2021.03.025_bib0017
SSID ssj0017075
Score 2.527383
Snippet To illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets. We developed eight Cox...
AbstractObjectiveTo illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets. Study...
ObjectiveTo illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets.Study Design...
To illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets.OBJECTIVETo illustrate...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms Body mass index
Calibration
Cluster Analysis
Congestive heart failure
Datasets
Datasets as Topic - statistics & numerical data
Discrimination
Electronic health records
Epidemiology
Ethnicity
Forecasting
Heterogeneity
Humans
Internal Medicine
Maximum likelihood estimation
Model comparison
Models, Statistical
Population
Prediction model
Prediction models
Primary care
Regression analysis
Regression models
Statistical analysis
Validation
Variables
Title Internal-external cross-validation helped to evaluate the generalizability of prediction models in large clustered datasets
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895435621001074
https://www.clinicalkey.es/playcontent/1-s2.0-S0895435621001074
https://dx.doi.org/10.1016/j.jclinepi.2021.03.025
https://www.ncbi.nlm.nih.gov/pubmed/33836256
https://www.proquest.com/docview/2575058194
https://www.proquest.com/docview/2511249593
http://kipublications.ki.se/Default.aspx?queryparsed=id
Volume 137
WOSCitedRecordID wos000704355400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: M0T
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: 8C1
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRagX3pRAqYyEuIXmubZPCKpWHOhSlVLtzXL8gF2iJGyySIg_z0ziBAQIEFys7GYn8cZfZsbj8TeEPHYxUw5nqloJG2YOA02J5qFi3AjhIsP6mpEXr9h8zhcLceoDbq1Pqxx1Yq-oTa0xRn4A0AJjDfYre9Z8DLFqFK6u-hIal8l2jLYb8MzOLqZVBDYQ7UZc5CG4BbPvdgivnq5w66FtljBHTOKe6BTLZf_aOP3sfP7ALNpbo-Pr__s_bpBr3g-lzwfg3CSXbHWLXD3xK-23yRcfKizDkSea9n0OAZnLoQ4TfW_Lxhra1dRzhlsK7iR9NzBZY7oYJt5-prWjzRqv3Ev1tXdauqxoiVnoVJcbJGuAC2G2amu79g55e3x0fvgy9IUaQp2LpAtNHsUqSa1NDVfFjCntWKoMEue4WDmXmSKD11tnMFtKGdOCacUTy1UunFBapXfJVlVX9h6hibIanMIiLZTLZqYQhbFxphxPCq5MmgckH0dIas9ijsU0Sjmmq63kOLISR1ZGqYSRDcjBJNcMPB5_lGAjAOS4SxX0qgRT82-StvXqoZWxbBMZyTeITARmgkxY4MwFREyS3gMaPJu_uuveCDg53egb2gLyaDoNGgSXhVRl6w3-Ju4rkIs0ILsDuqdHhAEMmCHPAvJkgPt0BmnJ_Vcf4MhKcPWzWNz_fS8ekB3s8pCkt0e2uvXGPiRX9Kdu2a73-7cX2wXrWw4tP4z3yfaLo_npGXw6ic6xTV5_BXfwWIg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoAL74ehwCIBN9N4bWe9B4QQULVqGiFRUG7Leh-QEDkmTkAV_4nfyIxfIECAkHrgFsWetb2exzfr2W8A7vlIaE-ZqtHShYmnhSZuslCLzErpB1bUPSNfj8R4nE0m8sUGfOn2wlBZZecTa0dtF4bWyLdRtTBYY_xKHpcfQuoaRV9XuxYajVrsu6NPmLJVj_ae4fu9z_nO88Onu2HbVSA0qeSr0KaDSPPYudhmOh8KbbyItSWWFx9p7xObJ6iLJkFoHwthpDA64y7TqfRSGx3juCfgJPpxQSVkYtIneJFoiH0HmUxDhCHD73Ykzx7OaKujK6eYk_KoJlal9ty_DoY_g90fmEzr6Ldz_n-btwtwrsXZ7EljGBdhwxWX4PRBW0lwGT63S6HzsOPBZvUchWh506bPFHvn5qWzbLVgLSe6YwiX2duGqZvK4aiw-IgtPCuXNHItVfcWqti0YHOqsmdmviYyChyIqnErt6quwKtjefSrsFksCncdGNfOIOjN41z7ZGhzmVsXJdpnPM-0jdMA0k4jlGlZ2qlZyFx15Xgz1WmSIk1Sg1ihJgWw3cuVDU_JHyVEp3Cq24WLcUNhKP03SVe17q9Skaq4GqiXZAlkCJyYvhCsBiB7yRbhNcjtr6661Sm46i_0TbsDuNsfRg9Jn7104RZrOieqO6zLOIBrjTX1U0QLNENE_QE8aMyrP0K06-1f7_GXU5jKJJG88fu7uANndg8PRmq0N96_CWfp9puCxC3YXC3X7hacMh9X02p5u_YcDN4ct8l9BSs1sbg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgqpeeD8MBRYJuJnYazvrPSCEKBFV26gSBfW2Xe-DJkRJiBNQxT_j1zHjFwgQIKQeuEVxZm1v5rn77TcAD30stKdK1WjpwtTTQhM3eahFbqX0kRVVz8i3e2I4zI-O5MEafGnPwhCssvWJlaO2M0Nr5D1ULQzWGL_Snm9gEQfbg2fzDyF1kKKd1radRq0iu-70E5Zv5dOdbfyvH3E-eHn44lXYdBgITSb5MrRZFGueOJfYXBd9oY0XibbE-OJj7X1qixT10qSY5idCGCmMzrnLdSa91EYnOO45OC_SjBOcbD867HYwRE3yG-UyCzEl6X93Onn8ZEzHHt18hPUpjyuSVWrV_evA-HPi-wOraRUJB5f-5zm8DBeb_Js9rw3mCqy56VXY2G8QBtfgc7NEOglbfmxWzVeIFjmq-0-xEzeZO8uWM9ZwpTuGaTR7VzN4E0yOAMenbObZfEEjV1JVz6GSjaZsQuh7ZiYrIqnAgQilW7pleR3enMmr34D16WzqbgHj2hlMhouk0D7t20IW1sWp9jkvcm2TLICs1Q5lGvZ2aiIyUS1Mb6xarVKkVSpKFGpVAL1Obl7zl_xRQrTKp9rTuRhPFIbYf5N0ZeMWSxWrkqtIvSarIKPgxACGSWwAspNsMr86o_uru261yq66G33T9AAedJfRc9J2mJ662Yp-E1ed12USwM3asropooWbPlYDATyuTa27QnTszVfv8ZNTWOKksbz9-6e4DxtoaWpvZ7h7Bzbp6Wuc4hasLxcrdxcumI_LUbm4VzkRBsdnbXFfAUY3uog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internal-external+cross-validation+helped+to+evaluate+the+generalizability+of+prediction+models+in+large+clustered+datasets&rft.jtitle=Journal+of+clinical+epidemiology&rft.au=Takada%2C+Toshihiko&rft.au=Nijman%2C+Steven&rft.au=Denaxas%2C+Spiros&rft.au=Snell%2C+Kym+I.E.&rft.date=2021-09-01&rft.pub=Elsevier+Inc&rft.issn=0895-4356&rft.eissn=1878-5921&rft.volume=137&rft.spage=83&rft.epage=91&rft_id=info:doi/10.1016%2Fj.jclinepi.2021.03.025&rft.externalDocID=S0895435621001074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4356&client=summon