Hirshfeld atom refinement
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR met...
Saved in:
| Published in: | IUCrJ Vol. 1; no. 5; pp. 361 - 379 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
International Union of Crystallography
01.09.2014
|
| Subjects: | |
| ISSN: | 2052-2525, 2052-2525 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made
ab initio
quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated
via
the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–L-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å
2
as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. |
|---|---|
| AbstractList | Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. The new automated iterative Hirshfeld atom refinement method is explained and validated through comparison of structural models of Gly–l-Ala obtained from synchrotron X-ray and neutron diffraction data at 12, 50, 150 and 295 K. Structural parameters involving hydrogen atoms are determined with comparable precision from both experiments and agree mostly to within two combined standard uncertainties. Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu’s), all other structural parameters agree within less than 2 csu’s. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–L-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å 2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-L-Ala measured at 12, 50, 100, 150, 220 and 295K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009Aa for temperatures of 150K or below; for hydrogen-atom ADPs it is better than 0.006Aa super(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65Aa. Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-L-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. |
| Author | Jayatilaka, Dylan Capelli, Silvia C. Bürgi, Hans-Beat Grabowsky, Simon Dittrich, Birger |
| Author_xml | – sequence: 1 givenname: Silvia C. surname: Capelli fullname: Capelli, Silvia C. – sequence: 2 givenname: Hans-Beat surname: Bürgi fullname: Bürgi, Hans-Beat – sequence: 3 givenname: Birger surname: Dittrich fullname: Dittrich, Birger – sequence: 4 givenname: Simon surname: Grabowsky fullname: Grabowsky, Simon – sequence: 5 givenname: Dylan surname: Jayatilaka fullname: Jayatilaka, Dylan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25295177$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1rFTEUhoNUbK39Ad1IwU03V8_JTSbJRpCitlBwoa7DmXy0ucxMajJX8N-b6a2lraCrhPe85-F8vWR7U54CY8cIbxFBvfvKQXIuuUQBKLSQz9jBIq0Wbe_Bf58d1boBAEQulcAXbL_JRqJSB-z4PJV6HcPgT2jO40kJMU1hDNP8ij2PNNRwdPcesu-fPn47O19dfvl8cfbhcuWk4fOKhPI9GAmR-2A0oYoc0ZME6ZxQOjpSXaToRI9dAC2a6nrnO-q1kSquD9nFjuszbexNSSOVXzZTsrdCLleWypzcEGwv1p76tZaRnDDgTESvTQ9ctxE4Mo31fse62fZj8K61UWh4BH0cmdK1vco_rUAltNINcHoHKPnHNtTZjqm6MAw0hbytFjWA4MZ08H9r16aCwA0265sn1k3elqlNtbk66IzRcgG-flj8fdV_ltUMuDO4kmttm7q3INjlJuxfN9Fy1JMcl2aaU176T8M_Mn8DZHm3MA |
| CitedBy_id | crossref_primary_10_3390_ma16103690 crossref_primary_10_1107_S2052252519007358 crossref_primary_10_1107_S2052252525001721 crossref_primary_10_1107_S2052252524001507 crossref_primary_10_1107_S2053273318005478 crossref_primary_10_1007_s11224_017_1005_0 crossref_primary_10_1002_ange_202111691 crossref_primary_10_1002_chem_202404017 crossref_primary_10_1002_ange_202102504 crossref_primary_10_1002_cphc_201600223 crossref_primary_10_1002_ejic_202200482 crossref_primary_10_1107_S2052252525004543 crossref_primary_10_3390_molecules26144270 crossref_primary_10_1107_S2053273319008027 crossref_primary_10_1016_j_ica_2022_121190 crossref_primary_10_3390_cryst10060473 crossref_primary_10_1039_D3RA08081A crossref_primary_10_3390_cryst13020293 crossref_primary_10_1002_cphc_201600213 crossref_primary_10_1107_S1600576725000901 crossref_primary_10_1107_S205327331900799X crossref_primary_10_3390_cryst12060783 crossref_primary_10_1002_ceur_202500031 crossref_primary_10_1016_j_molstruc_2025_143178 crossref_primary_10_1002_ijch_201600050 crossref_primary_10_1002_ange_202424496 crossref_primary_10_1002_anie_202510186 crossref_primary_10_1039_D2CP01517J crossref_primary_10_1107_S2052252520010441 crossref_primary_10_1515_zkri_2018_2060 crossref_primary_10_1002_chem_202003928 crossref_primary_10_1515_zkri_2018_2062 crossref_primary_10_1002_hlca_202400147 crossref_primary_10_1107_S2052252525002581 crossref_primary_10_3390_cryst11020207 crossref_primary_10_1007_s00706_018_2186_y crossref_primary_10_1107_S2052520622004103 crossref_primary_10_1039_D4RA02909G crossref_primary_10_1021_acs_cgd_5c00621 crossref_primary_10_1002_ange_202510186 crossref_primary_10_1107_S2052520623006625 crossref_primary_10_1039_C5CP04412J crossref_primary_10_1107_S2052252520013603 crossref_primary_10_1107_S2053229624010428 crossref_primary_10_1107_S2052252519015975 crossref_primary_10_1107_S1600576723007215 crossref_primary_10_1002_ange_201904176 crossref_primary_10_1107_S2052252521004541 crossref_primary_10_1002_anie_202203853 crossref_primary_10_1107_S2053273314012443 crossref_primary_10_1107_S2052520623004377 crossref_primary_10_1002_chem_202401627 crossref_primary_10_1016_j_molstruc_2025_143235 crossref_primary_10_1002_hlca_202300012 crossref_primary_10_1070_RCR4866 crossref_primary_10_1002_zaac_202300093 crossref_primary_10_1107_S1600576721002545 crossref_primary_10_1107_S160057672500175X crossref_primary_10_1126_sciadv_1600192 crossref_primary_10_1016_j_poly_2022_115962 crossref_primary_10_1016_j_csbj_2022_10_018 crossref_primary_10_1038_s41570_021_00302_4 crossref_primary_10_1002_chem_201903087 crossref_primary_10_1515_ncrs_2025_0009 crossref_primary_10_1002_ejic_202300174 crossref_primary_10_1107_S2052252524011242 crossref_primary_10_1107_S2052520622001457 crossref_primary_10_1107_S2052252522001385 crossref_primary_10_1107_S1600576717015825 crossref_primary_10_1016_j_molstruc_2025_143366 crossref_primary_10_1002_chem_202402946 crossref_primary_10_1039_D2CP02127G crossref_primary_10_1107_S2052520622004164 crossref_primary_10_1107_S205252062300776X crossref_primary_10_1002_zaac_202200229 crossref_primary_10_1002_chem_202303384 crossref_primary_10_1107_S2052252524003634 crossref_primary_10_1107_S2053273320014837 crossref_primary_10_1039_C6SC05504D crossref_primary_10_1002_chem_202005188 crossref_primary_10_1107_S2052252524000915 crossref_primary_10_1002_slct_202202588 crossref_primary_10_1002_chem_201806247 crossref_primary_10_1107_S205327332000042X crossref_primary_10_1107_S205225252300951X crossref_primary_10_1107_S2053273318013840 crossref_primary_10_1038_s41598_025_96400_0 crossref_primary_10_1016_j_molstruc_2023_137358 crossref_primary_10_1107_S2053273322010221 crossref_primary_10_1002_ange_202203853 crossref_primary_10_1107_S2052520617006680 crossref_primary_10_1007_s10870_022_00961_1 crossref_primary_10_1016_j_molstruc_2024_139031 crossref_primary_10_1080_0889311X_2020_1760856 crossref_primary_10_1107_S2052252524006249 crossref_primary_10_1002_ejic_202300120 crossref_primary_10_3390_molecules21040455 crossref_primary_10_1063_4_0000774 crossref_primary_10_1107_S2052252524006808 crossref_primary_10_1007_s10870_024_01037_y crossref_primary_10_3390_molecules26164967 crossref_primary_10_1016_j_poly_2023_116619 crossref_primary_10_1107_S2052252522002147 crossref_primary_10_1107_S2052520620012196 crossref_primary_10_1002_chem_201705952 crossref_primary_10_3390_molecules26123730 crossref_primary_10_1016_j_solidstatesciences_2023_107335 crossref_primary_10_1039_D0SC05526C crossref_primary_10_1002_ejic_202300495 crossref_primary_10_1107_S2052252514018612 crossref_primary_10_1107_S2052252525002647 crossref_primary_10_1016_j_molstruc_2019_127431 crossref_primary_10_1002_anie_202424496 crossref_primary_10_1107_S1600576721001126 crossref_primary_10_1107_S2052252522005309 crossref_primary_10_1002_anie_202111691 crossref_primary_10_1039_D5TC02481A crossref_primary_10_1107_S2053273315024699 crossref_primary_10_1002_cmtd_202400052 crossref_primary_10_1039_D5SC04450B crossref_primary_10_1107_S205322962200897X crossref_primary_10_1007_s41745_017_0027_3 crossref_primary_10_1107_S2052252516006242 crossref_primary_10_1021_acsmaterialsau_5c00076 crossref_primary_10_1107_S2052252522006844 crossref_primary_10_1107_S2053229614024218 crossref_primary_10_1002_cphc_201700810 crossref_primary_10_1039_D1RA08312K crossref_primary_10_1002_chem_202103044 crossref_primary_10_3390_cryst14010077 crossref_primary_10_1002_chem_202203538 crossref_primary_10_1002_anie_201904176 crossref_primary_10_1107_S205225252400602X crossref_primary_10_1107_S2052252524011862 crossref_primary_10_1002_nadc_20164052794 crossref_primary_10_1107_S2052252525004361 crossref_primary_10_1080_0889311X_2020_1853712 crossref_primary_10_1107_S1600576722010883 crossref_primary_10_1021_acs_cgd_5c00466 crossref_primary_10_1107_S2052520621003309 crossref_primary_10_1016_j_addr_2017_09_014 crossref_primary_10_1002_chem_202403218 crossref_primary_10_1007_s41745_019_00148_2 crossref_primary_10_1016_j_molstruc_2020_127934 crossref_primary_10_1515_zkri_2017_2085 crossref_primary_10_1016_j_bioorg_2024_107578 crossref_primary_10_1002_nadc_20204095786 crossref_primary_10_1002_slct_202201504 crossref_primary_10_1002_anie_202102504 crossref_primary_10_1002_chem_202303762 crossref_primary_10_1107_S1600576725004765 crossref_primary_10_1107_S205252062200292X crossref_primary_10_3390_inorganics11050190 crossref_primary_10_1107_S2052252522006662 crossref_primary_10_1107_S2052520617004334 crossref_primary_10_1007_s11224_025_02541_3 crossref_primary_10_1039_C6DT02487D crossref_primary_10_1107_S2052520620002917 crossref_primary_10_1002_adom_202302376 crossref_primary_10_1002_chem_202201295 crossref_primary_10_3390_ijms23073875 crossref_primary_10_1107_S2053273320016605 crossref_primary_10_1107_S2052252525002040 crossref_primary_10_1080_0889311X_2023_2266400 crossref_primary_10_1107_S2053229614019809 crossref_primary_10_1002_cphc_201402600 crossref_primary_10_1016_j_molstruc_2025_142798 crossref_primary_10_3390_cryst12030338 crossref_primary_10_1107_S2052252522000690 crossref_primary_10_1021_acs_cgd_5c00768 crossref_primary_10_1002_chem_202003978 crossref_primary_10_1016_j_molstruc_2021_131192 crossref_primary_10_1107_S2052520620007702 crossref_primary_10_1038_s41578_025_00782_6 crossref_primary_10_1107_S2052252524010443 crossref_primary_10_1016_j_ultramic_2018_12_007 crossref_primary_10_1002_asia_202400574 crossref_primary_10_1039_C9RA07327B crossref_primary_10_1107_S2052520622004097 crossref_primary_10_1107_S2052520625003403 crossref_primary_10_1107_S2052252525003355 crossref_primary_10_1107_S2053273319000482 crossref_primary_10_1134_S1063774520060139 crossref_primary_10_1016_j_molstruc_2025_144071 crossref_primary_10_1107_S2052520624012010 crossref_primary_10_1063_4_0000365 crossref_primary_10_1107_S2053273321009086 crossref_primary_10_1063_4_0000367 crossref_primary_10_1107_S2052252515007538 crossref_primary_10_1107_S2052520617008344 crossref_primary_10_1021_acs_cgd_5c00424 crossref_primary_10_1002_chem_201604705 crossref_primary_10_1107_S2052520619004517 crossref_primary_10_1021_acs_molpharmaceut_5c00296 crossref_primary_10_1107_S2052520624003421 crossref_primary_10_1107_S2052520620005533 |
| Cites_doi | 10.1021/ja953301v 10.1021/ja00734a001 10.1107/S0108767307043930 10.1107/S0108767300005638 10.1107/S0567739479001340 10.1021/jp952944u 10.1063/1.431871 10.1107/S0108767300013155 10.1063/1.471749 10.1107/S0108767300005626 10.1063/1.4817662 10.1002/1521-3765(20020802)8:15<3512::AID-CHEM3512>3.0.CO;2-Z 10.1107/S0108767312013001 10.1107/S0108767304018306 10.1002/ijch.197700033 10.1103/PhysRevB.57.1471 10.1021/j100096a001 10.1107/S0108768184002366 10.1007/978-90-481-3836-4 10.1107/S0108767309019862 10.1107/S0108768109016966 10.1107/S010876819600794X 10.1107/S0021889803022891 10.1107/S0108767395002340 10.1107/S0365110X66004092 10.1107/S0108768183003377 10.1002/anie.201200745 10.1107/S0365110X66002639 10.1107/S0108767395014942 10.1016/0009-2614(96)00483-6 10.1107/S0108767309038744 10.1107/S0108767305005039 10.1039/c2ce26964c 10.1107/S0909049508000824 10.1107/S0108768195005088 10.1107/S2052519213002285 10.1103/PhysRevLett.80.798 10.1063/1.454033 10.1107/S2053273314012443 10.1007/430_2012_78 10.1107/S010876730801341X 10.1107/S0365110X65003146 10.1107/S0108767302001381 10.1107/S0021889808024643 10.1107/S0567739476000533 10.1021/ct800394q 10.1021/ct600185a 10.1016/0009-2614(96)00600-8 10.1107/S0108767312016571 10.1107/S0108767310052219 10.1039/b821734c 10.1107/S0021889806026379 10.1107/S0108768196015261 10.1021/jp311072q 10.1107/S0108768183002797 10.1002/zaac.201200518 10.1107/S2053273314010626 10.1021/jp0379796 10.1002/cphc.200700339 10.1107/S0108767313005011 10.1002/zaac.201200563 10.1107/S0108768109046060 10.1002/zaac.201200506 10.1107/S0108767302010991 10.1021/ic50193a042 10.1107/S0108768194012474 10.1007/430_2011_70 10.1107/S0108767310049731 10.1063/1.456153 10.1107/S0108768183002116 10.1093/oso/9780195098235.001.0001 10.1002/9783906390390 10.1021/cg101540y 10.1107/S0108768110012048 10.1107/S0108767308005709 10.1107/S0108767396005697 10.1107/S0567740872007046 10.1002/chem.200700756 10.1107/S0108767304015120 10.1107/S0108767312008197 10.1107/S0108767311042176 10.1021/jp970580v 10.1016/j.sbi.2006.08.010 10.1107/S0108270107021671 10.1107/S0108767300008734 |
| ContentType | Journal Article |
| Copyright | Copyright International Union of Crystallography Sep 2014 Silvia C. Capelli et al. 2014 2014 |
| Copyright_xml | – notice: Copyright International Union of Crystallography Sep 2014 – notice: Silvia C. Capelli et al. 2014 2014 |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO EHMNL HCIFZ JG9 KB. L7M PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1107/S2052252514014845 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea UK & Ireland Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX UK & Ireland Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Hirshfeld atom refinement |
| EISSN | 2052-2525 |
| EndPage | 379 |
| ExternalDocumentID | oai_doaj_org_article_b43dab385fac490c9f1d89b028401ca9 PMC4174878 3615010301 25295177 10_1107_S2052252514014845 |
| Genre | Journal Article |
| GroupedDBID | 5VS 8FE 8FG AAFWJ AAYXX ABJCF ABUWG ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION D1I EBS EHMNL EJD GROUPED_DOAJ H13 HCIFZ HYE IAO IPNFZ ITC KB. KQ8 M48 M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RCJ RIG RPM ZBA NPM 7SR 7U5 8BQ 8FD AZQEC DWQXO JG9 L7M PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c592t-a47db0950f2de98a17f211da505cc478fca76fafc4b16e084cc4cbcd6ab8957f3 |
| IEDL.DBID | KB. |
| ISICitedReferencesCount | 285 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356864900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2052-2525 |
| IngestDate | Tue Oct 14 19:08:18 EDT 2025 Tue Nov 04 02:01:37 EST 2025 Fri Sep 05 14:34:40 EDT 2025 Thu Oct 02 04:13:38 EDT 2025 Fri Jul 25 11:57:52 EDT 2025 Mon Jul 21 06:06:23 EDT 2025 Sat Nov 29 03:52:59 EST 2025 Tue Nov 18 22:26:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | anisotropic displacement parameters aspherical atom partitioning quantum mechanical molecular electron densities hydrogen atom modelling X-ray structure refinement |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c592t-a47db0950f2de98a17f211da505cc478fca76fafc4b16e084cc4cbcd6ab8957f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1660699850?pq-origsite=%requestingapplication% |
| PMID | 25295177 |
| PQID | 1660699850 |
| PQPubID | 2035043 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b43dab385fac490c9f1d89b028401ca9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4174878 proquest_miscellaneous_1800429960 proquest_miscellaneous_1609510291 proquest_journals_1660699850 pubmed_primary_25295177 crossref_primary_10_1107_S2052252514014845 crossref_citationtrail_10_1107_S2052252514014845 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-01 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chester |
| PublicationTitle | IUCrJ |
| PublicationTitleAlternate | IUCrJ |
| PublicationYear | 2014 |
| Publisher | International Union of Crystallography |
| Publisher_xml | – name: International Union of Crystallography |
| References | Lübben (fc5002_bb63) 2014; 70 Martin (fc5002_bb68) 1996; 118 El Haouzi (fc5002_bb38) 1996; 52 Coppens (fc5002_bb23) 1971; 93 Langan (fc5002_bb60) 2008; 15 Volkov (fc5002_bb91) 2004; 108 Jayatilaka (fc5002_bb55) 1998; 80 fc5002_bb44 Bürgi (fc5002_bb13) 2000; 56 Ammeter (fc5002_bb3) 1979; 18 Dittrich (fc5002_bb30) 2005; 61 fc5002_bb40 fc5002_bb2 Allen (fc5002_bb1) 2010; 66 Bürgi (fc5002_bb12) 2000; 56 Wang (fc5002_bb93) 1979; 8 Chandrasekhar (fc5002_bb18) 1984; 40 fc5002_bb58 Madsen (fc5002_bb67) 2004; 60 fc5002_bb52 Dittrich (fc5002_bb33) 2012; 68 Bultinck (fc5002_bb10) 2009; 11 Jayatilaka (fc5002_bb56) 2008; 64 fc5002_bb28 Spackman (fc5002_bb81) 1997; 53 fc5002_bb27 Morgenroth (fc5002_bb69) 2008; 41 fc5002_bb21 Birkedal (fc5002_bb7) 2004; 60 Coppens (fc5002_bb22) 1983; 39 Destro (fc5002_bb29) 1995; 51 Poulsen (fc5002_bb74) 2007; 13 Taylor (fc5002_bb88) 1983; 39 Spackman (fc5002_bb82) 2007; 8 Damme (fc5002_bb26) 2009; 5 Madsen (fc5002_bb64) 2006; 39 Zakrzewska (fc5002_bb97) 2013; 117 Dittrich (fc5002_bb31) 2013; 69 fc5002_bb39 Shukla (fc5002_bb80) 1998; 57 Wong (fc5002_bb96) 1996; 256 Schmøkel (fc5002_bb77) 2013; 639 fc5002_bb36 Jarzembska (fc5002_bb54) 2012; 68 Hirshfeld (fc5002_bb49) 1977; 16 Grabowsky (fc5002_bb42) 2009; 65 Grabowsky (fc5002_bb43) 2012; 51 Myles (fc5002_bb72) 2006; 16 Lebedev (fc5002_bb62) 1999; 59 Hirshfeld (fc5002_bb48) 1976; 32 Bendeif (fc5002_bb6) 2007; 63 Dittrich (fc5002_bb34) 2009; 65 Dittrich (fc5002_bb32) 2012; 147 Trueblood (fc5002_bb89) 1996; 52 Choi (fc5002_bb20) 1972; 28 O'Connell (fc5002_bb73) 1966; 21 fc5002_bb83 Cromer (fc5002_bb24) 1965; 19 fc5002_bb90 Bytheway (fc5002_bb15) 2002; 58 Hathwar (fc5002_bb45) 2011; 11 Iversen (fc5002_bb53) 1996; 52 Blessing (fc5002_bb8) 1995; 51 Domagała (fc5002_bb35) 2012; 68 Hickstein (fc5002_bb47) 2013; 139 Schwarzenbach (fc5002_bb78) 1995; 51 Grabowsky (fc5002_bb41) 2013; 639 Madsen (fc5002_bb65) 2012; 146 fc5002_bb16 Capelli (fc5002_bb17) 2000; 56 fc5002_bb11 Hoser (fc5002_bb50) 2009; 65 Wang (fc5002_bb92) 1996; 100 Dunning (fc5002_bb37) 1989; 90 fc5002_bb95 fc5002_bb94 Stewart (fc5002_bb85) 1975; 63 Hudák (fc5002_bb51) 2010; 66 Dadda (fc5002_bb25) 2012; 68 Hewat (fc5002_bb46) 1979; 35 Sheldrick (fc5002_bb79) 2008; 64 Bąk (fc5002_bb4) 2011; 67 Koritsanszky (fc5002_bb59) 2002; 58 Langan (fc5002_bb61) 2004; 37 Munshi (fc5002_bb70) 2008; 64 Becke (fc5002_bb5) 1988; 88 Zhurov (fc5002_bb98) 2013; 639 Stephens (fc5002_bb84) 1994; 98 Jayatilaka (fc5002_bb57) 2001; 57 Madsen (fc5002_bb66) 2013; 69 Chęcińska (fc5002_bb19) 2013; 15 Sands (fc5002_bb76) 1966; 21 Stratmann (fc5002_bb86) 1996; 257 Zhurov (fc5002_bb99) 2011; 67 Riley (fc5002_bb75) 2007; 3 Mura (fc5002_bb71) 1996; 104 Taylor (fc5002_bb87) 1983; 39 Boese (fc5002_bb9) 1997; 101 Bürgi (fc5002_bb14) 2002; 8 |
| References_xml | – volume: 8 start-page: 269 year: 1979 ident: fc5002_bb93 publication-title: Cryst. Struct. Commun. – volume: 118 start-page: 1464 year: 1996 ident: fc5002_bb68 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja953301v – volume: 93 start-page: 1051 year: 1971 ident: fc5002_bb23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00734a001 – volume: 64 start-page: 112 year: 2008 ident: fc5002_bb79 publication-title: Acta Cryst. A doi: 10.1107/S0108767307043930 – volume: 56 start-page: 413 year: 2000 ident: fc5002_bb17 publication-title: Acta Cryst. A doi: 10.1107/S0108767300005638 – ident: fc5002_bb52 – ident: fc5002_bb90 – volume: 35 start-page: 569 year: 1979 ident: fc5002_bb46 publication-title: Acta Cryst. A doi: 10.1107/S0567739479001340 – volume: 100 start-page: 6317 year: 1996 ident: fc5002_bb92 publication-title: J. Phys. Chem. doi: 10.1021/jp952944u – volume: 63 start-page: 3786 year: 1975 ident: fc5002_bb85 publication-title: J. Chem. Phys. doi: 10.1063/1.431871 – volume: 57 start-page: 76 year: 2001 ident: fc5002_bb57 publication-title: Acta Cryst. A doi: 10.1107/S0108767300013155 – volume: 104 start-page: 9848 year: 1996 ident: fc5002_bb71 publication-title: J. Chem. Phys. doi: 10.1063/1.471749 – volume: 56 start-page: 403 year: 2000 ident: fc5002_bb12 publication-title: Acta Cryst. A doi: 10.1107/S0108767300005626 – volume: 139 start-page: 064108 year: 2013 ident: fc5002_bb47 publication-title: J. Chem. Phys. doi: 10.1063/1.4817662 – volume: 8 start-page: 3512 year: 2002 ident: fc5002_bb14 publication-title: Chem. Eur. J. doi: 10.1002/1521-3765(20020802)8:15<3512::AID-CHEM3512>3.0.CO;2-Z – volume: 68 start-page: 435 year: 2012 ident: fc5002_bb33 publication-title: Acta Cryst. A doi: 10.1107/S0108767312013001 – ident: fc5002_bb28 – volume: 60 start-page: 550 year: 2004 ident: fc5002_bb67 publication-title: Acta Cryst. A doi: 10.1107/S0108767304018306 – volume: 16 start-page: 198 year: 1977 ident: fc5002_bb49 publication-title: Isr. J. Chem. doi: 10.1002/ijch.197700033 – volume: 57 start-page: 1471 year: 1998 ident: fc5002_bb80 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.1471 – volume: 98 start-page: 11624 year: 1994 ident: fc5002_bb84 publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – volume: 40 start-page: 387 year: 1984 ident: fc5002_bb18 publication-title: Acta Cryst. B doi: 10.1107/S0108768184002366 – ident: fc5002_bb39 doi: 10.1007/978-90-481-3836-4 – volume: 65 start-page: 300 year: 2009 ident: fc5002_bb50 publication-title: Acta Cryst. A doi: 10.1107/S0108767309019862 – volume: 65 start-page: 488 year: 2009 ident: fc5002_bb42 publication-title: Acta Cryst. B doi: 10.1107/S0108768109016966 – ident: fc5002_bb40 – volume: 52 start-page: 923 year: 1996 ident: fc5002_bb53 publication-title: Acta Cryst. B doi: 10.1107/S010876819600794X – volume: 37 start-page: 24 year: 2004 ident: fc5002_bb61 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889803022891 – volume: 51 start-page: 565 year: 1995 ident: fc5002_bb78 publication-title: Acta Cryst. A doi: 10.1107/S0108767395002340 – volume: 21 start-page: 868 year: 1966 ident: fc5002_bb76 publication-title: Acta Cryst. doi: 10.1107/S0365110X66004092 – volume: 39 start-page: 760 year: 1983 ident: fc5002_bb22 publication-title: Acta Cryst. B doi: 10.1107/S0108768183003377 – volume: 51 start-page: 6776 year: 2012 ident: fc5002_bb43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201200745 – volume: 21 start-page: 208 year: 1966 ident: fc5002_bb73 publication-title: Acta Cryst. doi: 10.1107/S0365110X66002639 – volume: 52 start-page: 291 year: 1996 ident: fc5002_bb38 publication-title: Acta Cryst. A doi: 10.1107/S0108767395014942 – volume: 256 start-page: 391 year: 1996 ident: fc5002_bb96 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(96)00483-6 – volume: 66 start-page: 78 year: 2010 ident: fc5002_bb51 publication-title: Acta Cryst. A doi: 10.1107/S0108767309038744 – volume: 61 start-page: 314 year: 2005 ident: fc5002_bb30 publication-title: Acta Cryst. A doi: 10.1107/S0108767305005039 – volume: 15 start-page: 2084 year: 2013 ident: fc5002_bb19 publication-title: CrystEngComm doi: 10.1039/c2ce26964c – volume: 15 start-page: 215 year: 2008 ident: fc5002_bb60 publication-title: J. Synchrotron Rad. doi: 10.1107/S0909049508000824 – volume: 51 start-page: 559 year: 1995 ident: fc5002_bb29 publication-title: Acta Cryst. B doi: 10.1107/S0108768195005088 – volume: 69 start-page: 91 year: 2013 ident: fc5002_bb31 publication-title: Acta Cryst. B doi: 10.1107/S2052519213002285 – volume: 80 start-page: 798 year: 1998 ident: fc5002_bb55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.798 – volume: 88 start-page: 2547 year: 1988 ident: fc5002_bb5 publication-title: J. Chem. Phys. doi: 10.1063/1.454033 – ident: fc5002_bb95 doi: 10.1107/S2053273314012443 – volume: 147 start-page: 27 year: 2012 ident: fc5002_bb32 publication-title: Struct. Bond. doi: 10.1007/430_2012_78 – volume: 64 start-page: 164 year: 2008 ident: fc5002_bb70 publication-title: Acta Cryst. A doi: 10.1107/S010876730801341X – volume: 19 start-page: 224 year: 1965 ident: fc5002_bb24 publication-title: Acta Cryst. doi: 10.1107/S0365110X65003146 – volume: 58 start-page: 244 year: 2002 ident: fc5002_bb15 publication-title: Acta Cryst. A doi: 10.1107/S0108767302001381 – volume: 41 start-page: 846 year: 2008 ident: fc5002_bb69 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889808024643 – volume: 32 start-page: 239 year: 1976 ident: fc5002_bb48 publication-title: Acta Cryst. A doi: 10.1107/S0567739476000533 – volume: 5 start-page: 334 year: 2009 ident: fc5002_bb26 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800394q – volume: 3 start-page: 407 year: 2007 ident: fc5002_bb75 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct600185a – volume: 257 start-page: 213 year: 1996 ident: fc5002_bb86 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(96)00600-8 – ident: fc5002_bb94 – volume: 68 start-page: 452 year: 2012 ident: fc5002_bb25 publication-title: Acta Cryst. A doi: 10.1107/S0108767312016571 – volume: 67 start-page: 160 year: 2011 ident: fc5002_bb99 publication-title: Acta Cryst. A doi: 10.1107/S0108767310052219 – volume: 11 start-page: 3424 year: 2009 ident: fc5002_bb10 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b821734c – volume: 39 start-page: 757 year: 2006 ident: fc5002_bb64 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889806026379 – volume: 53 start-page: 553 year: 1997 ident: fc5002_bb81 publication-title: Acta Cryst. B doi: 10.1107/S0108768196015261 – volume: 117 start-page: 252 year: 2013 ident: fc5002_bb97 publication-title: J. Phys. Chem. A doi: 10.1021/jp311072q – volume: 39 start-page: 517 year: 1983 ident: fc5002_bb88 publication-title: Acta Cryst. B doi: 10.1107/S0108768183002797 – volume: 639 start-page: 1905 year: 2013 ident: fc5002_bb41 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.201200518 – volume: 70 start-page: 309 year: 2014 ident: fc5002_bb63 publication-title: Acta Cryst. A doi: 10.1107/S2053273314010626 – ident: fc5002_bb27 – volume: 108 start-page: 4283 year: 2004 ident: fc5002_bb91 publication-title: J. Phys. Chem. A doi: 10.1021/jp0379796 – volume: 8 start-page: 2051 year: 2007 ident: fc5002_bb82 publication-title: Chem. Phys. Chem. doi: 10.1002/cphc.200700339 – volume: 69 start-page: 309 year: 2013 ident: fc5002_bb66 publication-title: Acta Cryst. A doi: 10.1107/S0108767313005011 – volume: 639 start-page: 1922 year: 2013 ident: fc5002_bb77 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.201200563 – volume: 65 start-page: 749 year: 2009 ident: fc5002_bb34 publication-title: Acta Cryst. B doi: 10.1107/S0108768109046060 – volume: 639 start-page: 1969 year: 2013 ident: fc5002_bb98 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.201200506 – volume: 58 start-page: 464 year: 2002 ident: fc5002_bb59 publication-title: Acta Cryst. A doi: 10.1107/S0108767302010991 – volume: 18 start-page: 733 year: 1979 ident: fc5002_bb3 publication-title: Inorg. Chem. doi: 10.1021/ic50193a042 – volume: 51 start-page: 816 year: 1995 ident: fc5002_bb8 publication-title: Acta Cryst. B doi: 10.1107/S0108768194012474 – ident: fc5002_bb83 – volume: 146 start-page: 21 year: 2012 ident: fc5002_bb65 publication-title: Struct. Bond. doi: 10.1007/430_2011_70 – ident: fc5002_bb44 – volume: 67 start-page: 141 year: 2011 ident: fc5002_bb4 publication-title: Acta Cryst. A doi: 10.1107/S0108767310049731 – volume: 90 start-page: 1007 year: 1989 ident: fc5002_bb37 publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 39 start-page: 133 year: 1983 ident: fc5002_bb87 publication-title: Acta Cryst. B doi: 10.1107/S0108768183002116 – ident: fc5002_bb21 doi: 10.1093/oso/9780195098235.001.0001 – ident: fc5002_bb11 – ident: fc5002_bb36 doi: 10.1002/9783906390390 – ident: fc5002_bb2 – volume: 11 start-page: 616 year: 2011 ident: fc5002_bb45 publication-title: Cryst. Growth Des. doi: 10.1021/cg101540y – volume: 66 start-page: 380 year: 2010 ident: fc5002_bb1 publication-title: Acta Cryst. B doi: 10.1107/S0108768110012048 – volume: 64 start-page: 383 year: 2008 ident: fc5002_bb56 publication-title: Acta Cryst. A doi: 10.1107/S0108767308005709 – ident: fc5002_bb16 – volume: 59 start-page: 477 year: 1999 ident: fc5002_bb62 publication-title: Dokl. Math. – volume: 52 start-page: 770 year: 1996 ident: fc5002_bb89 publication-title: Acta Cryst. A doi: 10.1107/S0108767396005697 – volume: 28 start-page: 2857 year: 1972 ident: fc5002_bb20 publication-title: Acta Cryst. B doi: 10.1107/S0567740872007046 – volume: 13 start-page: 9775 year: 2007 ident: fc5002_bb74 publication-title: Chem. Eur. J. doi: 10.1002/chem.200700756 – ident: fc5002_bb58 – volume: 60 start-page: 371 year: 2004 ident: fc5002_bb7 publication-title: Acta Cryst. A doi: 10.1107/S0108767304015120 – volume: 68 start-page: 337 year: 2012 ident: fc5002_bb35 publication-title: Acta Cryst. A doi: 10.1107/S0108767312008197 – volume: 68 start-page: 139 year: 2012 ident: fc5002_bb54 publication-title: Acta Cryst. A doi: 10.1107/S0108767311042176 – volume: 101 start-page: 5794 year: 1997 ident: fc5002_bb9 publication-title: J. Phys. Chem. B doi: 10.1021/jp970580v – volume: 16 start-page: 630 year: 2006 ident: fc5002_bb72 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2006.08.010 – volume: 63 start-page: o361 year: 2007 ident: fc5002_bb6 publication-title: Acta Cryst. C doi: 10.1107/S0108270107021671 – volume: 56 start-page: 425 year: 2000 ident: fc5002_bb13 publication-title: Acta Cryst. A doi: 10.1107/S0108767300008734 |
| SSID | ssj0001125741 |
| Score | 2.467387 |
| Snippet | Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom... The new automated iterative Hirshfeld atom refinement method is explained and validated through comparison of structural models of Gly–l-Ala obtained from... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 361 |
| SubjectTerms | anisotropic displacement parameters aspherical atom partitioning Atomic structure Bonding Diffraction Electron density hydrogen atom modelling Hydrogen atoms Mathematical analysis Partitioning quantum mechanical molecular electron densities Research Papers X-ray structure refinement X-rays |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPOhBfFtfrOBJKCbZpEmPKsqeFkEFbyVPXNAqu6u_30lal66KXrxOpm0y0zDfl8cMwImmkmiuQ64dQ4KCATI3wvHciUJy7pkv-k2xCTkcqoeH8qZT6iueCWvSAzeGOzO877TpKxG05SWxZaBOlQbDIjIDq9PVPUQ9HTKVVlcwbstUtpIRwXImmGi3NJHunN1GYZRFdsFVvMrUCUopd_9PgPPruclOILpeg9UWQfbOm56vw4KvN2Clk1dwE7LBaDx5DP7J9ZBTP_fwg9gY1wG34P766u5ykLc1EHIrSjbNNZfOIAwigTlfKjRtQMrmNAIXa7lUwWpZBB0sN7TwRHGUWmNdoY0qhQz9bVisX2q_C70gjaXEUmMcjtsLZRijgWnplaPorwzIpxEq2yYIj3UqnqpEFIisvtktg9PZI69NdozflC-iZWeKMbF1EqC7q9bd1V_uzuDg0y9VO9smFS2QhiFvFCSD41kzzpO4-aFr__IWdRKYZCX9RUc18bnA9-w0rp71lsUdUSplBnLuJ5gbznxLPXpM-bo5sj4l1d5_jH8flhGy8eaU2wEsTsdv_hCW7Pt0NBkfpUnwAXW2BvM priority: 102 providerName: Directory of Open Access Journals |
| Title | Hirshfeld atom refinement |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25295177 https://www.proquest.com/docview/1660699850 https://www.proquest.com/docview/1609510291 https://www.proquest.com/docview/1800429960 https://pubmed.ncbi.nlm.nih.gov/PMC4174878 https://doaj.org/article/b43dab385fac490c9f1d89b028401ca9 |
| Volume | 1 |
| WOSCitedRecordID | wos000356864900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: KB. dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: UK & Ireland Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: EHMNL dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/ukireland providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB71wQEO0AKFhRKlEiekpbbjXdsnRFCrVogo4iGF08rPNlK7KUnK72e866QJoFx6tWetWY9n55sZ7wzAW00F0VyHXDuGDgoayNwUjueuKAXnnvmy1zabEIOBHI3UMAXcZula5eKb2Hyo3cTGGPkxLRFqo29QkA83v_LYNSpmV1MLjW3YjVUSYuuGz_33dzEWtN5oMVMyEx2d42-MIOAo0KjzGEqLPzGtmKOmav__oObfNyZXTNDpk_syvwePE_jsfmxPyz5s-fopPFopSfgMsrPxdHYZ_JXrojt-3UWOcTKGEJ_Dj9OT75_O8tQ-IbeFYvNcc-EMIigSmPNKolQCentOI-axlgsZrBZl0MFyQ0tPJMdRa6wrtZGqEKF3ADv1pPYvoRuEsZRYaozDjfOFNIzRwLTw0lEUdQZksYuVTbXFY4uLq6rxMYio_tn4DN4tH7lpC2tsIu5H0SwJY03sZmAyvaiSilWG95w2PVkEbbkiVgXqpDIIoHAVq1UGhwvhVElRZ9WdZDI4Wk6jisW8ia795DbSNDiUKbqBRramvcR1XrRnZckti8lUKkQGYu0Urb3O-kw9vmxKfXN0GKWQrzaz_hoeIo7j7dW3Q9iZT2_9G3hgf8_Hs2kHtsVIdmC3fzIYfu00QYdOoyc4Njz_Mvz5BxauF9c |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAk48H4sFFgkuCCtajvetfeAEK8qUdsoEkUqp62fNFLZLUkK4k_xGxnvI00A5dYDV3vWmrU_j7_xYwbguaKCKK58oixDBwUXyESnlic2zQTnjrms3ySbEKORPDzMxxvwq3sLE65VdjaxNtS2MmGPfJtmSLXRN0jJ69NvScgaFU5XuxQaDSx23c8f6LLNXg3f4_i-YGznw8G7QdJmFUhMmrN5oriwGokF8cy6XKKyHp0gq5AKGMOF9EaJzCtvuKaZI5JjqdHGZkrLPBW-j-1egk2OYJc92BwP98efz3d1kC_gGt0en6Jrtf2REaQ4KdIIHjbvwrOppQWwzhPwL3L75x3NpUVv58b_1l034XpLr-M3zXy4BRuuvA3XloIu3oFoMJnOjr07sbGaV19j7CGsDJukd-HTheh2D3plVboHEHuhDSWGam1xoFwqNWPUMyWctBTBHAHpRq0wbfT0kMTjpKi9KCKKvwY6gpeLT06b0CHrhN8GKCwEQ9TvuqCafilaI1Jo3rdK92XqleE5MbmnVuYaKSK2YlQewVYHhqI1RbPiHAkRPFtUoxEJJ0OqdNVZkKmZNsvpGhnZkJcM27nfYHOhLQvHxVSICMQKald-Z7WmnBzXwcw5usRSyIfrVX8KVwYH-3vF3nC0-wiuImvlzUW_LejNp2fuMVw23-eT2fRJOyNjOLpoVP8GNhp0ag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hirshfeld+atom+refinement&rft.jtitle=IUCrJ&rft.au=Capelli%2C+Silvia+C&rft.au=B%C3%BCrgi%2C+Hans-Beat&rft.au=Dittrich%2C+Birger&rft.au=Grabowsky%2C+Simon&rft.date=2014-09-01&rft.issn=2052-2525&rft.eissn=2052-2525&rft.volume=1&rft.issue=Pt+5&rft.spage=361&rft_id=info:doi/10.1107%2FS2052252514014845&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon |