Hirshfeld atom refinement

Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR met...

Full description

Saved in:
Bibliographic Details
Published in:IUCrJ Vol. 1; no. 5; pp. 361 - 379
Main Authors: Capelli, Silvia C., Bürgi, Hans-Beat, Dittrich, Birger, Grabowsky, Simon, Jayatilaka, Dylan
Format: Journal Article
Language:English
Published: England International Union of Crystallography 01.09.2014
Subjects:
ISSN:2052-2525, 2052-2525
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–L-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å 2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
AbstractList Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
The new automated iterative Hirshfeld atom refinement method is explained and validated through comparison of structural models of Gly–l-Ala obtained from synchrotron X-ray and neutron diffraction data at 12, 50, 150 and 295 K. Structural parameters involving hydrogen atoms are determined with comparable precision from both experiments and agree mostly to within two combined standard uncertainties. Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu’s), all other structural parameters agree within less than 2 csu’s. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–L-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å 2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-L-Ala measured at 12, 50, 100, 150, 220 and 295K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009Aa for temperatures of 150K or below; for hydrogen-atom ADPs it is better than 0.006Aa super(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65Aa.
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-L-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
Author Jayatilaka, Dylan
Capelli, Silvia C.
Bürgi, Hans-Beat
Grabowsky, Simon
Dittrich, Birger
Author_xml – sequence: 1
  givenname: Silvia C.
  surname: Capelli
  fullname: Capelli, Silvia C.
– sequence: 2
  givenname: Hans-Beat
  surname: Bürgi
  fullname: Bürgi, Hans-Beat
– sequence: 3
  givenname: Birger
  surname: Dittrich
  fullname: Dittrich, Birger
– sequence: 4
  givenname: Simon
  surname: Grabowsky
  fullname: Grabowsky, Simon
– sequence: 5
  givenname: Dylan
  surname: Jayatilaka
  fullname: Jayatilaka, Dylan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25295177$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rFTEUhoNUbK39Ad1IwU03V8_JTSbJRpCitlBwoa7DmXy0ucxMajJX8N-b6a2lraCrhPe85-F8vWR7U54CY8cIbxFBvfvKQXIuuUQBKLSQz9jBIq0Wbe_Bf58d1boBAEQulcAXbL_JRqJSB-z4PJV6HcPgT2jO40kJMU1hDNP8ij2PNNRwdPcesu-fPn47O19dfvl8cfbhcuWk4fOKhPI9GAmR-2A0oYoc0ZME6ZxQOjpSXaToRI9dAC2a6nrnO-q1kSquD9nFjuszbexNSSOVXzZTsrdCLleWypzcEGwv1p76tZaRnDDgTESvTQ9ctxE4Mo31fse62fZj8K61UWh4BH0cmdK1vco_rUAltNINcHoHKPnHNtTZjqm6MAw0hbytFjWA4MZ08H9r16aCwA0265sn1k3elqlNtbk66IzRcgG-flj8fdV_ltUMuDO4kmttm7q3INjlJuxfN9Fy1JMcl2aaU176T8M_Mn8DZHm3MA
CitedBy_id crossref_primary_10_3390_ma16103690
crossref_primary_10_1107_S2052252519007358
crossref_primary_10_1107_S2052252525001721
crossref_primary_10_1107_S2052252524001507
crossref_primary_10_1107_S2053273318005478
crossref_primary_10_1007_s11224_017_1005_0
crossref_primary_10_1002_ange_202111691
crossref_primary_10_1002_chem_202404017
crossref_primary_10_1002_ange_202102504
crossref_primary_10_1002_cphc_201600223
crossref_primary_10_1002_ejic_202200482
crossref_primary_10_1107_S2052252525004543
crossref_primary_10_3390_molecules26144270
crossref_primary_10_1107_S2053273319008027
crossref_primary_10_1016_j_ica_2022_121190
crossref_primary_10_3390_cryst10060473
crossref_primary_10_1039_D3RA08081A
crossref_primary_10_3390_cryst13020293
crossref_primary_10_1002_cphc_201600213
crossref_primary_10_1107_S1600576725000901
crossref_primary_10_1107_S205327331900799X
crossref_primary_10_3390_cryst12060783
crossref_primary_10_1002_ceur_202500031
crossref_primary_10_1016_j_molstruc_2025_143178
crossref_primary_10_1002_ijch_201600050
crossref_primary_10_1002_ange_202424496
crossref_primary_10_1002_anie_202510186
crossref_primary_10_1039_D2CP01517J
crossref_primary_10_1107_S2052252520010441
crossref_primary_10_1515_zkri_2018_2060
crossref_primary_10_1002_chem_202003928
crossref_primary_10_1515_zkri_2018_2062
crossref_primary_10_1002_hlca_202400147
crossref_primary_10_1107_S2052252525002581
crossref_primary_10_3390_cryst11020207
crossref_primary_10_1007_s00706_018_2186_y
crossref_primary_10_1107_S2052520622004103
crossref_primary_10_1039_D4RA02909G
crossref_primary_10_1021_acs_cgd_5c00621
crossref_primary_10_1002_ange_202510186
crossref_primary_10_1107_S2052520623006625
crossref_primary_10_1039_C5CP04412J
crossref_primary_10_1107_S2052252520013603
crossref_primary_10_1107_S2053229624010428
crossref_primary_10_1107_S2052252519015975
crossref_primary_10_1107_S1600576723007215
crossref_primary_10_1002_ange_201904176
crossref_primary_10_1107_S2052252521004541
crossref_primary_10_1002_anie_202203853
crossref_primary_10_1107_S2053273314012443
crossref_primary_10_1107_S2052520623004377
crossref_primary_10_1002_chem_202401627
crossref_primary_10_1016_j_molstruc_2025_143235
crossref_primary_10_1002_hlca_202300012
crossref_primary_10_1070_RCR4866
crossref_primary_10_1002_zaac_202300093
crossref_primary_10_1107_S1600576721002545
crossref_primary_10_1107_S160057672500175X
crossref_primary_10_1126_sciadv_1600192
crossref_primary_10_1016_j_poly_2022_115962
crossref_primary_10_1016_j_csbj_2022_10_018
crossref_primary_10_1038_s41570_021_00302_4
crossref_primary_10_1002_chem_201903087
crossref_primary_10_1515_ncrs_2025_0009
crossref_primary_10_1002_ejic_202300174
crossref_primary_10_1107_S2052252524011242
crossref_primary_10_1107_S2052520622001457
crossref_primary_10_1107_S2052252522001385
crossref_primary_10_1107_S1600576717015825
crossref_primary_10_1016_j_molstruc_2025_143366
crossref_primary_10_1002_chem_202402946
crossref_primary_10_1039_D2CP02127G
crossref_primary_10_1107_S2052520622004164
crossref_primary_10_1107_S205252062300776X
crossref_primary_10_1002_zaac_202200229
crossref_primary_10_1002_chem_202303384
crossref_primary_10_1107_S2052252524003634
crossref_primary_10_1107_S2053273320014837
crossref_primary_10_1039_C6SC05504D
crossref_primary_10_1002_chem_202005188
crossref_primary_10_1107_S2052252524000915
crossref_primary_10_1002_slct_202202588
crossref_primary_10_1002_chem_201806247
crossref_primary_10_1107_S205327332000042X
crossref_primary_10_1107_S205225252300951X
crossref_primary_10_1107_S2053273318013840
crossref_primary_10_1038_s41598_025_96400_0
crossref_primary_10_1016_j_molstruc_2023_137358
crossref_primary_10_1107_S2053273322010221
crossref_primary_10_1002_ange_202203853
crossref_primary_10_1107_S2052520617006680
crossref_primary_10_1007_s10870_022_00961_1
crossref_primary_10_1016_j_molstruc_2024_139031
crossref_primary_10_1080_0889311X_2020_1760856
crossref_primary_10_1107_S2052252524006249
crossref_primary_10_1002_ejic_202300120
crossref_primary_10_3390_molecules21040455
crossref_primary_10_1063_4_0000774
crossref_primary_10_1107_S2052252524006808
crossref_primary_10_1007_s10870_024_01037_y
crossref_primary_10_3390_molecules26164967
crossref_primary_10_1016_j_poly_2023_116619
crossref_primary_10_1107_S2052252522002147
crossref_primary_10_1107_S2052520620012196
crossref_primary_10_1002_chem_201705952
crossref_primary_10_3390_molecules26123730
crossref_primary_10_1016_j_solidstatesciences_2023_107335
crossref_primary_10_1039_D0SC05526C
crossref_primary_10_1002_ejic_202300495
crossref_primary_10_1107_S2052252514018612
crossref_primary_10_1107_S2052252525002647
crossref_primary_10_1016_j_molstruc_2019_127431
crossref_primary_10_1002_anie_202424496
crossref_primary_10_1107_S1600576721001126
crossref_primary_10_1107_S2052252522005309
crossref_primary_10_1002_anie_202111691
crossref_primary_10_1039_D5TC02481A
crossref_primary_10_1107_S2053273315024699
crossref_primary_10_1002_cmtd_202400052
crossref_primary_10_1039_D5SC04450B
crossref_primary_10_1107_S205322962200897X
crossref_primary_10_1007_s41745_017_0027_3
crossref_primary_10_1107_S2052252516006242
crossref_primary_10_1021_acsmaterialsau_5c00076
crossref_primary_10_1107_S2052252522006844
crossref_primary_10_1107_S2053229614024218
crossref_primary_10_1002_cphc_201700810
crossref_primary_10_1039_D1RA08312K
crossref_primary_10_1002_chem_202103044
crossref_primary_10_3390_cryst14010077
crossref_primary_10_1002_chem_202203538
crossref_primary_10_1002_anie_201904176
crossref_primary_10_1107_S205225252400602X
crossref_primary_10_1107_S2052252524011862
crossref_primary_10_1002_nadc_20164052794
crossref_primary_10_1107_S2052252525004361
crossref_primary_10_1080_0889311X_2020_1853712
crossref_primary_10_1107_S1600576722010883
crossref_primary_10_1021_acs_cgd_5c00466
crossref_primary_10_1107_S2052520621003309
crossref_primary_10_1016_j_addr_2017_09_014
crossref_primary_10_1002_chem_202403218
crossref_primary_10_1007_s41745_019_00148_2
crossref_primary_10_1016_j_molstruc_2020_127934
crossref_primary_10_1515_zkri_2017_2085
crossref_primary_10_1016_j_bioorg_2024_107578
crossref_primary_10_1002_nadc_20204095786
crossref_primary_10_1002_slct_202201504
crossref_primary_10_1002_anie_202102504
crossref_primary_10_1002_chem_202303762
crossref_primary_10_1107_S1600576725004765
crossref_primary_10_1107_S205252062200292X
crossref_primary_10_3390_inorganics11050190
crossref_primary_10_1107_S2052252522006662
crossref_primary_10_1107_S2052520617004334
crossref_primary_10_1007_s11224_025_02541_3
crossref_primary_10_1039_C6DT02487D
crossref_primary_10_1107_S2052520620002917
crossref_primary_10_1002_adom_202302376
crossref_primary_10_1002_chem_202201295
crossref_primary_10_3390_ijms23073875
crossref_primary_10_1107_S2053273320016605
crossref_primary_10_1107_S2052252525002040
crossref_primary_10_1080_0889311X_2023_2266400
crossref_primary_10_1107_S2053229614019809
crossref_primary_10_1002_cphc_201402600
crossref_primary_10_1016_j_molstruc_2025_142798
crossref_primary_10_3390_cryst12030338
crossref_primary_10_1107_S2052252522000690
crossref_primary_10_1021_acs_cgd_5c00768
crossref_primary_10_1002_chem_202003978
crossref_primary_10_1016_j_molstruc_2021_131192
crossref_primary_10_1107_S2052520620007702
crossref_primary_10_1038_s41578_025_00782_6
crossref_primary_10_1107_S2052252524010443
crossref_primary_10_1016_j_ultramic_2018_12_007
crossref_primary_10_1002_asia_202400574
crossref_primary_10_1039_C9RA07327B
crossref_primary_10_1107_S2052520622004097
crossref_primary_10_1107_S2052520625003403
crossref_primary_10_1107_S2052252525003355
crossref_primary_10_1107_S2053273319000482
crossref_primary_10_1134_S1063774520060139
crossref_primary_10_1016_j_molstruc_2025_144071
crossref_primary_10_1107_S2052520624012010
crossref_primary_10_1063_4_0000365
crossref_primary_10_1107_S2053273321009086
crossref_primary_10_1063_4_0000367
crossref_primary_10_1107_S2052252515007538
crossref_primary_10_1107_S2052520617008344
crossref_primary_10_1021_acs_cgd_5c00424
crossref_primary_10_1002_chem_201604705
crossref_primary_10_1107_S2052520619004517
crossref_primary_10_1021_acs_molpharmaceut_5c00296
crossref_primary_10_1107_S2052520624003421
crossref_primary_10_1107_S2052520620005533
Cites_doi 10.1021/ja953301v
10.1021/ja00734a001
10.1107/S0108767307043930
10.1107/S0108767300005638
10.1107/S0567739479001340
10.1021/jp952944u
10.1063/1.431871
10.1107/S0108767300013155
10.1063/1.471749
10.1107/S0108767300005626
10.1063/1.4817662
10.1002/1521-3765(20020802)8:15<3512::AID-CHEM3512>3.0.CO;2-Z
10.1107/S0108767312013001
10.1107/S0108767304018306
10.1002/ijch.197700033
10.1103/PhysRevB.57.1471
10.1021/j100096a001
10.1107/S0108768184002366
10.1007/978-90-481-3836-4
10.1107/S0108767309019862
10.1107/S0108768109016966
10.1107/S010876819600794X
10.1107/S0021889803022891
10.1107/S0108767395002340
10.1107/S0365110X66004092
10.1107/S0108768183003377
10.1002/anie.201200745
10.1107/S0365110X66002639
10.1107/S0108767395014942
10.1016/0009-2614(96)00483-6
10.1107/S0108767309038744
10.1107/S0108767305005039
10.1039/c2ce26964c
10.1107/S0909049508000824
10.1107/S0108768195005088
10.1107/S2052519213002285
10.1103/PhysRevLett.80.798
10.1063/1.454033
10.1107/S2053273314012443
10.1007/430_2012_78
10.1107/S010876730801341X
10.1107/S0365110X65003146
10.1107/S0108767302001381
10.1107/S0021889808024643
10.1107/S0567739476000533
10.1021/ct800394q
10.1021/ct600185a
10.1016/0009-2614(96)00600-8
10.1107/S0108767312016571
10.1107/S0108767310052219
10.1039/b821734c
10.1107/S0021889806026379
10.1107/S0108768196015261
10.1021/jp311072q
10.1107/S0108768183002797
10.1002/zaac.201200518
10.1107/S2053273314010626
10.1021/jp0379796
10.1002/cphc.200700339
10.1107/S0108767313005011
10.1002/zaac.201200563
10.1107/S0108768109046060
10.1002/zaac.201200506
10.1107/S0108767302010991
10.1021/ic50193a042
10.1107/S0108768194012474
10.1007/430_2011_70
10.1107/S0108767310049731
10.1063/1.456153
10.1107/S0108768183002116
10.1093/oso/9780195098235.001.0001
10.1002/9783906390390
10.1021/cg101540y
10.1107/S0108768110012048
10.1107/S0108767308005709
10.1107/S0108767396005697
10.1107/S0567740872007046
10.1002/chem.200700756
10.1107/S0108767304015120
10.1107/S0108767312008197
10.1107/S0108767311042176
10.1021/jp970580v
10.1016/j.sbi.2006.08.010
10.1107/S0108270107021671
10.1107/S0108767300008734
ContentType Journal Article
Copyright Copyright International Union of Crystallography Sep 2014
Silvia C. Capelli et al. 2014 2014
Copyright_xml – notice: Copyright International Union of Crystallography Sep 2014
– notice: Silvia C. Capelli et al. 2014 2014
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
EHMNL
HCIFZ
JG9
KB.
L7M
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1107/S2052252514014845
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
UK & Ireland Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
UK & Ireland Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Materials Research Database
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Hirshfeld atom refinement
EISSN 2052-2525
EndPage 379
ExternalDocumentID oai_doaj_org_article_b43dab385fac490c9f1d89b028401ca9
PMC4174878
3615010301
25295177
10_1107_S2052252514014845
Genre Journal Article
GroupedDBID 5VS
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
D1I
EBS
EHMNL
EJD
GROUPED_DOAJ
H13
HCIFZ
HYE
IAO
IPNFZ
ITC
KB.
KQ8
M48
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RCJ
RIG
RPM
ZBA
NPM
7SR
7U5
8BQ
8FD
AZQEC
DWQXO
JG9
L7M
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c592t-a47db0950f2de98a17f211da505cc478fca76fafc4b16e084cc4cbcd6ab8957f3
IEDL.DBID KB.
ISICitedReferencesCount 285
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356864900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-2525
IngestDate Tue Oct 14 19:08:18 EDT 2025
Tue Nov 04 02:01:37 EST 2025
Fri Sep 05 14:34:40 EDT 2025
Thu Oct 02 04:13:38 EDT 2025
Fri Jul 25 11:57:52 EDT 2025
Mon Jul 21 06:06:23 EDT 2025
Sat Nov 29 03:52:59 EST 2025
Tue Nov 18 22:26:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords anisotropic displacement parameters
aspherical atom partitioning
quantum mechanical molecular electron densities
hydrogen atom modelling
X-ray structure refinement
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-a47db0950f2de98a17f211da505cc478fca76fafc4b16e084cc4cbcd6ab8957f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1660699850?pq-origsite=%requestingapplication%
PMID 25295177
PQID 1660699850
PQPubID 2035043
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_b43dab385fac490c9f1d89b028401ca9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4174878
proquest_miscellaneous_1800429960
proquest_miscellaneous_1609510291
proquest_journals_1660699850
pubmed_primary_25295177
crossref_primary_10_1107_S2052252514014845
crossref_citationtrail_10_1107_S2052252514014845
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chester
PublicationTitle IUCrJ
PublicationTitleAlternate IUCrJ
PublicationYear 2014
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
References Lübben (fc5002_bb63) 2014; 70
Martin (fc5002_bb68) 1996; 118
El Haouzi (fc5002_bb38) 1996; 52
Coppens (fc5002_bb23) 1971; 93
Langan (fc5002_bb60) 2008; 15
Volkov (fc5002_bb91) 2004; 108
Jayatilaka (fc5002_bb55) 1998; 80
fc5002_bb44
Bürgi (fc5002_bb13) 2000; 56
Ammeter (fc5002_bb3) 1979; 18
Dittrich (fc5002_bb30) 2005; 61
fc5002_bb40
fc5002_bb2
Allen (fc5002_bb1) 2010; 66
Bürgi (fc5002_bb12) 2000; 56
Wang (fc5002_bb93) 1979; 8
Chandrasekhar (fc5002_bb18) 1984; 40
fc5002_bb58
Madsen (fc5002_bb67) 2004; 60
fc5002_bb52
Dittrich (fc5002_bb33) 2012; 68
Bultinck (fc5002_bb10) 2009; 11
Jayatilaka (fc5002_bb56) 2008; 64
fc5002_bb28
Spackman (fc5002_bb81) 1997; 53
fc5002_bb27
Morgenroth (fc5002_bb69) 2008; 41
fc5002_bb21
Birkedal (fc5002_bb7) 2004; 60
Coppens (fc5002_bb22) 1983; 39
Destro (fc5002_bb29) 1995; 51
Poulsen (fc5002_bb74) 2007; 13
Taylor (fc5002_bb88) 1983; 39
Spackman (fc5002_bb82) 2007; 8
Damme (fc5002_bb26) 2009; 5
Madsen (fc5002_bb64) 2006; 39
Zakrzewska (fc5002_bb97) 2013; 117
Dittrich (fc5002_bb31) 2013; 69
fc5002_bb39
Shukla (fc5002_bb80) 1998; 57
Wong (fc5002_bb96) 1996; 256
Schmøkel (fc5002_bb77) 2013; 639
fc5002_bb36
Jarzembska (fc5002_bb54) 2012; 68
Hirshfeld (fc5002_bb49) 1977; 16
Grabowsky (fc5002_bb42) 2009; 65
Grabowsky (fc5002_bb43) 2012; 51
Myles (fc5002_bb72) 2006; 16
Lebedev (fc5002_bb62) 1999; 59
Hirshfeld (fc5002_bb48) 1976; 32
Bendeif (fc5002_bb6) 2007; 63
Dittrich (fc5002_bb34) 2009; 65
Dittrich (fc5002_bb32) 2012; 147
Trueblood (fc5002_bb89) 1996; 52
Choi (fc5002_bb20) 1972; 28
O'Connell (fc5002_bb73) 1966; 21
fc5002_bb83
Cromer (fc5002_bb24) 1965; 19
fc5002_bb90
Bytheway (fc5002_bb15) 2002; 58
Hathwar (fc5002_bb45) 2011; 11
Iversen (fc5002_bb53) 1996; 52
Blessing (fc5002_bb8) 1995; 51
Domagała (fc5002_bb35) 2012; 68
Hickstein (fc5002_bb47) 2013; 139
Schwarzenbach (fc5002_bb78) 1995; 51
Grabowsky (fc5002_bb41) 2013; 639
Madsen (fc5002_bb65) 2012; 146
fc5002_bb16
Capelli (fc5002_bb17) 2000; 56
fc5002_bb11
Hoser (fc5002_bb50) 2009; 65
Wang (fc5002_bb92) 1996; 100
Dunning (fc5002_bb37) 1989; 90
fc5002_bb95
fc5002_bb94
Stewart (fc5002_bb85) 1975; 63
Hudák (fc5002_bb51) 2010; 66
Dadda (fc5002_bb25) 2012; 68
Hewat (fc5002_bb46) 1979; 35
Sheldrick (fc5002_bb79) 2008; 64
Bąk (fc5002_bb4) 2011; 67
Koritsanszky (fc5002_bb59) 2002; 58
Langan (fc5002_bb61) 2004; 37
Munshi (fc5002_bb70) 2008; 64
Becke (fc5002_bb5) 1988; 88
Zhurov (fc5002_bb98) 2013; 639
Stephens (fc5002_bb84) 1994; 98
Jayatilaka (fc5002_bb57) 2001; 57
Madsen (fc5002_bb66) 2013; 69
Chęcińska (fc5002_bb19) 2013; 15
Sands (fc5002_bb76) 1966; 21
Stratmann (fc5002_bb86) 1996; 257
Zhurov (fc5002_bb99) 2011; 67
Riley (fc5002_bb75) 2007; 3
Mura (fc5002_bb71) 1996; 104
Taylor (fc5002_bb87) 1983; 39
Boese (fc5002_bb9) 1997; 101
Bürgi (fc5002_bb14) 2002; 8
References_xml – volume: 8
  start-page: 269
  year: 1979
  ident: fc5002_bb93
  publication-title: Cryst. Struct. Commun.
– volume: 118
  start-page: 1464
  year: 1996
  ident: fc5002_bb68
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja953301v
– volume: 93
  start-page: 1051
  year: 1971
  ident: fc5002_bb23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00734a001
– volume: 64
  start-page: 112
  year: 2008
  ident: fc5002_bb79
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767307043930
– volume: 56
  start-page: 413
  year: 2000
  ident: fc5002_bb17
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767300005638
– ident: fc5002_bb52
– ident: fc5002_bb90
– volume: 35
  start-page: 569
  year: 1979
  ident: fc5002_bb46
  publication-title: Acta Cryst. A
  doi: 10.1107/S0567739479001340
– volume: 100
  start-page: 6317
  year: 1996
  ident: fc5002_bb92
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952944u
– volume: 63
  start-page: 3786
  year: 1975
  ident: fc5002_bb85
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.431871
– volume: 57
  start-page: 76
  year: 2001
  ident: fc5002_bb57
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767300013155
– volume: 104
  start-page: 9848
  year: 1996
  ident: fc5002_bb71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471749
– volume: 56
  start-page: 403
  year: 2000
  ident: fc5002_bb12
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767300005626
– volume: 139
  start-page: 064108
  year: 2013
  ident: fc5002_bb47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4817662
– volume: 8
  start-page: 3512
  year: 2002
  ident: fc5002_bb14
  publication-title: Chem. Eur. J.
  doi: 10.1002/1521-3765(20020802)8:15<3512::AID-CHEM3512>3.0.CO;2-Z
– volume: 68
  start-page: 435
  year: 2012
  ident: fc5002_bb33
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767312013001
– ident: fc5002_bb28
– volume: 60
  start-page: 550
  year: 2004
  ident: fc5002_bb67
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767304018306
– volume: 16
  start-page: 198
  year: 1977
  ident: fc5002_bb49
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.197700033
– volume: 57
  start-page: 1471
  year: 1998
  ident: fc5002_bb80
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.1471
– volume: 98
  start-page: 11624
  year: 1994
  ident: fc5002_bb84
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume: 40
  start-page: 387
  year: 1984
  ident: fc5002_bb18
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768184002366
– ident: fc5002_bb39
  doi: 10.1007/978-90-481-3836-4
– volume: 65
  start-page: 300
  year: 2009
  ident: fc5002_bb50
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767309019862
– volume: 65
  start-page: 488
  year: 2009
  ident: fc5002_bb42
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768109016966
– ident: fc5002_bb40
– volume: 52
  start-page: 923
  year: 1996
  ident: fc5002_bb53
  publication-title: Acta Cryst. B
  doi: 10.1107/S010876819600794X
– volume: 37
  start-page: 24
  year: 2004
  ident: fc5002_bb61
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889803022891
– volume: 51
  start-page: 565
  year: 1995
  ident: fc5002_bb78
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767395002340
– volume: 21
  start-page: 868
  year: 1966
  ident: fc5002_bb76
  publication-title: Acta Cryst.
  doi: 10.1107/S0365110X66004092
– volume: 39
  start-page: 760
  year: 1983
  ident: fc5002_bb22
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768183003377
– volume: 51
  start-page: 6776
  year: 2012
  ident: fc5002_bb43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201200745
– volume: 21
  start-page: 208
  year: 1966
  ident: fc5002_bb73
  publication-title: Acta Cryst.
  doi: 10.1107/S0365110X66002639
– volume: 52
  start-page: 291
  year: 1996
  ident: fc5002_bb38
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767395014942
– volume: 256
  start-page: 391
  year: 1996
  ident: fc5002_bb96
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00483-6
– volume: 66
  start-page: 78
  year: 2010
  ident: fc5002_bb51
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767309038744
– volume: 61
  start-page: 314
  year: 2005
  ident: fc5002_bb30
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767305005039
– volume: 15
  start-page: 2084
  year: 2013
  ident: fc5002_bb19
  publication-title: CrystEngComm
  doi: 10.1039/c2ce26964c
– volume: 15
  start-page: 215
  year: 2008
  ident: fc5002_bb60
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049508000824
– volume: 51
  start-page: 559
  year: 1995
  ident: fc5002_bb29
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768195005088
– volume: 69
  start-page: 91
  year: 2013
  ident: fc5002_bb31
  publication-title: Acta Cryst. B
  doi: 10.1107/S2052519213002285
– volume: 80
  start-page: 798
  year: 1998
  ident: fc5002_bb55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.798
– volume: 88
  start-page: 2547
  year: 1988
  ident: fc5002_bb5
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.454033
– ident: fc5002_bb95
  doi: 10.1107/S2053273314012443
– volume: 147
  start-page: 27
  year: 2012
  ident: fc5002_bb32
  publication-title: Struct. Bond.
  doi: 10.1007/430_2012_78
– volume: 64
  start-page: 164
  year: 2008
  ident: fc5002_bb70
  publication-title: Acta Cryst. A
  doi: 10.1107/S010876730801341X
– volume: 19
  start-page: 224
  year: 1965
  ident: fc5002_bb24
  publication-title: Acta Cryst.
  doi: 10.1107/S0365110X65003146
– volume: 58
  start-page: 244
  year: 2002
  ident: fc5002_bb15
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767302001381
– volume: 41
  start-page: 846
  year: 2008
  ident: fc5002_bb69
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889808024643
– volume: 32
  start-page: 239
  year: 1976
  ident: fc5002_bb48
  publication-title: Acta Cryst. A
  doi: 10.1107/S0567739476000533
– volume: 5
  start-page: 334
  year: 2009
  ident: fc5002_bb26
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800394q
– volume: 3
  start-page: 407
  year: 2007
  ident: fc5002_bb75
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct600185a
– volume: 257
  start-page: 213
  year: 1996
  ident: fc5002_bb86
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00600-8
– ident: fc5002_bb94
– volume: 68
  start-page: 452
  year: 2012
  ident: fc5002_bb25
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767312016571
– volume: 67
  start-page: 160
  year: 2011
  ident: fc5002_bb99
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767310052219
– volume: 11
  start-page: 3424
  year: 2009
  ident: fc5002_bb10
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b821734c
– volume: 39
  start-page: 757
  year: 2006
  ident: fc5002_bb64
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889806026379
– volume: 53
  start-page: 553
  year: 1997
  ident: fc5002_bb81
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768196015261
– volume: 117
  start-page: 252
  year: 2013
  ident: fc5002_bb97
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp311072q
– volume: 39
  start-page: 517
  year: 1983
  ident: fc5002_bb88
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768183002797
– volume: 639
  start-page: 1905
  year: 2013
  ident: fc5002_bb41
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.201200518
– volume: 70
  start-page: 309
  year: 2014
  ident: fc5002_bb63
  publication-title: Acta Cryst. A
  doi: 10.1107/S2053273314010626
– ident: fc5002_bb27
– volume: 108
  start-page: 4283
  year: 2004
  ident: fc5002_bb91
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0379796
– volume: 8
  start-page: 2051
  year: 2007
  ident: fc5002_bb82
  publication-title: Chem. Phys. Chem.
  doi: 10.1002/cphc.200700339
– volume: 69
  start-page: 309
  year: 2013
  ident: fc5002_bb66
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767313005011
– volume: 639
  start-page: 1922
  year: 2013
  ident: fc5002_bb77
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.201200563
– volume: 65
  start-page: 749
  year: 2009
  ident: fc5002_bb34
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768109046060
– volume: 639
  start-page: 1969
  year: 2013
  ident: fc5002_bb98
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.201200506
– volume: 58
  start-page: 464
  year: 2002
  ident: fc5002_bb59
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767302010991
– volume: 18
  start-page: 733
  year: 1979
  ident: fc5002_bb3
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50193a042
– volume: 51
  start-page: 816
  year: 1995
  ident: fc5002_bb8
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768194012474
– ident: fc5002_bb83
– volume: 146
  start-page: 21
  year: 2012
  ident: fc5002_bb65
  publication-title: Struct. Bond.
  doi: 10.1007/430_2011_70
– ident: fc5002_bb44
– volume: 67
  start-page: 141
  year: 2011
  ident: fc5002_bb4
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767310049731
– volume: 90
  start-page: 1007
  year: 1989
  ident: fc5002_bb37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 39
  start-page: 133
  year: 1983
  ident: fc5002_bb87
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768183002116
– ident: fc5002_bb21
  doi: 10.1093/oso/9780195098235.001.0001
– ident: fc5002_bb11
– ident: fc5002_bb36
  doi: 10.1002/9783906390390
– ident: fc5002_bb2
– volume: 11
  start-page: 616
  year: 2011
  ident: fc5002_bb45
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg101540y
– volume: 66
  start-page: 380
  year: 2010
  ident: fc5002_bb1
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768110012048
– volume: 64
  start-page: 383
  year: 2008
  ident: fc5002_bb56
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767308005709
– ident: fc5002_bb16
– volume: 59
  start-page: 477
  year: 1999
  ident: fc5002_bb62
  publication-title: Dokl. Math.
– volume: 52
  start-page: 770
  year: 1996
  ident: fc5002_bb89
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767396005697
– volume: 28
  start-page: 2857
  year: 1972
  ident: fc5002_bb20
  publication-title: Acta Cryst. B
  doi: 10.1107/S0567740872007046
– volume: 13
  start-page: 9775
  year: 2007
  ident: fc5002_bb74
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200700756
– ident: fc5002_bb58
– volume: 60
  start-page: 371
  year: 2004
  ident: fc5002_bb7
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767304015120
– volume: 68
  start-page: 337
  year: 2012
  ident: fc5002_bb35
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767312008197
– volume: 68
  start-page: 139
  year: 2012
  ident: fc5002_bb54
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767311042176
– volume: 101
  start-page: 5794
  year: 1997
  ident: fc5002_bb9
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970580v
– volume: 16
  start-page: 630
  year: 2006
  ident: fc5002_bb72
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2006.08.010
– volume: 63
  start-page: o361
  year: 2007
  ident: fc5002_bb6
  publication-title: Acta Cryst. C
  doi: 10.1107/S0108270107021671
– volume: 56
  start-page: 425
  year: 2000
  ident: fc5002_bb13
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767300008734
SSID ssj0001125741
Score 2.467387
Snippet Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom...
The new automated iterative Hirshfeld atom refinement method is explained and validated through comparison of structural models of Gly–l-Ala obtained from...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 361
SubjectTerms anisotropic displacement parameters
aspherical atom partitioning
Atomic structure
Bonding
Diffraction
Electron density
hydrogen atom modelling
Hydrogen atoms
Mathematical analysis
Partitioning
quantum mechanical molecular electron densities
Research Papers
X-ray structure refinement
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPOhBfFtfrOBJKCbZpEmPKsqeFkEFbyVPXNAqu6u_30lal66KXrxOpm0y0zDfl8cMwImmkmiuQ64dQ4KCATI3wvHciUJy7pkv-k2xCTkcqoeH8qZT6iueCWvSAzeGOzO877TpKxG05SWxZaBOlQbDIjIDq9PVPUQ9HTKVVlcwbstUtpIRwXImmGi3NJHunN1GYZRFdsFVvMrUCUopd_9PgPPruclOILpeg9UWQfbOm56vw4KvN2Clk1dwE7LBaDx5DP7J9ZBTP_fwg9gY1wG34P766u5ykLc1EHIrSjbNNZfOIAwigTlfKjRtQMrmNAIXa7lUwWpZBB0sN7TwRHGUWmNdoY0qhQz9bVisX2q_C70gjaXEUmMcjtsLZRijgWnplaPorwzIpxEq2yYIj3UqnqpEFIisvtktg9PZI69NdozflC-iZWeKMbF1EqC7q9bd1V_uzuDg0y9VO9smFS2QhiFvFCSD41kzzpO4-aFr__IWdRKYZCX9RUc18bnA9-w0rp71lsUdUSplBnLuJ5gbznxLPXpM-bo5sj4l1d5_jH8flhGy8eaU2wEsTsdv_hCW7Pt0NBkfpUnwAXW2BvM
  priority: 102
  providerName: Directory of Open Access Journals
Title Hirshfeld atom refinement
URI https://www.ncbi.nlm.nih.gov/pubmed/25295177
https://www.proquest.com/docview/1660699850
https://www.proquest.com/docview/1609510291
https://www.proquest.com/docview/1800429960
https://pubmed.ncbi.nlm.nih.gov/PMC4174878
https://doaj.org/article/b43dab385fac490c9f1d89b028401ca9
Volume 1
WOSCitedRecordID wos000356864900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: KB.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: UK & Ireland Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: EHMNL
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/ukireland
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB71wQEO0AKFhRKlEiekpbbjXdsnRFCrVogo4iGF08rPNlK7KUnK72e866QJoFx6tWetWY9n55sZ7wzAW00F0VyHXDuGDgoayNwUjueuKAXnnvmy1zabEIOBHI3UMAXcZula5eKb2Hyo3cTGGPkxLRFqo29QkA83v_LYNSpmV1MLjW3YjVUSYuuGz_33dzEWtN5oMVMyEx2d42-MIOAo0KjzGEqLPzGtmKOmav__oObfNyZXTNDpk_syvwePE_jsfmxPyz5s-fopPFopSfgMsrPxdHYZ_JXrojt-3UWOcTKGEJ_Dj9OT75_O8tQ-IbeFYvNcc-EMIigSmPNKolQCentOI-axlgsZrBZl0MFyQ0tPJMdRa6wrtZGqEKF3ADv1pPYvoRuEsZRYaozDjfOFNIzRwLTw0lEUdQZksYuVTbXFY4uLq6rxMYio_tn4DN4tH7lpC2tsIu5H0SwJY03sZmAyvaiSilWG95w2PVkEbbkiVgXqpDIIoHAVq1UGhwvhVElRZ9WdZDI4Wk6jisW8ia795DbSNDiUKbqBRramvcR1XrRnZckti8lUKkQGYu0Urb3O-kw9vmxKfXN0GKWQrzaz_hoeIo7j7dW3Q9iZT2_9G3hgf8_Hs2kHtsVIdmC3fzIYfu00QYdOoyc4Njz_Mvz5BxauF9c
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAk48H4sFFgkuCCtajvetfeAEK8qUdsoEkUqp62fNFLZLUkK4k_xGxnvI00A5dYDV3vWmrU_j7_xYwbguaKCKK58oixDBwUXyESnlic2zQTnjrms3ySbEKORPDzMxxvwq3sLE65VdjaxNtS2MmGPfJtmSLXRN0jJ69NvScgaFU5XuxQaDSx23c8f6LLNXg3f4_i-YGznw8G7QdJmFUhMmrN5oriwGokF8cy6XKKyHp0gq5AKGMOF9EaJzCtvuKaZI5JjqdHGZkrLPBW-j-1egk2OYJc92BwP98efz3d1kC_gGt0en6Jrtf2REaQ4KdIIHjbvwrOppQWwzhPwL3L75x3NpUVv58b_1l034XpLr-M3zXy4BRuuvA3XloIu3oFoMJnOjr07sbGaV19j7CGsDJukd-HTheh2D3plVboHEHuhDSWGam1xoFwqNWPUMyWctBTBHAHpRq0wbfT0kMTjpKi9KCKKvwY6gpeLT06b0CHrhN8GKCwEQ9TvuqCafilaI1Jo3rdK92XqleE5MbmnVuYaKSK2YlQewVYHhqI1RbPiHAkRPFtUoxEJJ0OqdNVZkKmZNsvpGhnZkJcM27nfYHOhLQvHxVSICMQKald-Z7WmnBzXwcw5usRSyIfrVX8KVwYH-3vF3nC0-wiuImvlzUW_LejNp2fuMVw23-eT2fRJOyNjOLpoVP8GNhp0ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hirshfeld+atom+refinement&rft.jtitle=IUCrJ&rft.au=Capelli%2C+Silvia+C&rft.au=B%C3%BCrgi%2C+Hans-Beat&rft.au=Dittrich%2C+Birger&rft.au=Grabowsky%2C+Simon&rft.date=2014-09-01&rft.issn=2052-2525&rft.eissn=2052-2525&rft.volume=1&rft.issue=Pt+5&rft.spage=361&rft_id=info:doi/10.1107%2FS2052252514014845&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon