Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties
Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relat...
Saved in:
| Published in: | PloS one Vol. 8; no. 4; p. e61318 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
30.04.2013
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC₅₀ values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC₅₀ values in a 8-fold cross-validation and an independent blind test with coefficient of determination R² of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R² of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC₅₀ values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity. |
|---|---|
| AbstractList | Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC50 values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC50 values in a 8-fold cross-validation and an independent blind test with coefficient of determination R2 of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R2 of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC50 values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity. Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC₅₀ values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC₅₀ values in a 8-fold cross-validation and an independent blind test with coefficient of determination R² of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R² of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC₅₀ values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity. Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC₅₀ values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC₅₀ values in a 8-fold cross-validation and an independent blind test with coefficient of determination R² of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R² of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC₅₀ values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity.Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC₅₀ values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC₅₀ values in a 8-fold cross-validation and an independent blind test with coefficient of determination R² of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R² of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC₅₀ values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity. |
| Author | Menden, Michael P. Benes, Cyril H. Ballester, Pedro J. McDermott, Ultan Iorio, Francesco Garnett, Mathew Saez-Rodriguez, Julio |
| AuthorAffiliation | 2 Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus-Cambridge, Cambridge, United Kingdom 1 European Bioinformatics Institute, Wellcome Trust Genome Campus–Cambridge, Cambridge, United Kingdom 3 Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, United States of America CSIR-Institute of Microbial Technology, India |
| AuthorAffiliation_xml | – name: CSIR-Institute of Microbial Technology, India – name: 2 Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus-Cambridge, Cambridge, United Kingdom – name: 3 Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, United States of America – name: 1 European Bioinformatics Institute, Wellcome Trust Genome Campus–Cambridge, Cambridge, United Kingdom |
| Author_xml | – sequence: 1 givenname: Michael P. surname: Menden fullname: Menden, Michael P. – sequence: 2 givenname: Francesco surname: Iorio fullname: Iorio, Francesco – sequence: 3 givenname: Mathew surname: Garnett fullname: Garnett, Mathew – sequence: 4 givenname: Ultan surname: McDermott fullname: McDermott, Ultan – sequence: 5 givenname: Cyril H. surname: Benes fullname: Benes, Cyril H. – sequence: 6 givenname: Pedro J. surname: Ballester fullname: Ballester, Pedro J. – sequence: 7 givenname: Julio surname: Saez-Rodriguez fullname: Saez-Rodriguez, Julio |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23646105$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v1DAQtVARbRf-AQJLXHrZxY4dJ-GABAFKpUUgAWfLH5Ndr7L21k4q9d_X202rtkKcPBq_efNm5p2iIx88IPSakgVlFX2_CWP0ql_scnpBiKCM1s_QCW1YMRcFYUcP4mN0mtKGkJLVQrxAxwUTXFBSnqD1D2XWzgNegore-RX-FcE6M7jgcehwq7yBiFvoe_wbfHKDu3LDNR4C_hLHVcKfVQKLM_gcfNg6g5W3uF1DDlWfycIO4uAgvUTPO9UneDW9M_T329c_7ff58uf5RftpOTdlUwzzBijjhAmirGCWi6oqeQWaAa05NyWvFem0LTnVhdAUqq6rK97ZgnCrlLaazdDbA--uD0lOS0oys9a0YLSsMuLigLBBbeQuuq2K1zIoJ28TIa6kypJND7IShdbEAOGsyd1ZrRUpBRV7HU1eeOb6OHUb9RasAT9E1T8iffzj3VquwpXMByAk32eGziaCGC5HSIPcumTytpWHMN7qbkhTVkWZoe-eQP893ZuHiu6l3J08A_gBYGJIKUJ3D6FE7p11Ryv3zpKTs3LZhydlxg1qb5M8l-v_X3wDJaDWuQ |
| CitedBy_id | crossref_primary_10_1007_s00280_021_04325_y crossref_primary_10_3390_ijms25179576 crossref_primary_10_1146_annurev_pharmtox_010814_124502 crossref_primary_10_1080_1062936X_2015_1076516 crossref_primary_10_1093_bib_bbac100 crossref_primary_10_1109_JBHI_2020_3004663 crossref_primary_10_1371_journal_pcbi_1007803 crossref_primary_10_1038_s41598_018_27214_6 crossref_primary_10_1109_JBHI_2024_3417014 crossref_primary_10_1016_j_cbpa_2021_06_001 crossref_primary_10_3233_JIFS_169713 crossref_primary_10_1055_s_0041_1735577 crossref_primary_10_1038_s41578_021_00339_3 crossref_primary_10_1371_journal_pone_0219774 crossref_primary_10_1038_s41589_020_0596_8 crossref_primary_10_1111_joim_12822 crossref_primary_10_3390_pharmaceutics14050997 crossref_primary_10_1186_s12918_018_0658_7 crossref_primary_10_1186_1752_0509_8_74 crossref_primary_10_1002_cmdc_201500424 crossref_primary_10_1111_2041_210X_13329 crossref_primary_10_1155_2022_8671348 crossref_primary_10_1007_s11831_023_09886_0 crossref_primary_10_1016_j_drudis_2018_11_014 crossref_primary_10_1016_j_ecoinf_2021_101286 crossref_primary_10_1186_s12864_020_07319_x crossref_primary_10_1186_gb_2014_15_3_r47 crossref_primary_10_1038_srep31619 crossref_primary_10_3390_healthcare10101920 crossref_primary_10_1016_j_ultras_2018_05_011 crossref_primary_10_1080_1062936X_2020_1818617 crossref_primary_10_1038_s41598_020_65927_9 crossref_primary_10_1038_s41598_022_05335_3 crossref_primary_10_1111_pme_12713 crossref_primary_10_1093_bib_bbae300 crossref_primary_10_4103_ijc_IJC_399_20 crossref_primary_10_1038_s41598_019_52093_w crossref_primary_10_1273_cbij_25_36 crossref_primary_10_1016_j_applthermaleng_2019_114357 crossref_primary_10_1007_s10441_018_9325_z crossref_primary_10_1093_bib_bbab393 crossref_primary_10_1186_s13321_025_01039_8 crossref_primary_10_3389_fonc_2020_00185 crossref_primary_10_1109_TRPMS_2021_3055727 crossref_primary_10_1016_j_artmed_2016_09_004 crossref_primary_10_1093_nargab_lqab128 crossref_primary_10_1016_j_jocs_2023_102173 crossref_primary_10_1088_1361_6595_acb28c crossref_primary_10_52711_2231_5713_2024_00039 crossref_primary_10_1007_s12553_024_00825_y crossref_primary_10_1371_journal_pcbi_1011082 crossref_primary_10_1038_s41598_017_04264_w crossref_primary_10_2174_0109298673266470231023110841 crossref_primary_10_3390_genes12060933 crossref_primary_10_1186_s13321_019_0364_5 crossref_primary_10_1007_s12551_018_0446_z crossref_primary_10_1186_s12911_020_01240_9 crossref_primary_10_1093_bib_bbab378 crossref_primary_10_3390_cancers15102705 crossref_primary_10_3390_ijms26062468 crossref_primary_10_1007_s40290_020_00328_x crossref_primary_10_1016_j_ymeth_2023_07_008 crossref_primary_10_1186_s12859_019_2910_6 crossref_primary_10_1186_s12885_017_3500_5 crossref_primary_10_3390_ijms23052863 crossref_primary_10_1093_nar_gkaa327 crossref_primary_10_1016_j_drudis_2019_07_006 crossref_primary_10_1093_bib_bbaf134 crossref_primary_10_1093_biostatistics_kxaa047 crossref_primary_10_1186_s12859_022_04964_9 crossref_primary_10_1186_s13321_020_00444_5 crossref_primary_10_1016_j_omtn_2018_09_011 crossref_primary_10_1177_10732748221095946 crossref_primary_10_1534_g3_118_200728 crossref_primary_10_1093_bioinformatics_btae359 crossref_primary_10_1038_s41598_022_17609_x crossref_primary_10_1038_srep23857 crossref_primary_10_1186_s43094_024_00625_1 crossref_primary_10_1038_s41598_021_82612_7 crossref_primary_10_1038_s42003_021_02393_7 crossref_primary_10_1534_g3_119_300585 crossref_primary_10_1371_journal_pone_0223276 crossref_primary_10_1038_s41598_017_10324_y crossref_primary_10_1038_s41598_025_17718_3 crossref_primary_10_1093_bib_bbv020 crossref_primary_10_3389_fmolb_2023_1215204 crossref_primary_10_1007_s11227_025_07047_7 crossref_primary_10_1186_s12859_022_04720_z crossref_primary_10_1038_s41598_025_16575_4 crossref_primary_10_3390_bioengineering12040363 crossref_primary_10_1371_journal_pone_0238757 crossref_primary_10_1080_07388551_2020_1789062 crossref_primary_10_1016_j_jocs_2022_101772 crossref_primary_10_1016_j_tips_2016_11_005 crossref_primary_10_3390_molecules24010167 crossref_primary_10_1093_bib_bbz171 crossref_primary_10_1534_g3_118_200740 crossref_primary_10_1093_bib_bbab312 crossref_primary_10_1186_s13073_021_01000_y crossref_primary_10_51847_nyDxRaP7Au crossref_primary_10_1371_journal_pone_0248984 crossref_primary_10_1039_C5IB00283D crossref_primary_10_3389_fphar_2018_01017 crossref_primary_10_3390_a9040077 crossref_primary_10_1186_s12859_018_2509_3 crossref_primary_10_1016_j_health_2023_100224 crossref_primary_10_1016_j_ymeth_2021_09_009 crossref_primary_10_1038_s41540_017_0030_3 crossref_primary_10_1186_s12916_022_02549_0 crossref_primary_10_1016_j_isci_2024_109127 crossref_primary_10_1038_s42003_019_0666_1 crossref_primary_10_3390_ijms22094394 crossref_primary_10_1002_advs_202201501 crossref_primary_10_3414_ME15_01_0151 crossref_primary_10_1186_s13053_016_0057_2 crossref_primary_10_1038_s41598_020_58290_2 crossref_primary_10_3390_ijms23031074 crossref_primary_10_1177_2211068216682338 crossref_primary_10_3390_ijms222312882 crossref_primary_10_3390_medicina61081400 crossref_primary_10_3390_ijms23052797 crossref_primary_10_1080_17460441_2018_1437136 crossref_primary_10_1186_s12918_014_0092_4 crossref_primary_10_1186_s12885_018_4302_0 crossref_primary_10_1186_s12920_018_0449_4 crossref_primary_10_1371_journal_pone_0306343 crossref_primary_10_2196_26646 crossref_primary_10_25259_IJDVL_518_19 crossref_primary_10_1098_rsif_2017_0387 crossref_primary_10_1088_1361_6595_ac604f crossref_primary_10_1109_TCBB_2021_3096960 crossref_primary_10_1038_nbt_2877 crossref_primary_10_2217_pme_14_30 crossref_primary_10_1109_TCBB_2021_3060430 crossref_primary_10_52711_0975_4377_2025_00016 crossref_primary_10_1093_bib_bbz153 crossref_primary_10_1093_bib_bbae242 crossref_primary_10_1109_ACCESS_2020_3039624 crossref_primary_10_1016_j_coisb_2018_07_001 crossref_primary_10_3389_fmed_2023_1086097 crossref_primary_10_1016_j_eswa_2020_113640 crossref_primary_10_1016_j_plrev_2021_10_001 crossref_primary_10_1016_j_cmpb_2022_107027 crossref_primary_10_1002_cam4_6503 crossref_primary_10_3389_fmolb_2023_1094321 crossref_primary_10_1186_s12859_023_05618_0 crossref_primary_10_3389_fmolb_2024_1430794 crossref_primary_10_12688_f1000research_17149_1 crossref_primary_10_12688_f1000research_17149_2 crossref_primary_10_1093_bib_bbu010 crossref_primary_10_2196_44666 crossref_primary_10_3390_biomedicines9101319 crossref_primary_10_1177_24715492221075444 crossref_primary_10_1093_bib_bbab408 crossref_primary_10_1093_bib_bbz022 crossref_primary_10_1007_s00432_020_03476_4 crossref_primary_10_1371_journal_pone_0191838 crossref_primary_10_3389_fmedt_2022_1067144 crossref_primary_10_1109_TCBB_2018_2848908 crossref_primary_10_1007_s13311_021_01014_9 crossref_primary_10_1038_s41598_018_25947_y crossref_primary_10_3389_fendo_2018_00110 crossref_primary_10_3390_ijms26094365 crossref_primary_10_1016_j_ijoa_2020_08_010 crossref_primary_10_1093_bib_bbac054 crossref_primary_10_1016_j_neucom_2023_127168 crossref_primary_10_2174_1381612829666230807161421 crossref_primary_10_1371_journal_pcbi_1004498 crossref_primary_10_1109_TCBB_2018_2864739 crossref_primary_10_1109_ACCESS_2024_3514912 crossref_primary_10_3390_jcm9123834 crossref_primary_10_1371_journal_pone_0307649 crossref_primary_10_1038_s41698_020_0122_1 crossref_primary_10_1186_s12885_016_2082_y crossref_primary_10_1371_journal_pone_0120408 crossref_primary_10_1038_srep32679 crossref_primary_10_3233_IDT_220285 crossref_primary_10_1016_j_arth_2020_12_040 crossref_primary_10_3390_ph15020136 crossref_primary_10_3389_fgene_2020_00917 crossref_primary_10_1016_j_ccell_2020_09_014 crossref_primary_10_1155_2022_3618197 crossref_primary_10_1371_journal_pone_0253614 crossref_primary_10_1016_j_omtn_2019_05_017 crossref_primary_10_1016_j_nexres_2025_100179 crossref_primary_10_1155_2022_7842566 crossref_primary_10_1038_s41598_024_84711_7 crossref_primary_10_1039_C4MD00216D crossref_primary_10_3389_fgene_2021_600040 crossref_primary_10_1109_TCBB_2021_3065535 crossref_primary_10_1038_s41573_025_01273_7 crossref_primary_10_1093_neuros_nyy469 crossref_primary_10_1097_CORR_0000000000000433 crossref_primary_10_3389_fgene_2018_00682 crossref_primary_10_3389_fphar_2024_1400029 crossref_primary_10_1016_j_gpb_2022_11_003 crossref_primary_10_1016_j_ibmed_2025_100206 crossref_primary_10_1039_C4IB00167B crossref_primary_10_1093_bib_bbae379 crossref_primary_10_1016_j_pharmthera_2019_107395 crossref_primary_10_15252_msb_20156651 crossref_primary_10_52711_0974_4150_2023_00014 crossref_primary_10_1109_TCBB_2022_3206888 crossref_primary_10_1016_j_eml_2020_100771 crossref_primary_10_1080_17460441_2021_1918096 crossref_primary_10_3389_fchem_2019_00509 crossref_primary_10_1186_s12859_024_05987_0 crossref_primary_10_1007_s11053_019_09593_3 crossref_primary_10_1186_s12859_019_2608_9 crossref_primary_10_1016_j_procs_2021_10_039 crossref_primary_10_1093_bib_bbz109 crossref_primary_10_1093_bib_bbae567 crossref_primary_10_3389_fgene_2023_1095976 crossref_primary_10_1016_j_biortech_2022_128523 crossref_primary_10_1038_s41598_020_59656_2 crossref_primary_10_1109_TCBB_2019_2919581 crossref_primary_10_1186_s13059_016_1050_9 crossref_primary_10_1007_s11831_021_09556_z crossref_primary_10_1093_bib_bbab048 crossref_primary_10_1016_j_csbj_2021_07_003 crossref_primary_10_12688_f1000research_108673_1 crossref_primary_10_3389_fphar_2023_1260276 crossref_primary_10_3390_ijms24021689 crossref_primary_10_1093_bib_bbz103 crossref_primary_10_1186_s12859_016_0931_y crossref_primary_10_1186_s12885_021_08359_6 crossref_primary_10_3390_app12126262 crossref_primary_10_3390_genes11091070 crossref_primary_10_3389_fgene_2019_00233 crossref_primary_10_22270_jddt_v15i8_7276 crossref_primary_10_2174_0115701638343448250207053913 crossref_primary_10_1016_j_spinee_2019_04_022 crossref_primary_10_1155_2021_6649771 crossref_primary_10_12688_f1000research_10529_2 crossref_primary_10_1371_journal_pcbi_1006743 crossref_primary_10_1109_TCBB_2020_2976997 crossref_primary_10_2478_ebtj_2018_0012 crossref_primary_10_3233_JIFS_212867 crossref_primary_10_1016_j_compbiomed_2022_105458 crossref_primary_10_12688_f1000research_10529_1 crossref_primary_10_3748_wjg_v27_i13_1283 crossref_primary_10_1016_j_engappai_2025_110671 crossref_primary_10_1016_j_apsb_2025_05_009 crossref_primary_10_1093_bib_bby004 crossref_primary_10_1186_s12920_019_0519_2 crossref_primary_10_1371_journal_pone_0144490 crossref_primary_10_1093_bib_bbw065 crossref_primary_10_1126_science_aaz3023 crossref_primary_10_1089_omi_2019_0151 crossref_primary_10_1016_j_wneu_2021_05_080 crossref_primary_10_1109_RBME_2018_2864254 crossref_primary_10_1093_biomethods_bpae065 crossref_primary_10_1109_ACCESS_2020_3040155 crossref_primary_10_1177_1460458220937101 crossref_primary_10_1038_s41467_024_54771_4 crossref_primary_10_1186_s12859_021_04146_z crossref_primary_10_1371_journal_pcbi_1008720 crossref_primary_10_1038_s41598_024_62956_6 crossref_primary_10_1186_s12859_016_1336_7 crossref_primary_10_2147_DDDT_S424991 crossref_primary_10_1002_adma_201901989 crossref_primary_10_1186_s13321_020_00450_7 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122338 crossref_primary_10_1109_TCBB_2019_2933825 crossref_primary_10_1109_ACCESS_2017_2696523 crossref_primary_10_1371_journal_pone_0302947 crossref_primary_10_1186_s12920_018_0336_z crossref_primary_10_4137_CIN_S14024 crossref_primary_10_3390_cancers15010028 crossref_primary_10_1038_s41598_020_74921_0 crossref_primary_10_1186_s12859_020_03949_w crossref_primary_10_3748_wjg_v26_i30_4453 crossref_primary_10_1186_s12859_020_03842_6 crossref_primary_10_3390_biom10060963 crossref_primary_10_3390_e23101248 crossref_primary_10_1002_med4_87 crossref_primary_10_12793_tcp_2019_27_2_59 crossref_primary_10_1038_s42003_024_06865_4 crossref_primary_10_1186_s12918_017_0463_8 crossref_primary_10_3390_pharmaceutics15071916 crossref_primary_10_1016_j_drudis_2020_07_005 crossref_primary_10_1007_s13042_019_01034_0 crossref_primary_10_1002_sim_9491 crossref_primary_10_3390_diagnostics14090962 crossref_primary_10_1038_s41598_018_21622_4 crossref_primary_10_1146_annurev_pharmtox_010919_023746 |
| Cites_doi | 10.1111/j.1467-9868.2005.00503.x 10.1126/science.1132939 10.1038/nature11005 10.1038/nrd1468 10.1016/S1093-3263(01)00126-7 10.1021/ci9003865 10.1158/1535-7163.MCT-09-0743 10.1038/msb.2008.2 10.1109/ICNN.1993.298623 10.1038/nm.2305 10.1186/gb-2007-8-5-r77 10.1371/journal.pone.0013367 10.1023/A:1010933404324 10.1073/pnas.1018854108 10.1093/jnci/81.14.1088 10.1038/msb.2009.69 10.1016/j.gde.2009.12.003 10.1038/tpj.2011.35 10.1038/nrc2820 10.1021/ci990087b 10.1158/0008-5472.CAN-12-1370 10.1038/nature11003 10.1371/journal.pcbi.1001095 10.1002/jcc.21707 10.1093/bioinformatics/bts625 10.1371/journal.pone.0006907 10.1038/nrd3651 10.1007/BF01637071 10.1038/nature04304 10.1089/cmb.2011.0264 10.1093/bib/bbr047 10.1021/ci970085w 10.1038/nbt1397 10.1016/j.drudis.2012.07.014 10.1093/bioinformatics/bti1055 |
| ContentType | Journal Article |
| Copyright | 2013 Menden et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 Menden et al 2013 Menden et al |
| Copyright_xml | – notice: 2013 Menden et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 Menden et al 2013 Menden et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0061318 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Medicine Biology Computer Science |
| DocumentTitleAlternate | Predicting Drug Effect from Genomics and Chemistry |
| EISSN | 1932-6203 |
| ExternalDocumentID | 1348123157 oai_doaj_org_article_762bb0ce04394c538ba05616548a9131 PMC3640019 2959840801 23646105 10_1371_journal_pone_0061318 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States--US Massachusetts |
| GeographicLocations_xml | – name: Massachusetts – name: United States--US |
| GrantInformation_xml | – fundername: Medical Research Council grantid: G0902106 – fundername: Wellcome Trust – fundername: Cancer Research UK |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV CGR CUY CVF ECM EIF NPM PV9 RZL 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM - 02 AAPBV ABPTK ADACO BBAFP BBORY KM |
| ID | FETCH-LOGICAL-c592t-9e1340360ad63d4677547eb3e1844c548a0fbd541b26b1e7ff874fd204daabdb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 371 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319077300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:14:50 EST 2021 Mon Nov 10 04:32:13 EST 2025 Tue Nov 04 01:36:34 EST 2025 Mon Sep 08 02:39:53 EDT 2025 Tue Oct 07 07:09:49 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Tue Nov 18 21:33:41 EST 2025 Sat Nov 29 05:47:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c592t-9e1340360ad63d4677547eb3e1844c548a0fbd541b26b1e7ff874fd204daabdb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Designed the software and implementation of different approaches: MPM FI PJB. Conceived and designed the experiments: MPM PJB JSR. Performed the experiments: MPM FI PJB. Analyzed the data: MPM FI MG UM CHB PJB JSR. Contributed reagents/materials/analysis tools: MPM FI MG UM CHB PJB. Wrote the paper: MPM CHB PJB JSR. Competing Interests: The authors have declared that no competing interests exist. |
| OpenAccessLink | https://doaj.org/article/762bb0ce04394c538ba05616548a9131 |
| PMID | 23646105 |
| PQID | 1348123157 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_1348123157 doaj_primary_oai_doaj_org_article_762bb0ce04394c538ba05616548a9131 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3640019 proquest_miscellaneous_1349095725 proquest_journals_1348123157 pubmed_primary_23646105 crossref_primary_10_1371_journal_pone_0061318 crossref_citationtrail_10_1371_journal_pone_0061318 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-30 |
| PublicationDateYYYYMMDD | 2013-04-30 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2013 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | CW Yap (ref19) 2011; 32 DM Ruderfer (ref23) 2009; 4 ref37 ref36 J Barretina (ref4) 2012; 483 GJ Kelloff (ref12) 2012; 11 ref30 SJ Swamidass (ref16) 2005; 21 Y Silberberg (ref32) 2012; 19 BJ Chen (ref21) 2009; 5 ES Park (ref22) 2010; 9 ref38 TH Hui Zou (ref7) 2005; 67 DW Zaharevitz (ref11) 2002; 20 M Riedmiller (ref39) 1993; 1–3 S Agarwal (ref15) 2010; 50 C Jorgensen (ref29) 2010; 20 SV Sharma (ref1) 2010; 10 LM Shi (ref18) 2000; 40 TT Ashburn (ref8) 2004; 3 ALaM Wiener (ref41) 2002; 2 LM Heiser (ref5) 2012; 109 I Ulitsky (ref34) 2010; 5 GH Li (ref14) 2012; 28 KM Mani (ref31) 2008; 4 DB Solit (ref20) 2006; 439 LM Shi (ref17) 1998; 38 YA Kim (ref35) 2011; 7 ref27 MR Grever (ref2) 1992; 19 H Kubinyi (ref13) 1990; 116 Z Kutalik (ref25) 2008; 26 M Rodriguez-Paredes (ref28) 2011; 17 MJ Garnett (ref3) 2012; 483 ref6 J Lamb (ref26) 2006; 313 P Sanseau (ref9) 2011; 12 L Breiman (ref40) 2001; 45 WC Reinhold (ref24) 2012; 72 Y Liu (ref33) 2007; 8 KD Paull (ref10) 1989; 81 |
| References_xml | – ident: ref37 – volume: 67 start-page: 301 year: 2005 ident: ref7 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 313 start-page: 1929 year: 2006 ident: ref26 article-title: The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease publication-title: Science doi: 10.1126/science.1132939 – volume: 483 start-page: 570 year: 2012 ident: ref3 article-title: Systematic identification of genomic markers of drug sensitivity in cancer cells publication-title: Nature doi: 10.1038/nature11005 – volume: 3 start-page: 673 year: 2004 ident: ref8 article-title: Drug repositioning: identifying and developing new uses for existing drugs publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1468 – volume: 20 start-page: 297 year: 2002 ident: ref11 article-title: COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition publication-title: J Mol Graph Model doi: 10.1016/S1093-3263(01)00126-7 – volume: 50 start-page: 716 year: 2010 ident: ref15 article-title: Ranking chemical structures for drug discovery: a new machine learning approach publication-title: J Chem Inf Model doi: 10.1021/ci9003865 – volume: 9 start-page: 257 year: 2010 ident: ref22 article-title: Integrative analysis of proteomic signatures, mutations, and drug responsiveness in the NCI 60 cancer cell line set publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-09-0743 – volume: 4 start-page: 169 year: 2008 ident: ref31 article-title: A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas publication-title: Mol Syst Biol doi: 10.1038/msb.2008.2 – volume: 1–3 start-page: 586 year: 1993 ident: ref39 article-title: A Direct Adaptive Method for Faster Backpropagation Learning - the Rprop Algorithm publication-title: 1993 Ieee International Conference on Neural Networks, Vols doi: 10.1109/ICNN.1993.298623 – volume: 17 start-page: 330 year: 2011 ident: ref28 article-title: Cancer epigenetics reaches mainstream oncology publication-title: Nat Med doi: 10.1038/nm.2305 – volume: 8 start-page: R77 year: 2007 ident: ref33 article-title: Revealing signaling pathway deregulation by using gene expression signatures and regulatory motif analysis publication-title: Genome Biol doi: 10.1186/gb-2007-8-5-r77 – volume: 5 start-page: e13367 year: 2010 ident: ref34 article-title: DEGAS: de novo discovery of dysregulated pathways in human diseases publication-title: PLoS One doi: 10.1371/journal.pone.0013367 – volume: 45 start-page: 5 year: 2001 ident: ref40 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 109 start-page: 2724 year: 2012 ident: ref5 article-title: Subtype and pathway specific responses to anticancer compounds in breast cancer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1018854108 – volume: 81 start-page: 1088 year: 1989 ident: ref10 article-title: Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm publication-title: J Natl Cancer Inst doi: 10.1093/jnci/81.14.1088 – ident: ref36 – volume: 5 start-page: 310 year: 2009 ident: ref21 article-title: Harnessing gene expression to identify the genetic basis of drug resistance publication-title: Mol Syst Biol doi: 10.1038/msb.2009.69 – volume: 20 start-page: 15 year: 2010 ident: ref29 article-title: Simplistic pathways or complex networks? publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2009.12.003 – ident: ref38 – volume: 19 start-page: 622 year: 1992 ident: ref2 article-title: The National Cancer Institute: cancer drug discovery and development program publication-title: Semin Oncol – ident: ref6 – ident: ref30 doi: 10.1038/tpj.2011.35 – volume: 10 start-page: 241 year: 2010 ident: ref1 article-title: Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents publication-title: Nat Rev Cancer doi: 10.1038/nrc2820 – volume: 40 start-page: 367 year: 2000 ident: ref18 article-title: Mining and visualizing large anticancer drug discovery databases publication-title: J Chem Inf Comput Sci doi: 10.1021/ci990087b – volume: 72 start-page: 3499 year: 2012 ident: ref24 article-title: CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-1370 – volume: 483 start-page: 603 year: 2012 ident: ref4 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – volume: 7 start-page: e1001095 year: 2011 ident: ref35 article-title: Identifying causal genes and dysregulated pathways in complex diseases publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1001095 – volume: 32 start-page: 1466 year: 2011 ident: ref19 article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints publication-title: J Comput Chem doi: 10.1002/jcc.21707 – volume: 28 start-page: 3334 year: 2012 ident: ref14 article-title: CDRUG: a web server for predicting anticancer activity of chemical compounds publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts625 – volume: 4 start-page: e6907 year: 2009 ident: ref23 article-title: Using expression and genotype to predict drug response in yeast publication-title: PLoS One doi: 10.1371/journal.pone.0006907 – volume: 11 start-page: 201 year: 2012 ident: ref12 article-title: Cancer biomarkers: selecting the right drug for the right patient publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3651 – volume: 116 start-page: 529 year: 1990 ident: ref13 article-title: Quantitative structure-activity relationships (QSAR) and molecular modelling in cancer research publication-title: J Cancer Res Clin Oncol doi: 10.1007/BF01637071 – volume: 439 start-page: 358 year: 2006 ident: ref20 article-title: BRAF mutation predicts sensitivity to MEK inhibition publication-title: Nature doi: 10.1038/nature04304 – volume: 19 start-page: 163 year: 2012 ident: ref32 article-title: Large-scale elucidation of drug response pathways in humans publication-title: J Comput Biol doi: 10.1089/cmb.2011.0264 – volume: 2 start-page: 18 year: 2002 ident: ref41 article-title: Classification and Regression by randomForest publication-title: R News – volume: 12 start-page: 301 year: 2011 ident: ref9 article-title: Editorial: computational methods for drug repurposing publication-title: Brief Bioinform doi: 10.1093/bib/bbr047 – volume: 38 start-page: 189 year: 1998 ident: ref17 article-title: Mining the NCI anticancer drug discovery databases: genetic function approximation for the QSAR study of anticancer ellipticine analogues publication-title: J Chem Inf Comput Sci doi: 10.1021/ci970085w – volume: 26 start-page: 531 year: 2008 ident: ref25 article-title: A modular approach for integrative analysis of large-scale gene-expression and drug-response data publication-title: Nat Biotechnol doi: 10.1038/nbt1397 – ident: ref27 doi: 10.1016/j.drudis.2012.07.014 – volume: 21 start-page: i359 year: 2005 ident: ref16 article-title: Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1055 |
| SSID | ssj0053866 |
| Score | 2.5871615 |
| Snippet | Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment.... |
| SourceID | plos doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e61318 |
| SubjectTerms | Analysis of Variance Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Artificial Intelligence Bioinformatics Biology Biomarkers Biotechnology Cancer Chemical properties Computation Computer applications Computer Science Computer Simulation Design optimization Drug development Drug Resistance, Neoplasm - genetics Drug screening Drugs Experimental design Gene amplification Gene expression Genomes Genomics Genomics - methods Humans Inhibitory Concentration 50 Learning algorithms Machine learning Mathematical models Medical screening Medicine Multivariate analysis Mutation Neoplasms - drug therapy Neoplasms - genetics Pharmacogenetics - methods Precision medicine Predictions Sensitivity Tumor cell lines Tumors Workflow |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOAClEcbKMhIHOBgmsROnJwQXag4QLUSD_UW-bmttEqWZJffz4zjLF1UwYFr7DhxZsYzk5n5hpCX4JjUpVKGOWtyJlzFmc68ZsakSktdah-SaL5_kmdn1fl5PY8_3IaYVjmdieGgtp3Bf-THGVaMgjFSyLerHwy7RmF0NbbQuEluIUoCD6l78-kkBlkuy1gux2V2HKnzZtW1DvO5Mo6tPq6oo4Dajyiny264zuL8M3HyiiY6vfe_e7hP7kYblL4bmWaf3HDtA7IfpXygryIU9euH5OJzyLV0NMKwLui8x8gOUpN2ns6QZ3o6c8sl_YKp8GMvCrru6Pt-sxjoCShJS2EyrIn1z1S1lk4gBbBYt8K8bjc8It9OP3ydfWSxNwMzRZ2vWe1gM6D9UmVLbuG0lYWQ4Jg78BiFATdIpV7bQmQ6L3XmpPeVFN7mqbBKaav5Y7LXAh0OCfVOClvl1nJthNaVxrI_boT1MgVjxCaETyRqTAQux_4ZyyZE4yQ4MON3a5CwTSRsQtj2rtUI3PGP-SdI_e1chN0OF7p-0UQpbkBzaJ0aF-qJDfCXVuiBlbjfGlZJyCHyzvSAoflN8YQcTTxx_fCL7TAIOEZtVOu6TZhTgx0s8yIhByP7bV8S0f_B_oURucOYO7vYHWkvLwKIONyJ5v2Tv7_WU3InD_0_MHx2RPbW_cY9I7fNz_Xl0D8P0vYLPjM3Mg priority: 102 providerName: ProQuest – databaseName: Public Library of Science (PLoS) dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagcOBCKa-mFGQkDnAIJLFjJ0e6sOJQqpV4qLfIz7bSKlklu_x-ZhxnYatWiGvGdmzPjGdGM_5MyBsITGqhlEmdNUXKXcVSnXudGpMpLbXQPhTR_DyVZ2fV-Xm9-BMoXsvgM5l_iHv6ftW1DquwcpDCu-RewYTAEq754nQ6eUF3hYjX427ruWN-Ako_opouu-EmD_N6oeRflme-_79zfkQeRh-TfhyF4oDcce1jchC1eKBvI9T0uyfk8muopXQ0wqxe0EWPmRvkFu08naFM9HTmlkv6DUvdx7cm6Lqjn_rNxUBPwAhaCo1hTLzfTFVr6QRCAIN1K6zbdsNT8mP--fvsSxrfXkhNWRfrtHY542DdMmUFs3CaypJLCLwdRITcQJijMq9tyXNdCJ076X0lubdFxq1S2mr2jOy1sPpDQr2T3FaFtUwbrnWl8VofM9x6mYGzYRPCJpY0JgKT4_sYyyZk2yQEKOO-NbidTdzOhKTbXqsRmOMf7U-Q29u2CKsdPgDfmqilDVgGrTPjwn1hA_KkFUZYAtdbwygJOURZmX4wwO84eEgsL2VCjif5uZn8eksGBcasjGpdtwltavBzZVEm5PkobttJIro_-LdAkTuCuLOKXUp7dRlAwqEnuu9Ht8_4BXlQhLc9MDV2TPbW_ca9JPfNr_XV0L8KmvUbpEolhg priority: 102 providerName: Public Library of Science |
| Title | Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23646105 https://www.proquest.com/docview/1348123157 https://www.proquest.com/docview/1349095725 https://pubmed.ncbi.nlm.nih.gov/PMC3640019 https://doaj.org/article/762bb0ce04394c538ba05616548a9131 http://dx.doi.org/10.1371/journal.pone.0061318 |
| Volume | 8 |
| WOSCitedRecordID | wos000319077300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4cAFUV41lGiROMDBre1de-0jqRqB2kRWgSpwsfblNlKxIzvh9zOz3kQNqtQLlzlkZ2N7Ht4Z7-w3hHyAxKTIpNShNToJuc1ZqOJahVpHUgmVqdoV0Vyei9ksn8-L8larL6wJG-CBB8Edg7MqFWnrjnBqcE8lMejFdueyiN0J6gSink0yNbyDgS3L_EE5JuJjr5ejZdtYrOSCefnOQuTw-hHf9Kbt74o1_y2ZvLUGTZ6Rpz54pJ-Hm94nD2zznOx79-zpR48h_ekFuZ66IklLfVeIK7rscEsG1UDbmmpUdkfxsz3tsYZ9aCJBVy013fqqp7i6GQrMCOL6e6GpbAzVHl0A_qxdYkG27V-SH5PT7ydfQt9UIdRpkazCwsaMw7IVSZMxA69JkXIBGbWFVA_kC1KNamVSHqskU7EVdZ0LXpsk4kZKZRR7RfYaEOMBobUV3OSJMUxprlSu8Lwe09zUIoIowgSEbSRcaY84jo0vbiq3jSYg8xjkVqFeKq-XgITbWcsBceMe_jEqb8uLeNnuB7CiyltRdZ8VBeQAVb-5QA-X4xD6sDgVATncmMPdw--3w-CZqDfZ2HbteAoIYEWSBuT1YD3bm0TYfghcYUTs2NXOU-yONItrh_4NMzEuf_M_HvsteZK49h64O3ZI9lbd2r4jj_Wf1aLvRuShuLhEOheO5kDzk3hEHo1PZ-XFyLkc0El5DvRsfAR0Gp0hFaWj34CW6S-YUX6dlj__Aq0bNY0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXoLxqKLBIIMHB1O-1DwjRlKpV06iCUvXm7stppcgOdgLiT_EbmVnboUEVnHrgml1PvPa33854XgAv0TDJEiGUa7QK3MikoSv9QrpKeUJymcjCBtEcD_lolJ6cZIcr8LPPhaGwyp4TLVHrStE38k2fMkZRGYn5--lXl7pGkXe1b6HRwmLf_PiOJlvzbm8b3--rINj5eDTYdbuuAq6Ks2DmZgZFIW97QiehRp7gccTRpDRo60QKFXjhFVLHkS-DRPqGF0XKo0IHXqSFkFqGKPcaXEce9ymEjH867pkfuSNJuvS8kPubHRreTqvSUPyYH1JrkQvHn-0SQFVVJ1VzmYb7Z6DmhZNv587_9szuwu1Ox2Yf2k2xBiumvAdrHYs17HVXavvNfTg7sLGkhnVlZsfssCbPFaGVVQUb0J6o2cBMJuwzhfq3vTbYrGLb9XzcsC1UAjTDySiT8ruZKDXrizCgsGpKceumeQBfrmTFD2G1xPe-DqwwPNJpoHUoVSRlKimtMVSRLriHypZ2IOwhkauuMDv1B5nk1tvI0UBrn1tOQMo7IDngLq6atoVJ_jF_i9C2mEtlxe0PVT3OO5bK8WSU0lPG5ksrxLMUZGEmtN4MpTiwTljt_6DJfyPMgY0eg5cPv1gMI4GRV0qUpprbORnq-TyIHXjUwn1xk9TdAPV7HOFLG2FpFcsj5fmZLZKOV5L58vjvt_Ucbu4eHQzz4d5o_wncCmyvE3IVbsDqrJ6bp3BDfZudN_Uzu9MZnF71NvkFCgCUaA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VglAvhfKqocAigQQHU7_itQ8I0YSIqiWKxEO9Ge_DaaXIDnYC4q_x65hZr02DKjj1wNW7O_ba38zOeF4AT9EwSeM8l65WMnAjnYSu8AvhSunlgotYFCaI5vMxn0ySk5N0ugE_u1wYCqvsZKIR1KqS9I9836eMUVRG0IAvbFjEdDR-vfjqUgcp8rR27TRaiBzpH9_RfGteHY7wWz8LgvHbj8N3ru0w4MpBGizdVCNZlOFeruJQoczgg4ijeanR7okkKvO5Vwg1iHwRxMLXvCgSHhUq8CKV50KJEOlegas8RBRTlvqwDy9BORLHNlUv5P6-RcbLRVVqiiXzQ2ozcu4oNB0DqMLqvGou0nb_DNo8dwqOb_zP7-8mbFvdm71pmWUHNnR5C3asdGvYc1uC-8VtOH1vYkw1s-VnZ2xak0eLUMyqgg2JV2o21PM5-0ApAG0PDras2KhezRp2gMqBYjgZaVLeN8tLxbriDEisWlA8u27uwKdL2fFd2CwRA7vACs0jlQRKhUJGQiSC0h1DGamCe6iEKQfCDh6ZtAXbqW_IPDNeSI6GW_veMgJVZkHlgNuvWrQFS_4x_4CQ18-lcuPmQlXPMiu9MjwxhfCkNnnUErEtcrI8Y9pvilQc2CXcdjdost9oc2Cvw-PFw0_6YRRs5K3KS12tzJwU9X8eDBy410K_f0jqeoB6P47wNaZY28X6SHl2aoqn40oya-7__bEew3Xkjuz4cHL0ALYC0wKFPIh7sLmsV_ohXJPflmdN_cgwPYMvl80lvwCLdZzD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+prediction+of+cancer+cell+sensitivity+to+drugs+based+on+genomic+and+chemical+properties&rft.jtitle=PloS+one&rft.au=Menden%2C+Michael+P&rft.au=Iorio%2C+Francesco&rft.au=Garnett%2C+Mathew&rft.au=McDermott%2C+Ultan&rft.date=2013-04-30&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=8&rft.issue=4&rft.spage=e61318&rft_id=info:doi/10.1371%2Fjournal.pone.0061318&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |