Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties

Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relat...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 8; no. 4; p. e61318
Main Authors: Menden, Michael P., Iorio, Francesco, Garnett, Mathew, McDermott, Ultan, Benes, Cyril H., Ballester, Pedro J., Saez-Rodriguez, Julio
Format: Journal Article
Language:English
Published: United States Public Library of Science 30.04.2013
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC₅₀ values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC₅₀ values in a 8-fold cross-validation and an independent blind test with coefficient of determination R² of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R² of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC₅₀ values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity.
AbstractList Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC50 values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC50 values in a 8-fold cross-validation and an independent blind test with coefficient of determination R2 of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R2 of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC50 values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity.
Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC₅₀ values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC₅₀ values in a 8-fold cross-validation and an independent blind test with coefficient of determination R² of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R² of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC₅₀ values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity.
Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC₅₀ values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC₅₀ values in a 8-fold cross-validation and an independent blind test with coefficient of determination R² of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R² of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC₅₀ values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity.Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC₅₀ values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC₅₀ values in a 8-fold cross-validation and an independent blind test with coefficient of determination R² of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R² of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC₅₀ values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity.
Author Menden, Michael P.
Benes, Cyril H.
Ballester, Pedro J.
McDermott, Ultan
Iorio, Francesco
Garnett, Mathew
Saez-Rodriguez, Julio
AuthorAffiliation 2 Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus-­Cambridge, Cambridge, United Kingdom
1 European Bioinformatics Institute, Wellcome Trust Genome Campus–Cambridge, Cambridge, United Kingdom
3 Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, United States of America
CSIR-Institute of Microbial Technology, India
AuthorAffiliation_xml – name: CSIR-Institute of Microbial Technology, India
– name: 2 Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus-­Cambridge, Cambridge, United Kingdom
– name: 3 Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, United States of America
– name: 1 European Bioinformatics Institute, Wellcome Trust Genome Campus–Cambridge, Cambridge, United Kingdom
Author_xml – sequence: 1
  givenname: Michael P.
  surname: Menden
  fullname: Menden, Michael P.
– sequence: 2
  givenname: Francesco
  surname: Iorio
  fullname: Iorio, Francesco
– sequence: 3
  givenname: Mathew
  surname: Garnett
  fullname: Garnett, Mathew
– sequence: 4
  givenname: Ultan
  surname: McDermott
  fullname: McDermott, Ultan
– sequence: 5
  givenname: Cyril H.
  surname: Benes
  fullname: Benes, Cyril H.
– sequence: 6
  givenname: Pedro J.
  surname: Ballester
  fullname: Ballester, Pedro J.
– sequence: 7
  givenname: Julio
  surname: Saez-Rodriguez
  fullname: Saez-Rodriguez, Julio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23646105$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARbRf-AQJLXHrZxY4dJ-GABAFKpUUgAWfLH5Ndr7L21k4q9d_X202rtkKcPBq_efNm5p2iIx88IPSakgVlFX2_CWP0ql_scnpBiKCM1s_QCW1YMRcFYUcP4mN0mtKGkJLVQrxAxwUTXFBSnqD1D2XWzgNegore-RX-FcE6M7jgcehwq7yBiFvoe_wbfHKDu3LDNR4C_hLHVcKfVQKLM_gcfNg6g5W3uF1DDlWfycIO4uAgvUTPO9UneDW9M_T329c_7ff58uf5RftpOTdlUwzzBijjhAmirGCWi6oqeQWaAa05NyWvFem0LTnVhdAUqq6rK97ZgnCrlLaazdDbA--uD0lOS0oys9a0YLSsMuLigLBBbeQuuq2K1zIoJ28TIa6kypJND7IShdbEAOGsyd1ZrRUpBRV7HU1eeOb6OHUb9RasAT9E1T8iffzj3VquwpXMByAk32eGziaCGC5HSIPcumTytpWHMN7qbkhTVkWZoe-eQP893ZuHiu6l3J08A_gBYGJIKUJ3D6FE7p11Ryv3zpKTs3LZhydlxg1qb5M8l-v_X3wDJaDWuQ
CitedBy_id crossref_primary_10_1007_s00280_021_04325_y
crossref_primary_10_3390_ijms25179576
crossref_primary_10_1146_annurev_pharmtox_010814_124502
crossref_primary_10_1080_1062936X_2015_1076516
crossref_primary_10_1093_bib_bbac100
crossref_primary_10_1109_JBHI_2020_3004663
crossref_primary_10_1371_journal_pcbi_1007803
crossref_primary_10_1038_s41598_018_27214_6
crossref_primary_10_1109_JBHI_2024_3417014
crossref_primary_10_1016_j_cbpa_2021_06_001
crossref_primary_10_3233_JIFS_169713
crossref_primary_10_1055_s_0041_1735577
crossref_primary_10_1038_s41578_021_00339_3
crossref_primary_10_1371_journal_pone_0219774
crossref_primary_10_1038_s41589_020_0596_8
crossref_primary_10_1111_joim_12822
crossref_primary_10_3390_pharmaceutics14050997
crossref_primary_10_1186_s12918_018_0658_7
crossref_primary_10_1186_1752_0509_8_74
crossref_primary_10_1002_cmdc_201500424
crossref_primary_10_1111_2041_210X_13329
crossref_primary_10_1155_2022_8671348
crossref_primary_10_1007_s11831_023_09886_0
crossref_primary_10_1016_j_drudis_2018_11_014
crossref_primary_10_1016_j_ecoinf_2021_101286
crossref_primary_10_1186_s12864_020_07319_x
crossref_primary_10_1186_gb_2014_15_3_r47
crossref_primary_10_1038_srep31619
crossref_primary_10_3390_healthcare10101920
crossref_primary_10_1016_j_ultras_2018_05_011
crossref_primary_10_1080_1062936X_2020_1818617
crossref_primary_10_1038_s41598_020_65927_9
crossref_primary_10_1038_s41598_022_05335_3
crossref_primary_10_1111_pme_12713
crossref_primary_10_1093_bib_bbae300
crossref_primary_10_4103_ijc_IJC_399_20
crossref_primary_10_1038_s41598_019_52093_w
crossref_primary_10_1273_cbij_25_36
crossref_primary_10_1016_j_applthermaleng_2019_114357
crossref_primary_10_1007_s10441_018_9325_z
crossref_primary_10_1093_bib_bbab393
crossref_primary_10_1186_s13321_025_01039_8
crossref_primary_10_3389_fonc_2020_00185
crossref_primary_10_1109_TRPMS_2021_3055727
crossref_primary_10_1016_j_artmed_2016_09_004
crossref_primary_10_1093_nargab_lqab128
crossref_primary_10_1016_j_jocs_2023_102173
crossref_primary_10_1088_1361_6595_acb28c
crossref_primary_10_52711_2231_5713_2024_00039
crossref_primary_10_1007_s12553_024_00825_y
crossref_primary_10_1371_journal_pcbi_1011082
crossref_primary_10_1038_s41598_017_04264_w
crossref_primary_10_2174_0109298673266470231023110841
crossref_primary_10_3390_genes12060933
crossref_primary_10_1186_s13321_019_0364_5
crossref_primary_10_1007_s12551_018_0446_z
crossref_primary_10_1186_s12911_020_01240_9
crossref_primary_10_1093_bib_bbab378
crossref_primary_10_3390_cancers15102705
crossref_primary_10_3390_ijms26062468
crossref_primary_10_1007_s40290_020_00328_x
crossref_primary_10_1016_j_ymeth_2023_07_008
crossref_primary_10_1186_s12859_019_2910_6
crossref_primary_10_1186_s12885_017_3500_5
crossref_primary_10_3390_ijms23052863
crossref_primary_10_1093_nar_gkaa327
crossref_primary_10_1016_j_drudis_2019_07_006
crossref_primary_10_1093_bib_bbaf134
crossref_primary_10_1093_biostatistics_kxaa047
crossref_primary_10_1186_s12859_022_04964_9
crossref_primary_10_1186_s13321_020_00444_5
crossref_primary_10_1016_j_omtn_2018_09_011
crossref_primary_10_1177_10732748221095946
crossref_primary_10_1534_g3_118_200728
crossref_primary_10_1093_bioinformatics_btae359
crossref_primary_10_1038_s41598_022_17609_x
crossref_primary_10_1038_srep23857
crossref_primary_10_1186_s43094_024_00625_1
crossref_primary_10_1038_s41598_021_82612_7
crossref_primary_10_1038_s42003_021_02393_7
crossref_primary_10_1534_g3_119_300585
crossref_primary_10_1371_journal_pone_0223276
crossref_primary_10_1038_s41598_017_10324_y
crossref_primary_10_1038_s41598_025_17718_3
crossref_primary_10_1093_bib_bbv020
crossref_primary_10_3389_fmolb_2023_1215204
crossref_primary_10_1007_s11227_025_07047_7
crossref_primary_10_1186_s12859_022_04720_z
crossref_primary_10_1038_s41598_025_16575_4
crossref_primary_10_3390_bioengineering12040363
crossref_primary_10_1371_journal_pone_0238757
crossref_primary_10_1080_07388551_2020_1789062
crossref_primary_10_1016_j_jocs_2022_101772
crossref_primary_10_1016_j_tips_2016_11_005
crossref_primary_10_3390_molecules24010167
crossref_primary_10_1093_bib_bbz171
crossref_primary_10_1534_g3_118_200740
crossref_primary_10_1093_bib_bbab312
crossref_primary_10_1186_s13073_021_01000_y
crossref_primary_10_51847_nyDxRaP7Au
crossref_primary_10_1371_journal_pone_0248984
crossref_primary_10_1039_C5IB00283D
crossref_primary_10_3389_fphar_2018_01017
crossref_primary_10_3390_a9040077
crossref_primary_10_1186_s12859_018_2509_3
crossref_primary_10_1016_j_health_2023_100224
crossref_primary_10_1016_j_ymeth_2021_09_009
crossref_primary_10_1038_s41540_017_0030_3
crossref_primary_10_1186_s12916_022_02549_0
crossref_primary_10_1016_j_isci_2024_109127
crossref_primary_10_1038_s42003_019_0666_1
crossref_primary_10_3390_ijms22094394
crossref_primary_10_1002_advs_202201501
crossref_primary_10_3414_ME15_01_0151
crossref_primary_10_1186_s13053_016_0057_2
crossref_primary_10_1038_s41598_020_58290_2
crossref_primary_10_3390_ijms23031074
crossref_primary_10_1177_2211068216682338
crossref_primary_10_3390_ijms222312882
crossref_primary_10_3390_medicina61081400
crossref_primary_10_3390_ijms23052797
crossref_primary_10_1080_17460441_2018_1437136
crossref_primary_10_1186_s12918_014_0092_4
crossref_primary_10_1186_s12885_018_4302_0
crossref_primary_10_1186_s12920_018_0449_4
crossref_primary_10_1371_journal_pone_0306343
crossref_primary_10_2196_26646
crossref_primary_10_25259_IJDVL_518_19
crossref_primary_10_1098_rsif_2017_0387
crossref_primary_10_1088_1361_6595_ac604f
crossref_primary_10_1109_TCBB_2021_3096960
crossref_primary_10_1038_nbt_2877
crossref_primary_10_2217_pme_14_30
crossref_primary_10_1109_TCBB_2021_3060430
crossref_primary_10_52711_0975_4377_2025_00016
crossref_primary_10_1093_bib_bbz153
crossref_primary_10_1093_bib_bbae242
crossref_primary_10_1109_ACCESS_2020_3039624
crossref_primary_10_1016_j_coisb_2018_07_001
crossref_primary_10_3389_fmed_2023_1086097
crossref_primary_10_1016_j_eswa_2020_113640
crossref_primary_10_1016_j_plrev_2021_10_001
crossref_primary_10_1016_j_cmpb_2022_107027
crossref_primary_10_1002_cam4_6503
crossref_primary_10_3389_fmolb_2023_1094321
crossref_primary_10_1186_s12859_023_05618_0
crossref_primary_10_3389_fmolb_2024_1430794
crossref_primary_10_12688_f1000research_17149_1
crossref_primary_10_12688_f1000research_17149_2
crossref_primary_10_1093_bib_bbu010
crossref_primary_10_2196_44666
crossref_primary_10_3390_biomedicines9101319
crossref_primary_10_1177_24715492221075444
crossref_primary_10_1093_bib_bbab408
crossref_primary_10_1093_bib_bbz022
crossref_primary_10_1007_s00432_020_03476_4
crossref_primary_10_1371_journal_pone_0191838
crossref_primary_10_3389_fmedt_2022_1067144
crossref_primary_10_1109_TCBB_2018_2848908
crossref_primary_10_1007_s13311_021_01014_9
crossref_primary_10_1038_s41598_018_25947_y
crossref_primary_10_3389_fendo_2018_00110
crossref_primary_10_3390_ijms26094365
crossref_primary_10_1016_j_ijoa_2020_08_010
crossref_primary_10_1093_bib_bbac054
crossref_primary_10_1016_j_neucom_2023_127168
crossref_primary_10_2174_1381612829666230807161421
crossref_primary_10_1371_journal_pcbi_1004498
crossref_primary_10_1109_TCBB_2018_2864739
crossref_primary_10_1109_ACCESS_2024_3514912
crossref_primary_10_3390_jcm9123834
crossref_primary_10_1371_journal_pone_0307649
crossref_primary_10_1038_s41698_020_0122_1
crossref_primary_10_1186_s12885_016_2082_y
crossref_primary_10_1371_journal_pone_0120408
crossref_primary_10_1038_srep32679
crossref_primary_10_3233_IDT_220285
crossref_primary_10_1016_j_arth_2020_12_040
crossref_primary_10_3390_ph15020136
crossref_primary_10_3389_fgene_2020_00917
crossref_primary_10_1016_j_ccell_2020_09_014
crossref_primary_10_1155_2022_3618197
crossref_primary_10_1371_journal_pone_0253614
crossref_primary_10_1016_j_omtn_2019_05_017
crossref_primary_10_1016_j_nexres_2025_100179
crossref_primary_10_1155_2022_7842566
crossref_primary_10_1038_s41598_024_84711_7
crossref_primary_10_1039_C4MD00216D
crossref_primary_10_3389_fgene_2021_600040
crossref_primary_10_1109_TCBB_2021_3065535
crossref_primary_10_1038_s41573_025_01273_7
crossref_primary_10_1093_neuros_nyy469
crossref_primary_10_1097_CORR_0000000000000433
crossref_primary_10_3389_fgene_2018_00682
crossref_primary_10_3389_fphar_2024_1400029
crossref_primary_10_1016_j_gpb_2022_11_003
crossref_primary_10_1016_j_ibmed_2025_100206
crossref_primary_10_1039_C4IB00167B
crossref_primary_10_1093_bib_bbae379
crossref_primary_10_1016_j_pharmthera_2019_107395
crossref_primary_10_15252_msb_20156651
crossref_primary_10_52711_0974_4150_2023_00014
crossref_primary_10_1109_TCBB_2022_3206888
crossref_primary_10_1016_j_eml_2020_100771
crossref_primary_10_1080_17460441_2021_1918096
crossref_primary_10_3389_fchem_2019_00509
crossref_primary_10_1186_s12859_024_05987_0
crossref_primary_10_1007_s11053_019_09593_3
crossref_primary_10_1186_s12859_019_2608_9
crossref_primary_10_1016_j_procs_2021_10_039
crossref_primary_10_1093_bib_bbz109
crossref_primary_10_1093_bib_bbae567
crossref_primary_10_3389_fgene_2023_1095976
crossref_primary_10_1016_j_biortech_2022_128523
crossref_primary_10_1038_s41598_020_59656_2
crossref_primary_10_1109_TCBB_2019_2919581
crossref_primary_10_1186_s13059_016_1050_9
crossref_primary_10_1007_s11831_021_09556_z
crossref_primary_10_1093_bib_bbab048
crossref_primary_10_1016_j_csbj_2021_07_003
crossref_primary_10_12688_f1000research_108673_1
crossref_primary_10_3389_fphar_2023_1260276
crossref_primary_10_3390_ijms24021689
crossref_primary_10_1093_bib_bbz103
crossref_primary_10_1186_s12859_016_0931_y
crossref_primary_10_1186_s12885_021_08359_6
crossref_primary_10_3390_app12126262
crossref_primary_10_3390_genes11091070
crossref_primary_10_3389_fgene_2019_00233
crossref_primary_10_22270_jddt_v15i8_7276
crossref_primary_10_2174_0115701638343448250207053913
crossref_primary_10_1016_j_spinee_2019_04_022
crossref_primary_10_1155_2021_6649771
crossref_primary_10_12688_f1000research_10529_2
crossref_primary_10_1371_journal_pcbi_1006743
crossref_primary_10_1109_TCBB_2020_2976997
crossref_primary_10_2478_ebtj_2018_0012
crossref_primary_10_3233_JIFS_212867
crossref_primary_10_1016_j_compbiomed_2022_105458
crossref_primary_10_12688_f1000research_10529_1
crossref_primary_10_3748_wjg_v27_i13_1283
crossref_primary_10_1016_j_engappai_2025_110671
crossref_primary_10_1016_j_apsb_2025_05_009
crossref_primary_10_1093_bib_bby004
crossref_primary_10_1186_s12920_019_0519_2
crossref_primary_10_1371_journal_pone_0144490
crossref_primary_10_1093_bib_bbw065
crossref_primary_10_1126_science_aaz3023
crossref_primary_10_1089_omi_2019_0151
crossref_primary_10_1016_j_wneu_2021_05_080
crossref_primary_10_1109_RBME_2018_2864254
crossref_primary_10_1093_biomethods_bpae065
crossref_primary_10_1109_ACCESS_2020_3040155
crossref_primary_10_1177_1460458220937101
crossref_primary_10_1038_s41467_024_54771_4
crossref_primary_10_1186_s12859_021_04146_z
crossref_primary_10_1371_journal_pcbi_1008720
crossref_primary_10_1038_s41598_024_62956_6
crossref_primary_10_1186_s12859_016_1336_7
crossref_primary_10_2147_DDDT_S424991
crossref_primary_10_1002_adma_201901989
crossref_primary_10_1186_s13321_020_00450_7
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122338
crossref_primary_10_1109_TCBB_2019_2933825
crossref_primary_10_1109_ACCESS_2017_2696523
crossref_primary_10_1371_journal_pone_0302947
crossref_primary_10_1186_s12920_018_0336_z
crossref_primary_10_4137_CIN_S14024
crossref_primary_10_3390_cancers15010028
crossref_primary_10_1038_s41598_020_74921_0
crossref_primary_10_1186_s12859_020_03949_w
crossref_primary_10_3748_wjg_v26_i30_4453
crossref_primary_10_1186_s12859_020_03842_6
crossref_primary_10_3390_biom10060963
crossref_primary_10_3390_e23101248
crossref_primary_10_1002_med4_87
crossref_primary_10_12793_tcp_2019_27_2_59
crossref_primary_10_1038_s42003_024_06865_4
crossref_primary_10_1186_s12918_017_0463_8
crossref_primary_10_3390_pharmaceutics15071916
crossref_primary_10_1016_j_drudis_2020_07_005
crossref_primary_10_1007_s13042_019_01034_0
crossref_primary_10_1002_sim_9491
crossref_primary_10_3390_diagnostics14090962
crossref_primary_10_1038_s41598_018_21622_4
crossref_primary_10_1146_annurev_pharmtox_010919_023746
Cites_doi 10.1111/j.1467-9868.2005.00503.x
10.1126/science.1132939
10.1038/nature11005
10.1038/nrd1468
10.1016/S1093-3263(01)00126-7
10.1021/ci9003865
10.1158/1535-7163.MCT-09-0743
10.1038/msb.2008.2
10.1109/ICNN.1993.298623
10.1038/nm.2305
10.1186/gb-2007-8-5-r77
10.1371/journal.pone.0013367
10.1023/A:1010933404324
10.1073/pnas.1018854108
10.1093/jnci/81.14.1088
10.1038/msb.2009.69
10.1016/j.gde.2009.12.003
10.1038/tpj.2011.35
10.1038/nrc2820
10.1021/ci990087b
10.1158/0008-5472.CAN-12-1370
10.1038/nature11003
10.1371/journal.pcbi.1001095
10.1002/jcc.21707
10.1093/bioinformatics/bts625
10.1371/journal.pone.0006907
10.1038/nrd3651
10.1007/BF01637071
10.1038/nature04304
10.1089/cmb.2011.0264
10.1093/bib/bbr047
10.1021/ci970085w
10.1038/nbt1397
10.1016/j.drudis.2012.07.014
10.1093/bioinformatics/bti1055
ContentType Journal Article
Copyright 2013 Menden et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2013 Menden et al 2013 Menden et al
Copyright_xml – notice: 2013 Menden et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2013 Menden et al 2013 Menden et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0061318
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Agricultural Science Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Biology
Computer Science
DocumentTitleAlternate Predicting Drug Effect from Genomics and Chemistry
EISSN 1932-6203
ExternalDocumentID 1348123157
oai_doaj_org_article_762bb0ce04394c538ba05616548a9131
PMC3640019
2959840801
23646105
10_1371_journal_pone_0061318
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
Massachusetts
GeographicLocations_xml – name: Massachusetts
– name: United States--US
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0902106
– fundername: Wellcome Trust
– fundername: Cancer Research UK
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PV9
RZL
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
BBORY
KM
ID FETCH-LOGICAL-c592t-9e1340360ad63d4677547eb3e1844c548a0fbd541b26b1e7ff874fd204daabdb3
IEDL.DBID DOA
ISICitedReferencesCount 371
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319077300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Fri Nov 26 17:14:50 EST 2021
Mon Nov 10 04:32:13 EST 2025
Tue Nov 04 01:36:34 EST 2025
Mon Sep 08 02:39:53 EDT 2025
Tue Oct 07 07:09:49 EDT 2025
Mon Jul 21 06:05:04 EDT 2025
Tue Nov 18 21:33:41 EST 2025
Sat Nov 29 05:47:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-9e1340360ad63d4677547eb3e1844c548a0fbd541b26b1e7ff874fd204daabdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Designed the software and implementation of different approaches: MPM FI PJB. Conceived and designed the experiments: MPM PJB JSR. Performed the experiments: MPM FI PJB. Analyzed the data: MPM FI MG UM CHB PJB JSR. Contributed reagents/materials/analysis tools: MPM FI MG UM CHB PJB. Wrote the paper: MPM CHB PJB JSR.
Competing Interests: The authors have declared that no competing interests exist.
OpenAccessLink https://doaj.org/article/762bb0ce04394c538ba05616548a9131
PMID 23646105
PQID 1348123157
PQPubID 1436336
ParticipantIDs plos_journals_1348123157
doaj_primary_oai_doaj_org_article_762bb0ce04394c538ba05616548a9131
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3640019
proquest_miscellaneous_1349095725
proquest_journals_1348123157
pubmed_primary_23646105
crossref_primary_10_1371_journal_pone_0061318
crossref_citationtrail_10_1371_journal_pone_0061318
PublicationCentury 2000
PublicationDate 2013-04-30
PublicationDateYYYYMMDD 2013-04-30
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References CW Yap (ref19) 2011; 32
DM Ruderfer (ref23) 2009; 4
ref37
ref36
J Barretina (ref4) 2012; 483
GJ Kelloff (ref12) 2012; 11
ref30
SJ Swamidass (ref16) 2005; 21
Y Silberberg (ref32) 2012; 19
BJ Chen (ref21) 2009; 5
ES Park (ref22) 2010; 9
ref38
TH Hui Zou (ref7) 2005; 67
DW Zaharevitz (ref11) 2002; 20
M Riedmiller (ref39) 1993; 1–3
S Agarwal (ref15) 2010; 50
C Jorgensen (ref29) 2010; 20
SV Sharma (ref1) 2010; 10
LM Shi (ref18) 2000; 40
TT Ashburn (ref8) 2004; 3
ALaM Wiener (ref41) 2002; 2
LM Heiser (ref5) 2012; 109
I Ulitsky (ref34) 2010; 5
GH Li (ref14) 2012; 28
KM Mani (ref31) 2008; 4
DB Solit (ref20) 2006; 439
LM Shi (ref17) 1998; 38
YA Kim (ref35) 2011; 7
ref27
MR Grever (ref2) 1992; 19
H Kubinyi (ref13) 1990; 116
Z Kutalik (ref25) 2008; 26
M Rodriguez-Paredes (ref28) 2011; 17
MJ Garnett (ref3) 2012; 483
ref6
J Lamb (ref26) 2006; 313
P Sanseau (ref9) 2011; 12
L Breiman (ref40) 2001; 45
WC Reinhold (ref24) 2012; 72
Y Liu (ref33) 2007; 8
KD Paull (ref10) 1989; 81
References_xml – ident: ref37
– volume: 67
  start-page: 301
  year: 2005
  ident: ref7
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 313
  start-page: 1929
  year: 2006
  ident: ref26
  article-title: The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease
  publication-title: Science
  doi: 10.1126/science.1132939
– volume: 483
  start-page: 570
  year: 2012
  ident: ref3
  article-title: Systematic identification of genomic markers of drug sensitivity in cancer cells
  publication-title: Nature
  doi: 10.1038/nature11005
– volume: 3
  start-page: 673
  year: 2004
  ident: ref8
  article-title: Drug repositioning: identifying and developing new uses for existing drugs
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1468
– volume: 20
  start-page: 297
  year: 2002
  ident: ref11
  article-title: COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition
  publication-title: J Mol Graph Model
  doi: 10.1016/S1093-3263(01)00126-7
– volume: 50
  start-page: 716
  year: 2010
  ident: ref15
  article-title: Ranking chemical structures for drug discovery: a new machine learning approach
  publication-title: J Chem Inf Model
  doi: 10.1021/ci9003865
– volume: 9
  start-page: 257
  year: 2010
  ident: ref22
  article-title: Integrative analysis of proteomic signatures, mutations, and drug responsiveness in the NCI 60 cancer cell line set
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-09-0743
– volume: 4
  start-page: 169
  year: 2008
  ident: ref31
  article-title: A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2008.2
– volume: 1–3
  start-page: 586
  year: 1993
  ident: ref39
  article-title: A Direct Adaptive Method for Faster Backpropagation Learning - the Rprop Algorithm
  publication-title: 1993 Ieee International Conference on Neural Networks, Vols
  doi: 10.1109/ICNN.1993.298623
– volume: 17
  start-page: 330
  year: 2011
  ident: ref28
  article-title: Cancer epigenetics reaches mainstream oncology
  publication-title: Nat Med
  doi: 10.1038/nm.2305
– volume: 8
  start-page: R77
  year: 2007
  ident: ref33
  article-title: Revealing signaling pathway deregulation by using gene expression signatures and regulatory motif analysis
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-5-r77
– volume: 5
  start-page: e13367
  year: 2010
  ident: ref34
  article-title: DEGAS: de novo discovery of dysregulated pathways in human diseases
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013367
– volume: 45
  start-page: 5
  year: 2001
  ident: ref40
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 109
  start-page: 2724
  year: 2012
  ident: ref5
  article-title: Subtype and pathway specific responses to anticancer compounds in breast cancer
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1018854108
– volume: 81
  start-page: 1088
  year: 1989
  ident: ref10
  article-title: Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/81.14.1088
– ident: ref36
– volume: 5
  start-page: 310
  year: 2009
  ident: ref21
  article-title: Harnessing gene expression to identify the genetic basis of drug resistance
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2009.69
– volume: 20
  start-page: 15
  year: 2010
  ident: ref29
  article-title: Simplistic pathways or complex networks?
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2009.12.003
– ident: ref38
– volume: 19
  start-page: 622
  year: 1992
  ident: ref2
  article-title: The National Cancer Institute: cancer drug discovery and development program
  publication-title: Semin Oncol
– ident: ref6
– ident: ref30
  doi: 10.1038/tpj.2011.35
– volume: 10
  start-page: 241
  year: 2010
  ident: ref1
  article-title: Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2820
– volume: 40
  start-page: 367
  year: 2000
  ident: ref18
  article-title: Mining and visualizing large anticancer drug discovery databases
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci990087b
– volume: 72
  start-page: 3499
  year: 2012
  ident: ref24
  article-title: CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-1370
– volume: 483
  start-page: 603
  year: 2012
  ident: ref4
  article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
  doi: 10.1038/nature11003
– volume: 7
  start-page: e1001095
  year: 2011
  ident: ref35
  article-title: Identifying causal genes and dysregulated pathways in complex diseases
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001095
– volume: 32
  start-page: 1466
  year: 2011
  ident: ref19
  article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21707
– volume: 28
  start-page: 3334
  year: 2012
  ident: ref14
  article-title: CDRUG: a web server for predicting anticancer activity of chemical compounds
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts625
– volume: 4
  start-page: e6907
  year: 2009
  ident: ref23
  article-title: Using expression and genotype to predict drug response in yeast
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006907
– volume: 11
  start-page: 201
  year: 2012
  ident: ref12
  article-title: Cancer biomarkers: selecting the right drug for the right patient
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3651
– volume: 116
  start-page: 529
  year: 1990
  ident: ref13
  article-title: Quantitative structure-activity relationships (QSAR) and molecular modelling in cancer research
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/BF01637071
– volume: 439
  start-page: 358
  year: 2006
  ident: ref20
  article-title: BRAF mutation predicts sensitivity to MEK inhibition
  publication-title: Nature
  doi: 10.1038/nature04304
– volume: 19
  start-page: 163
  year: 2012
  ident: ref32
  article-title: Large-scale elucidation of drug response pathways in humans
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2011.0264
– volume: 2
  start-page: 18
  year: 2002
  ident: ref41
  article-title: Classification and Regression by randomForest
  publication-title: R News
– volume: 12
  start-page: 301
  year: 2011
  ident: ref9
  article-title: Editorial: computational methods for drug repurposing
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr047
– volume: 38
  start-page: 189
  year: 1998
  ident: ref17
  article-title: Mining the NCI anticancer drug discovery databases: genetic function approximation for the QSAR study of anticancer ellipticine analogues
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci970085w
– volume: 26
  start-page: 531
  year: 2008
  ident: ref25
  article-title: A modular approach for integrative analysis of large-scale gene-expression and drug-response data
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1397
– ident: ref27
  doi: 10.1016/j.drudis.2012.07.014
– volume: 21
  start-page: i359
  year: 2005
  ident: ref16
  article-title: Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1055
SSID ssj0053866
Score 2.5871615
Snippet Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment....
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e61318
SubjectTerms Analysis of Variance
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Artificial Intelligence
Bioinformatics
Biology
Biomarkers
Biotechnology
Cancer
Chemical properties
Computation
Computer applications
Computer Science
Computer Simulation
Design optimization
Drug development
Drug Resistance, Neoplasm - genetics
Drug screening
Drugs
Experimental design
Gene amplification
Gene expression
Genomes
Genomics
Genomics - methods
Humans
Inhibitory Concentration 50
Learning algorithms
Machine learning
Mathematical models
Medical screening
Medicine
Multivariate analysis
Mutation
Neoplasms - drug therapy
Neoplasms - genetics
Pharmacogenetics - methods
Precision medicine
Predictions
Sensitivity
Tumor cell lines
Tumors
Workflow
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOAClEcbKMhIHOBgmsROnJwQXag4QLUSD_UW-bmttEqWZJffz4zjLF1UwYFr7DhxZsYzk5n5hpCX4JjUpVKGOWtyJlzFmc68ZsakSktdah-SaL5_kmdn1fl5PY8_3IaYVjmdieGgtp3Bf-THGVaMgjFSyLerHwy7RmF0NbbQuEluIUoCD6l78-kkBlkuy1gux2V2HKnzZtW1DvO5Mo6tPq6oo4Dajyiny264zuL8M3HyiiY6vfe_e7hP7kYblL4bmWaf3HDtA7IfpXygryIU9euH5OJzyLV0NMKwLui8x8gOUpN2ns6QZ3o6c8sl_YKp8GMvCrru6Pt-sxjoCShJS2EyrIn1z1S1lk4gBbBYt8K8bjc8It9OP3ydfWSxNwMzRZ2vWe1gM6D9UmVLbuG0lYWQ4Jg78BiFATdIpV7bQmQ6L3XmpPeVFN7mqbBKaav5Y7LXAh0OCfVOClvl1nJthNaVxrI_boT1MgVjxCaETyRqTAQux_4ZyyZE4yQ4MON3a5CwTSRsQtj2rtUI3PGP-SdI_e1chN0OF7p-0UQpbkBzaJ0aF-qJDfCXVuiBlbjfGlZJyCHyzvSAoflN8YQcTTxx_fCL7TAIOEZtVOu6TZhTgx0s8yIhByP7bV8S0f_B_oURucOYO7vYHWkvLwKIONyJ5v2Tv7_WU3InD_0_MHx2RPbW_cY9I7fNz_Xl0D8P0vYLPjM3Mg
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS)
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagcOBCKa-mFGQkDnAIJLFjJ0e6sOJQqpV4qLfIz7bSKlklu_x-ZhxnYatWiGvGdmzPjGdGM_5MyBsITGqhlEmdNUXKXcVSnXudGpMpLbXQPhTR_DyVZ2fV-Xm9-BMoXsvgM5l_iHv6ftW1DquwcpDCu-RewYTAEq754nQ6eUF3hYjX427ruWN-Ako_opouu-EmD_N6oeRflme-_79zfkQeRh-TfhyF4oDcce1jchC1eKBvI9T0uyfk8muopXQ0wqxe0EWPmRvkFu08naFM9HTmlkv6DUvdx7cm6Lqjn_rNxUBPwAhaCo1hTLzfTFVr6QRCAIN1K6zbdsNT8mP--fvsSxrfXkhNWRfrtHY542DdMmUFs3CaypJLCLwdRITcQJijMq9tyXNdCJ076X0lubdFxq1S2mr2jOy1sPpDQr2T3FaFtUwbrnWl8VofM9x6mYGzYRPCJpY0JgKT4_sYyyZk2yQEKOO-NbidTdzOhKTbXqsRmOMf7U-Q29u2CKsdPgDfmqilDVgGrTPjwn1hA_KkFUZYAtdbwygJOURZmX4wwO84eEgsL2VCjif5uZn8eksGBcasjGpdtwltavBzZVEm5PkobttJIro_-LdAkTuCuLOKXUp7dRlAwqEnuu9Ht8_4BXlQhLc9MDV2TPbW_ca9JPfNr_XV0L8KmvUbpEolhg
  priority: 102
  providerName: Public Library of Science
Title Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties
URI https://www.ncbi.nlm.nih.gov/pubmed/23646105
https://www.proquest.com/docview/1348123157
https://www.proquest.com/docview/1349095725
https://pubmed.ncbi.nlm.nih.gov/PMC3640019
https://doaj.org/article/762bb0ce04394c538ba05616548a9131
http://dx.doi.org/10.1371/journal.pone.0061318
Volume 8
WOSCitedRecordID wos000319077300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4cAFUV41lGiROMDBre1de-0jqRqB2kRWgSpwsfblNlKxIzvh9zOz3kQNqtQLlzlkZ2N7Ht4Z7-w3hHyAxKTIpNShNToJuc1ZqOJahVpHUgmVqdoV0Vyei9ksn8-L8larL6wJG-CBB8Edg7MqFWnrjnBqcE8lMejFdueyiN0J6gSink0yNbyDgS3L_EE5JuJjr5ejZdtYrOSCefnOQuTw-hHf9Kbt74o1_y2ZvLUGTZ6Rpz54pJ-Hm94nD2zznOx79-zpR48h_ekFuZ66IklLfVeIK7rscEsG1UDbmmpUdkfxsz3tsYZ9aCJBVy013fqqp7i6GQrMCOL6e6GpbAzVHl0A_qxdYkG27V-SH5PT7ydfQt9UIdRpkazCwsaMw7IVSZMxA69JkXIBGbWFVA_kC1KNamVSHqskU7EVdZ0LXpsk4kZKZRR7RfYaEOMBobUV3OSJMUxprlSu8Lwe09zUIoIowgSEbSRcaY84jo0vbiq3jSYg8xjkVqFeKq-XgITbWcsBceMe_jEqb8uLeNnuB7CiyltRdZ8VBeQAVb-5QA-X4xD6sDgVATncmMPdw--3w-CZqDfZ2HbteAoIYEWSBuT1YD3bm0TYfghcYUTs2NXOU-yONItrh_4NMzEuf_M_HvsteZK49h64O3ZI9lbd2r4jj_Wf1aLvRuShuLhEOheO5kDzk3hEHo1PZ-XFyLkc0El5DvRsfAR0Gp0hFaWj34CW6S-YUX6dlj__Aq0bNY0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXoLxqKLBIIMHB1O-1DwjRlKpV06iCUvXm7stppcgOdgLiT_EbmVnboUEVnHrgml1PvPa33854XgAv0TDJEiGUa7QK3MikoSv9QrpKeUJymcjCBtEcD_lolJ6cZIcr8LPPhaGwyp4TLVHrStE38k2fMkZRGYn5--lXl7pGkXe1b6HRwmLf_PiOJlvzbm8b3--rINj5eDTYdbuuAq6Ks2DmZgZFIW97QiehRp7gccTRpDRo60QKFXjhFVLHkS-DRPqGF0XKo0IHXqSFkFqGKPcaXEce9ymEjH867pkfuSNJuvS8kPubHRreTqvSUPyYH1JrkQvHn-0SQFVVJ1VzmYb7Z6DmhZNv587_9szuwu1Ox2Yf2k2xBiumvAdrHYs17HVXavvNfTg7sLGkhnVlZsfssCbPFaGVVQUb0J6o2cBMJuwzhfq3vTbYrGLb9XzcsC1UAjTDySiT8ruZKDXrizCgsGpKceumeQBfrmTFD2G1xPe-DqwwPNJpoHUoVSRlKimtMVSRLriHypZ2IOwhkauuMDv1B5nk1tvI0UBrn1tOQMo7IDngLq6atoVJ_jF_i9C2mEtlxe0PVT3OO5bK8WSU0lPG5ksrxLMUZGEmtN4MpTiwTljt_6DJfyPMgY0eg5cPv1gMI4GRV0qUpprbORnq-TyIHXjUwn1xk9TdAPV7HOFLG2FpFcsj5fmZLZKOV5L58vjvt_Ucbu4eHQzz4d5o_wncCmyvE3IVbsDqrJ6bp3BDfZudN_Uzu9MZnF71NvkFCgCUaA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VglAvhfKqocAigQQHU7_itQ8I0YSIqiWKxEO9Ge_DaaXIDnYC4q_x65hZr02DKjj1wNW7O_ba38zOeF4AT9EwSeM8l65WMnAjnYSu8AvhSunlgotYFCaI5vMxn0ySk5N0ugE_u1wYCqvsZKIR1KqS9I9836eMUVRG0IAvbFjEdDR-vfjqUgcp8rR27TRaiBzpH9_RfGteHY7wWz8LgvHbj8N3ru0w4MpBGizdVCNZlOFeruJQoczgg4ijeanR7okkKvO5Vwg1iHwRxMLXvCgSHhUq8CKV50KJEOlegas8RBRTlvqwDy9BORLHNlUv5P6-RcbLRVVqiiXzQ2ozcu4oNB0DqMLqvGou0nb_DNo8dwqOb_zP7-8mbFvdm71pmWUHNnR5C3asdGvYc1uC-8VtOH1vYkw1s-VnZ2xak0eLUMyqgg2JV2o21PM5-0ApAG0PDras2KhezRp2gMqBYjgZaVLeN8tLxbriDEisWlA8u27uwKdL2fFd2CwRA7vACs0jlQRKhUJGQiSC0h1DGamCe6iEKQfCDh6ZtAXbqW_IPDNeSI6GW_veMgJVZkHlgNuvWrQFS_4x_4CQ18-lcuPmQlXPMiu9MjwxhfCkNnnUErEtcrI8Y9pvilQc2CXcdjdost9oc2Cvw-PFw0_6YRRs5K3KS12tzJwU9X8eDBy410K_f0jqeoB6P47wNaZY28X6SHl2aoqn40oya-7__bEew3Xkjuz4cHL0ALYC0wKFPIh7sLmsV_ohXJPflmdN_cgwPYMvl80lvwCLdZzD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+prediction+of+cancer+cell+sensitivity+to+drugs+based+on+genomic+and+chemical+properties&rft.jtitle=PloS+one&rft.au=Menden%2C+Michael+P&rft.au=Iorio%2C+Francesco&rft.au=Garnett%2C+Mathew&rft.au=McDermott%2C+Ultan&rft.date=2013-04-30&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=8&rft.issue=4&rft.spage=e61318&rft_id=info:doi/10.1371%2Fjournal.pone.0061318&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon