Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning

A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in computational neuroscience Jg. 8; S. 21
Hauptverfasser: Hayashibe, Mitsuhiro, Shimoda, Shingo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Research Foundation 28.02.2014
Frontiers
Frontiers Media S.A
Schlagworte:
ISSN:1662-5188, 1662-5188
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.
AbstractList A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works. Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system. In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics. We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques. We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions. Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is minimized down to 12% for no load at hand, 16% for a 0.5kg load condition. The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.
Author Hayashibe, Mitsuhiro
Shimoda, Shingo
AuthorAffiliation 2 Brain Science Institute-Toyota Collaboration Center, RIKEN Nagoya, Japan
1 INRIA DEMAR Project and LIRMM, University of Montpellier Montpellier, France
AuthorAffiliation_xml – name: 1 INRIA DEMAR Project and LIRMM, University of Montpellier Montpellier, France
– name: 2 Brain Science Institute-Toyota Collaboration Center, RIKEN Nagoya, Japan
Author_xml – sequence: 1
  givenname: Mitsuhiro
  surname: Hayashibe
  fullname: Hayashibe, Mitsuhiro
– sequence: 2
  givenname: Shingo
  surname: Shimoda
  fullname: Shimoda, Shingo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24616695$$D View this record in MEDLINE/PubMed
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00979632$$DView record in HAL
BookMark eNp1kktrGzEUhYeS0jzafVdF0E0h2NV7pE0hhKYJGLpouxay5o4to5FcjWxwf31lOymJoSuJe79zdCWdy-YspghN857gKWNKf-6jS8OUYsKnGGNKXjUXREo6EUSps2f78-ZyHFcYSyoFftOcUy5rT4uLJvzYRcgLKN6hIZWUkUux5BTQ2mbb-cWA-lpM6-IH_8fHBYI9v0PQ9955iG6HUo-GTSh-lXwsKIN1yz249RYV63xBAWyOtfS2ed3bMMK7x_Wq-XX39eft_WT2_dvD7c1s4oSmZSJ6rDgGrWinWgkMg6Cy45RRiwl0XQtCcmUZ7-aUUwFzwVhLtZpTyi3hll01D0ffLtmVWWc_2LwzyXpzKKS8MDbXGwcwrbKd1Y44pwQHgS1Q2XYcMJurHpioXl-OXuvNfIDOQX0dG16YvuxEvzSLtDVMs1YSWg2ujwbLE9n9zcwEn4fBYKxbLRndkkp_ejwup98bGIsZ_OggBBshbUZDBJatpoywin48QVdpk2N9WEOp0rLFivBKfXg-_78JniJQAXkEXE7jmKE39cts8fsYWB8MwWafNXPImtlnzRyyVoX4RPjk_V_JX6K62IY
CitedBy_id crossref_primary_10_3389_fncom_2024_1355855
crossref_primary_10_1109_LRA_2019_2924854
crossref_primary_10_1515_revneuro_2022_0120
crossref_primary_10_1080_00222895_2016_1247032
crossref_primary_10_3389_fnins_2014_00436
crossref_primary_10_1038_s41598_022_21261_w
crossref_primary_10_1080_01691864_2019_1633402
crossref_primary_10_3389_fnbot_2018_00043
crossref_primary_10_3389_fpsyg_2015_01642
crossref_primary_10_1109_TSMC_2016_2560532
crossref_primary_10_1080_24748668_2019_1691814
crossref_primary_10_1016_j_cobeha_2022_101109
crossref_primary_10_1109_TCDS_2017_2697904
crossref_primary_10_3389_fnsyn_2020_00007
crossref_primary_10_1109_ACCESS_2020_2987095
crossref_primary_10_3390_brainsci13010039
crossref_primary_10_3389_fncom_2015_00126
crossref_primary_10_1109_LRA_2020_2970626
crossref_primary_10_3389_frobt_2021_632804
crossref_primary_10_1016_j_neunet_2022_03_002
crossref_primary_10_1109_LRA_2020_2968067
ContentType Journal Article
Copyright 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2014 Hayashibe and Shimoda. 2014
Copyright_xml – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2014 Hayashibe and Shimoda. 2014
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fncom.2014.00021
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_78ada9c1cc854e50ae267d4e03b8fe35
PMC3937612
oai:HAL:lirmm-00979632v1
24616695
10_3389_fncom_2014_00021
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IPNFZ
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RIG
RNS
RPM
TR2
ACXDI
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c592t-5f0840e982d876e30e526d4232a01edd7e5648a34db2425eb5337298b224a14a3
IEDL.DBID BENPR
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332514900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5188
IngestDate Mon Nov 10 04:32:22 EST 2025
Tue Nov 04 01:41:27 EST 2025
Tue Oct 14 20:37:01 EDT 2025
Sun Nov 09 10:42:55 EST 2025
Fri Jul 25 11:43:39 EDT 2025
Mon Jul 21 05:50:36 EDT 2025
Sat Nov 29 02:11:10 EST 2025
Tue Nov 18 22:30:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords feedback error learning
Bernstein problem
interaction torques
motor synergy
tacit learning
optimality
redundancy
Motor synergy
Redundancy
Interaction torques
Optimality
Tacit learning
Feedback error learning
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-5f0840e982d876e30e526d4232a01edd7e5648a34db2425eb5337298b224a14a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Andrea d'Avella, IRCCS Fondazione Santa Lucia, Italy
Reviewed by: Amir Karniel, Ben-Gurion University, Israel; Elmar A. Rückert, Graz University of Technology, Austria; J. Lucas McKay, Georgia Tech/Emory University, USA
This article was submitted to the journal Frontiers in Computational Neuroscience.
ORCID 0000-0001-6179-5706
OpenAccessLink https://www.proquest.com/docview/2289670814?pq-origsite=%requestingapplication%
PMID 24616695
PQID 2289670814
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_78ada9c1cc854e50ae267d4e03b8fe35
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937612
hal_primary_oai_HAL_lirmm_00979632v1
proquest_miscellaneous_1506792313
proquest_journals_2289670814
pubmed_primary_24616695
crossref_citationtrail_10_3389_fncom_2014_00021
crossref_primary_10_3389_fncom_2014_00021
PublicationCentury 2000
PublicationDate 2014-02-28
PublicationDateYYYYMMDD 2014-02-28
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-28
  day: 28
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2014
Publisher Frontiers Research Foundation
Frontiers
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers
– name: Frontiers Media S.A
References 11058820 - Trends Cogn Sci. 2000 Nov 1;4(11):423-431
8182467 - J Neurosci. 1994 May;14(5 Pt 2):3208-24
4338265 - Brain Res. 1972 May 12;40(1):81-4
4020415 - J Neurosci. 1985 Jul;5(7):1688-703
9116080 - Biol Cybern. 1997 Feb;76(2):97-105
9723616 - Nature. 1998 Aug 20;394(6695):780-4
8836239 - J Neurophysiol. 1996 Jul;76(1):492-509
10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27
12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
9548253 - Nature. 1998 Apr 2;392(6675):494-7
10561408 - J Neurophysiol. 1999 Nov;82(5):2310-26
1281352 - Trends Neurosci. 1992 Nov;15(11):445-53
3676355 - Biol Cybern. 1987;57(3):169-85
17005621 - J Neurophysiol. 2007 Jan;97(1):331-47
19651559 - IEEE Trans Syst Man Cybern B Cybern. 2010 Feb;40(1):77-90
8872282 - J Biomech. 1996 Sep;29(9):1223-30
19458218 - J Neurosci. 2009 May 20;29(20):6472-8
15332089 - Nat Neurosci. 2004 Sep;7(9):907-15
15541947 - Neural Netw. 2004 Dec;17(10):1453-65
24133444 - Front Comput Neurosci. 2013 Oct 15;7:136
9753117 - Eur J Neurosci. 1998 Jan;10(1):95-105
21227230 - Trends Cogn Sci. 1998 Sep 1;2(9):338-47
12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35
2742921 - Biol Cybern. 1989;61(2):89-101
15541316 - Neuron. 2004 Nov 18;44(4):691-700
21487784 - Cogn Process. 2011 Nov;12(4):319-40
1486143 - Biol Cybern. 1992;68(2):95-103
22654062 - Science. 2012 Jun 1;336(6085):1182-5
1857964 - Science. 1991 Jul 19;253(5017):287-91
References_xml – reference: 9753117 - Eur J Neurosci. 1998 Jan;10(1):95-105
– reference: 9723616 - Nature. 1998 Aug 20;394(6695):780-4
– reference: 24133444 - Front Comput Neurosci. 2013 Oct 15;7:136
– reference: 21227230 - Trends Cogn Sci. 1998 Sep 1;2(9):338-47
– reference: 2742921 - Biol Cybern. 1989;61(2):89-101
– reference: 12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
– reference: 10561408 - J Neurophysiol. 1999 Nov;82(5):2310-26
– reference: 17005621 - J Neurophysiol. 2007 Jan;97(1):331-47
– reference: 4338265 - Brain Res. 1972 May 12;40(1):81-4
– reference: 1857964 - Science. 1991 Jul 19;253(5017):287-91
– reference: 11058820 - Trends Cogn Sci. 2000 Nov 1;4(11):423-431
– reference: 1281352 - Trends Neurosci. 1992 Nov;15(11):445-53
– reference: 4020415 - J Neurosci. 1985 Jul;5(7):1688-703
– reference: 8182467 - J Neurosci. 1994 May;14(5 Pt 2):3208-24
– reference: 15541316 - Neuron. 2004 Nov 18;44(4):691-700
– reference: 10607637 - Curr Opin Neurobiol. 1999 Dec;9(6):718-27
– reference: 19651559 - IEEE Trans Syst Man Cybern B Cybern. 2010 Feb;40(1):77-90
– reference: 8872282 - J Biomech. 1996 Sep;29(9):1223-30
– reference: 9116080 - Biol Cybern. 1997 Feb;76(2):97-105
– reference: 9548253 - Nature. 1998 Apr 2;392(6675):494-7
– reference: 12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35
– reference: 15541947 - Neural Netw. 2004 Dec;17(10):1453-65
– reference: 22654062 - Science. 2012 Jun 1;336(6085):1182-5
– reference: 1486143 - Biol Cybern. 1992;68(2):95-103
– reference: 15332089 - Nat Neurosci. 2004 Sep;7(9):907-15
– reference: 8836239 - J Neurophysiol. 1996 Jul;76(1):492-509
– reference: 21487784 - Cogn Process. 2011 Nov;12(4):319-40
– reference: 19458218 - J Neurosci. 2009 May 20;29(20):6472-8
– reference: 3676355 - Biol Cybern. 1987;57(3):169-85
SSID ssj0062650
Score 2.0944655
Snippet A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 21
SubjectTerms Adaptability
Adaptation
Automatic Control Engineering
Behavior
Bernstein problem
Bioengineering
Central nervous system
Computer applications
Computer Science
Energy efficiency
Feedback
Feedback Error Learning
Kinematics
Life Sciences
Mechanical properties
Motor skill learning
Motor synergies
Motor task performance
Neuroscience
Neurosciences
optimality
Optimization
redundancy
Robotics
Robots
Tacit Learning
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELopSPQEFGqpA4RJs4Tmwfl2qrHqBUUKTeLMd22qBNgnbTldpfz4yTXTUgwYVTpMRxLM94Zl4880zIUclMJgtp48SaMuauAjtoZBKzwiGvdVoKz8NhE-LsTF5eqvN7R31hTthADzxM3ExI44yyqbUy5z5PjGeFcNwnWSkrnwX2Uuh0C6YGGwxRep4Mm5IAwdSsajE1BHwdUmUnLJ04ocDVD67lGjMh_wwzf8-WvOd-Tp6Qx2PcSOfDePfJA98-JQfzFjBzc0vf05DJGX6RH5Dlt1us6MPyRPq5A1BNj4eEdHpuVsbVVw2FUJV-AWvR1Hfgu-giVADSReCTwGJM2lU01Ob-6Oq2p1_HnEu6qQ29MLbu6UjMevWMfD9ZXByfxuOpCrHNFevjvEoA1HklmQNL6LPE5yAY3K81SeqdEz4vuDQZdyXCEV9CQAgRuCzB2ZuUm-w52Wu71r8kVEEHecVF7sqKw1UxZjigc2Gx4FeoiMy206ztSDmOJ18sNUAPFIwOgtEoGB0EE5EPuzd-DnQbf2n7ESW3a4dE2eEGqI8e1Uf_S30icgRyn_RxOv-kl_WqaTQWuYCBYhv41uFWMfS4yNeaAVgtBMRUPCLvdo9heeKei2l9d7PWSOCIFI1pFpEXgx7tPoZUfkWhYAxiomGT0UyftPV1oABHGkOITV_9jyl4TR7hpA51-odkr1_d-Dfkod309Xr1NqyrX2_pKWg
  priority: 102
  providerName: Directory of Open Access Journals
Title Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning
URI https://www.ncbi.nlm.nih.gov/pubmed/24616695
https://www.proquest.com/docview/2289670814
https://www.proquest.com/docview/1506792313
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00979632
https://pubmed.ncbi.nlm.nih.gov/PMC3937612
https://doaj.org/article/78ada9c1cc854e50ae267d4e03b8fe35
Volume 8
WOSCitedRecordID wos000332514900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdYx4ELX4NRGJWRJiQOURPHiZMT6lCnIbGq4kMqJ8uxnS6oTUaaTRoH_nbec91CQdqFiyPF-XDynt-H_d7vEXJcMBVnaaaDUKsi4KYEOaiyMGCpQVzrqBCWu2ITYjLJZrN86hfcVj6sciMTnaA2jcY18iEDzyAVoMD428vvAVaNwt1VX0Jjj-wjUhnvkf2T8WT6cSOLwVpPwvXmJLhi-bCsMUQEdB5CZocs2lFGDrMfVMwFRkT-a27-HTX5hxo6ffC_H_CQ3PcGKB2tOeYRuWPrx-RgVIPzvbyhr6kLCXVr7Qdk8ekGUwMxz5ECSZuW-sh2iojhppovKdi8tAGxs6x-gBKk1qUSUuuAKTCrkzYldUGL35qq7mjrgzfpdaVop3TVUV-3Yv6EfDkdf353FvjyDIFOctYFSRmCd2jzjBkQqTYObQIUxo1fFUbWGGGTlGcq5qZAv8YWYFmCKZ8VYDWoiKv4KenVTW2fEZrDA5KSi8QUJYdjzpji4OYLjZnDIu-T4YZOUnvsciyhsZDgwyBlpaOsRMpKR9k-ebO943KN23HLtSdI-u11iLjtTjTtXPoJLEWmjMp1pHWWcJuEyrJUGG7DuMhKGyd9cgyMs_OMs9EHuaja5VJitgxIOnYN7zracIf00mIlf7NGn7zadsM8x80bVdvmaiURCRKxHqO4Tw7XjLh9GWICpmkOYxA7LLozmt2eurpwWOKIhwhG7vPbh_WC3MPftU7lPyK9rr2yL8ldfd1Vq3ZA9sQsG_ipN3CrGtCesym2wrU_x9A_fX8-_foLIG4_5g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQXXuURKLBIBYmDFXu9fh0QCo8qVUNUiSL1tqx316lRbBfHDQo_it_IzNoOBKTeeuAUKbbXG_vbb2ayM98Qspcy6cdhrBxXydThOgMelLHrsFCjrrWXRobbZhPRdBqfnCRHW-RnXwuDaZU9J1qi1pXC_8iHDCKDMAIDxt-cfXOwaxTurvYtNFpYHJrVdwjZFq8P3sP7fcHY_ofjd2On6yrgqCBhjRNkLgQ1JomZBiYwvmsCmBjuV0rXM1pHJgh5LH2uU3THTQoOEXigcQrGTnpc-jDuFXIV3AgW21TBo575ITYI3HYrFAK_ZJiVmJACFhYFul3mbZg-2yEADNop5l_-69z-naP5h9Hbv_W_Pa7b5GbnXtNRux7ukC1T3iU7o1I2VbGiL6lNeLU7CTtk_mmFhY9YxUkBsFVNu7x9inroOp8VFDx6WgGpFvkPMPHU2EJJaqzsBtas0iqjNiXza5WXDa271FS6zCVtpMob2nXlmN0jny_ld98n22VVmoeEJjBAkPEo0GnG4TNhTHKT-pHCuugoGZBhjwuhOmV2bBAyFxChIZKERZJAJAmLpAF5tb7irFUlueDctwi19XmoJ26_qOqZ6OhJRLHUMlGeUnHATeBKw8JIc-P6aZwZPxiQPQDqxhjj0UTM87ooBNYCAY-zJdxrt0ej6LhwIX5DcUCerw8Di-HWlCxNdb4QqHOJSpaePyAPWuCvb4aKh2GYwByijSWxMZvNI2V-apXSUe0RXPhHF0_rGbk-Pv44EZOD6eFjcgMfXStasEu2m_rcPCHX1LLJF_VTu9wp-XLZC-YXa7aRsA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAXXuURKLBIBYmDFXu968cBoUCJWrVEkQCpt2W9XqdGsV0cNyj8NH4dM2s7EJB664FTpNheb-xvXpmZbwjZS5jyoyDSjqtV4vA0Az2oItdhQYq81l4SGm6HTYSTSXRyEk-3yM--FwbLKnudaBV1Wmn8j3zIIDIIQjBgfJh1ZRHT_fGbs28OTpDCTGs_TqOFyJFZfYfwbfH6cB_e9QvGxu8_vTtwugkDjhYxaxyRuRDgmDhiKWgF47tGwCYxd6lcz6RpaETAI-XzNEHX3CTgHIE3GiVg-JTHlQ_rXiFXQy4EStcHNu2tAMQJwm3TohAExsOsxOIUsLZI1u0yb8MM2mkBYNxOsRbzX0f373rNPwzg-Nb__Ohuk5ud201HrZzcIVumvEt2RqVqqmJFX1JbCGszDDtk_nGFDZHY3UkByFVNu3p-ijzpaT4rKHj6tAJlW-Q_wPRTYxsoqbF0HNjLSquM2lLNr1VeNrTuSlbpMle0UTpvaDetY3aPfL6U332fbJdVaR4SGsMCIuOhSJOMw2fMmOIm8UON_dJhPCDDHiNSd4ztODhkLiFyQ1RJiyqJqJIWVQPyan3FWctWcsG5bxF26_OQZ9x-UdUz2aktGUYqVbH2tI4EN8JVhgVhyo3rJ1FmfDEgewDajTUORsdyntdFIbFHCPQ7W8K9dntkyk5HLuRvWA7I8_Vh0G6YslKlqc4XEvkvkeHS8wfkQSsE65shE2IQxLCHcEM8NnazeaTMTy2DOrJAgmv_6OJtPSPXQU7k8eHk6DG5gU-u5TLYJdtNfW6ekGt62eSL-qmVfEq-XLa8_ALhnZps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergetic+motor+control+paradigm+for+optimizing+energy+efficiency+of+multijoint+reaching+via+tacit+learning&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Hayashibe%2C+Mitsuhiro&rft.au=Shimoda%2C+Shingo&rft.date=2014-02-28&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=8&rft.spage=21&rft_id=info:doi/10.3389%2Ffncom.2014.00021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon