Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering

The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model wi...

Full description

Saved in:
Bibliographic Details
Published in:Computational economics Vol. 61; no. 2; pp. 715 - 741
Main Authors: Ben Jabeur, Sami, Stef, Nicolae, Carmona, Pedro
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2023
Springer
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:0927-7099, 1572-9974
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model with a high quality of the estimated output. The feature selection technique can be used to select significant variables without lowering the quality of performance classification. In addition, one of the main goals of bankruptcy prediction is to identify the model specification with the strongest explanatory power. Building on this premise, an improved XGBoost algorithm based on feature importance selection (FS-XGBoost) is proposed. FS-XGBoost is compared with seven machine learning algorithms based on three well-known feature selection methods that are frequently used in bankruptcy prediction: stepwise discriminant analysis, stepwise logistic regression, and partial least squares discriminant analysis (PLS-DA). Our experimental results confirm that FS-XGBoost provides more accurate predictions, outperforming traditional feature selection methods.
AbstractList The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model with a high quality of the estimated output. The feature selection technique can be used to select significant variables without lowering the quality of performance classification. In addition, one of the main goals of bankruptcy prediction is to identify the model specification with the strongest explanatory power. Building on this premise, an improved XGBoost algorithm based on feature importance selection (FS-XGBoost) is proposed. FS-XGBoost is compared with seven machine learning algorithms based on three well-known feature selection methods that are frequently used in bankruptcy prediction: stepwise discriminant analysis, stepwise logistic regression, and partial least squares discriminant analysis (PLS-DA). Our experimental results confirm that FS-XGBoost provides more accurate predictions, outperforming traditional feature selection methods.
The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model with a high quality of the estimated output. The feature selection technique can be used to select significant variables without lowering the quality of performance classification. In addition, one of the main goals of bankruptcy prediction is to identify the model specification with the strongest explanatory power. Building on this premise, an improved XGBoost algorithm based on feature importance selection (FS-XGBoost) is proposed. FS-XGBoost is compared with seven machine learning algorithms based on three well-known feature selection methods that are frequently used in bankruptcy prediction: stepwise discriminant analysis, stepwise logistic regression, and partial least squares discriminant analysis (PLS-DA). Our experimental results confirm that FS-XGBoost provides more accurate predictions, outperforming traditional feature selection methods. L'émergence des big data, des technologies de l'information et des médias sociaux fournit une énorme quantité d'informations sur la santé financière actuelle des entreprises. Face à cette abondance de données, les décideurs doivent identifier les informations cruciales pour construire un modèle de prédiction efficace et opérationnel avec une qualité élevée des résultats estimés. La technique de sélection des caractéristiques peut être utilisée pour sélectionner des variables significatives sans diminuer la qualité de la classification des performances. En outre, l'un des principaux objectifs de la prédiction des faillites est d'identifier la spécification du modèle ayant le plus grand pouvoir explicatif. Partant de ce principe, un algorithme XGBoost amélioré basé sur la sélection de l'importance des caractéristiques (FS-XGBoost) est proposé. FS-XGBoost est comparé à sept algorithmes d'apprentissage automatique basés sur trois méthodes de sélection des caractéristiques bien connues et fréquemment utilisées dans la prédiction des faillites : l'analyse discriminante par étapes, la régression logistique par étapes et l'analyse discriminante par moindres carrés partiels (PLS-DA). Nos résultats expérimentaux confirment que FS-XGBoost fournit des prédictions plus précises, surpassant les méthodes traditionnelles de sélection des caractéristiques.
Audience Academic
Author Stef, Nicolae
Ben Jabeur, Sami
Carmona, Pedro
Author_xml – sequence: 1
  givenname: Sami
  orcidid: 0000-0002-9242-4913
  surname: Ben Jabeur
  fullname: Ben Jabeur, Sami
  organization: Institute of Sustainable Business and Organizations, Sciences and Humanities Confluence Research Center - UCLY, ESDES
– sequence: 2
  givenname: Nicolae
  orcidid: 0000-0001-9471-4669
  surname: Stef
  fullname: Stef, Nicolae
  email: nicolae.stef@bsb-education.com
  organization: Department of Accounting, Finance and Law, CEREN EA 7477, Burgundy School of Business, Université Bourgogne Franche-Comté
– sequence: 3
  givenname: Pedro
  orcidid: 0000-0002-9979-2727
  surname: Carmona
  fullname: Carmona, Pedro
  organization: Department of Accounting, University of Valencia
BackLink https://ucly.hal.science/hal-05238451$$DView record in HAL
BookMark eNp9kc1q3DAUhUVJoZO0L9CVoKsunEiyZUnLScgfDCSLtHRThEa-nlHqkVxJLuTtK8cpgS6CFoLD-S73nnOMjnzwgNBnSk4pIeIsUdLSpiKMVpQwJir6Dq0oF6xSSjRHaEVUEQVR6gM6TumREMIpYyv089z4X3Eas33C9xE6Z7MLHk_J-R3Oe8A_rs9DSBmvh12ILu8P2PgOfzfRme0A-PYwhpiNt4CvwOQpAr70O-cBYpnwEb3vzZDg08t_gr5dXT5c3FSbu-vbi_WmslyxXFFleC9Yyw3h0HUWQCgquWy7vleqlw0D1kBNuBFgYMtbWYuWbIHVzLJtB_UJ-rrM3ZtBj9EdTHzSwTh9s97oWSOc1bLh9A8t3i-Ld4zh9wQp68cwRV_W00wIpVoqa1Zcp4trZwbQzvchR2PL6-DgbAm_d0Vfi1pK1pBnQC6AjSGlCL22Lps5zAK6QVOi56b00pQuTennpvS8EfsP_XfCm1C9QGmck4b4esYb1F_3Wqcn
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3222883
crossref_primary_10_1007_s10614_024_10579_4
crossref_primary_10_1007_s10614_024_10741_y
crossref_primary_10_1016_j_memsci_2025_124274
crossref_primary_10_1145_3723157
crossref_primary_10_1007_s10614_024_10761_8
crossref_primary_10_1016_j_techfore_2024_123901
crossref_primary_10_3390_systems13090808
crossref_primary_10_1007_s11440_024_02499_2
crossref_primary_10_1109_ACCESS_2024_3424526
crossref_primary_10_7717_peerj_cs_1956
crossref_primary_10_1007_s11156_023_01192_x
crossref_primary_10_1080_08839514_2022_2138124
crossref_primary_10_3390_electronics13081596
crossref_primary_10_1016_j_rsase_2025_101712
crossref_primary_10_1007_s10614_024_10690_6
crossref_primary_10_1016_j_accinf_2025_100744
crossref_primary_10_3390_su17114985
crossref_primary_10_1016_j_procs_2025_04_253
crossref_primary_10_1007_s10614_025_11074_0
crossref_primary_10_1016_j_irfa_2023_102702
crossref_primary_10_1080_17455030_2023_2226246
crossref_primary_10_3390_su17114948
crossref_primary_10_1016_j_eswa_2025_126538
crossref_primary_10_3390_rs16234576
crossref_primary_10_1016_j_procs_2024_01_141
crossref_primary_10_1016_j_scitotenv_2024_176585
crossref_primary_10_1108_CAFR_03_2024_0036
crossref_primary_10_4018_IJITSA_380659
crossref_primary_10_1038_s41598_024_68163_7
crossref_primary_10_3390_jtaer19020066
crossref_primary_10_3390_s23218841
crossref_primary_10_1016_j_eswa_2023_121008
crossref_primary_10_1109_TAI_2024_3436664
crossref_primary_10_3390_mi15070830
crossref_primary_10_1016_j_chaos_2025_116216
crossref_primary_10_1016_j_heliyon_2024_e27096
crossref_primary_10_3390_app15094724
crossref_primary_10_3390_buildings14092996
crossref_primary_10_3390_a18040225
crossref_primary_10_3390_jmse12091596
crossref_primary_10_3390_jtaer19010020
crossref_primary_10_1108_CEMJ_08_2022_0095
crossref_primary_10_1002_isaf_1521
crossref_primary_10_1016_j_multra_2025_100209
crossref_primary_10_1016_j_eswa_2024_124761
crossref_primary_10_1109_ACCESS_2024_3416838
crossref_primary_10_1142_S0219519425400457
crossref_primary_10_1080_02102412_2024_2423498
crossref_primary_10_1016_j_eswa_2024_124525
crossref_primary_10_1049_itr2_12514
crossref_primary_10_1016_j_apr_2024_102200
crossref_primary_10_22630_MIBE_2023_24_4_18
crossref_primary_10_1016_j_anl_2024_04_003
crossref_primary_10_1016_j_eswa_2025_128042
crossref_primary_10_1007_s11837_023_05773_y
crossref_primary_10_1080_01446193_2024_2403553
crossref_primary_10_7717_peerj_cs_1257
crossref_primary_10_1016_j_ipm_2022_102988
crossref_primary_10_3390_info15060355
crossref_primary_10_1108_ARJ_10_2023_0304
crossref_primary_10_2478_amns_2024_2247
crossref_primary_10_1016_j_electacta_2025_146426
crossref_primary_10_1016_j_renene_2024_121085
crossref_primary_10_1007_s10614_024_10567_8
crossref_primary_10_1007_s11042_023_15353_6
crossref_primary_10_22630_MIBE_2024_25_2_6
crossref_primary_10_1080_17517575_2024_2434742
crossref_primary_10_1108_IJEBR_06_2022_0527
crossref_primary_10_1007_s42979_025_03840_6
crossref_primary_10_1007_s44443_025_00166_4
crossref_primary_10_3390_su16209093
crossref_primary_10_3390_s24041092
crossref_primary_10_3233_IDT_240687
crossref_primary_10_1080_00036846_2023_2281291
crossref_primary_10_1080_23311975_2025_2495191
crossref_primary_10_1109_ACCESS_2024_3512878
crossref_primary_10_1016_j_saa_2024_124917
crossref_primary_10_3390_computation13070172
Cites_doi 10.1016/j.techfore.2021.120658
10.1016/j.artmed.2019.01.006
10.1016/j.eswa.2012.02.125
10.1016/j.jbusres.2020.12.027
10.1007/s10657-019-09634-5
10.1080/01605682.2019.1581405
10.1016/j.asoc.2019.105528
10.1016/j.knosys.2014.10.010
10.1002/rfe.1018
10.1016/j.eswa.2004.08.009
10.1016/0304-405X(90)90063-6
10.1016/j.eswa.2017.04.006
10.1016/j.csda.2004.02.005
10.1016/j.ejor.2016.03.008
10.1016/j.eswa.2018.06.032
10.1016/S0378-4266(98)00062-4
10.1016/j.eswa.2013.04.018
10.1016/j.aap.2019.05.005
10.1016/j.asoc.2018.09.029
10.1111/j.1468-5957.1990.tb00555.x
10.1162/neco.2006.18.7.1527
10.1016/j.eswa.2011.01.021
10.1016/j.neucom.2017.01.078
10.1016/j.jretconser.2017.02.001
10.1016/j.knosys.2019.04.013
10.1016/j.asoc.2019.03.017
10.1016/j.dss.2017.10.001
10.1093/bioinformatics/bty1043
10.1016/j.emj.2016.06.009
10.1007/s10614-016-9562-7
10.18089/tms.2016.12104
10.1016/0148-6195(94)90005-1
10.1016/j.eswa.2016.04.027
10.1016/j.eswa.2013.09.033
10.1016/j.eswa.2019.07.033
10.1016/j.jretconser.2017.02.005
10.1016/j.patcog.2018.05.014
10.1016/j.eswa.2019.03.042
10.1016/j.eswa.2005.01.004
10.1016/j.neucom.2019.06.006
10.1016/j.ejor.2006.08.043
10.1016/j.knosys.2010.05.007
10.1016/j.dss.2012.11.015
10.1016/j.inffus.2018.11.019
10.1016/j.irfa.2013.02.013
10.1016/j.jbusres.2018.11.015
10.1016/j.ejor.2016.01.012
10.1080/13571516.2018.1455389
10.1016/j.eswa.2019.02.033
10.1111/j.1540-6261.1968.tb00843.x
10.1016/j.ejor.2014.08.016
10.1007/s10614-016-9581-4
10.1016/j.ejor.2012.04.006
10.1016/j.neucom.2009.11.034
10.1016/j.knosys.2008.08.002
10.1016/j.knosys.2015.04.017
10.1016/j.ejor.2018.10.024
10.1016/j.knosys.2011.09.017
10.1186/s41044-016-0014-0
10.1016/j.eswa.2008.09.023
10.1016/j.eswa.2017.02.017
10.1007/s11142-017-9407-1
10.1016/j.eswa.2009.10.012
10.1016/j.eswa.2017.05.037
10.1016/j.irle.2017.11.002
10.1016/j.inffus.2018.11.008
10.1016/j.eswa.2017.01.016
10.1016/B978-0-12-809633-8.20351-8
10.1016/j.iref.2018.03.008
10.1016/j.patrec.2017.08.024
10.1016/j.eswa.2012.12.009
10.1016/j.eswa.2005.10.009
10.1016/j.dss.2011.10.007
10.1016/j.asoc.2019.04.031
10.1007/BF00994018
10.1016/j.ejor.2014.09.059
10.1016/j.knosys.2017.05.003
10.1016/j.knosys.2015.12.006
10.1023/A:1008065527282
10.1016/j.dss.2018.01.003
10.2307/2490395
10.1177/0361198118773556
10.1016/j.eswa.2018.05.026
10.1007/s10657-021-09702-9
10.1016/j.eswa.2013.09.047
10.1145/2939672.2939785
10.1214/009053606000000795
10.1145/2830556.2830562
10.1016/j.neunet.2019.07.012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2023 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AO
8BJ
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FQK
FRNLG
F~G
GNUQQ
HCIFZ
JBE
JQ2
K60
K6~
K7-
L.-
M0C
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
1XC
BXJBU
DOI 10.1007/s10614-021-10227-1
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global (OCUL)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)



Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Business
EISSN 1572-9974
EndPage 741
ExternalDocumentID oai:HAL:hal-05238451v1
A738824032
10_1007_s10614_021_10227_1
GrantInformation_xml – fundername: Spanish Ministry of Science, Innovation and Universities
  grantid: FEDER project PGC2018-093645-B-I00
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3R3
3V.
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
6J9
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHQT
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACYUM
ACZOJ
ADFRT
ADHHG
ADHIR
ADIMF
ADINQ
ADIYS
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
B-.
BA0
BAAKF
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EOH
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IBB
IEA
IHE
IJ-
IKXTQ
IOF
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z81
Z83
Z86
Z88
Z8U
Z8W
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7XB
8BJ
8FK
AZQEC
FQK
GNUQQ
JBE
JQ2
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
BXJBU
ID FETCH-LOGICAL-c592t-19a5f7265a05eddcee7918586dff99f842e24e305a7eaeb5683760be232c2bde3
IEDL.DBID M0C
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745576500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0927-7099
IngestDate Tue Oct 14 21:01:07 EDT 2025
Wed Nov 26 14:42:55 EST 2025
Sat Nov 29 10:28:53 EST 2025
Sat Nov 29 03:17:45 EST 2025
Tue Nov 18 22:32:02 EST 2025
Fri Feb 21 02:44:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Corporate failure
XGBoost
Bankruptcy
Machine learning
Apprentissage automatique
Défaillance d'entreprise
Faillite
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-19a5f7265a05eddcee7918586dff99f842e24e305a7eaeb5683760be232c2bde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9471-4669
0000-0002-9979-2727
0000-0002-9242-4913
OpenAccessLink https://hdl.handle.net/10550/96517
PQID 2779961832
PQPubID 36414
PageCount 27
ParticipantIDs hal_primary_oai_HAL_hal_05238451v1
proquest_journals_2779961832
gale_infotracacademiconefile_A738824032
crossref_citationtrail_10_1007_s10614_021_10227_1
crossref_primary_10_1007_s10614_021_10227_1
springer_journals_10_1007_s10614_021_10227_1
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Computational economics
PublicationTitleAbbrev Comput Econ
PublicationYear 2023
Publisher Springer US
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References Buuren, Groothuis-Oudshoorn (CR15) 2010; 45
Choi, Son, Kim (CR21) 2018; 110
Cordón, Luengo, García, Herrera, Charte (CR23) 2019; 360
Chatzis, Siakoulis, Petropoulos, Stavroulakis, Vlachogiannakis (CR18) 2018; 112
Carmona, Climent, Momparler (CR16) 2019; 61
du Jardin (CR26) 2010; 73
Bastien, Vinzi, Tenenhaus (CR7) 2005; 48
CR34
Leong, Hew, Tan, Ooi (CR57) 2013; 40
Kumar, Ramachandran, Gandomi, Patan (CR52) 2019; 82
Bolón-Canedo, Alonso-Betanzos (CR12) 2019; 52
Daoud, Mayo, Box, Zealand (CR24) 2019; 97
Bao, Lianju, Yue (CR4) 2019; 128
Hu, Tang, Wang, Zhang, Zhang, Sun (CR41) 2018; 83
Altman (CR1) 1968; 23
Stef, Jabeur (CR77) 2018; 1516
Berrar, Ranganathan, Gribskov, Nakai, Schönbach (CR10) 2019
Bardos (CR6) 1998; 22
Laitinen, Lukason, Suvas (CR53) 2014; 11
Kim, Lee, Shin, Yang, Cho, Nam (CR46) 2019; 128
Wang, Ross (CR82) 2018; 2672
Xia, Liu, Li, Liu (CR85) 2017; 78
Ander, Arévalo, Paredes, Nin (CR3) 2018; 105
Mai, Tian, Lee, Ma (CR62) 2019; 274
Chang, Chang, Wu (CR17) 2018; 73
Ravisankar, Ravi (CR69) 2010; 23
Qawaqneh, Abu, Barkana (CR66) 2017; 85
Tsai, Cheng (CR80) 2012; 27
Zhou, Lai (CR91) 2017; 50
Yang, You, Ji (CR86) 2011; 38
Jones (CR45) 2017; 22
Cortes, Vapnik (CR100) 1995; 20
du Jardin, Séverin (CR31) 2012; 221
Zhang, Nie, Li, Wei (CR89) 2019; 50
Kim, Jo, Shin (CR47) 2016; 59
Brezigar-Masten, Masten (CR14) 2012; 39
CR200
Wruck (CR84) 1990; 27
Jardin (CR30) 2018; 107
Kraus, Feuerriegel (CR50) 2017; 104
Climent, Momparler, Carmona (CR22) 2019; 101
Shi, Wong, Li, Palanisamy, Chai (CR72) 2019; 129
Yu, Shi, Zhang, Chen, Cao (CR87) 2019; 35
Blazy, Stef (CR11) 2020; 50
Sghaier, Ben Jabeur, Bannour (CR71) 2018; 36
Becker, Ismail (CR8) 2016; 34
Alzubi, Bharathikannan, Tanwar (CR2) 2019; 80
Geng, Bose, Chen (CR37) 2015; 241
Gilbert, Menon, Schwartz (CR38) 1990; 17
Everett, Watson (CR32) 1998; 11
Olson, Delen, Meng (CR64) 2012; 52
Stef, Zenou (CR78) 2021; 125
García, Ramírez-Gallego, Luengo, Benítez, Herrera (CR36) 2016; 1
Jabeur, Gharib, Mefteh-Wali, Arfi (CR43) 2021; 166
Lin, Liang, Yeh, Huang (CR61) 2014; 41
Kim, Kang (CR49) 2010; 37
Chen, Huang, Lin (CR19) 2009; 36
Hinton (CR40) 2006; 1554
Jabeur, Sadaaoui, Sghaier, Aloui (CR44) 2020; 71
CR13
Stef (CR76) 2021
Tsai (CR79) 2009; 22
Lee, Booth, Alam (CR55) 2005; 29
Ravi Kumar, Ravi (CR68) 2007; 180
Zhou, Lu, Fujita (CR92) 2015; 85
Jabeur (CR42) 2017; 36
Krawczyk, Herrera (CR51) 2017; 239
Liang, Tsai, Wu (CR60) 2015; 73
Bellini, Cardinali, Grandi (CR9) 2017; 36
Lang, Bravo-marquez, Beckham, Hall, Frank (CR54) 2019; 178
Jardin (CR28) 2016; 254
Lee, Choi (CR56) 2013; 40
Shin, Lee, Kim (CR73) 2005; 28
Fernández-Gámez, Cisneros-Ruiz, Callejón-Gil (CR33) 2016; 12
Hernandez Tinoco, Wilson (CR39) 2013; 30
Jardin (CR29) 2017; 75
Zhou, Si, Fujita (CR93) 2017; 128
Liang, Tsai, Wu (CR59) 2014; 73
Tsakonas, Dounias, Doumpos, Zopounidis (CR81) 2006; 30
CR25
Son, Hyun, Phan, Hwang (CR74) 2019; 138
Stef (CR75) 2018; 54
García, Luengo, Herrera (CR35) 2016; 98
Platt, Platt (CR65) 1994; 46
CR67
CR20
Ohlson (CR63) 1980; 18
Wang, Ma, Yang (CR83) 2014; 41
Wold, Kotz, Johnson (CR94) 1985
Zhao, Huang, Wei, Yu, Wang, Chen (CR90) 2017; 49
Zhang, Qiu, Wu, Deng, Ji, Li (CR88) 2019; 80
Liang, Lu, Tsai, Shih (CR58) 2016; 252
Serrano-cinca, Gutiérrez-nieto (CR70) 2013; 54
Barboza, Kimura, Altman (CR5) 2017; 83
du Jardin (CR27) 2015; 242
P du Jardin (10227_CR26) 2010; 73
F Climent (10227_CR22) 2019; 101
H Son (10227_CR74) 2019; 138
N Stef (10227_CR76) 2021
F Lin (10227_CR61) 2014; 41
H Zhang (10227_CR88) 2019; 80
MÁ Fernández-Gámez (10227_CR33) 2016; 12
10227_CR200
P Ravisankar (10227_CR69) 2010; 23
CF Tsai (10227_CR79) 2009; 22
S García (10227_CR36) 2016; 1
P Jardin (10227_CR30) 2018; 107
J Ander (10227_CR3) 2018; 105
W Bao (10227_CR4) 2019; 128
P Jardin (10227_CR28) 2016; 254
H Wold (10227_CR94) 1985
C Serrano-cinca (10227_CR70) 2013; 54
M Hernandez Tinoco (10227_CR39) 2013; 30
HJ Chen (10227_CR19) 2009; 36
L Zhou (10227_CR92) 2015; 85
D Liang (10227_CR59) 2014; 73
R Geng (10227_CR37) 2015; 241
JA Alzubi (10227_CR2) 2019; 80
P du Jardin (10227_CR31) 2012; 221
F Barboza (10227_CR5) 2017; 83
S Lee (10227_CR56) 2013; 40
N Stef (10227_CR78) 2021; 125
EI Altman (10227_CR1) 1968; 23
Z Yang (10227_CR86) 2011; 38
P Carmona (10227_CR16) 2019; 61
S García (10227_CR35) 2016; 98
10227_CR13
F Wang (10227_CR82) 2018; 2672
D Berrar (10227_CR10) 2019
M Kraus (10227_CR50) 2017; 104
EK Laitinen (10227_CR53) 2014; 11
D Liang (10227_CR58) 2016; 252
CF Tsai (10227_CR80) 2012; 27
X Shi (10227_CR72) 2019; 129
D Zhao (10227_CR90) 2017; 49
HD Platt (10227_CR65) 1994; 46
S Lang (10227_CR54) 2019; 178
J Everett (10227_CR32) 1998; 11
I Cordón (10227_CR23) 2019; 360
N Stef (10227_CR75) 2018; 54
SB Jabeur (10227_CR44) 2020; 71
P du Jardin (10227_CR27) 2015; 242
KS Shin (10227_CR73) 2005; 28
A Tsakonas (10227_CR81) 2006; 30
SV Buuren (10227_CR15) 2010; 45
JA Ohlson (10227_CR63) 1980; 18
V Bolón-Canedo (10227_CR12) 2019; 52
K Lee (10227_CR55) 2005; 29
P Bastien (10227_CR7) 2005; 48
J Yu (10227_CR87) 2019; 35
LR Gilbert (10227_CR38) 1990; 17
L Leong (10227_CR57) 2013; 40
R Blazy (10227_CR11) 2020; 50
L Zhou (10227_CR91) 2017; 50
E Kim (10227_CR46) 2019; 128
A Kumar (10227_CR52) 2019; 82
B Krawczyk (10227_CR51) 2017; 239
P Ravi Kumar (10227_CR68) 2007; 180
10227_CR25
S Jones (10227_CR45) 2017; 22
KH Wruck (10227_CR84) 1990; 27
10227_CR67
10227_CR20
MJ Kim (10227_CR49) 2010; 37
D Liang (10227_CR60) 2015; 73
GE Hinton (10227_CR40) 2006; 1554
SB Jabeur (10227_CR43) 2021; 166
SP Chatzis (10227_CR18) 2018; 112
JM Becker (10227_CR8) 2016; 34
Z Hu (10227_CR41) 2018; 83
DL Olson (10227_CR64) 2012; 52
M Daoud (10227_CR24) 2019; 97
C Cortes (10227_CR100) 1995; 20
A Sghaier (10227_CR71) 2018; 36
A Brezigar-Masten (10227_CR14) 2012; 39
S Bellini (10227_CR9) 2017; 36
Z Qawaqneh (10227_CR66) 2017; 85
Y Xia (10227_CR85) 2017; 78
F Mai (10227_CR62) 2019; 274
M Bardos (10227_CR6) 1998; 22
H Choi (10227_CR21) 2018; 110
Y Chang (10227_CR17) 2018; 73
N Stef (10227_CR77) 2018; 1516
G Wang (10227_CR83) 2014; 41
L Zhou (10227_CR93) 2017; 128
SB Jabeur (10227_CR42) 2017; 36
R Zhang (10227_CR89) 2019; 50
10227_CR34
HJ Kim (10227_CR47) 2016; 59
P Jardin (10227_CR29) 2017; 75
References_xml – volume: 166
  year: 2021
  ident: CR43
  article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2021.120658
– volume: 97
  start-page: 204
  year: 2019
  end-page: 214
  ident: CR24
  article-title: A survey of neural network-based cancer prediction models from microarray data
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2019.01.006
– volume: 39
  start-page: 10153
  issue: 11
  year: 2012
  end-page: 10159
  ident: CR14
  article-title: CART-based selection of bankruptcy predictors for the logit model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.125
– volume: 125
  start-page: 252
  year: 2021
  end-page: 260
  ident: CR78
  article-title: Management-to-staff ratio and a firm’s exit
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2020.12.027
– volume: 50
  start-page: 7
  issue: 1
  year: 2020
  end-page: 64
  ident: CR11
  article-title: Bankruptcy procedures in the post-transition economies
  publication-title: European Journal of Law and Economics
  doi: 10.1007/s10657-019-09634-5
– volume: 71
  start-page: 1161
  issue: 8
  year: 2020
  end-page: 1179
  ident: CR44
  article-title: Machine learning models and cost-sensitive decision trees for bond rating prediction
  publication-title: Journal of the Operational Research Society
  doi: 10.1080/01605682.2019.1581405
– volume: 82
  year: 2019
  ident: CR52
  article-title: A deep neural network based classifier for brain tumor diagnosis
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.105528
– volume: 73
  start-page: 289
  issue: 1
  year: 2014
  end-page: 297
  ident: CR59
  article-title: The effect of feature selection on financial distress prediction
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.10.010
– volume: 36
  start-page: 133
  issue: 2
  year: 2018
  ident: CR71
  article-title: Using partial least square discriminant analysis to distinguish between Islamic and conventional banks in the MENA region
  publication-title: Review of Financial Economics
  doi: 10.1002/rfe.1018
– volume: 28
  start-page: 127
  issue: 1
  year: 2005
  end-page: 135
  ident: CR73
  article-title: An application of support vector machines in bankruptcy prediction model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2004.08.009
– volume: 27
  start-page: 419
  issue: 2
  year: 1990
  end-page: 444
  ident: CR84
  article-title: Financial distress, reorganization, and organizational efficiency
  publication-title: Journal of Financial Economics
  doi: 10.1016/0304-405X(90)90063-6
– volume: 83
  start-page: 405
  year: 2017
  end-page: 417
  ident: CR5
  article-title: Machine learning models and bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.006
– volume: 48
  start-page: 17
  issue: 1
  year: 2005
  end-page: 46
  ident: CR7
  article-title: PLS generalised linear regression
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2004.02.005
– volume: 254
  start-page: 236
  year: 2016
  end-page: 252
  ident: CR28
  article-title: A two-stage classification technique for bankruptcy prediction
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.03.008
– volume: 112
  start-page: 353
  year: 2018
  end-page: 371
  ident: CR18
  article-title: Forecasting stock market crisis events using deep and statistical machine learning techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.06.032
– volume: 22
  start-page: 1405
  issue: 10–11
  year: 1998
  end-page: 1419
  ident: CR6
  article-title: Detecting the risk of company failure at the Banque de France
  publication-title: Journal of Banking & Finance
  doi: 10.1016/S0378-4266(98)00062-4
– ident: CR25
– volume: 40
  start-page: 5604
  issue: 14
  year: 2013
  end-page: 5620
  ident: CR57
  article-title: Predicting the determinants of the NFC-enabled mobile credit card acceptance : A neural networks approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.018
– volume: 129
  start-page: 170
  year: 2019
  end-page: 179
  ident: CR72
  article-title: A feature learning approach based on XGBoost for driving assessment and risk prediction
  publication-title: Accident Analysis & Prevention
  doi: 10.1016/j.aap.2019.05.005
– volume: 73
  start-page: 914
  year: 2018
  end-page: 920
  ident: CR17
  article-title: Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2018.09.029
– volume: 17
  start-page: 161
  issue: 1
  year: 1990
  end-page: 171
  ident: CR38
  article-title: Predicting bankruptcy for firms in financial distress
  publication-title: Journal of Business Finance & Accounting
  doi: 10.1111/j.1468-5957.1990.tb00555.x
– volume: 1554
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: CR40
  article-title: Communicated by Yann Le Cun A fast learning algorithm for deep belief nets 500 units 500 units
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 38
  start-page: 8336
  issue: 7
  year: 2011
  end-page: 8342
  ident: CR86
  article-title: Using partial least squares and support vector machines for bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.01.021
– volume: 239
  start-page: 39
  year: 2017
  end-page: 57
  ident: CR51
  article-title: A survey on data preprocessing for data stream mining: Current status and future directions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.078
– volume: 36
  start-page: 164
  year: 2017
  end-page: 171
  ident: CR9
  article-title: A structural equation model of impulse buying behaviour in grocery retailing
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2017.02.001
– volume: 178
  start-page: 48
  year: 2019
  end-page: 50
  ident: CR54
  article-title: WekaDeeplearning4j : A deep learning package for Weka based on
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.04.013
– volume: 80
  start-page: 57
  year: 2019
  end-page: 79
  ident: CR88
  article-title: Novel framework for image attribute annotation with gene selection XGBoost algorithm and relative attribute model
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.03.017
– volume: 104
  start-page: 38
  year: 2017
  end-page: 48
  ident: CR50
  article-title: Decision support from financial disclosures with deep neural networks and transfer learning
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2017.10.001
– ident: CR67
– volume: 35
  start-page: 2749
  issue: 16
  year: 2019
  end-page: 2756
  ident: CR87
  article-title: PredGly: Predicting lysine glycation sites for Homo sapiens based on XGboost feature optimization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1043
– volume: 34
  start-page: 606
  issue: 6
  year: 2016
  end-page: 617
  ident: CR8
  article-title: Accounting for sampling weights in PLS path modeling: Simulations and empirical examples
  publication-title: European Management Journal
  doi: 10.1016/j.emj.2016.06.009
– volume: 49
  start-page: 325
  issue: 2
  year: 2017
  end-page: 341
  ident: CR90
  article-title: An effective computational model for bankruptcy prediction using kernel extreme learning machine approach
  publication-title: Computational Economics
  doi: 10.1007/s10614-016-9562-7
– volume: 12
  start-page: 40
  issue: 1
  year: 2016
  end-page: 52
  ident: CR33
  article-title: Applying a probabilistic neural network to hotel bankruptcy prediction
  publication-title: Tourism & Management Studies
  doi: 10.18089/tms.2016.12104
– volume: 46
  start-page: 113
  issue: 2
  year: 1994
  end-page: 127
  ident: CR65
  article-title: Business cycle effects on state corporate failure rates
  publication-title: Journal of Economics and Business
  doi: 10.1016/0148-6195(94)90005-1
– volume: 73
  start-page: 289
  issue: 1
  year: 2015
  end-page: 297
  ident: CR60
  article-title: The effect of feature selection on financial distress prediction
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.10.010
– ident: CR200
– volume: 59
  start-page: 226
  year: 2016
  end-page: 234
  ident: CR47
  article-title: Optimization of cluster-based evolutionary undersampling for the artificial neural networks in corporate bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.04.027
– volume: 41
  start-page: 2353
  issue: 5
  year: 2014
  end-page: 2361
  ident: CR83
  article-title: An improved boosting based on feature selection for corporate bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.09.033
– volume: 138
  year: 2019
  ident: CR74
  article-title: Data analytic approach for bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.07.033
– volume: 36
  start-page: 197
  year: 2017
  end-page: 202
  ident: CR42
  article-title: Bankruptcy prediction using Partial Least Squares Logistic Regression
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2017.02.005
– volume: 83
  start-page: 134
  year: 2018
  end-page: 149
  ident: CR41
  article-title: Deep learning for image-based cancer detection and diagnosis—A survey
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.05.014
– volume: 128
  start-page: 214
  year: 2019
  end-page: 224
  ident: CR46
  article-title: Champion-challenger analysis for credit card fraud detection : Hybrid ensemble and deep learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.03.042
– volume: 29
  start-page: 1
  issue: 1
  year: 2005
  end-page: 16
  ident: CR55
  article-title: A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.01.004
– volume: 360
  start-page: 1
  year: 2019
  end-page: 13
  ident: CR23
  article-title: Smartdata : Data preprocessing to achieve smart data in R
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.006
– volume: 180
  start-page: 1
  issue: 1
  year: 2007
  end-page: 28
  ident: CR68
  article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques—A review
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.043
– volume: 23
  start-page: 823
  issue: 8
  year: 2010
  end-page: 831
  ident: CR69
  article-title: Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2010.05.007
– volume: 54
  start-page: 1245
  issue: 3
  year: 2013
  end-page: 1255
  ident: CR70
  article-title: Partial least square discriminant analysis for bankruptcy prediction
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2012.11.015
– volume: 50
  start-page: 158
  year: 2019
  end-page: 167
  ident: CR89
  article-title: Feature selection with multi-view data: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.019
– volume: 30
  start-page: 394
  year: 2013
  end-page: 419
  ident: CR39
  article-title: Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables
  publication-title: International Review of Financial Analysis
  doi: 10.1016/j.irfa.2013.02.013
– volume: 101
  start-page: 885
  year: 2019
  end-page: 896
  ident: CR22
  article-title: Anticipating bank distress in the Eurozone: An extreme gradient boosting approach
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2018.11.015
– volume: 252
  start-page: 561
  issue: 2
  year: 2016
  end-page: 572
  ident: CR58
  article-title: Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.01.012
– volume: 1516
  start-page: 1
  year: 2018
  end-page: 20
  ident: CR77
  article-title: The bankruptcy prediction power of new entrants
  publication-title: International Journal of the Economics of Business
  doi: 10.1080/13571516.2018.1455389
– volume: 128
  start-page: 301
  year: 2019
  end-page: 315
  ident: CR4
  article-title: Integration of unsupervised and supervised machine learning algorithms for credit risk assessment
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.02.033
– volume: 45
  start-page: 1
  year: 2010
  end-page: 68
  ident: CR15
  article-title: Mice: Multivariate imputation by chained equations in R
  publication-title: Journal of Statistical Software
– volume: 23
  start-page: 589
  issue: 4
  year: 1968
  end-page: 609
  ident: CR1
  article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1968.tb00843.x
– volume: 241
  start-page: 236
  issue: 1
  year: 2015
  end-page: 247
  ident: CR37
  article-title: Prediction of financial distress: An empirical study of listed Chinese companies using data mining
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.08.016
– volume: 50
  start-page: 69
  issue: 1
  year: 2017
  end-page: 94
  ident: CR91
  article-title: AdaBoost models for corporate bankruptcy prediction with missing data
  publication-title: Computational Economics
  doi: 10.1007/s10614-016-9581-4
– volume: 221
  start-page: 378
  issue: 2
  year: 2012
  end-page: 396
  ident: CR31
  article-title: Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.04.006
– volume: 73
  start-page: 2047
  issue: 10–12
  year: 2010
  end-page: 2060
  ident: CR26
  article-title: Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.034
– volume: 22
  start-page: 120
  issue: 2
  year: 2009
  end-page: 127
  ident: CR79
  article-title: Feature selection in bankruptcy prediction
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2008.08.002
– volume: 85
  start-page: 52
  year: 2015
  end-page: 61
  ident: CR92
  article-title: The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.04.017
– volume: 274
  start-page: 743
  issue: 2
  year: 2019
  end-page: 758
  ident: CR62
  article-title: Deep learning models for bankruptcy prediction using textual disclosures
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.10.024
– volume: 27
  start-page: 333
  year: 2012
  end-page: 342
  ident: CR80
  article-title: Simple instance selection for bankruptcy prediction
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2011.09.017
– volume: 1
  start-page: 9
  issue: 1
  year: 2016
  ident: CR36
  article-title: Big data preprocessing: Methods and prospects
  publication-title: Big Data Analytics
  doi: 10.1186/s41044-016-0014-0
– volume: 36
  start-page: 7710
  issue: 4
  year: 2009
  end-page: 7720
  ident: CR19
  article-title: Alternative diagnosis of corporate bankruptcy: A neuro fuzzy approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.09.023
– volume: 78
  start-page: 225
  year: 2017
  end-page: 241
  ident: CR85
  article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.02.017
– volume: 22
  start-page: 1366
  issue: 3
  year: 2017
  end-page: 1422
  ident: CR45
  article-title: Corporate bankruptcy prediction: a high dimensional analysis
  publication-title: Review of Accounting Studies
  doi: 10.1007/s11142-017-9407-1
– volume: 37
  start-page: 3373
  issue: 4
  year: 2010
  end-page: 3379
  ident: CR49
  article-title: Ensemble with neural networks for bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.10.012
– volume: 85
  start-page: 76
  year: 2017
  end-page: 86
  ident: CR66
  article-title: Age and gender classification from speech and face images by jointly fine-tuned deep neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.05.037
– volume: 54
  start-page: 85
  year: 2018
  end-page: 94
  ident: CR75
  article-title: Bankruptcy and the difficulty of firing
  publication-title: International Review of Law and Economics
  doi: 10.1016/j.irle.2017.11.002
– start-page: 581
  year: 1985
  end-page: 591
  ident: CR94
  article-title: Partial least squares
  publication-title: Encyclopedia of statistical sciences
– volume: 52
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR12
  article-title: Ensembles for feature selection: A review and future trends
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.008
– volume: 75
  start-page: 25
  year: 2017
  end-page: 43
  ident: CR29
  article-title: Dynamics of firm financial evolution and bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.01.016
– start-page: 546
  year: 2019
  end-page: 560
  ident: CR10
  article-title: Performance measures for binary classification
  publication-title: Encyclopedia of Bioinformatics and Computational Biology
  doi: 10.1016/B978-0-12-809633-8.20351-8
– volume: 11
  start-page: 212
  issue: 4
  year: 2014
  end-page: 222
  ident: CR53
  article-title: Are firm failure processes different? Evidence from seven countries
  publication-title: Investment Management and Financial Innovations
– volume: 61
  start-page: 304
  year: 2019
  end-page: 323
  ident: CR16
  article-title: Predicting failure in the U. S. banking sector : An extreme gradient boosting approach
  publication-title: International Review of Economics and Finance
  doi: 10.1016/j.iref.2018.03.008
– volume: 105
  start-page: 175
  year: 2018
  end-page: 181
  ident: CR3
  article-title: End-to-end neural network architecture for fraud scoring in card payments
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2017.08.024
– volume: 40
  start-page: 2941
  issue: 8
  year: 2013
  end-page: 2946
  ident: CR56
  article-title: A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.12.009
– volume: 30
  start-page: 449
  issue: 3
  year: 2006
  end-page: 461
  ident: CR81
  article-title: Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.10.009
– volume: 52
  start-page: 464
  issue: 2
  year: 2012
  end-page: 473
  ident: CR64
  article-title: Comparative analysis of data mining methods for bankruptcy prediction
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2011.10.007
– volume: 80
  start-page: 579
  year: 2019
  end-page: 591
  ident: CR2
  article-title: Boosted neural network ensemble classification for lung cancer disease diagnosis
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.04.031
– ident: CR13
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR100
  article-title: Support-vector networks
  publication-title: Machine learning
  doi: 10.1007/BF00994018
– volume: 242
  start-page: 286
  issue: 1
  year: 2015
  end-page: 303
  ident: CR27
  article-title: Bankruptcy prediction using terminal failure processes
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.09.059
– volume: 128
  start-page: 93
  year: 2017
  end-page: 101
  ident: CR93
  article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.05.003
– volume: 98
  start-page: 1
  year: 2016
  end-page: 29
  ident: CR35
  article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.006
– ident: CR34
– volume: 11
  start-page: 371
  issue: 4
  year: 1998
  end-page: 390
  ident: CR32
  article-title: Small business failure and external risk factors
  publication-title: Small Business Economics
  doi: 10.1023/A:1008065527282
– volume: 107
  start-page: 64
  year: 2018
  end-page: 77
  ident: CR30
  article-title: Failure pattern-based ensembles applied to bankruptcy forecasting
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2018.01.003
– volume: 18
  start-page: 109
  issue: 1
  year: 1980
  ident: CR63
  article-title: Financial ratios and the probabilistic prediction of bankruptcy
  publication-title: Journal of Accounting Research
  doi: 10.2307/2490395
– volume: 2672
  start-page: 35
  issue: 47
  year: 2018
  end-page: 45
  ident: CR82
  article-title: Machine learning travel mode choices: Comparing the performance of an extreme gradient boosting model with a multinomial logit model
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.1177/0361198118773556
– volume: 110
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR21
  article-title: Predicting financial distress of contractors in the construction industry using ensemble learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.05.026
– year: 2021
  ident: CR76
  article-title: Institutions and corporate financial distress in Central and Eastern Europe
  publication-title: European Journal of Law and Economics
  doi: 10.1007/s10657-021-09702-9
– ident: CR20
– volume: 41
  start-page: 2472
  issue: 5
  year: 2014
  end-page: 2483
  ident: CR61
  article-title: Novel feature selection methods to financial distress prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.09.047
– volume: 75
  start-page: 25
  year: 2017
  ident: 10227_CR29
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.01.016
– year: 2021
  ident: 10227_CR76
  publication-title: European Journal of Law and Economics
  doi: 10.1007/s10657-021-09702-9
– volume: 40
  start-page: 5604
  issue: 14
  year: 2013
  ident: 10227_CR57
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.018
– volume: 50
  start-page: 69
  issue: 1
  year: 2017
  ident: 10227_CR91
  publication-title: Computational Economics
  doi: 10.1007/s10614-016-9581-4
– volume: 73
  start-page: 289
  issue: 1
  year: 2015
  ident: 10227_CR60
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.10.010
– volume: 125
  start-page: 252
  year: 2021
  ident: 10227_CR78
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2020.12.027
– ident: 10227_CR20
  doi: 10.1145/2939672.2939785
– volume: 85
  start-page: 52
  year: 2015
  ident: 10227_CR92
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.04.017
– volume: 52
  start-page: 1
  year: 2019
  ident: 10227_CR12
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.008
– volume: 34
  start-page: 606
  issue: 6
  year: 2016
  ident: 10227_CR8
  publication-title: European Management Journal
  doi: 10.1016/j.emj.2016.06.009
– volume: 274
  start-page: 743
  issue: 2
  year: 2019
  ident: 10227_CR62
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.10.024
– volume: 82
  year: 2019
  ident: 10227_CR52
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.105528
– volume: 97
  start-page: 204
  year: 2019
  ident: 10227_CR24
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2019.01.006
– volume: 36
  start-page: 164
  year: 2017
  ident: 10227_CR9
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2017.02.001
– volume: 36
  start-page: 7710
  issue: 4
  year: 2009
  ident: 10227_CR19
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.09.023
– volume: 1
  start-page: 9
  issue: 1
  year: 2016
  ident: 10227_CR36
  publication-title: Big Data Analytics
  doi: 10.1186/s41044-016-0014-0
– volume: 166
  year: 2021
  ident: 10227_CR43
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2021.120658
– volume: 36
  start-page: 133
  issue: 2
  year: 2018
  ident: 10227_CR71
  publication-title: Review of Financial Economics
  doi: 10.1002/rfe.1018
– volume: 101
  start-page: 885
  year: 2019
  ident: 10227_CR22
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2018.11.015
– volume: 104
  start-page: 38
  year: 2017
  ident: 10227_CR50
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2017.10.001
– volume: 112
  start-page: 353
  year: 2018
  ident: 10227_CR18
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.06.032
– volume: 22
  start-page: 1366
  issue: 3
  year: 2017
  ident: 10227_CR45
  publication-title: Review of Accounting Studies
  doi: 10.1007/s11142-017-9407-1
– volume: 80
  start-page: 579
  year: 2019
  ident: 10227_CR2
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.04.031
– volume: 27
  start-page: 333
  year: 2012
  ident: 10227_CR80
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2011.09.017
– volume: 221
  start-page: 378
  issue: 2
  year: 2012
  ident: 10227_CR31
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.04.006
– volume: 85
  start-page: 76
  year: 2017
  ident: 10227_CR66
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.05.037
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10227_CR100
  publication-title: Machine learning
  doi: 10.1007/BF00994018
– volume: 54
  start-page: 1245
  issue: 3
  year: 2013
  ident: 10227_CR70
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2012.11.015
– volume: 241
  start-page: 236
  issue: 1
  year: 2015
  ident: 10227_CR37
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.08.016
– volume: 128
  start-page: 301
  year: 2019
  ident: 10227_CR4
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.02.033
– volume: 73
  start-page: 914
  year: 2018
  ident: 10227_CR17
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2018.09.029
– volume: 83
  start-page: 134
  year: 2018
  ident: 10227_CR41
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.05.014
– volume: 48
  start-page: 17
  issue: 1
  year: 2005
  ident: 10227_CR7
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2004.02.005
– volume: 29
  start-page: 1
  issue: 1
  year: 2005
  ident: 10227_CR55
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.01.004
– volume: 242
  start-page: 286
  issue: 1
  year: 2015
  ident: 10227_CR27
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.09.059
– volume: 254
  start-page: 236
  year: 2016
  ident: 10227_CR28
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.03.008
– volume: 18
  start-page: 109
  issue: 1
  year: 1980
  ident: 10227_CR63
  publication-title: Journal of Accounting Research
  doi: 10.2307/2490395
– volume: 11
  start-page: 212
  issue: 4
  year: 2014
  ident: 10227_CR53
  publication-title: Investment Management and Financial Innovations
– volume: 52
  start-page: 464
  issue: 2
  year: 2012
  ident: 10227_CR64
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2011.10.007
– volume: 41
  start-page: 2353
  issue: 5
  year: 2014
  ident: 10227_CR83
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.09.033
– volume: 23
  start-page: 823
  issue: 8
  year: 2010
  ident: 10227_CR69
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2010.05.007
– volume: 252
  start-page: 561
  issue: 2
  year: 2016
  ident: 10227_CR58
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.01.012
– volume: 40
  start-page: 2941
  issue: 8
  year: 2013
  ident: 10227_CR56
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.12.009
– volume: 22
  start-page: 1405
  issue: 10–11
  year: 1998
  ident: 10227_CR6
  publication-title: Journal of Banking & Finance
  doi: 10.1016/S0378-4266(98)00062-4
– ident: 10227_CR34
  doi: 10.1214/009053606000000795
– volume: 17
  start-page: 161
  issue: 1
  year: 1990
  ident: 10227_CR38
  publication-title: Journal of Business Finance & Accounting
  doi: 10.1111/j.1468-5957.1990.tb00555.x
– start-page: 546
  volume-title: Encyclopedia of Bioinformatics and Computational Biology
  year: 2019
  ident: 10227_CR10
  doi: 10.1016/B978-0-12-809633-8.20351-8
– volume: 1554
  start-page: 1527
  year: 2006
  ident: 10227_CR40
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10227_CR25
  doi: 10.1145/2830556.2830562
– volume: 239
  start-page: 39
  year: 2017
  ident: 10227_CR51
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.078
– volume: 36
  start-page: 197
  year: 2017
  ident: 10227_CR42
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2017.02.005
– volume: 1516
  start-page: 1
  year: 2018
  ident: 10227_CR77
  publication-title: International Journal of the Economics of Business
  doi: 10.1080/13571516.2018.1455389
– volume: 30
  start-page: 449
  issue: 3
  year: 2006
  ident: 10227_CR81
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.10.009
– volume: 54
  start-page: 85
  year: 2018
  ident: 10227_CR75
  publication-title: International Review of Law and Economics
  doi: 10.1016/j.irle.2017.11.002
– volume: 180
  start-page: 1
  issue: 1
  year: 2007
  ident: 10227_CR68
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.043
– volume: 129
  start-page: 170
  year: 2019
  ident: 10227_CR72
  publication-title: Accident Analysis & Prevention
  doi: 10.1016/j.aap.2019.05.005
– volume: 105
  start-page: 175
  year: 2018
  ident: 10227_CR3
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2017.08.024
– volume: 59
  start-page: 226
  year: 2016
  ident: 10227_CR47
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.04.027
– volume: 50
  start-page: 7
  issue: 1
  year: 2020
  ident: 10227_CR11
  publication-title: European Journal of Law and Economics
  doi: 10.1007/s10657-019-09634-5
– volume: 50
  start-page: 158
  year: 2019
  ident: 10227_CR89
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.019
– volume: 78
  start-page: 225
  year: 2017
  ident: 10227_CR85
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.02.017
– volume: 80
  start-page: 57
  year: 2019
  ident: 10227_CR88
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.03.017
– volume: 360
  start-page: 1
  year: 2019
  ident: 10227_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.006
– volume: 30
  start-page: 394
  year: 2013
  ident: 10227_CR39
  publication-title: International Review of Financial Analysis
  doi: 10.1016/j.irfa.2013.02.013
– volume: 35
  start-page: 2749
  issue: 16
  year: 2019
  ident: 10227_CR87
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1043
– start-page: 581
  volume-title: Encyclopedia of statistical sciences
  year: 1985
  ident: 10227_CR94
– volume: 45
  start-page: 1
  year: 2010
  ident: 10227_CR15
  publication-title: Journal of Statistical Software
– volume: 46
  start-page: 113
  issue: 2
  year: 1994
  ident: 10227_CR65
  publication-title: Journal of Economics and Business
  doi: 10.1016/0148-6195(94)90005-1
– volume: 49
  start-page: 325
  issue: 2
  year: 2017
  ident: 10227_CR90
  publication-title: Computational Economics
  doi: 10.1007/s10614-016-9562-7
– volume: 98
  start-page: 1
  year: 2016
  ident: 10227_CR35
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.006
– volume: 128
  start-page: 214
  year: 2019
  ident: 10227_CR46
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.03.042
– volume: 128
  start-page: 93
  year: 2017
  ident: 10227_CR93
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.05.003
– volume: 41
  start-page: 2472
  issue: 5
  year: 2014
  ident: 10227_CR61
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.09.047
– volume: 73
  start-page: 2047
  issue: 10–12
  year: 2010
  ident: 10227_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.034
– volume: 110
  start-page: 1
  year: 2018
  ident: 10227_CR21
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.05.026
– volume: 71
  start-page: 1161
  issue: 8
  year: 2020
  ident: 10227_CR44
  publication-title: Journal of the Operational Research Society
  doi: 10.1080/01605682.2019.1581405
– volume: 37
  start-page: 3373
  issue: 4
  year: 2010
  ident: 10227_CR49
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.10.012
– volume: 22
  start-page: 120
  issue: 2
  year: 2009
  ident: 10227_CR79
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2008.08.002
– volume: 83
  start-page: 405
  year: 2017
  ident: 10227_CR5
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.006
– ident: 10227_CR13
  doi: 10.1016/j.neunet.2019.07.012
– volume: 107
  start-page: 64
  year: 2018
  ident: 10227_CR30
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2018.01.003
– volume: 178
  start-page: 48
  year: 2019
  ident: 10227_CR54
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.04.013
– volume: 39
  start-page: 10153
  issue: 11
  year: 2012
  ident: 10227_CR14
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.125
– volume: 61
  start-page: 304
  year: 2019
  ident: 10227_CR16
  publication-title: International Review of Economics and Finance
  doi: 10.1016/j.iref.2018.03.008
– volume: 73
  start-page: 289
  issue: 1
  year: 2014
  ident: 10227_CR59
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.10.010
– volume: 27
  start-page: 419
  issue: 2
  year: 1990
  ident: 10227_CR84
  publication-title: Journal of Financial Economics
  doi: 10.1016/0304-405X(90)90063-6
– volume: 12
  start-page: 40
  issue: 1
  year: 2016
  ident: 10227_CR33
  publication-title: Tourism & Management Studies
  doi: 10.18089/tms.2016.12104
– volume: 138
  year: 2019
  ident: 10227_CR74
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.07.033
– volume: 23
  start-page: 589
  issue: 4
  year: 1968
  ident: 10227_CR1
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1968.tb00843.x
– volume: 11
  start-page: 371
  issue: 4
  year: 1998
  ident: 10227_CR32
  publication-title: Small Business Economics
  doi: 10.1023/A:1008065527282
– ident: 10227_CR200
– ident: 10227_CR67
– volume: 2672
  start-page: 35
  issue: 47
  year: 2018
  ident: 10227_CR82
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.1177/0361198118773556
– volume: 38
  start-page: 8336
  issue: 7
  year: 2011
  ident: 10227_CR86
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.01.021
– volume: 28
  start-page: 127
  issue: 1
  year: 2005
  ident: 10227_CR73
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2004.08.009
SSID ssj0005122
Score 2.5995047
Snippet The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When...
The emergence of big data, information technology, and social media provides an enormous amount of information about firms' current financial health. When...
SourceID hal
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 715
SubjectTerms Algorithms
Bankruptcy
Behavioral/Experimental Economics
Big Data
Classification
Computer Appl. in Social and Behavioral Sciences
Data mining
Decision makers
Discriminant analysis
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Feature selection
Humanities and Social Sciences
Information technology
Machine learning
Math Applications in Computer Science
Medical decision making
Operations Research/Decision Theory
Prediction models
Predictions
Social media
Specification
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9-ob74MRWnU4IIPmhh7dqledzEqTDG8GPsRUKapttQO2m7gf-9d127TVFBX9v0CLnL3e96X4ScBszU2JHacJRWhu36ZcPzJCjDCleSK7A6aR13p8laLbfb5e2sKCzOs93zkGSqqeeK3cCUGJhSgF4KM8DnWQZz5-LAhrv7ziyxw5zEDjisYQCAslKZ72l8MkeZUl7sY07kHOD8EiNNTU9j83-b3iIbGdSktYlsbJMFHRbIap7pXiBreVFyvEOe6jJ8jkZviXqn7QiDN8gwimt7FDAi7V7Xh8M4obWX3jAaJP1XKkOfdsDTxtorevua4niQIIqgchRpOtfpcJc8Nq4eLm-MbPKCoRxuJYbJpRMwq-rIsqN9Hwwp42DY3aofBJwHrm1py9agKiTTUntO1cXcGk8DPFOW5-vKHlkKh6HeJxQQSpl5Nle6CuBQBZxJnAmobOn4GPMpEjNngFBZW3KcjvEiZg2V8QwFnKFIz1DAN-fTb94mTTl-XX2GfBV4Y4GyklnhAewPe1-JGquAm2GXK1aRnADrpySx8_ZNrSnwGf49d23HHAO5Ui4ZIrvvsbAY4zg7B2lc5JIwe_3z5g7-tvyQrOO8-0naeIksJdFIH5EVNU4GcXSc3oMPooP9_Q
  priority: 102
  providerName: Springer Nature
Title Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering
URI https://link.springer.com/article/10.1007/s10614-021-10227-1
https://www.proquest.com/docview/2779961832
https://ucly.hal.science/hal-05238451
Volume 61
WOSCitedRecordID wos000745576500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RDQEvfAwQHaOyEBIPYJHPOn5C7bQPxKiqAaVDQpbjOBtiS7skncR_z13qrGMSe-HFUhLbsXTnu599XwCvcuFbykjNY2MNj5LM42mqURiG0mhpUOs0cdyTAzEaJdOpHLsLt8q5VbYysRHU2czQHfm7QAhJ1UnC4P38nFPVKLKuuhIaHVgnZEMufZ-87ZWLh7-0IshAcIFQyAXNuNA5VEycHBTozCO4_5dicuK5c0LekVeg5zVraaOEdh_87_Ifwn0HP9lgyS-P4JYtNuBO6_2-AXfbQOXqMfwY6uJXuZjX5jcbl2TQISIy6nvMEDey6d5wNqtqNjg9xl_VJ2dMFxmb4Omb4rHYh7MG2yNXMQKai9KyK9kPn8DX3Z0v2_vcVWPgJpZBzX2p41wE_Vh7sc0yVK5CorJP-lmeS5knUWCDyKL40MJqm8b9hPxtUouQzQRpZsOnsFbMCvsMGKIWT6SRNLaPgNHkUmiqE2giHWdkB-qC35JCGZeqnCpmnKpVkmUin0LyqYZ8Cse8uRwzXybquLH3a6Kwol2MMxvtghFwfZQPSw1EiEePyAuDLrxEJrickrJx7w8OFL2jG_Ukiv0LnG6rpbpyMqBSK5J34W3LN6vP_17c5s2zPYd7VPN-6Tq-BWt1ubAv4La5qH9WZQ864ttRD9aHO6PxIT59FLzX7Apsx_F3bA8_T_4Ar8cNzA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BVEuPAqIQIEVAnGAFfHaznoPCKVASZQQ9VCqXNCyXq9bROoE2ynqn-I3MuNHU5DorQeutnfkxzcz33peAM9S6TnqSM1D6ywPoqTL49igMfSVNcqi16nquA_GcjKJplO1twa_2loYSqtsbWJlqJO5pX_kr4WUiqaT-OLt4genqVEUXW1HaNSwGLnTn7hlK94M3-P3fS7E7of9dwPeTBXgNlSi5J4yYSpFLzTd0CUJOgmp0GlFvSRNlUqjQDgROFQDI51xcdiLKG8kdkg9rIgT56PcdbgS-JEkvRpJvkop8eqohRKSS6ReTZFOU6qHjpBTQgTtsST3_nCEjTtYP6JszHNU96_obOX0dm_-b6_rFtxo6DXr1_pwG9ZctgXX2uz-LdhsC7GLO_Blx2Tf8-WitKdsL6eAFYGU0bWHDHkxm37cmc-LkvVnh_ho5dExM1nCDgzqbDxzbHhc7V1QaxgR6WXu2Lnujnfh86U86D3YyOaZuw8MWVlXxoGyroeE2KZKGpqDaAMTJhTn6oDXfnptm1bsNBFkpldNpAkuGuGiK7hoXPPybM2ibkRy4dUvCFGarBRKtqYptsD7o35fui993FoFXV904CmC7kwkdRsf9MeajlHEIApC7wTFbbco042NK_QKYh141eJ0dfrfN_fgYmlPYHOw_2msx8PJ6CFcF8gq6zT5bdgo86V7BFftSfmtyB9X2sfg62Xj9zfwwGYt
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BRUuPAqogQIrBOIAq8ZrO-s9IJRSQqNGUQ5QRZXQsl6v24rUCbFT1L_Gr2PGj6Yg0VsPXP0Y2ck3L883MwAvU-k5mkjNQ-ssD6KkzePYoDH0lTXKotcp-7gPBnI4jMZjNVqBX00vDNEqG5tYGupkaukb-baQUtF2El9spzUtYrTbez_7wWmDFFVam3UaFUT23flPTN_yd_1d_K9fCdH7-PnDHq83DHAbKlFwT5kwlaITmnbokgQdhlTowKJOkqZKpVEgnAgcqoSRzrg47ETEIYkdhiFWxInzUe4q3JCYYxKdcBQeLuklXlXBUEJyiWFY3bBTt-2hU-REjqB8S3LvD6dYu4bVY2JmXgp7_6rUlg6wd_d__unuwZ067GbdSk_uw4rLNmC9Yf1vwK2mQTt_AF93TPZ9vpgV9pyN5lTIIvAyuvaIYbzMxp92ptO8YN3JEb5acXzKTJawA4O6HE8c65-WOQ1qE6MAezF37NLUx4fw5Vpe9BGsZdPMbQLDaK0t40BZ18FA2aZKGtqPaAMTJlT_aoHXwEDbekQ7bQqZ6OVwaYKORujoEjoa73lzcc-sGlBy5dWvCV2arBdKtqZuwsDnozlguit9TLmCti9a8AIBeCGSppDvdQeajlElIQpC7wzFbTWI07Xty_USbi1422B2efrfD_f4amnPYR1hqwf94f4TuC0w2KzY81uwVswX7inctGfFST5_Vioig2_XDd_fUPtvUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bankruptcy+Prediction+using+the+XGBoost+Algorithm+and+Variable+Importance+Feature+Engineering&rft.jtitle=Computational+economics&rft.au=Ben+Jabeur%2C+Sami&rft.au=Stef%2C+Nicolae&rft.au=Carmona%2C+Pedro&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0927-7099&rft.eissn=1572-9974&rft.volume=61&rft.issue=2&rft.spage=715&rft.epage=741&rft_id=info:doi/10.1007%2Fs10614-021-10227-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7099&client=summon