Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering
The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model wi...
Saved in:
| Published in: | Computational economics Vol. 61; no. 2; pp. 715 - 741 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2023
Springer Springer Nature B.V Springer Verlag |
| Subjects: | |
| ISSN: | 0927-7099, 1572-9974 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model with a high quality of the estimated output. The feature selection technique can be used to select significant variables without lowering the quality of performance classification. In addition, one of the main goals of bankruptcy prediction is to identify the model specification with the strongest explanatory power. Building on this premise, an improved XGBoost algorithm based on feature importance selection (FS-XGBoost) is proposed. FS-XGBoost is compared with seven machine learning algorithms based on three well-known feature selection methods that are frequently used in bankruptcy prediction: stepwise discriminant analysis, stepwise logistic regression, and partial least squares discriminant analysis (PLS-DA). Our experimental results confirm that FS-XGBoost provides more accurate predictions, outperforming traditional feature selection methods. |
|---|---|
| AbstractList | The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model with a high quality of the estimated output. The feature selection technique can be used to select significant variables without lowering the quality of performance classification. In addition, one of the main goals of bankruptcy prediction is to identify the model specification with the strongest explanatory power. Building on this premise, an improved XGBoost algorithm based on feature importance selection (FS-XGBoost) is proposed. FS-XGBoost is compared with seven machine learning algorithms based on three well-known feature selection methods that are frequently used in bankruptcy prediction: stepwise discriminant analysis, stepwise logistic regression, and partial least squares discriminant analysis (PLS-DA). Our experimental results confirm that FS-XGBoost provides more accurate predictions, outperforming traditional feature selection methods. The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When facing this abundance of data, decision makers must identify the crucial information to build upon an effective and operative prediction model with a high quality of the estimated output. The feature selection technique can be used to select significant variables without lowering the quality of performance classification. In addition, one of the main goals of bankruptcy prediction is to identify the model specification with the strongest explanatory power. Building on this premise, an improved XGBoost algorithm based on feature importance selection (FS-XGBoost) is proposed. FS-XGBoost is compared with seven machine learning algorithms based on three well-known feature selection methods that are frequently used in bankruptcy prediction: stepwise discriminant analysis, stepwise logistic regression, and partial least squares discriminant analysis (PLS-DA). Our experimental results confirm that FS-XGBoost provides more accurate predictions, outperforming traditional feature selection methods. L'émergence des big data, des technologies de l'information et des médias sociaux fournit une énorme quantité d'informations sur la santé financière actuelle des entreprises. Face à cette abondance de données, les décideurs doivent identifier les informations cruciales pour construire un modèle de prédiction efficace et opérationnel avec une qualité élevée des résultats estimés. La technique de sélection des caractéristiques peut être utilisée pour sélectionner des variables significatives sans diminuer la qualité de la classification des performances. En outre, l'un des principaux objectifs de la prédiction des faillites est d'identifier la spécification du modèle ayant le plus grand pouvoir explicatif. Partant de ce principe, un algorithme XGBoost amélioré basé sur la sélection de l'importance des caractéristiques (FS-XGBoost) est proposé. FS-XGBoost est comparé à sept algorithmes d'apprentissage automatique basés sur trois méthodes de sélection des caractéristiques bien connues et fréquemment utilisées dans la prédiction des faillites : l'analyse discriminante par étapes, la régression logistique par étapes et l'analyse discriminante par moindres carrés partiels (PLS-DA). Nos résultats expérimentaux confirment que FS-XGBoost fournit des prédictions plus précises, surpassant les méthodes traditionnelles de sélection des caractéristiques. |
| Audience | Academic |
| Author | Stef, Nicolae Ben Jabeur, Sami Carmona, Pedro |
| Author_xml | – sequence: 1 givenname: Sami orcidid: 0000-0002-9242-4913 surname: Ben Jabeur fullname: Ben Jabeur, Sami organization: Institute of Sustainable Business and Organizations, Sciences and Humanities Confluence Research Center - UCLY, ESDES – sequence: 2 givenname: Nicolae orcidid: 0000-0001-9471-4669 surname: Stef fullname: Stef, Nicolae email: nicolae.stef@bsb-education.com organization: Department of Accounting, Finance and Law, CEREN EA 7477, Burgundy School of Business, Université Bourgogne Franche-Comté – sequence: 3 givenname: Pedro orcidid: 0000-0002-9979-2727 surname: Carmona fullname: Carmona, Pedro organization: Department of Accounting, University of Valencia |
| BackLink | https://ucly.hal.science/hal-05238451$$DView record in HAL |
| BookMark | eNp9kc1q3DAUhUVJoZO0L9CVoKsunEiyZUnLScgfDCSLtHRThEa-nlHqkVxJLuTtK8cpgS6CFoLD-S73nnOMjnzwgNBnSk4pIeIsUdLSpiKMVpQwJir6Dq0oF6xSSjRHaEVUEQVR6gM6TumREMIpYyv089z4X3Eas33C9xE6Z7MLHk_J-R3Oe8A_rs9DSBmvh12ILu8P2PgOfzfRme0A-PYwhpiNt4CvwOQpAr70O-cBYpnwEb3vzZDg08t_gr5dXT5c3FSbu-vbi_WmslyxXFFleC9Yyw3h0HUWQCgquWy7vleqlw0D1kBNuBFgYMtbWYuWbIHVzLJtB_UJ-rrM3ZtBj9EdTHzSwTh9s97oWSOc1bLh9A8t3i-Ld4zh9wQp68cwRV_W00wIpVoqa1Zcp4trZwbQzvchR2PL6-DgbAm_d0Vfi1pK1pBnQC6AjSGlCL22Lps5zAK6QVOi56b00pQuTennpvS8EfsP_XfCm1C9QGmck4b4esYb1F_3Wqcn |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3222883 crossref_primary_10_1007_s10614_024_10579_4 crossref_primary_10_1007_s10614_024_10741_y crossref_primary_10_1016_j_memsci_2025_124274 crossref_primary_10_1145_3723157 crossref_primary_10_1007_s10614_024_10761_8 crossref_primary_10_1016_j_techfore_2024_123901 crossref_primary_10_3390_systems13090808 crossref_primary_10_1007_s11440_024_02499_2 crossref_primary_10_1109_ACCESS_2024_3424526 crossref_primary_10_7717_peerj_cs_1956 crossref_primary_10_1007_s11156_023_01192_x crossref_primary_10_1080_08839514_2022_2138124 crossref_primary_10_3390_electronics13081596 crossref_primary_10_1016_j_rsase_2025_101712 crossref_primary_10_1007_s10614_024_10690_6 crossref_primary_10_1016_j_accinf_2025_100744 crossref_primary_10_3390_su17114985 crossref_primary_10_1016_j_procs_2025_04_253 crossref_primary_10_1007_s10614_025_11074_0 crossref_primary_10_1016_j_irfa_2023_102702 crossref_primary_10_1080_17455030_2023_2226246 crossref_primary_10_3390_su17114948 crossref_primary_10_1016_j_eswa_2025_126538 crossref_primary_10_3390_rs16234576 crossref_primary_10_1016_j_procs_2024_01_141 crossref_primary_10_1016_j_scitotenv_2024_176585 crossref_primary_10_1108_CAFR_03_2024_0036 crossref_primary_10_4018_IJITSA_380659 crossref_primary_10_1038_s41598_024_68163_7 crossref_primary_10_3390_jtaer19020066 crossref_primary_10_3390_s23218841 crossref_primary_10_1016_j_eswa_2023_121008 crossref_primary_10_1109_TAI_2024_3436664 crossref_primary_10_3390_mi15070830 crossref_primary_10_1016_j_chaos_2025_116216 crossref_primary_10_1016_j_heliyon_2024_e27096 crossref_primary_10_3390_app15094724 crossref_primary_10_3390_buildings14092996 crossref_primary_10_3390_a18040225 crossref_primary_10_3390_jmse12091596 crossref_primary_10_3390_jtaer19010020 crossref_primary_10_1108_CEMJ_08_2022_0095 crossref_primary_10_1002_isaf_1521 crossref_primary_10_1016_j_multra_2025_100209 crossref_primary_10_1016_j_eswa_2024_124761 crossref_primary_10_1109_ACCESS_2024_3416838 crossref_primary_10_1142_S0219519425400457 crossref_primary_10_1080_02102412_2024_2423498 crossref_primary_10_1016_j_eswa_2024_124525 crossref_primary_10_1049_itr2_12514 crossref_primary_10_1016_j_apr_2024_102200 crossref_primary_10_22630_MIBE_2023_24_4_18 crossref_primary_10_1016_j_anl_2024_04_003 crossref_primary_10_1016_j_eswa_2025_128042 crossref_primary_10_1007_s11837_023_05773_y crossref_primary_10_1080_01446193_2024_2403553 crossref_primary_10_7717_peerj_cs_1257 crossref_primary_10_1016_j_ipm_2022_102988 crossref_primary_10_3390_info15060355 crossref_primary_10_1108_ARJ_10_2023_0304 crossref_primary_10_2478_amns_2024_2247 crossref_primary_10_1016_j_electacta_2025_146426 crossref_primary_10_1016_j_renene_2024_121085 crossref_primary_10_1007_s10614_024_10567_8 crossref_primary_10_1007_s11042_023_15353_6 crossref_primary_10_22630_MIBE_2024_25_2_6 crossref_primary_10_1080_17517575_2024_2434742 crossref_primary_10_1108_IJEBR_06_2022_0527 crossref_primary_10_1007_s42979_025_03840_6 crossref_primary_10_1007_s44443_025_00166_4 crossref_primary_10_3390_su16209093 crossref_primary_10_3390_s24041092 crossref_primary_10_3233_IDT_240687 crossref_primary_10_1080_00036846_2023_2281291 crossref_primary_10_1080_23311975_2025_2495191 crossref_primary_10_1109_ACCESS_2024_3512878 crossref_primary_10_1016_j_saa_2024_124917 crossref_primary_10_3390_computation13070172 |
| Cites_doi | 10.1016/j.techfore.2021.120658 10.1016/j.artmed.2019.01.006 10.1016/j.eswa.2012.02.125 10.1016/j.jbusres.2020.12.027 10.1007/s10657-019-09634-5 10.1080/01605682.2019.1581405 10.1016/j.asoc.2019.105528 10.1016/j.knosys.2014.10.010 10.1002/rfe.1018 10.1016/j.eswa.2004.08.009 10.1016/0304-405X(90)90063-6 10.1016/j.eswa.2017.04.006 10.1016/j.csda.2004.02.005 10.1016/j.ejor.2016.03.008 10.1016/j.eswa.2018.06.032 10.1016/S0378-4266(98)00062-4 10.1016/j.eswa.2013.04.018 10.1016/j.aap.2019.05.005 10.1016/j.asoc.2018.09.029 10.1111/j.1468-5957.1990.tb00555.x 10.1162/neco.2006.18.7.1527 10.1016/j.eswa.2011.01.021 10.1016/j.neucom.2017.01.078 10.1016/j.jretconser.2017.02.001 10.1016/j.knosys.2019.04.013 10.1016/j.asoc.2019.03.017 10.1016/j.dss.2017.10.001 10.1093/bioinformatics/bty1043 10.1016/j.emj.2016.06.009 10.1007/s10614-016-9562-7 10.18089/tms.2016.12104 10.1016/0148-6195(94)90005-1 10.1016/j.eswa.2016.04.027 10.1016/j.eswa.2013.09.033 10.1016/j.eswa.2019.07.033 10.1016/j.jretconser.2017.02.005 10.1016/j.patcog.2018.05.014 10.1016/j.eswa.2019.03.042 10.1016/j.eswa.2005.01.004 10.1016/j.neucom.2019.06.006 10.1016/j.ejor.2006.08.043 10.1016/j.knosys.2010.05.007 10.1016/j.dss.2012.11.015 10.1016/j.inffus.2018.11.019 10.1016/j.irfa.2013.02.013 10.1016/j.jbusres.2018.11.015 10.1016/j.ejor.2016.01.012 10.1080/13571516.2018.1455389 10.1016/j.eswa.2019.02.033 10.1111/j.1540-6261.1968.tb00843.x 10.1016/j.ejor.2014.08.016 10.1007/s10614-016-9581-4 10.1016/j.ejor.2012.04.006 10.1016/j.neucom.2009.11.034 10.1016/j.knosys.2008.08.002 10.1016/j.knosys.2015.04.017 10.1016/j.ejor.2018.10.024 10.1016/j.knosys.2011.09.017 10.1186/s41044-016-0014-0 10.1016/j.eswa.2008.09.023 10.1016/j.eswa.2017.02.017 10.1007/s11142-017-9407-1 10.1016/j.eswa.2009.10.012 10.1016/j.eswa.2017.05.037 10.1016/j.irle.2017.11.002 10.1016/j.inffus.2018.11.008 10.1016/j.eswa.2017.01.016 10.1016/B978-0-12-809633-8.20351-8 10.1016/j.iref.2018.03.008 10.1016/j.patrec.2017.08.024 10.1016/j.eswa.2012.12.009 10.1016/j.eswa.2005.10.009 10.1016/j.dss.2011.10.007 10.1016/j.asoc.2019.04.031 10.1007/BF00994018 10.1016/j.ejor.2014.09.059 10.1016/j.knosys.2017.05.003 10.1016/j.knosys.2015.12.006 10.1023/A:1008065527282 10.1016/j.dss.2018.01.003 10.2307/2490395 10.1177/0361198118773556 10.1016/j.eswa.2018.05.026 10.1007/s10657-021-09702-9 10.1016/j.eswa.2013.09.047 10.1145/2939672.2939785 10.1214/009053606000000795 10.1145/2830556.2830562 10.1016/j.neunet.2019.07.012 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2023 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2023 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8AO 8BJ 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FQK FRNLG F~G GNUQQ HCIFZ JBE JQ2 K60 K6~ K7- L.- M0C P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC BXJBU |
| DOI | 10.1007/s10614-021-10227-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Pharma Collection International Bibliography of the Social Sciences (IBSS) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central International Bibliography of the Social Sciences Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global (OCUL) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Business |
| EISSN | 1572-9974 |
| EndPage | 741 |
| ExternalDocumentID | oai:HAL:hal-05238451v1 A738824032 10_1007_s10614_021_10227_1 |
| GrantInformation_xml | – fundername: Spanish Ministry of Science, Innovation and Universities grantid: FEDER project PGC2018-093645-B-I00 |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3R3 3V. 4.4 406 408 409 40D 40E 41~ 5GY 5QI 5VS 67Z 6J9 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHQT ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACYUM ACZOJ ADFRT ADHHG ADHIR ADIMF ADINQ ADIYS ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN B-. BA0 BAAKF BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD EOH ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IBB IEA IHE IJ- IKXTQ IOF ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 YLTOR Z45 Z81 Z83 Z86 Z88 Z8U Z8W Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7XB 8BJ 8FK AZQEC FQK GNUQQ JBE JQ2 L.- PKEHL PQEST PQUKI PRINS Q9U 1XC BXJBU |
| ID | FETCH-LOGICAL-c592t-19a5f7265a05eddcee7918586dff99f842e24e305a7eaeb5683760be232c2bde3 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745576500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0927-7099 |
| IngestDate | Tue Oct 14 21:01:07 EDT 2025 Wed Nov 26 14:42:55 EST 2025 Sat Nov 29 10:28:53 EST 2025 Sat Nov 29 03:17:45 EST 2025 Tue Nov 18 22:32:02 EST 2025 Fri Feb 21 02:44:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Corporate failure XGBoost Bankruptcy Machine learning Apprentissage automatique Défaillance d'entreprise Faillite |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c592t-19a5f7265a05eddcee7918586dff99f842e24e305a7eaeb5683760be232c2bde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9471-4669 0000-0002-9979-2727 0000-0002-9242-4913 |
| OpenAccessLink | https://hdl.handle.net/10550/96517 |
| PQID | 2779961832 |
| PQPubID | 36414 |
| PageCount | 27 |
| ParticipantIDs | hal_primary_oai_HAL_hal_05238451v1 proquest_journals_2779961832 gale_infotracacademiconefile_A738824032 crossref_citationtrail_10_1007_s10614_021_10227_1 crossref_primary_10_1007_s10614_021_10227_1 springer_journals_10_1007_s10614_021_10227_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Computational economics |
| PublicationTitleAbbrev | Comput Econ |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V – name: Springer Verlag |
| References | Buuren, Groothuis-Oudshoorn (CR15) 2010; 45 Choi, Son, Kim (CR21) 2018; 110 Cordón, Luengo, García, Herrera, Charte (CR23) 2019; 360 Chatzis, Siakoulis, Petropoulos, Stavroulakis, Vlachogiannakis (CR18) 2018; 112 Carmona, Climent, Momparler (CR16) 2019; 61 du Jardin (CR26) 2010; 73 Bastien, Vinzi, Tenenhaus (CR7) 2005; 48 CR34 Leong, Hew, Tan, Ooi (CR57) 2013; 40 Kumar, Ramachandran, Gandomi, Patan (CR52) 2019; 82 Bolón-Canedo, Alonso-Betanzos (CR12) 2019; 52 Daoud, Mayo, Box, Zealand (CR24) 2019; 97 Bao, Lianju, Yue (CR4) 2019; 128 Hu, Tang, Wang, Zhang, Zhang, Sun (CR41) 2018; 83 Altman (CR1) 1968; 23 Stef, Jabeur (CR77) 2018; 1516 Berrar, Ranganathan, Gribskov, Nakai, Schönbach (CR10) 2019 Bardos (CR6) 1998; 22 Laitinen, Lukason, Suvas (CR53) 2014; 11 Kim, Lee, Shin, Yang, Cho, Nam (CR46) 2019; 128 Wang, Ross (CR82) 2018; 2672 Xia, Liu, Li, Liu (CR85) 2017; 78 Ander, Arévalo, Paredes, Nin (CR3) 2018; 105 Mai, Tian, Lee, Ma (CR62) 2019; 274 Chang, Chang, Wu (CR17) 2018; 73 Ravisankar, Ravi (CR69) 2010; 23 Qawaqneh, Abu, Barkana (CR66) 2017; 85 Tsai, Cheng (CR80) 2012; 27 Zhou, Lai (CR91) 2017; 50 Yang, You, Ji (CR86) 2011; 38 Jones (CR45) 2017; 22 Cortes, Vapnik (CR100) 1995; 20 du Jardin, Séverin (CR31) 2012; 221 Zhang, Nie, Li, Wei (CR89) 2019; 50 Kim, Jo, Shin (CR47) 2016; 59 Brezigar-Masten, Masten (CR14) 2012; 39 CR200 Wruck (CR84) 1990; 27 Jardin (CR30) 2018; 107 Kraus, Feuerriegel (CR50) 2017; 104 Climent, Momparler, Carmona (CR22) 2019; 101 Shi, Wong, Li, Palanisamy, Chai (CR72) 2019; 129 Yu, Shi, Zhang, Chen, Cao (CR87) 2019; 35 Blazy, Stef (CR11) 2020; 50 Sghaier, Ben Jabeur, Bannour (CR71) 2018; 36 Becker, Ismail (CR8) 2016; 34 Alzubi, Bharathikannan, Tanwar (CR2) 2019; 80 Geng, Bose, Chen (CR37) 2015; 241 Gilbert, Menon, Schwartz (CR38) 1990; 17 Everett, Watson (CR32) 1998; 11 Olson, Delen, Meng (CR64) 2012; 52 Stef, Zenou (CR78) 2021; 125 García, Ramírez-Gallego, Luengo, Benítez, Herrera (CR36) 2016; 1 Jabeur, Gharib, Mefteh-Wali, Arfi (CR43) 2021; 166 Lin, Liang, Yeh, Huang (CR61) 2014; 41 Kim, Kang (CR49) 2010; 37 Chen, Huang, Lin (CR19) 2009; 36 Hinton (CR40) 2006; 1554 Jabeur, Sadaaoui, Sghaier, Aloui (CR44) 2020; 71 CR13 Stef (CR76) 2021 Tsai (CR79) 2009; 22 Lee, Booth, Alam (CR55) 2005; 29 Ravi Kumar, Ravi (CR68) 2007; 180 Zhou, Lu, Fujita (CR92) 2015; 85 Jabeur (CR42) 2017; 36 Krawczyk, Herrera (CR51) 2017; 239 Liang, Tsai, Wu (CR60) 2015; 73 Bellini, Cardinali, Grandi (CR9) 2017; 36 Lang, Bravo-marquez, Beckham, Hall, Frank (CR54) 2019; 178 Jardin (CR28) 2016; 254 Lee, Choi (CR56) 2013; 40 Shin, Lee, Kim (CR73) 2005; 28 Fernández-Gámez, Cisneros-Ruiz, Callejón-Gil (CR33) 2016; 12 Hernandez Tinoco, Wilson (CR39) 2013; 30 Jardin (CR29) 2017; 75 Zhou, Si, Fujita (CR93) 2017; 128 Liang, Tsai, Wu (CR59) 2014; 73 Tsakonas, Dounias, Doumpos, Zopounidis (CR81) 2006; 30 CR25 Son, Hyun, Phan, Hwang (CR74) 2019; 138 Stef (CR75) 2018; 54 García, Luengo, Herrera (CR35) 2016; 98 Platt, Platt (CR65) 1994; 46 CR67 CR20 Ohlson (CR63) 1980; 18 Wang, Ma, Yang (CR83) 2014; 41 Wold, Kotz, Johnson (CR94) 1985 Zhao, Huang, Wei, Yu, Wang, Chen (CR90) 2017; 49 Zhang, Qiu, Wu, Deng, Ji, Li (CR88) 2019; 80 Liang, Lu, Tsai, Shih (CR58) 2016; 252 Serrano-cinca, Gutiérrez-nieto (CR70) 2013; 54 Barboza, Kimura, Altman (CR5) 2017; 83 du Jardin (CR27) 2015; 242 P du Jardin (10227_CR26) 2010; 73 F Climent (10227_CR22) 2019; 101 H Son (10227_CR74) 2019; 138 N Stef (10227_CR76) 2021 F Lin (10227_CR61) 2014; 41 H Zhang (10227_CR88) 2019; 80 MÁ Fernández-Gámez (10227_CR33) 2016; 12 10227_CR200 P Ravisankar (10227_CR69) 2010; 23 CF Tsai (10227_CR79) 2009; 22 S García (10227_CR36) 2016; 1 P Jardin (10227_CR30) 2018; 107 J Ander (10227_CR3) 2018; 105 W Bao (10227_CR4) 2019; 128 P Jardin (10227_CR28) 2016; 254 H Wold (10227_CR94) 1985 C Serrano-cinca (10227_CR70) 2013; 54 M Hernandez Tinoco (10227_CR39) 2013; 30 HJ Chen (10227_CR19) 2009; 36 L Zhou (10227_CR92) 2015; 85 D Liang (10227_CR59) 2014; 73 R Geng (10227_CR37) 2015; 241 JA Alzubi (10227_CR2) 2019; 80 P du Jardin (10227_CR31) 2012; 221 F Barboza (10227_CR5) 2017; 83 S Lee (10227_CR56) 2013; 40 N Stef (10227_CR78) 2021; 125 EI Altman (10227_CR1) 1968; 23 Z Yang (10227_CR86) 2011; 38 P Carmona (10227_CR16) 2019; 61 S García (10227_CR35) 2016; 98 10227_CR13 F Wang (10227_CR82) 2018; 2672 D Berrar (10227_CR10) 2019 M Kraus (10227_CR50) 2017; 104 EK Laitinen (10227_CR53) 2014; 11 D Liang (10227_CR58) 2016; 252 CF Tsai (10227_CR80) 2012; 27 X Shi (10227_CR72) 2019; 129 D Zhao (10227_CR90) 2017; 49 HD Platt (10227_CR65) 1994; 46 S Lang (10227_CR54) 2019; 178 J Everett (10227_CR32) 1998; 11 I Cordón (10227_CR23) 2019; 360 N Stef (10227_CR75) 2018; 54 SB Jabeur (10227_CR44) 2020; 71 P du Jardin (10227_CR27) 2015; 242 KS Shin (10227_CR73) 2005; 28 A Tsakonas (10227_CR81) 2006; 30 SV Buuren (10227_CR15) 2010; 45 JA Ohlson (10227_CR63) 1980; 18 V Bolón-Canedo (10227_CR12) 2019; 52 K Lee (10227_CR55) 2005; 29 P Bastien (10227_CR7) 2005; 48 J Yu (10227_CR87) 2019; 35 LR Gilbert (10227_CR38) 1990; 17 L Leong (10227_CR57) 2013; 40 R Blazy (10227_CR11) 2020; 50 L Zhou (10227_CR91) 2017; 50 E Kim (10227_CR46) 2019; 128 A Kumar (10227_CR52) 2019; 82 B Krawczyk (10227_CR51) 2017; 239 P Ravi Kumar (10227_CR68) 2007; 180 10227_CR25 S Jones (10227_CR45) 2017; 22 KH Wruck (10227_CR84) 1990; 27 10227_CR67 10227_CR20 MJ Kim (10227_CR49) 2010; 37 D Liang (10227_CR60) 2015; 73 GE Hinton (10227_CR40) 2006; 1554 SB Jabeur (10227_CR43) 2021; 166 SP Chatzis (10227_CR18) 2018; 112 JM Becker (10227_CR8) 2016; 34 Z Hu (10227_CR41) 2018; 83 DL Olson (10227_CR64) 2012; 52 M Daoud (10227_CR24) 2019; 97 C Cortes (10227_CR100) 1995; 20 A Sghaier (10227_CR71) 2018; 36 A Brezigar-Masten (10227_CR14) 2012; 39 S Bellini (10227_CR9) 2017; 36 Z Qawaqneh (10227_CR66) 2017; 85 Y Xia (10227_CR85) 2017; 78 F Mai (10227_CR62) 2019; 274 M Bardos (10227_CR6) 1998; 22 H Choi (10227_CR21) 2018; 110 Y Chang (10227_CR17) 2018; 73 N Stef (10227_CR77) 2018; 1516 G Wang (10227_CR83) 2014; 41 L Zhou (10227_CR93) 2017; 128 SB Jabeur (10227_CR42) 2017; 36 R Zhang (10227_CR89) 2019; 50 10227_CR34 HJ Kim (10227_CR47) 2016; 59 P Jardin (10227_CR29) 2017; 75 |
| References_xml | – volume: 166 year: 2021 ident: CR43 article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2021.120658 – volume: 97 start-page: 204 year: 2019 end-page: 214 ident: CR24 article-title: A survey of neural network-based cancer prediction models from microarray data publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2019.01.006 – volume: 39 start-page: 10153 issue: 11 year: 2012 end-page: 10159 ident: CR14 article-title: CART-based selection of bankruptcy predictors for the logit model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.02.125 – volume: 125 start-page: 252 year: 2021 end-page: 260 ident: CR78 article-title: Management-to-staff ratio and a firm’s exit publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2020.12.027 – volume: 50 start-page: 7 issue: 1 year: 2020 end-page: 64 ident: CR11 article-title: Bankruptcy procedures in the post-transition economies publication-title: European Journal of Law and Economics doi: 10.1007/s10657-019-09634-5 – volume: 71 start-page: 1161 issue: 8 year: 2020 end-page: 1179 ident: CR44 article-title: Machine learning models and cost-sensitive decision trees for bond rating prediction publication-title: Journal of the Operational Research Society doi: 10.1080/01605682.2019.1581405 – volume: 82 year: 2019 ident: CR52 article-title: A deep neural network based classifier for brain tumor diagnosis publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2019.105528 – volume: 73 start-page: 289 issue: 1 year: 2014 end-page: 297 ident: CR59 article-title: The effect of feature selection on financial distress prediction publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.10.010 – volume: 36 start-page: 133 issue: 2 year: 2018 ident: CR71 article-title: Using partial least square discriminant analysis to distinguish between Islamic and conventional banks in the MENA region publication-title: Review of Financial Economics doi: 10.1002/rfe.1018 – volume: 28 start-page: 127 issue: 1 year: 2005 end-page: 135 ident: CR73 article-title: An application of support vector machines in bankruptcy prediction model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2004.08.009 – volume: 27 start-page: 419 issue: 2 year: 1990 end-page: 444 ident: CR84 article-title: Financial distress, reorganization, and organizational efficiency publication-title: Journal of Financial Economics doi: 10.1016/0304-405X(90)90063-6 – volume: 83 start-page: 405 year: 2017 end-page: 417 ident: CR5 article-title: Machine learning models and bankruptcy prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.006 – volume: 48 start-page: 17 issue: 1 year: 2005 end-page: 46 ident: CR7 article-title: PLS generalised linear regression publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2004.02.005 – volume: 254 start-page: 236 year: 2016 end-page: 252 ident: CR28 article-title: A two-stage classification technique for bankruptcy prediction publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.03.008 – volume: 112 start-page: 353 year: 2018 end-page: 371 ident: CR18 article-title: Forecasting stock market crisis events using deep and statistical machine learning techniques publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.06.032 – volume: 22 start-page: 1405 issue: 10–11 year: 1998 end-page: 1419 ident: CR6 article-title: Detecting the risk of company failure at the Banque de France publication-title: Journal of Banking & Finance doi: 10.1016/S0378-4266(98)00062-4 – ident: CR25 – volume: 40 start-page: 5604 issue: 14 year: 2013 end-page: 5620 ident: CR57 article-title: Predicting the determinants of the NFC-enabled mobile credit card acceptance : A neural networks approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.04.018 – volume: 129 start-page: 170 year: 2019 end-page: 179 ident: CR72 article-title: A feature learning approach based on XGBoost for driving assessment and risk prediction publication-title: Accident Analysis & Prevention doi: 10.1016/j.aap.2019.05.005 – volume: 73 start-page: 914 year: 2018 end-page: 920 ident: CR17 article-title: Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2018.09.029 – volume: 17 start-page: 161 issue: 1 year: 1990 end-page: 171 ident: CR38 article-title: Predicting bankruptcy for firms in financial distress publication-title: Journal of Business Finance & Accounting doi: 10.1111/j.1468-5957.1990.tb00555.x – volume: 1554 start-page: 1527 year: 2006 end-page: 1554 ident: CR40 article-title: Communicated by Yann Le Cun A fast learning algorithm for deep belief nets 500 units 500 units publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – volume: 38 start-page: 8336 issue: 7 year: 2011 end-page: 8342 ident: CR86 article-title: Using partial least squares and support vector machines for bankruptcy prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.01.021 – volume: 239 start-page: 39 year: 2017 end-page: 57 ident: CR51 article-title: A survey on data preprocessing for data stream mining: Current status and future directions publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.078 – volume: 36 start-page: 164 year: 2017 end-page: 171 ident: CR9 article-title: A structural equation model of impulse buying behaviour in grocery retailing publication-title: Journal of Retailing and Consumer Services doi: 10.1016/j.jretconser.2017.02.001 – volume: 178 start-page: 48 year: 2019 end-page: 50 ident: CR54 article-title: WekaDeeplearning4j : A deep learning package for Weka based on publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.04.013 – volume: 80 start-page: 57 year: 2019 end-page: 79 ident: CR88 article-title: Novel framework for image attribute annotation with gene selection XGBoost algorithm and relative attribute model publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2019.03.017 – volume: 104 start-page: 38 year: 2017 end-page: 48 ident: CR50 article-title: Decision support from financial disclosures with deep neural networks and transfer learning publication-title: Decision Support Systems doi: 10.1016/j.dss.2017.10.001 – ident: CR67 – volume: 35 start-page: 2749 issue: 16 year: 2019 end-page: 2756 ident: CR87 article-title: PredGly: Predicting lysine glycation sites for Homo sapiens based on XGboost feature optimization publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1043 – volume: 34 start-page: 606 issue: 6 year: 2016 end-page: 617 ident: CR8 article-title: Accounting for sampling weights in PLS path modeling: Simulations and empirical examples publication-title: European Management Journal doi: 10.1016/j.emj.2016.06.009 – volume: 49 start-page: 325 issue: 2 year: 2017 end-page: 341 ident: CR90 article-title: An effective computational model for bankruptcy prediction using kernel extreme learning machine approach publication-title: Computational Economics doi: 10.1007/s10614-016-9562-7 – volume: 12 start-page: 40 issue: 1 year: 2016 end-page: 52 ident: CR33 article-title: Applying a probabilistic neural network to hotel bankruptcy prediction publication-title: Tourism & Management Studies doi: 10.18089/tms.2016.12104 – volume: 46 start-page: 113 issue: 2 year: 1994 end-page: 127 ident: CR65 article-title: Business cycle effects on state corporate failure rates publication-title: Journal of Economics and Business doi: 10.1016/0148-6195(94)90005-1 – volume: 73 start-page: 289 issue: 1 year: 2015 end-page: 297 ident: CR60 article-title: The effect of feature selection on financial distress prediction publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.10.010 – ident: CR200 – volume: 59 start-page: 226 year: 2016 end-page: 234 ident: CR47 article-title: Optimization of cluster-based evolutionary undersampling for the artificial neural networks in corporate bankruptcy prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.04.027 – volume: 41 start-page: 2353 issue: 5 year: 2014 end-page: 2361 ident: CR83 article-title: An improved boosting based on feature selection for corporate bankruptcy prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.09.033 – volume: 138 year: 2019 ident: CR74 article-title: Data analytic approach for bankruptcy prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.07.033 – volume: 36 start-page: 197 year: 2017 end-page: 202 ident: CR42 article-title: Bankruptcy prediction using Partial Least Squares Logistic Regression publication-title: Journal of Retailing and Consumer Services doi: 10.1016/j.jretconser.2017.02.005 – volume: 83 start-page: 134 year: 2018 end-page: 149 ident: CR41 article-title: Deep learning for image-based cancer detection and diagnosis—A survey publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.05.014 – volume: 128 start-page: 214 year: 2019 end-page: 224 ident: CR46 article-title: Champion-challenger analysis for credit card fraud detection : Hybrid ensemble and deep learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.03.042 – volume: 29 start-page: 1 issue: 1 year: 2005 end-page: 16 ident: CR55 article-title: A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.01.004 – volume: 360 start-page: 1 year: 2019 end-page: 13 ident: CR23 article-title: Smartdata : Data preprocessing to achieve smart data in R publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.06.006 – volume: 180 start-page: 1 issue: 1 year: 2007 end-page: 28 ident: CR68 article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques—A review publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.08.043 – volume: 23 start-page: 823 issue: 8 year: 2010 end-page: 831 ident: CR69 article-title: Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2010.05.007 – volume: 54 start-page: 1245 issue: 3 year: 2013 end-page: 1255 ident: CR70 article-title: Partial least square discriminant analysis for bankruptcy prediction publication-title: Decision Support Systems doi: 10.1016/j.dss.2012.11.015 – volume: 50 start-page: 158 year: 2019 end-page: 167 ident: CR89 article-title: Feature selection with multi-view data: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.019 – volume: 30 start-page: 394 year: 2013 end-page: 419 ident: CR39 article-title: Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables publication-title: International Review of Financial Analysis doi: 10.1016/j.irfa.2013.02.013 – volume: 101 start-page: 885 year: 2019 end-page: 896 ident: CR22 article-title: Anticipating bank distress in the Eurozone: An extreme gradient boosting approach publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2018.11.015 – volume: 252 start-page: 561 issue: 2 year: 2016 end-page: 572 ident: CR58 article-title: Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.01.012 – volume: 1516 start-page: 1 year: 2018 end-page: 20 ident: CR77 article-title: The bankruptcy prediction power of new entrants publication-title: International Journal of the Economics of Business doi: 10.1080/13571516.2018.1455389 – volume: 128 start-page: 301 year: 2019 end-page: 315 ident: CR4 article-title: Integration of unsupervised and supervised machine learning algorithms for credit risk assessment publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.02.033 – volume: 45 start-page: 1 year: 2010 end-page: 68 ident: CR15 article-title: Mice: Multivariate imputation by chained equations in R publication-title: Journal of Statistical Software – volume: 23 start-page: 589 issue: 4 year: 1968 end-page: 609 ident: CR1 article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1968.tb00843.x – volume: 241 start-page: 236 issue: 1 year: 2015 end-page: 247 ident: CR37 article-title: Prediction of financial distress: An empirical study of listed Chinese companies using data mining publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.08.016 – volume: 50 start-page: 69 issue: 1 year: 2017 end-page: 94 ident: CR91 article-title: AdaBoost models for corporate bankruptcy prediction with missing data publication-title: Computational Economics doi: 10.1007/s10614-016-9581-4 – volume: 221 start-page: 378 issue: 2 year: 2012 end-page: 396 ident: CR31 article-title: Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.04.006 – volume: 73 start-page: 2047 issue: 10–12 year: 2010 end-page: 2060 ident: CR26 article-title: Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.034 – volume: 22 start-page: 120 issue: 2 year: 2009 end-page: 127 ident: CR79 article-title: Feature selection in bankruptcy prediction publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2008.08.002 – volume: 85 start-page: 52 year: 2015 end-page: 61 ident: CR92 article-title: The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.04.017 – volume: 274 start-page: 743 issue: 2 year: 2019 end-page: 758 ident: CR62 article-title: Deep learning models for bankruptcy prediction using textual disclosures publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2018.10.024 – volume: 27 start-page: 333 year: 2012 end-page: 342 ident: CR80 article-title: Simple instance selection for bankruptcy prediction publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2011.09.017 – volume: 1 start-page: 9 issue: 1 year: 2016 ident: CR36 article-title: Big data preprocessing: Methods and prospects publication-title: Big Data Analytics doi: 10.1186/s41044-016-0014-0 – volume: 36 start-page: 7710 issue: 4 year: 2009 end-page: 7720 ident: CR19 article-title: Alternative diagnosis of corporate bankruptcy: A neuro fuzzy approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.09.023 – volume: 78 start-page: 225 year: 2017 end-page: 241 ident: CR85 article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.02.017 – volume: 22 start-page: 1366 issue: 3 year: 2017 end-page: 1422 ident: CR45 article-title: Corporate bankruptcy prediction: a high dimensional analysis publication-title: Review of Accounting Studies doi: 10.1007/s11142-017-9407-1 – volume: 37 start-page: 3373 issue: 4 year: 2010 end-page: 3379 ident: CR49 article-title: Ensemble with neural networks for bankruptcy prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.10.012 – volume: 85 start-page: 76 year: 2017 end-page: 86 ident: CR66 article-title: Age and gender classification from speech and face images by jointly fine-tuned deep neural networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.05.037 – volume: 54 start-page: 85 year: 2018 end-page: 94 ident: CR75 article-title: Bankruptcy and the difficulty of firing publication-title: International Review of Law and Economics doi: 10.1016/j.irle.2017.11.002 – start-page: 581 year: 1985 end-page: 591 ident: CR94 article-title: Partial least squares publication-title: Encyclopedia of statistical sciences – volume: 52 start-page: 1 year: 2019 end-page: 12 ident: CR12 article-title: Ensembles for feature selection: A review and future trends publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.008 – volume: 75 start-page: 25 year: 2017 end-page: 43 ident: CR29 article-title: Dynamics of firm financial evolution and bankruptcy prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.01.016 – start-page: 546 year: 2019 end-page: 560 ident: CR10 article-title: Performance measures for binary classification publication-title: Encyclopedia of Bioinformatics and Computational Biology doi: 10.1016/B978-0-12-809633-8.20351-8 – volume: 11 start-page: 212 issue: 4 year: 2014 end-page: 222 ident: CR53 article-title: Are firm failure processes different? Evidence from seven countries publication-title: Investment Management and Financial Innovations – volume: 61 start-page: 304 year: 2019 end-page: 323 ident: CR16 article-title: Predicting failure in the U. S. banking sector : An extreme gradient boosting approach publication-title: International Review of Economics and Finance doi: 10.1016/j.iref.2018.03.008 – volume: 105 start-page: 175 year: 2018 end-page: 181 ident: CR3 article-title: End-to-end neural network architecture for fraud scoring in card payments publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.08.024 – volume: 40 start-page: 2941 issue: 8 year: 2013 end-page: 2946 ident: CR56 article-title: A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.12.009 – volume: 30 start-page: 449 issue: 3 year: 2006 end-page: 461 ident: CR81 article-title: Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.10.009 – volume: 52 start-page: 464 issue: 2 year: 2012 end-page: 473 ident: CR64 article-title: Comparative analysis of data mining methods for bankruptcy prediction publication-title: Decision Support Systems doi: 10.1016/j.dss.2011.10.007 – volume: 80 start-page: 579 year: 2019 end-page: 591 ident: CR2 article-title: Boosted neural network ensemble classification for lung cancer disease diagnosis publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2019.04.031 – ident: CR13 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR100 article-title: Support-vector networks publication-title: Machine learning doi: 10.1007/BF00994018 – volume: 242 start-page: 286 issue: 1 year: 2015 end-page: 303 ident: CR27 article-title: Bankruptcy prediction using terminal failure processes publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.09.059 – volume: 128 start-page: 93 year: 2017 end-page: 101 ident: CR93 article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.05.003 – volume: 98 start-page: 1 year: 2016 end-page: 29 ident: CR35 article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.12.006 – ident: CR34 – volume: 11 start-page: 371 issue: 4 year: 1998 end-page: 390 ident: CR32 article-title: Small business failure and external risk factors publication-title: Small Business Economics doi: 10.1023/A:1008065527282 – volume: 107 start-page: 64 year: 2018 end-page: 77 ident: CR30 article-title: Failure pattern-based ensembles applied to bankruptcy forecasting publication-title: Decision Support Systems doi: 10.1016/j.dss.2018.01.003 – volume: 18 start-page: 109 issue: 1 year: 1980 ident: CR63 article-title: Financial ratios and the probabilistic prediction of bankruptcy publication-title: Journal of Accounting Research doi: 10.2307/2490395 – volume: 2672 start-page: 35 issue: 47 year: 2018 end-page: 45 ident: CR82 article-title: Machine learning travel mode choices: Comparing the performance of an extreme gradient boosting model with a multinomial logit model publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.1177/0361198118773556 – volume: 110 start-page: 1 year: 2018 end-page: 10 ident: CR21 article-title: Predicting financial distress of contractors in the construction industry using ensemble learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.05.026 – year: 2021 ident: CR76 article-title: Institutions and corporate financial distress in Central and Eastern Europe publication-title: European Journal of Law and Economics doi: 10.1007/s10657-021-09702-9 – ident: CR20 – volume: 41 start-page: 2472 issue: 5 year: 2014 end-page: 2483 ident: CR61 article-title: Novel feature selection methods to financial distress prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.09.047 – volume: 75 start-page: 25 year: 2017 ident: 10227_CR29 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.01.016 – year: 2021 ident: 10227_CR76 publication-title: European Journal of Law and Economics doi: 10.1007/s10657-021-09702-9 – volume: 40 start-page: 5604 issue: 14 year: 2013 ident: 10227_CR57 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.04.018 – volume: 50 start-page: 69 issue: 1 year: 2017 ident: 10227_CR91 publication-title: Computational Economics doi: 10.1007/s10614-016-9581-4 – volume: 73 start-page: 289 issue: 1 year: 2015 ident: 10227_CR60 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.10.010 – volume: 125 start-page: 252 year: 2021 ident: 10227_CR78 publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2020.12.027 – ident: 10227_CR20 doi: 10.1145/2939672.2939785 – volume: 85 start-page: 52 year: 2015 ident: 10227_CR92 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.04.017 – volume: 52 start-page: 1 year: 2019 ident: 10227_CR12 publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.008 – volume: 34 start-page: 606 issue: 6 year: 2016 ident: 10227_CR8 publication-title: European Management Journal doi: 10.1016/j.emj.2016.06.009 – volume: 274 start-page: 743 issue: 2 year: 2019 ident: 10227_CR62 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2018.10.024 – volume: 82 year: 2019 ident: 10227_CR52 publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2019.105528 – volume: 97 start-page: 204 year: 2019 ident: 10227_CR24 publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2019.01.006 – volume: 36 start-page: 164 year: 2017 ident: 10227_CR9 publication-title: Journal of Retailing and Consumer Services doi: 10.1016/j.jretconser.2017.02.001 – volume: 36 start-page: 7710 issue: 4 year: 2009 ident: 10227_CR19 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.09.023 – volume: 1 start-page: 9 issue: 1 year: 2016 ident: 10227_CR36 publication-title: Big Data Analytics doi: 10.1186/s41044-016-0014-0 – volume: 166 year: 2021 ident: 10227_CR43 publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2021.120658 – volume: 36 start-page: 133 issue: 2 year: 2018 ident: 10227_CR71 publication-title: Review of Financial Economics doi: 10.1002/rfe.1018 – volume: 101 start-page: 885 year: 2019 ident: 10227_CR22 publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2018.11.015 – volume: 104 start-page: 38 year: 2017 ident: 10227_CR50 publication-title: Decision Support Systems doi: 10.1016/j.dss.2017.10.001 – volume: 112 start-page: 353 year: 2018 ident: 10227_CR18 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.06.032 – volume: 22 start-page: 1366 issue: 3 year: 2017 ident: 10227_CR45 publication-title: Review of Accounting Studies doi: 10.1007/s11142-017-9407-1 – volume: 80 start-page: 579 year: 2019 ident: 10227_CR2 publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2019.04.031 – volume: 27 start-page: 333 year: 2012 ident: 10227_CR80 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2011.09.017 – volume: 221 start-page: 378 issue: 2 year: 2012 ident: 10227_CR31 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.04.006 – volume: 85 start-page: 76 year: 2017 ident: 10227_CR66 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.05.037 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10227_CR100 publication-title: Machine learning doi: 10.1007/BF00994018 – volume: 54 start-page: 1245 issue: 3 year: 2013 ident: 10227_CR70 publication-title: Decision Support Systems doi: 10.1016/j.dss.2012.11.015 – volume: 241 start-page: 236 issue: 1 year: 2015 ident: 10227_CR37 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.08.016 – volume: 128 start-page: 301 year: 2019 ident: 10227_CR4 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.02.033 – volume: 73 start-page: 914 year: 2018 ident: 10227_CR17 publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2018.09.029 – volume: 83 start-page: 134 year: 2018 ident: 10227_CR41 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.05.014 – volume: 48 start-page: 17 issue: 1 year: 2005 ident: 10227_CR7 publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2004.02.005 – volume: 29 start-page: 1 issue: 1 year: 2005 ident: 10227_CR55 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.01.004 – volume: 242 start-page: 286 issue: 1 year: 2015 ident: 10227_CR27 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.09.059 – volume: 254 start-page: 236 year: 2016 ident: 10227_CR28 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.03.008 – volume: 18 start-page: 109 issue: 1 year: 1980 ident: 10227_CR63 publication-title: Journal of Accounting Research doi: 10.2307/2490395 – volume: 11 start-page: 212 issue: 4 year: 2014 ident: 10227_CR53 publication-title: Investment Management and Financial Innovations – volume: 52 start-page: 464 issue: 2 year: 2012 ident: 10227_CR64 publication-title: Decision Support Systems doi: 10.1016/j.dss.2011.10.007 – volume: 41 start-page: 2353 issue: 5 year: 2014 ident: 10227_CR83 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.09.033 – volume: 23 start-page: 823 issue: 8 year: 2010 ident: 10227_CR69 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2010.05.007 – volume: 252 start-page: 561 issue: 2 year: 2016 ident: 10227_CR58 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.01.012 – volume: 40 start-page: 2941 issue: 8 year: 2013 ident: 10227_CR56 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.12.009 – volume: 22 start-page: 1405 issue: 10–11 year: 1998 ident: 10227_CR6 publication-title: Journal of Banking & Finance doi: 10.1016/S0378-4266(98)00062-4 – ident: 10227_CR34 doi: 10.1214/009053606000000795 – volume: 17 start-page: 161 issue: 1 year: 1990 ident: 10227_CR38 publication-title: Journal of Business Finance & Accounting doi: 10.1111/j.1468-5957.1990.tb00555.x – start-page: 546 volume-title: Encyclopedia of Bioinformatics and Computational Biology year: 2019 ident: 10227_CR10 doi: 10.1016/B978-0-12-809633-8.20351-8 – volume: 1554 start-page: 1527 year: 2006 ident: 10227_CR40 publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – ident: 10227_CR25 doi: 10.1145/2830556.2830562 – volume: 239 start-page: 39 year: 2017 ident: 10227_CR51 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.078 – volume: 36 start-page: 197 year: 2017 ident: 10227_CR42 publication-title: Journal of Retailing and Consumer Services doi: 10.1016/j.jretconser.2017.02.005 – volume: 1516 start-page: 1 year: 2018 ident: 10227_CR77 publication-title: International Journal of the Economics of Business doi: 10.1080/13571516.2018.1455389 – volume: 30 start-page: 449 issue: 3 year: 2006 ident: 10227_CR81 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.10.009 – volume: 54 start-page: 85 year: 2018 ident: 10227_CR75 publication-title: International Review of Law and Economics doi: 10.1016/j.irle.2017.11.002 – volume: 180 start-page: 1 issue: 1 year: 2007 ident: 10227_CR68 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.08.043 – volume: 129 start-page: 170 year: 2019 ident: 10227_CR72 publication-title: Accident Analysis & Prevention doi: 10.1016/j.aap.2019.05.005 – volume: 105 start-page: 175 year: 2018 ident: 10227_CR3 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.08.024 – volume: 59 start-page: 226 year: 2016 ident: 10227_CR47 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.04.027 – volume: 50 start-page: 7 issue: 1 year: 2020 ident: 10227_CR11 publication-title: European Journal of Law and Economics doi: 10.1007/s10657-019-09634-5 – volume: 50 start-page: 158 year: 2019 ident: 10227_CR89 publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.019 – volume: 78 start-page: 225 year: 2017 ident: 10227_CR85 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.02.017 – volume: 80 start-page: 57 year: 2019 ident: 10227_CR88 publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2019.03.017 – volume: 360 start-page: 1 year: 2019 ident: 10227_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.06.006 – volume: 30 start-page: 394 year: 2013 ident: 10227_CR39 publication-title: International Review of Financial Analysis doi: 10.1016/j.irfa.2013.02.013 – volume: 35 start-page: 2749 issue: 16 year: 2019 ident: 10227_CR87 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1043 – start-page: 581 volume-title: Encyclopedia of statistical sciences year: 1985 ident: 10227_CR94 – volume: 45 start-page: 1 year: 2010 ident: 10227_CR15 publication-title: Journal of Statistical Software – volume: 46 start-page: 113 issue: 2 year: 1994 ident: 10227_CR65 publication-title: Journal of Economics and Business doi: 10.1016/0148-6195(94)90005-1 – volume: 49 start-page: 325 issue: 2 year: 2017 ident: 10227_CR90 publication-title: Computational Economics doi: 10.1007/s10614-016-9562-7 – volume: 98 start-page: 1 year: 2016 ident: 10227_CR35 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.12.006 – volume: 128 start-page: 214 year: 2019 ident: 10227_CR46 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.03.042 – volume: 128 start-page: 93 year: 2017 ident: 10227_CR93 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.05.003 – volume: 41 start-page: 2472 issue: 5 year: 2014 ident: 10227_CR61 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.09.047 – volume: 73 start-page: 2047 issue: 10–12 year: 2010 ident: 10227_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.034 – volume: 110 start-page: 1 year: 2018 ident: 10227_CR21 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.05.026 – volume: 71 start-page: 1161 issue: 8 year: 2020 ident: 10227_CR44 publication-title: Journal of the Operational Research Society doi: 10.1080/01605682.2019.1581405 – volume: 37 start-page: 3373 issue: 4 year: 2010 ident: 10227_CR49 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.10.012 – volume: 22 start-page: 120 issue: 2 year: 2009 ident: 10227_CR79 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2008.08.002 – volume: 83 start-page: 405 year: 2017 ident: 10227_CR5 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.006 – ident: 10227_CR13 doi: 10.1016/j.neunet.2019.07.012 – volume: 107 start-page: 64 year: 2018 ident: 10227_CR30 publication-title: Decision Support Systems doi: 10.1016/j.dss.2018.01.003 – volume: 178 start-page: 48 year: 2019 ident: 10227_CR54 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.04.013 – volume: 39 start-page: 10153 issue: 11 year: 2012 ident: 10227_CR14 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.02.125 – volume: 61 start-page: 304 year: 2019 ident: 10227_CR16 publication-title: International Review of Economics and Finance doi: 10.1016/j.iref.2018.03.008 – volume: 73 start-page: 289 issue: 1 year: 2014 ident: 10227_CR59 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.10.010 – volume: 27 start-page: 419 issue: 2 year: 1990 ident: 10227_CR84 publication-title: Journal of Financial Economics doi: 10.1016/0304-405X(90)90063-6 – volume: 12 start-page: 40 issue: 1 year: 2016 ident: 10227_CR33 publication-title: Tourism & Management Studies doi: 10.18089/tms.2016.12104 – volume: 138 year: 2019 ident: 10227_CR74 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.07.033 – volume: 23 start-page: 589 issue: 4 year: 1968 ident: 10227_CR1 publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1968.tb00843.x – volume: 11 start-page: 371 issue: 4 year: 1998 ident: 10227_CR32 publication-title: Small Business Economics doi: 10.1023/A:1008065527282 – ident: 10227_CR200 – ident: 10227_CR67 – volume: 2672 start-page: 35 issue: 47 year: 2018 ident: 10227_CR82 publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.1177/0361198118773556 – volume: 38 start-page: 8336 issue: 7 year: 2011 ident: 10227_CR86 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.01.021 – volume: 28 start-page: 127 issue: 1 year: 2005 ident: 10227_CR73 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2004.08.009 |
| SSID | ssj0005122 |
| Score | 2.5995047 |
| Snippet | The emergence of big data, information technology, and social media provides an enormous amount of information about firms’ current financial health. When... The emergence of big data, information technology, and social media provides an enormous amount of information about firms' current financial health. When... |
| SourceID | hal proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 715 |
| SubjectTerms | Algorithms Bankruptcy Behavioral/Experimental Economics Big Data Classification Computer Appl. in Social and Behavioral Sciences Data mining Decision makers Discriminant analysis Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Feature selection Humanities and Social Sciences Information technology Machine learning Math Applications in Computer Science Medical decision making Operations Research/Decision Theory Prediction models Predictions Social media Specification |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9-ob74MRWnU4IIPmhh7dqledzEqTDG8GPsRUKapttQO2m7gf-9d127TVFBX9v0CLnL3e96X4ScBszU2JHacJRWhu36ZcPzJCjDCleSK7A6aR13p8laLbfb5e2sKCzOs93zkGSqqeeK3cCUGJhSgF4KM8DnWQZz5-LAhrv7ziyxw5zEDjisYQCAslKZ72l8MkeZUl7sY07kHOD8EiNNTU9j83-b3iIbGdSktYlsbJMFHRbIap7pXiBreVFyvEOe6jJ8jkZviXqn7QiDN8gwimt7FDAi7V7Xh8M4obWX3jAaJP1XKkOfdsDTxtorevua4niQIIqgchRpOtfpcJc8Nq4eLm-MbPKCoRxuJYbJpRMwq-rIsqN9Hwwp42DY3aofBJwHrm1py9agKiTTUntO1cXcGk8DPFOW5-vKHlkKh6HeJxQQSpl5Nle6CuBQBZxJnAmobOn4GPMpEjNngFBZW3KcjvEiZg2V8QwFnKFIz1DAN-fTb94mTTl-XX2GfBV4Y4GyklnhAewPe1-JGquAm2GXK1aRnADrpySx8_ZNrSnwGf49d23HHAO5Ui4ZIrvvsbAY4zg7B2lc5JIwe_3z5g7-tvyQrOO8-0naeIksJdFIH5EVNU4GcXSc3oMPooP9_Q priority: 102 providerName: Springer Nature |
| Title | Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering |
| URI | https://link.springer.com/article/10.1007/s10614-021-10227-1 https://www.proquest.com/docview/2779961832 https://ucly.hal.science/hal-05238451 |
| Volume | 61 |
| WOSCitedRecordID | wos000745576500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RDQEvfAwQHaOyEBIPYJHPOn5C7bQPxKiqAaVDQpbjOBtiS7skncR_z13qrGMSe-HFUhLbsXTnu599XwCvcuFbykjNY2MNj5LM42mqURiG0mhpUOs0cdyTAzEaJdOpHLsLt8q5VbYysRHU2czQHfm7QAhJ1UnC4P38nFPVKLKuuhIaHVgnZEMufZ-87ZWLh7-0IshAcIFQyAXNuNA5VEycHBTozCO4_5dicuK5c0LekVeg5zVraaOEdh_87_Ifwn0HP9lgyS-P4JYtNuBO6_2-AXfbQOXqMfwY6uJXuZjX5jcbl2TQISIy6nvMEDey6d5wNqtqNjg9xl_VJ2dMFxmb4Omb4rHYh7MG2yNXMQKai9KyK9kPn8DX3Z0v2_vcVWPgJpZBzX2p41wE_Vh7sc0yVK5CorJP-lmeS5knUWCDyKL40MJqm8b9hPxtUouQzQRpZsOnsFbMCvsMGKIWT6SRNLaPgNHkUmiqE2giHWdkB-qC35JCGZeqnCpmnKpVkmUin0LyqYZ8Cse8uRwzXybquLH3a6Kwol2MMxvtghFwfZQPSw1EiEePyAuDLrxEJrickrJx7w8OFL2jG_Ukiv0LnG6rpbpyMqBSK5J34W3LN6vP_17c5s2zPYd7VPN-6Tq-BWt1ubAv4La5qH9WZQ864ttRD9aHO6PxIT59FLzX7Apsx_F3bA8_T_4Ar8cNzA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BVEuPAqIQIEVAnGAFfHaznoPCKVASZQQ9VCqXNCyXq9bROoE2ynqn-I3MuNHU5DorQeutnfkxzcz33peAM9S6TnqSM1D6ywPoqTL49igMfSVNcqi16nquA_GcjKJplO1twa_2loYSqtsbWJlqJO5pX_kr4WUiqaT-OLt4genqVEUXW1HaNSwGLnTn7hlK94M3-P3fS7E7of9dwPeTBXgNlSi5J4yYSpFLzTd0CUJOgmp0GlFvSRNlUqjQDgROFQDI51xcdiLKG8kdkg9rIgT56PcdbgS-JEkvRpJvkop8eqohRKSS6ReTZFOU6qHjpBTQgTtsST3_nCEjTtYP6JszHNU96_obOX0dm_-b6_rFtxo6DXr1_pwG9ZctgXX2uz-LdhsC7GLO_Blx2Tf8-WitKdsL6eAFYGU0bWHDHkxm37cmc-LkvVnh_ho5dExM1nCDgzqbDxzbHhc7V1QaxgR6WXu2Lnujnfh86U86D3YyOaZuw8MWVlXxoGyroeE2KZKGpqDaAMTJhTn6oDXfnptm1bsNBFkpldNpAkuGuGiK7hoXPPybM2ibkRy4dUvCFGarBRKtqYptsD7o35fui993FoFXV904CmC7kwkdRsf9MeajlHEIApC7wTFbbco042NK_QKYh141eJ0dfrfN_fgYmlPYHOw_2msx8PJ6CFcF8gq6zT5bdgo86V7BFftSfmtyB9X2sfg62Xj9zfwwGYt |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BRUuPAqogQIrBOIAq8ZrO-s9IJRSQqNGUQ5QRZXQsl6v24rUCbFT1L_Gr2PGj6Yg0VsPXP0Y2ck3L883MwAvU-k5mkjNQ-ssD6KkzePYoDH0lTXKotcp-7gPBnI4jMZjNVqBX00vDNEqG5tYGupkaukb-baQUtF2El9spzUtYrTbez_7wWmDFFVam3UaFUT23flPTN_yd_1d_K9fCdH7-PnDHq83DHAbKlFwT5kwlaITmnbokgQdhlTowKJOkqZKpVEgnAgcqoSRzrg47ETEIYkdhiFWxInzUe4q3JCYYxKdcBQeLuklXlXBUEJyiWFY3bBTt-2hU-REjqB8S3LvD6dYu4bVY2JmXgp7_6rUlg6wd_d__unuwZ067GbdSk_uw4rLNmC9Yf1vwK2mQTt_AF93TPZ9vpgV9pyN5lTIIvAyuvaIYbzMxp92ptO8YN3JEb5acXzKTJawA4O6HE8c65-WOQ1qE6MAezF37NLUx4fw5Vpe9BGsZdPMbQLDaK0t40BZ18FA2aZKGtqPaAMTJlT_aoHXwEDbekQ7bQqZ6OVwaYKORujoEjoa73lzcc-sGlBy5dWvCV2arBdKtqZuwsDnozlguit9TLmCti9a8AIBeCGSppDvdQeajlElIQpC7wzFbTWI07Xty_USbi1422B2efrfD_f4amnPYR1hqwf94f4TuC0w2KzY81uwVswX7inctGfFST5_Vioig2_XDd_fUPtvUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bankruptcy+Prediction+using+the+XGBoost+Algorithm+and+Variable+Importance+Feature+Engineering&rft.jtitle=Computational+economics&rft.au=Ben+Jabeur%2C+Sami&rft.au=Stef%2C+Nicolae&rft.au=Carmona%2C+Pedro&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0927-7099&rft.eissn=1572-9974&rft.volume=61&rft.issue=2&rft.spage=715&rft.epage=741&rft_id=info:doi/10.1007%2Fs10614-021-10227-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7099&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7099&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7099&client=summon |