MicroRNA-223 coordinates cholesterol homeostasis

MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 111; H. 40; S. 14518
Hauptverfasser: Vickers, Kasey C, Landstreet, Stuart R, Levin, Michael G, Shoucri, Bassem M, Toth, Cynthia L, Taylor, Robert C, Palmisano, Brian T, Tabet, Fatiha, Cui, Huanhuan L, Rye, Kerry-Anne, Sethupathy, Praveen, Remaley, Alan T
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 07.10.2014
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.
AbstractList MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.
MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.
Author Tabet, Fatiha
Cui, Huanhuan L
Rye, Kerry-Anne
Shoucri, Bassem M
Sethupathy, Praveen
Taylor, Robert C
Levin, Michael G
Landstreet, Stuart R
Palmisano, Brian T
Vickers, Kasey C
Toth, Cynthia L
Remaley, Alan T
Author_xml – sequence: 1
  givenname: Kasey C
  surname: Vickers
  fullname: Vickers, Kasey C
  email: kasey.c.vickers@Vanderbilt.edu
  organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; kasey.c.vickers@Vanderbilt.edu
– sequence: 2
  givenname: Stuart R
  surname: Landstreet
  fullname: Landstreet, Stuart R
  organization: Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
– sequence: 3
  givenname: Michael G
  surname: Levin
  fullname: Levin, Michael G
  organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
– sequence: 4
  givenname: Bassem M
  surname: Shoucri
  fullname: Shoucri, Bassem M
  organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
– sequence: 5
  givenname: Cynthia L
  surname: Toth
  fullname: Toth, Cynthia L
  organization: Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
– sequence: 6
  givenname: Robert C
  surname: Taylor
  fullname: Taylor, Robert C
  organization: Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
– sequence: 7
  givenname: Brian T
  surname: Palmisano
  fullname: Palmisano, Brian T
  organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
– sequence: 8
  givenname: Fatiha
  surname: Tabet
  fullname: Tabet, Fatiha
  organization: Lipid Research Group, The Heart Research Institute, Newtown, NSW 2042, Australia
– sequence: 9
  givenname: Huanhuan L
  surname: Cui
  fullname: Cui, Huanhuan L
  organization: Lipoproteins and Atherosclerosis, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; and
– sequence: 10
  givenname: Kerry-Anne
  surname: Rye
  fullname: Rye, Kerry-Anne
  organization: Lipid Research Group, The Heart Research Institute, Newtown, NSW 2042, Australia
– sequence: 11
  givenname: Praveen
  surname: Sethupathy
  fullname: Sethupathy, Praveen
  organization: Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
– sequence: 12
  givenname: Alan T
  surname: Remaley
  fullname: Remaley, Alan T
  organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25246565$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLw0AUhQep2Ieu3UmWblLvneROMstSrApVQXQdZiY3NJJkaiZZ-O8NWMHVOYuP81iKWec7FuIaYY2QJXfHzoQ1SqRMZYh4JhYIGmOVapj983OxDOETADTlcCHmkmSqSNFCwHPtev_2somlTCLnfV_WnRk4RO7gGw4D976JDr5lHwYT6nApzivTBL466Up87O7ft4_x_vXhabvZx440DrHO8xJRsbacSVIpWLCUTr1cEiSoNCUONXGijLTsFOeOqpSt1QRZhUauxO1v7rH3X-M0pGjr4LhpTMd-DAWq6QzkILMJvTmho225LI593Zr-u_h7KX8ADWZUbg
CitedBy_id crossref_primary_10_1007_s11033_021_06275_3
crossref_primary_10_1016_j_peptides_2020_170387
crossref_primary_10_3390_ijms23168939
crossref_primary_10_1038_s41580_021_00354_w
crossref_primary_10_1007_s11883_021_00928_1
crossref_primary_10_3389_fcell_2023_1173904
crossref_primary_10_3390_ijms21249600
crossref_primary_10_3390_bios13080802
crossref_primary_10_3390_biology4030494
crossref_primary_10_1007_s40200_019_00459_2
crossref_primary_10_1371_journal_pone_0135163
crossref_primary_10_1016_j_numecd_2016_08_004
crossref_primary_10_1128_spectrum_04664_22
crossref_primary_10_1016_j_jacc_2019_07_043
crossref_primary_10_2217_epi_2016_0168
crossref_primary_10_3390_separations8110204
crossref_primary_10_1096_fj_201900867RR
crossref_primary_10_1016_j_pharmthera_2018_02_011
crossref_primary_10_3389_fphys_2019_01367
crossref_primary_10_1016_j_yjmcc_2019_03_012
crossref_primary_10_1109_ACCESS_2020_2972068
crossref_primary_10_1016_j_yjmcc_2018_08_004
crossref_primary_10_1097_MOL_0000000000000200
crossref_primary_10_3389_fcvm_2021_707529
crossref_primary_10_3389_fmed_2021_770504
crossref_primary_10_1136_gutjnl_2020_322526
crossref_primary_10_1111_jfbc_14195
crossref_primary_10_1007_s00335_016_9649_4
crossref_primary_10_1080_15592294_2016_1176816
crossref_primary_10_3390_ijms22157855
crossref_primary_10_1002_ctm2_468
crossref_primary_10_1016_j_lfs_2020_118633
crossref_primary_10_1186_s12263_017_0577_z
crossref_primary_10_1007_s11033_021_06636_y
crossref_primary_10_1007_s11883_025_01309_8
crossref_primary_10_1016_j_steroids_2021_108878
crossref_primary_10_1038_s41598_019_56857_2
crossref_primary_10_1002_2211_5463_13026
crossref_primary_10_1007_s12013_024_01603_3
crossref_primary_10_1016_j_cjca_2017_01_001
crossref_primary_10_1002_mnfr_202300224
crossref_primary_10_1016_j_cell_2018_03_006
crossref_primary_10_1016_j_pharmthera_2016_09_001
crossref_primary_10_1002_iub_2726
crossref_primary_10_2174_0929867330666221028144416
crossref_primary_10_1002_mnfr_201800027
crossref_primary_10_3390_biomedicines11061597
crossref_primary_10_3389_fmolb_2025_1548355
crossref_primary_10_1155_2019_5028181
crossref_primary_10_1186_s12876_015_0382_3
crossref_primary_10_3390_ijms25158191
crossref_primary_10_3390_ijms21217901
crossref_primary_10_1016_j_atherosclerosis_2016_01_025
crossref_primary_10_1038_s41598_020_77539_4
crossref_primary_10_1016_j_atherosclerosis_2020_02_004
crossref_primary_10_33549_physiolres_933432
crossref_primary_10_1016_j_atherosclerosis_2017_06_924
crossref_primary_10_1002_hep_29153
crossref_primary_10_1016_j_cca_2015_10_021
crossref_primary_10_1186_s12864_017_4096_5
crossref_primary_10_3390_cancers12061410
crossref_primary_10_1080_10408398_2022_2139220
crossref_primary_10_1152_physiolgenomics_00087_2023
crossref_primary_10_1007_s11726_025_1474_4
crossref_primary_10_1038_emm_2017_80
crossref_primary_10_1016_j_aquaculture_2018_08_058
crossref_primary_10_1016_j_bbalip_2016_01_011
crossref_primary_10_1161_CIRCULATIONAHA_120_044221
crossref_primary_10_1186_s12885_015_1909_2
crossref_primary_10_1038_s41598_019_40296_0
crossref_primary_10_1038_nm_3949
crossref_primary_10_1016_j_jnutbio_2020_108397
crossref_primary_10_3390_jcdd8120170
crossref_primary_10_1093_eurheartj_ehw146
crossref_primary_10_1136_jmedgenet_2018_105387
crossref_primary_10_1016_j_bbalip_2016_01_005
crossref_primary_10_1016_j_cmet_2019_07_011
crossref_primary_10_1016_j_biopha_2022_113419
crossref_primary_10_1161_STROKEAHA_118_021010
crossref_primary_10_1038_s41419_021_03708_6
crossref_primary_10_1146_annurev_animal_020518_115250
crossref_primary_10_1016_j_vph_2020_106666
crossref_primary_10_3389_fcvm_2020_00081
crossref_primary_10_3390_ph14121257
crossref_primary_10_1155_2016_3863726
crossref_primary_10_1016_j_bbcan_2023_188900
crossref_primary_10_3389_fimmu_2022_922868
crossref_primary_10_3390_ijms24010139
crossref_primary_10_1194_jlr_RA120001121
crossref_primary_10_1002_wrna_1385
crossref_primary_10_1016_j_biopha_2023_114836
crossref_primary_10_1371_journal_pone_0216947
crossref_primary_10_3390_ijms22105210
crossref_primary_10_1007_s11883_018_0737_7
crossref_primary_10_1002_ejhf_495
crossref_primary_10_1186_s13148_016_0170_0
crossref_primary_10_1097_MOL_0000000000000358
crossref_primary_10_1007_s11883_014_0476_3
crossref_primary_10_3390_ijms232415645
crossref_primary_10_15171_apb_2017_066
crossref_primary_10_1016_j_envint_2023_107913
crossref_primary_10_3390_antiox13050583
crossref_primary_10_3390_cells8080853
crossref_primary_10_4103_jisp_jisp_179_23
crossref_primary_10_1038_s41366_019_0485_y
crossref_primary_10_3390_biology12091232
crossref_primary_10_1093_jn_nxz282
crossref_primary_10_1186_s12967_024_05480_5
crossref_primary_10_1515_med_2022_0424
crossref_primary_10_1016_j_trsl_2016_02_008
crossref_primary_10_1016_j_gene_2020_145184
crossref_primary_10_3390_ani15172621
crossref_primary_10_1111_nyas_14566
crossref_primary_10_1016_j_micinf_2024_105379
crossref_primary_10_1172_JCI141513
crossref_primary_10_3390_biom12091243
crossref_primary_10_1016_j_abb_2015_09_018
crossref_primary_10_1161_ATVBAHA_115_305317
crossref_primary_10_3390_jcm8122199
crossref_primary_10_1016_j_phrs_2021_105868
crossref_primary_10_1161_ATVBAHA_117_309233
crossref_primary_10_1371_journal_pone_0145930
crossref_primary_10_1007_s13105_022_00871_y
crossref_primary_10_1096_fj_201600298RR
crossref_primary_10_1007_s11886_023_02014_1
crossref_primary_10_1016_j_molmed_2015_02_003
crossref_primary_10_1016_j_tcm_2016_02_004
crossref_primary_10_1089_ars_2021_0076
crossref_primary_10_1038_s41598_019_41101_8
crossref_primary_10_1002_jcb_29286
crossref_primary_10_1016_j_expneurol_2020_113382
crossref_primary_10_3389_fphys_2023_1241096
crossref_primary_10_1016_j_jff_2019_03_036
crossref_primary_10_1097_MOL_0000000000000186
crossref_primary_10_3390_ijms222011145
crossref_primary_10_1017_S0954422424000155
crossref_primary_10_1038_srep12911
crossref_primary_10_1016_j_jneuroim_2021_577640
crossref_primary_10_1167_iovs_66_4_26
crossref_primary_10_3389_fimmu_2022_860661
crossref_primary_10_1016_j_semcdb_2017_11_026
crossref_primary_10_22270_jddt_v15i8_7336
crossref_primary_10_3389_fphys_2020_00793
crossref_primary_10_1007_s11033_018_4547_3
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106033
crossref_primary_10_1016_j_atherosclerosis_2022_12_003
crossref_primary_10_1016_j_orcp_2015_01_006
crossref_primary_10_1517_14712598_2015_1084282
crossref_primary_10_1055_a_1478_2105
crossref_primary_10_1186_s12985_016_0541_3
crossref_primary_10_1371_journal_pone_0206727
crossref_primary_10_1016_j_beem_2016_11_010
crossref_primary_10_1093_cvr_cvv236
crossref_primary_10_1016_j_atherosclerosis_2016_09_067
crossref_primary_10_1097_QAI_0000000000001070
crossref_primary_10_1097_MOL_0000000000000420
crossref_primary_10_1186_s13098_025_01725_5
crossref_primary_10_1016_j_ajpath_2015_08_020
crossref_primary_10_3389_fgene_2025_1556495
crossref_primary_10_1161_CIRCRESAHA_115_305467
crossref_primary_10_1074_jbc_RA119_007755
crossref_primary_10_1007_s10528_020_09948_z
crossref_primary_10_1097_CRD_0000000000000114
crossref_primary_10_1007_s10974_021_09612_y
crossref_primary_10_1016_j_neuroscience_2018_08_003
crossref_primary_10_1016_j_jalz_2016_08_018
crossref_primary_10_3390_biomedicines12061322
crossref_primary_10_3390_genes16010098
crossref_primary_10_1007_s40292_019_00356_y
crossref_primary_10_1159_000538197
crossref_primary_10_3390_medicina59071329
crossref_primary_10_1016_j_semcdb_2023_02_006
crossref_primary_10_3390_ijms21030732
crossref_primary_10_1002_jcla_24583
crossref_primary_10_3390_ijms17050791
crossref_primary_10_3390_ncrna9050053
crossref_primary_10_1016_j_exer_2018_09_023
crossref_primary_10_1161_CIRCRESAHA_115_306300
crossref_primary_10_1016_j_jacc_2015_04_014
crossref_primary_10_1089_dna_2020_6138
crossref_primary_10_1002_ddr_21269
crossref_primary_10_1016_j_clinre_2025_102547
crossref_primary_10_1007_s11883_024_01216_4
crossref_primary_10_3389_fcell_2021_622908
crossref_primary_10_1016_j_ebiom_2017_08_020
crossref_primary_10_3390_genes16030349
crossref_primary_10_1002_jnr_24487
crossref_primary_10_1007_s10096_025_05207_4
crossref_primary_10_1038_ijo_2015_170
crossref_primary_10_1161_CIRCRESAHA_121_319120
crossref_primary_10_1016_j_freeradbiomed_2021_05_004
crossref_primary_10_1161_ATVBAHA_116_307028
crossref_primary_10_1007_s13105_019_00710_7
crossref_primary_10_1016_j_bbalip_2015_12_013
crossref_primary_10_3389_fcvm_2020_610561
crossref_primary_10_1007_s11010_020_03992_4
crossref_primary_10_1515_cclm_2016_0575
crossref_primary_10_1038_s12276_018_0153_7
crossref_primary_10_3390_jcm11030849
crossref_primary_10_1002_jcp_25930
crossref_primary_10_1016_j_ncrna_2025_04_009
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1215767111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 25246565
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: K22HL113039
– fundername: NIDDK NIH HHS
  grantid: P30 DK056350
– fundername: NIDDK NIH HHS
  grantid: P30 DK020593
– fundername: NHLBI NIH HHS
  grantid: P01HL116263
– fundername: NIGMS NIH HHS
  grantid: T32 GM007347
– fundername: NHLBI NIH HHS
  grantid: P01 HL116263
– fundername: NIDDK NIH HHS
  grantid: DK20593
– fundername: NIDDK NIH HHS
  grantid: P60 DK020593
– fundername: NHLBI NIH HHS
  grantid: K22 HL113039
– fundername: NIDDK NIH HHS
  grantid: 5R00DK09131803
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c591t-988d116e9be725640b0b54252ed50316953c195e36a2bec6e8c5f4ebb9507f1a2
IEDL.DBID 7X8
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342633900056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 10:34:55 EDT 2025
Thu Apr 03 07:03:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords atherosclerosis
reverse cholesterol transport
posttranscriptional gene regulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c591t-988d116e9be725640b0b54252ed50316953c195e36a2bec6e8c5f4ebb9507f1a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/111/40/14518.full.pdf
PMID 25246565
PQID 1609508027
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1609508027
pubmed_primary_25246565
PublicationCentury 2000
PublicationDate 2014-10-07
PublicationDateYYYYMMDD 2014-10-07
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
References 21285510 - J Clin Invest. 2011 Mar;121(3):976-84
19030170 - Hepatology. 2008 Dec;48(6):1810-20
20880716 - Trends Endocrinol Metab. 2010 Dec;21(12):699-706
15891392 - Curr Opin Lipidol. 2005 Jun;16(3):307-15
22267590 - Gut. 2012 Nov;61(11):1600-9
14512514 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32
23519696 - Circ Res. 2013 Jun 7;112(12):1602-12
9564170 - Nutr Rev. 1998 Feb;56(2 Pt 2):S1-3; discussion S54-75
20711193 - Nat Immunol. 2010 Sep;11(9):799-805
10579331 - Endocrinology. 1999 Dec;140(12):5669-81
18278031 - Nature. 2008 Feb 28;451(7182):1125-9
23459944 - Mol Cell Biol. 2013 May;33(10):1956-64
20965416 - Mol Cell. 2010 Oct 22;40(2):205-15
11162594 - Biochem Biophys Res Commun. 2001 Jan 26;280(3):818-23
8770871 - J Clin Invest. 1996 Aug 15;98(4):984-95
25814681 - Circ Res. 2015 Mar 27;116(7):1112-4
12754212 - J Biol Chem. 2003 Aug 1;278(31):28528-32
22459148 - FASEB J. 2012 Jul;26(7):3032-41
10508199 - J Lipid Res. 1999 Oct;40(10):1799-805
20466885 - Science. 2010 Jun 18;328(5985):1570-3
20686565 - Nature. 2010 Aug 5;466(7307):707-13
19104939 - Dig Dis Sci. 2009 Nov;54(11):2362-6
17666007 - Annu Rev Genet. 2007;41:401-27
20150807 - Curr Opin Endocrinol Diabetes Obes. 2010 Apr;17(2):150-5
23499894 - Cancer Lett. 2013 Jul 28;335(2):455-62
9548583 - J Lipid Res. 1998 Mar;39(3):495-508
21423178 - Nat Cell Biol. 2011 Apr;13(4):423-33
17482553 - Cell. 2007 May 4;129(3):617-31
21316602 - Cancer Cell. 2011 Feb 15;19(2):232-43
20018934 - Arterioscler Thromb Vasc Biol. 2010 Mar;30(3):526-32
14704742 - Int J Obes Relat Metab Disord. 2003 Dec;27 Suppl 3:S35-40
19421056 - Curr Opin Lipidol. 2009 Jun;20(3):236-41
8560269 - Science. 1996 Jan 26;271(5248):518-20
8349823 - J Clin Invest. 1993 Aug;92(2):883-93
18555017 - Gastroenterology. 2008 Jul;135(1):257-69
1411543 - Science. 1992 Oct 16;258(5081):468-71
22569260 - FEBS Lett. 2012 Apr 5;586(7):1038-43
23519695 - Circ Res. 2013 Jun 7;112(12):1592-601
7520436 - J Biol Chem. 1994 Aug 19;269(33):21003-9
22777896 - Hepatology. 2013 Feb;57(2):533-42
11839742 - J Biol Chem. 2002 Apr 26;277(17):14443-50
14744438 - Cell. 2004 Jan 23;116(2):281-97
22418571 - Curr Opin Lipidol. 2012 Apr;23(2):91-7
22560219 - Cell Metab. 2012 May 2;15(5):665-74
12370781 - Mamm Genome. 2002 Sep;13(9):510-4
22499947 - Science. 2012 Apr 13;336(6078):237-40
References_xml – reference: 20880716 - Trends Endocrinol Metab. 2010 Dec;21(12):699-706
– reference: 20686565 - Nature. 2010 Aug 5;466(7307):707-13
– reference: 1411543 - Science. 1992 Oct 16;258(5081):468-71
– reference: 21423178 - Nat Cell Biol. 2011 Apr;13(4):423-33
– reference: 12754212 - J Biol Chem. 2003 Aug 1;278(31):28528-32
– reference: 9548583 - J Lipid Res. 1998 Mar;39(3):495-508
– reference: 22560219 - Cell Metab. 2012 May 2;15(5):665-74
– reference: 22459148 - FASEB J. 2012 Jul;26(7):3032-41
– reference: 19104939 - Dig Dis Sci. 2009 Nov;54(11):2362-6
– reference: 18555017 - Gastroenterology. 2008 Jul;135(1):257-69
– reference: 8560269 - Science. 1996 Jan 26;271(5248):518-20
– reference: 23519695 - Circ Res. 2013 Jun 7;112(12):1592-601
– reference: 20466885 - Science. 2010 Jun 18;328(5985):1570-3
– reference: 22569260 - FEBS Lett. 2012 Apr 5;586(7):1038-43
– reference: 11839742 - J Biol Chem. 2002 Apr 26;277(17):14443-50
– reference: 14512514 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32
– reference: 14744438 - Cell. 2004 Jan 23;116(2):281-97
– reference: 20711193 - Nat Immunol. 2010 Sep;11(9):799-805
– reference: 19421056 - Curr Opin Lipidol. 2009 Jun;20(3):236-41
– reference: 10579331 - Endocrinology. 1999 Dec;140(12):5669-81
– reference: 23519696 - Circ Res. 2013 Jun 7;112(12):1602-12
– reference: 8770871 - J Clin Invest. 1996 Aug 15;98(4):984-95
– reference: 22777896 - Hepatology. 2013 Feb;57(2):533-42
– reference: 17666007 - Annu Rev Genet. 2007;41:401-27
– reference: 9564170 - Nutr Rev. 1998 Feb;56(2 Pt 2):S1-3; discussion S54-75
– reference: 14704742 - Int J Obes Relat Metab Disord. 2003 Dec;27 Suppl 3:S35-40
– reference: 12370781 - Mamm Genome. 2002 Sep;13(9):510-4
– reference: 21316602 - Cancer Cell. 2011 Feb 15;19(2):232-43
– reference: 22418571 - Curr Opin Lipidol. 2012 Apr;23(2):91-7
– reference: 22499947 - Science. 2012 Apr 13;336(6078):237-40
– reference: 20150807 - Curr Opin Endocrinol Diabetes Obes. 2010 Apr;17(2):150-5
– reference: 7520436 - J Biol Chem. 1994 Aug 19;269(33):21003-9
– reference: 20965416 - Mol Cell. 2010 Oct 22;40(2):205-15
– reference: 20018934 - Arterioscler Thromb Vasc Biol. 2010 Mar;30(3):526-32
– reference: 10508199 - J Lipid Res. 1999 Oct;40(10):1799-805
– reference: 17482553 - Cell. 2007 May 4;129(3):617-31
– reference: 21285510 - J Clin Invest. 2011 Mar;121(3):976-84
– reference: 25814681 - Circ Res. 2015 Mar 27;116(7):1112-4
– reference: 8349823 - J Clin Invest. 1993 Aug;92(2):883-93
– reference: 22267590 - Gut. 2012 Nov;61(11):1600-9
– reference: 23459944 - Mol Cell Biol. 2013 May;33(10):1956-64
– reference: 23499894 - Cancer Lett. 2013 Jul 28;335(2):455-62
– reference: 15891392 - Curr Opin Lipidol. 2005 Jun;16(3):307-15
– reference: 19030170 - Hepatology. 2008 Dec;48(6):1810-20
– reference: 18278031 - Nature. 2008 Feb 28;451(7182):1125-9
– reference: 11162594 - Biochem Biophys Res Commun. 2001 Jan 26;280(3):818-23
SSID ssj0009580
Score 2.5667899
Snippet MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223),...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 14518
SubjectTerms Animals
Cell Line, Tumor
Cells, Cultured
Cholesterol - metabolism
Cholesterol, HDL - metabolism
HEK293 Cells
Homeostasis
Humans
Liver - metabolism
Mice, Knockout
MicroRNAs - genetics
Models, Genetic
Oligonucleotide Array Sequence Analysis
Reverse Transcriptase Polymerase Chain Reaction
Transcriptome - genetics
Title MicroRNA-223 coordinates cholesterol homeostasis
URI https://www.ncbi.nlm.nih.gov/pubmed/25246565
https://www.proquest.com/docview/1609508027
Volume 111
WOSCitedRecordID wos000342633900056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQUPegjbtEmTnGQRFw9uWURhbyXNAxe0rXb19ztpu-hFELzk1pBO5vElmfkGoQuISsJA3MU0Z3BAsYpiBZEJW-dAnY2JpG4Khe95morZTE67C7e6S6tc-sTGUZtS-zvyIfHMaL4wlF9Xb9h3jfKvq10LjVXUiwHKeMPkM_GDdFe0bASS4ITKcEntw-NhVai6YVbgCSeE_I4vmzgz3vrvCrfRZocwg1GrEn20Yosd1O9suA4uO6Lpq10UTnw23kM6whC9A13COXReeOwZeJ_YUCiUL8Fz-WpLwJD1vN5DT-Pbx5s73HVQwJpJssBSCENIYmVuOWAbGuZhzsBKI2sYWHMiWayJZDZOVASbmVihmaM2z-FHuCMq2kdrRVnYQxT4Cl4nnMpdaChMKo0Bh-CkMI4ypdUAnS-lkoGG-mcHVdjyo86-5TJAB61os6ql0shgKZ6wjR394etjtAFohTaZdPwE9RzYpz1F6_pzMa_fz5qthzGdTr4A0iu3Ww
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-223+coordinates+cholesterol+homeostasis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vickers%2C+Kasey+C&rft.au=Landstreet%2C+Stuart+R&rft.au=Levin%2C+Michael+G&rft.au=Shoucri%2C+Bassem+M&rft.date=2014-10-07&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=40&rft.spage=14518&rft_id=info:doi/10.1073%2Fpnas.1215767111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon