MicroRNA-223 coordinates cholesterol homeostasis
MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter a...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 111; H. 40; S. 14518 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
07.10.2014
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism. |
|---|---|
| AbstractList | MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism. MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism. |
| Author | Tabet, Fatiha Cui, Huanhuan L Rye, Kerry-Anne Shoucri, Bassem M Sethupathy, Praveen Taylor, Robert C Levin, Michael G Landstreet, Stuart R Palmisano, Brian T Vickers, Kasey C Toth, Cynthia L Remaley, Alan T |
| Author_xml | – sequence: 1 givenname: Kasey C surname: Vickers fullname: Vickers, Kasey C email: kasey.c.vickers@Vanderbilt.edu organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; kasey.c.vickers@Vanderbilt.edu – sequence: 2 givenname: Stuart R surname: Landstreet fullname: Landstreet, Stuart R organization: Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 – sequence: 3 givenname: Michael G surname: Levin fullname: Levin, Michael G organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 – sequence: 4 givenname: Bassem M surname: Shoucri fullname: Shoucri, Bassem M organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 – sequence: 5 givenname: Cynthia L surname: Toth fullname: Toth, Cynthia L organization: Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 – sequence: 6 givenname: Robert C surname: Taylor fullname: Taylor, Robert C organization: Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 – sequence: 7 givenname: Brian T surname: Palmisano fullname: Palmisano, Brian T organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 – sequence: 8 givenname: Fatiha surname: Tabet fullname: Tabet, Fatiha organization: Lipid Research Group, The Heart Research Institute, Newtown, NSW 2042, Australia – sequence: 9 givenname: Huanhuan L surname: Cui fullname: Cui, Huanhuan L organization: Lipoproteins and Atherosclerosis, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; and – sequence: 10 givenname: Kerry-Anne surname: Rye fullname: Rye, Kerry-Anne organization: Lipid Research Group, The Heart Research Institute, Newtown, NSW 2042, Australia – sequence: 11 givenname: Praveen surname: Sethupathy fullname: Sethupathy, Praveen organization: Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 – sequence: 12 givenname: Alan T surname: Remaley fullname: Remaley, Alan T organization: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25246565$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLw0AUhQep2Ieu3UmWblLvneROMstSrApVQXQdZiY3NJJkaiZZ-O8NWMHVOYuP81iKWec7FuIaYY2QJXfHzoQ1SqRMZYh4JhYIGmOVapj983OxDOETADTlcCHmkmSqSNFCwHPtev_2somlTCLnfV_WnRk4RO7gGw4D976JDr5lHwYT6nApzivTBL466Up87O7ft4_x_vXhabvZx440DrHO8xJRsbacSVIpWLCUTr1cEiSoNCUONXGijLTsFOeOqpSt1QRZhUauxO1v7rH3X-M0pGjr4LhpTMd-DAWq6QzkILMJvTmho225LI593Zr-u_h7KX8ADWZUbg |
| CitedBy_id | crossref_primary_10_1007_s11033_021_06275_3 crossref_primary_10_1016_j_peptides_2020_170387 crossref_primary_10_3390_ijms23168939 crossref_primary_10_1038_s41580_021_00354_w crossref_primary_10_1007_s11883_021_00928_1 crossref_primary_10_3389_fcell_2023_1173904 crossref_primary_10_3390_ijms21249600 crossref_primary_10_3390_bios13080802 crossref_primary_10_3390_biology4030494 crossref_primary_10_1007_s40200_019_00459_2 crossref_primary_10_1371_journal_pone_0135163 crossref_primary_10_1016_j_numecd_2016_08_004 crossref_primary_10_1128_spectrum_04664_22 crossref_primary_10_1016_j_jacc_2019_07_043 crossref_primary_10_2217_epi_2016_0168 crossref_primary_10_3390_separations8110204 crossref_primary_10_1096_fj_201900867RR crossref_primary_10_1016_j_pharmthera_2018_02_011 crossref_primary_10_3389_fphys_2019_01367 crossref_primary_10_1016_j_yjmcc_2019_03_012 crossref_primary_10_1109_ACCESS_2020_2972068 crossref_primary_10_1016_j_yjmcc_2018_08_004 crossref_primary_10_1097_MOL_0000000000000200 crossref_primary_10_3389_fcvm_2021_707529 crossref_primary_10_3389_fmed_2021_770504 crossref_primary_10_1136_gutjnl_2020_322526 crossref_primary_10_1111_jfbc_14195 crossref_primary_10_1007_s00335_016_9649_4 crossref_primary_10_1080_15592294_2016_1176816 crossref_primary_10_3390_ijms22157855 crossref_primary_10_1002_ctm2_468 crossref_primary_10_1016_j_lfs_2020_118633 crossref_primary_10_1186_s12263_017_0577_z crossref_primary_10_1007_s11033_021_06636_y crossref_primary_10_1007_s11883_025_01309_8 crossref_primary_10_1016_j_steroids_2021_108878 crossref_primary_10_1038_s41598_019_56857_2 crossref_primary_10_1002_2211_5463_13026 crossref_primary_10_1007_s12013_024_01603_3 crossref_primary_10_1016_j_cjca_2017_01_001 crossref_primary_10_1002_mnfr_202300224 crossref_primary_10_1016_j_cell_2018_03_006 crossref_primary_10_1016_j_pharmthera_2016_09_001 crossref_primary_10_1002_iub_2726 crossref_primary_10_2174_0929867330666221028144416 crossref_primary_10_1002_mnfr_201800027 crossref_primary_10_3390_biomedicines11061597 crossref_primary_10_3389_fmolb_2025_1548355 crossref_primary_10_1155_2019_5028181 crossref_primary_10_1186_s12876_015_0382_3 crossref_primary_10_3390_ijms25158191 crossref_primary_10_3390_ijms21217901 crossref_primary_10_1016_j_atherosclerosis_2016_01_025 crossref_primary_10_1038_s41598_020_77539_4 crossref_primary_10_1016_j_atherosclerosis_2020_02_004 crossref_primary_10_33549_physiolres_933432 crossref_primary_10_1016_j_atherosclerosis_2017_06_924 crossref_primary_10_1002_hep_29153 crossref_primary_10_1016_j_cca_2015_10_021 crossref_primary_10_1186_s12864_017_4096_5 crossref_primary_10_3390_cancers12061410 crossref_primary_10_1080_10408398_2022_2139220 crossref_primary_10_1152_physiolgenomics_00087_2023 crossref_primary_10_1007_s11726_025_1474_4 crossref_primary_10_1038_emm_2017_80 crossref_primary_10_1016_j_aquaculture_2018_08_058 crossref_primary_10_1016_j_bbalip_2016_01_011 crossref_primary_10_1161_CIRCULATIONAHA_120_044221 crossref_primary_10_1186_s12885_015_1909_2 crossref_primary_10_1038_s41598_019_40296_0 crossref_primary_10_1038_nm_3949 crossref_primary_10_1016_j_jnutbio_2020_108397 crossref_primary_10_3390_jcdd8120170 crossref_primary_10_1093_eurheartj_ehw146 crossref_primary_10_1136_jmedgenet_2018_105387 crossref_primary_10_1016_j_bbalip_2016_01_005 crossref_primary_10_1016_j_cmet_2019_07_011 crossref_primary_10_1016_j_biopha_2022_113419 crossref_primary_10_1161_STROKEAHA_118_021010 crossref_primary_10_1038_s41419_021_03708_6 crossref_primary_10_1146_annurev_animal_020518_115250 crossref_primary_10_1016_j_vph_2020_106666 crossref_primary_10_3389_fcvm_2020_00081 crossref_primary_10_3390_ph14121257 crossref_primary_10_1155_2016_3863726 crossref_primary_10_1016_j_bbcan_2023_188900 crossref_primary_10_3389_fimmu_2022_922868 crossref_primary_10_3390_ijms24010139 crossref_primary_10_1194_jlr_RA120001121 crossref_primary_10_1002_wrna_1385 crossref_primary_10_1016_j_biopha_2023_114836 crossref_primary_10_1371_journal_pone_0216947 crossref_primary_10_3390_ijms22105210 crossref_primary_10_1007_s11883_018_0737_7 crossref_primary_10_1002_ejhf_495 crossref_primary_10_1186_s13148_016_0170_0 crossref_primary_10_1097_MOL_0000000000000358 crossref_primary_10_1007_s11883_014_0476_3 crossref_primary_10_3390_ijms232415645 crossref_primary_10_15171_apb_2017_066 crossref_primary_10_1016_j_envint_2023_107913 crossref_primary_10_3390_antiox13050583 crossref_primary_10_3390_cells8080853 crossref_primary_10_4103_jisp_jisp_179_23 crossref_primary_10_1038_s41366_019_0485_y crossref_primary_10_3390_biology12091232 crossref_primary_10_1093_jn_nxz282 crossref_primary_10_1186_s12967_024_05480_5 crossref_primary_10_1515_med_2022_0424 crossref_primary_10_1016_j_trsl_2016_02_008 crossref_primary_10_1016_j_gene_2020_145184 crossref_primary_10_3390_ani15172621 crossref_primary_10_1111_nyas_14566 crossref_primary_10_1016_j_micinf_2024_105379 crossref_primary_10_1172_JCI141513 crossref_primary_10_3390_biom12091243 crossref_primary_10_1016_j_abb_2015_09_018 crossref_primary_10_1161_ATVBAHA_115_305317 crossref_primary_10_3390_jcm8122199 crossref_primary_10_1016_j_phrs_2021_105868 crossref_primary_10_1161_ATVBAHA_117_309233 crossref_primary_10_1371_journal_pone_0145930 crossref_primary_10_1007_s13105_022_00871_y crossref_primary_10_1096_fj_201600298RR crossref_primary_10_1007_s11886_023_02014_1 crossref_primary_10_1016_j_molmed_2015_02_003 crossref_primary_10_1016_j_tcm_2016_02_004 crossref_primary_10_1089_ars_2021_0076 crossref_primary_10_1038_s41598_019_41101_8 crossref_primary_10_1002_jcb_29286 crossref_primary_10_1016_j_expneurol_2020_113382 crossref_primary_10_3389_fphys_2023_1241096 crossref_primary_10_1016_j_jff_2019_03_036 crossref_primary_10_1097_MOL_0000000000000186 crossref_primary_10_3390_ijms222011145 crossref_primary_10_1017_S0954422424000155 crossref_primary_10_1038_srep12911 crossref_primary_10_1016_j_jneuroim_2021_577640 crossref_primary_10_1167_iovs_66_4_26 crossref_primary_10_3389_fimmu_2022_860661 crossref_primary_10_1016_j_semcdb_2017_11_026 crossref_primary_10_22270_jddt_v15i8_7336 crossref_primary_10_3389_fphys_2020_00793 crossref_primary_10_1007_s11033_018_4547_3 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106033 crossref_primary_10_1016_j_atherosclerosis_2022_12_003 crossref_primary_10_1016_j_orcp_2015_01_006 crossref_primary_10_1517_14712598_2015_1084282 crossref_primary_10_1055_a_1478_2105 crossref_primary_10_1186_s12985_016_0541_3 crossref_primary_10_1371_journal_pone_0206727 crossref_primary_10_1016_j_beem_2016_11_010 crossref_primary_10_1093_cvr_cvv236 crossref_primary_10_1016_j_atherosclerosis_2016_09_067 crossref_primary_10_1097_QAI_0000000000001070 crossref_primary_10_1097_MOL_0000000000000420 crossref_primary_10_1186_s13098_025_01725_5 crossref_primary_10_1016_j_ajpath_2015_08_020 crossref_primary_10_3389_fgene_2025_1556495 crossref_primary_10_1161_CIRCRESAHA_115_305467 crossref_primary_10_1074_jbc_RA119_007755 crossref_primary_10_1007_s10528_020_09948_z crossref_primary_10_1097_CRD_0000000000000114 crossref_primary_10_1007_s10974_021_09612_y crossref_primary_10_1016_j_neuroscience_2018_08_003 crossref_primary_10_1016_j_jalz_2016_08_018 crossref_primary_10_3390_biomedicines12061322 crossref_primary_10_3390_genes16010098 crossref_primary_10_1007_s40292_019_00356_y crossref_primary_10_1159_000538197 crossref_primary_10_3390_medicina59071329 crossref_primary_10_1016_j_semcdb_2023_02_006 crossref_primary_10_3390_ijms21030732 crossref_primary_10_1002_jcla_24583 crossref_primary_10_3390_ijms17050791 crossref_primary_10_3390_ncrna9050053 crossref_primary_10_1016_j_exer_2018_09_023 crossref_primary_10_1161_CIRCRESAHA_115_306300 crossref_primary_10_1016_j_jacc_2015_04_014 crossref_primary_10_1089_dna_2020_6138 crossref_primary_10_1002_ddr_21269 crossref_primary_10_1016_j_clinre_2025_102547 crossref_primary_10_1007_s11883_024_01216_4 crossref_primary_10_3389_fcell_2021_622908 crossref_primary_10_1016_j_ebiom_2017_08_020 crossref_primary_10_3390_genes16030349 crossref_primary_10_1002_jnr_24487 crossref_primary_10_1007_s10096_025_05207_4 crossref_primary_10_1038_ijo_2015_170 crossref_primary_10_1161_CIRCRESAHA_121_319120 crossref_primary_10_1016_j_freeradbiomed_2021_05_004 crossref_primary_10_1161_ATVBAHA_116_307028 crossref_primary_10_1007_s13105_019_00710_7 crossref_primary_10_1016_j_bbalip_2015_12_013 crossref_primary_10_3389_fcvm_2020_610561 crossref_primary_10_1007_s11010_020_03992_4 crossref_primary_10_1515_cclm_2016_0575 crossref_primary_10_1038_s12276_018_0153_7 crossref_primary_10_3390_jcm11030849 crossref_primary_10_1002_jcp_25930 crossref_primary_10_1016_j_ncrna_2025_04_009 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1215767111 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 25246565 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: K22HL113039 – fundername: NIDDK NIH HHS grantid: P30 DK056350 – fundername: NIDDK NIH HHS grantid: P30 DK020593 – fundername: NHLBI NIH HHS grantid: P01HL116263 – fundername: NIGMS NIH HHS grantid: T32 GM007347 – fundername: NHLBI NIH HHS grantid: P01 HL116263 – fundername: NIDDK NIH HHS grantid: DK20593 – fundername: NIDDK NIH HHS grantid: P60 DK020593 – fundername: NHLBI NIH HHS grantid: K22 HL113039 – fundername: NIDDK NIH HHS grantid: 5R00DK09131803 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c591t-988d116e9be725640b0b54252ed50316953c195e36a2bec6e8c5f4ebb9507f1a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 229 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342633900056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Oct 02 10:34:55 EDT 2025 Thu Apr 03 07:03:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 40 |
| Keywords | atherosclerosis reverse cholesterol transport posttranscriptional gene regulation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c591t-988d116e9be725640b0b54252ed50316953c195e36a2bec6e8c5f4ebb9507f1a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/111/40/14518.full.pdf |
| PMID | 25246565 |
| PQID | 1609508027 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1609508027 pubmed_primary_25246565 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-07 |
| PublicationDateYYYYMMDD | 2014-10-07 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2014 |
| References | 21285510 - J Clin Invest. 2011 Mar;121(3):976-84 19030170 - Hepatology. 2008 Dec;48(6):1810-20 20880716 - Trends Endocrinol Metab. 2010 Dec;21(12):699-706 15891392 - Curr Opin Lipidol. 2005 Jun;16(3):307-15 22267590 - Gut. 2012 Nov;61(11):1600-9 14512514 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32 23519696 - Circ Res. 2013 Jun 7;112(12):1602-12 9564170 - Nutr Rev. 1998 Feb;56(2 Pt 2):S1-3; discussion S54-75 20711193 - Nat Immunol. 2010 Sep;11(9):799-805 10579331 - Endocrinology. 1999 Dec;140(12):5669-81 18278031 - Nature. 2008 Feb 28;451(7182):1125-9 23459944 - Mol Cell Biol. 2013 May;33(10):1956-64 20965416 - Mol Cell. 2010 Oct 22;40(2):205-15 11162594 - Biochem Biophys Res Commun. 2001 Jan 26;280(3):818-23 8770871 - J Clin Invest. 1996 Aug 15;98(4):984-95 25814681 - Circ Res. 2015 Mar 27;116(7):1112-4 12754212 - J Biol Chem. 2003 Aug 1;278(31):28528-32 22459148 - FASEB J. 2012 Jul;26(7):3032-41 10508199 - J Lipid Res. 1999 Oct;40(10):1799-805 20466885 - Science. 2010 Jun 18;328(5985):1570-3 20686565 - Nature. 2010 Aug 5;466(7307):707-13 19104939 - Dig Dis Sci. 2009 Nov;54(11):2362-6 17666007 - Annu Rev Genet. 2007;41:401-27 20150807 - Curr Opin Endocrinol Diabetes Obes. 2010 Apr;17(2):150-5 23499894 - Cancer Lett. 2013 Jul 28;335(2):455-62 9548583 - J Lipid Res. 1998 Mar;39(3):495-508 21423178 - Nat Cell Biol. 2011 Apr;13(4):423-33 17482553 - Cell. 2007 May 4;129(3):617-31 21316602 - Cancer Cell. 2011 Feb 15;19(2):232-43 20018934 - Arterioscler Thromb Vasc Biol. 2010 Mar;30(3):526-32 14704742 - Int J Obes Relat Metab Disord. 2003 Dec;27 Suppl 3:S35-40 19421056 - Curr Opin Lipidol. 2009 Jun;20(3):236-41 8560269 - Science. 1996 Jan 26;271(5248):518-20 8349823 - J Clin Invest. 1993 Aug;92(2):883-93 18555017 - Gastroenterology. 2008 Jul;135(1):257-69 1411543 - Science. 1992 Oct 16;258(5081):468-71 22569260 - FEBS Lett. 2012 Apr 5;586(7):1038-43 23519695 - Circ Res. 2013 Jun 7;112(12):1592-601 7520436 - J Biol Chem. 1994 Aug 19;269(33):21003-9 22777896 - Hepatology. 2013 Feb;57(2):533-42 11839742 - J Biol Chem. 2002 Apr 26;277(17):14443-50 14744438 - Cell. 2004 Jan 23;116(2):281-97 22418571 - Curr Opin Lipidol. 2012 Apr;23(2):91-7 22560219 - Cell Metab. 2012 May 2;15(5):665-74 12370781 - Mamm Genome. 2002 Sep;13(9):510-4 22499947 - Science. 2012 Apr 13;336(6078):237-40 |
| References_xml | – reference: 20880716 - Trends Endocrinol Metab. 2010 Dec;21(12):699-706 – reference: 20686565 - Nature. 2010 Aug 5;466(7307):707-13 – reference: 1411543 - Science. 1992 Oct 16;258(5081):468-71 – reference: 21423178 - Nat Cell Biol. 2011 Apr;13(4):423-33 – reference: 12754212 - J Biol Chem. 2003 Aug 1;278(31):28528-32 – reference: 9548583 - J Lipid Res. 1998 Mar;39(3):495-508 – reference: 22560219 - Cell Metab. 2012 May 2;15(5):665-74 – reference: 22459148 - FASEB J. 2012 Jul;26(7):3032-41 – reference: 19104939 - Dig Dis Sci. 2009 Nov;54(11):2362-6 – reference: 18555017 - Gastroenterology. 2008 Jul;135(1):257-69 – reference: 8560269 - Science. 1996 Jan 26;271(5248):518-20 – reference: 23519695 - Circ Res. 2013 Jun 7;112(12):1592-601 – reference: 20466885 - Science. 2010 Jun 18;328(5985):1570-3 – reference: 22569260 - FEBS Lett. 2012 Apr 5;586(7):1038-43 – reference: 11839742 - J Biol Chem. 2002 Apr 26;277(17):14443-50 – reference: 14512514 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32 – reference: 14744438 - Cell. 2004 Jan 23;116(2):281-97 – reference: 20711193 - Nat Immunol. 2010 Sep;11(9):799-805 – reference: 19421056 - Curr Opin Lipidol. 2009 Jun;20(3):236-41 – reference: 10579331 - Endocrinology. 1999 Dec;140(12):5669-81 – reference: 23519696 - Circ Res. 2013 Jun 7;112(12):1602-12 – reference: 8770871 - J Clin Invest. 1996 Aug 15;98(4):984-95 – reference: 22777896 - Hepatology. 2013 Feb;57(2):533-42 – reference: 17666007 - Annu Rev Genet. 2007;41:401-27 – reference: 9564170 - Nutr Rev. 1998 Feb;56(2 Pt 2):S1-3; discussion S54-75 – reference: 14704742 - Int J Obes Relat Metab Disord. 2003 Dec;27 Suppl 3:S35-40 – reference: 12370781 - Mamm Genome. 2002 Sep;13(9):510-4 – reference: 21316602 - Cancer Cell. 2011 Feb 15;19(2):232-43 – reference: 22418571 - Curr Opin Lipidol. 2012 Apr;23(2):91-7 – reference: 22499947 - Science. 2012 Apr 13;336(6078):237-40 – reference: 20150807 - Curr Opin Endocrinol Diabetes Obes. 2010 Apr;17(2):150-5 – reference: 7520436 - J Biol Chem. 1994 Aug 19;269(33):21003-9 – reference: 20965416 - Mol Cell. 2010 Oct 22;40(2):205-15 – reference: 20018934 - Arterioscler Thromb Vasc Biol. 2010 Mar;30(3):526-32 – reference: 10508199 - J Lipid Res. 1999 Oct;40(10):1799-805 – reference: 17482553 - Cell. 2007 May 4;129(3):617-31 – reference: 21285510 - J Clin Invest. 2011 Mar;121(3):976-84 – reference: 25814681 - Circ Res. 2015 Mar 27;116(7):1112-4 – reference: 8349823 - J Clin Invest. 1993 Aug;92(2):883-93 – reference: 22267590 - Gut. 2012 Nov;61(11):1600-9 – reference: 23459944 - Mol Cell Biol. 2013 May;33(10):1956-64 – reference: 23499894 - Cancer Lett. 2013 Jul 28;335(2):455-62 – reference: 15891392 - Curr Opin Lipidol. 2005 Jun;16(3):307-15 – reference: 19030170 - Hepatology. 2008 Dec;48(6):1810-20 – reference: 18278031 - Nature. 2008 Feb 28;451(7182):1125-9 – reference: 11162594 - Biochem Biophys Res Commun. 2001 Jan 26;280(3):818-23 |
| SSID | ssj0009580 |
| Score | 2.5667899 |
| Snippet | MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223),... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 14518 |
| SubjectTerms | Animals Cell Line, Tumor Cells, Cultured Cholesterol - metabolism Cholesterol, HDL - metabolism HEK293 Cells Homeostasis Humans Liver - metabolism Mice, Knockout MicroRNAs - genetics Models, Genetic Oligonucleotide Array Sequence Analysis Reverse Transcriptase Polymerase Chain Reaction Transcriptome - genetics |
| Title | MicroRNA-223 coordinates cholesterol homeostasis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25246565 https://www.proquest.com/docview/1609508027 |
| Volume | 111 |
| WOSCitedRecordID | wos000342633900056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQUPegjbtEmTnGQRFw9uWURhbyXNAxe0rXb19ztpu-hFELzk1pBO5vElmfkGoQuISsJA3MU0Z3BAsYpiBZEJW-dAnY2JpG4Khe95morZTE67C7e6S6tc-sTGUZtS-zvyIfHMaL4wlF9Xb9h3jfKvq10LjVXUiwHKeMPkM_GDdFe0bASS4ITKcEntw-NhVai6YVbgCSeE_I4vmzgz3vrvCrfRZocwg1GrEn20Yosd1O9suA4uO6Lpq10UTnw23kM6whC9A13COXReeOwZeJ_YUCiUL8Fz-WpLwJD1vN5DT-Pbx5s73HVQwJpJssBSCENIYmVuOWAbGuZhzsBKI2sYWHMiWayJZDZOVASbmVihmaM2z-FHuCMq2kdrRVnYQxT4Cl4nnMpdaChMKo0Bh-CkMI4ypdUAnS-lkoGG-mcHVdjyo86-5TJAB61os6ql0shgKZ6wjR394etjtAFohTaZdPwE9RzYpz1F6_pzMa_fz5qthzGdTr4A0iu3Ww |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-223+coordinates+cholesterol+homeostasis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vickers%2C+Kasey+C&rft.au=Landstreet%2C+Stuart+R&rft.au=Levin%2C+Michael+G&rft.au=Shoucri%2C+Bassem+M&rft.date=2014-10-07&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=40&rft.spage=14518&rft_id=info:doi/10.1073%2Fpnas.1215767111&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |