Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants

Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 110; H. 44; S. 17921
Hauptverfasser: Parker, Stephen C J, Stitzel, Michael L, Taylor, D Leland, Orozco, Jose Miguel, Erdos, Michael R, Akiyama, Jennifer A, van Bueren, Kelly Lammerts, Chines, Peter S, Narisu, Narisu, Black, Brian L, Visel, Axel, Pennacchio, Len A, Collins, Francis S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 29.10.2013
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those from nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (≥ 3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type-specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type-specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases.
AbstractList Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those from nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (≥ 3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type-specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type-specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases.
Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those from nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (≥ 3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type-specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type-specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases.Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those from nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (≥ 3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type-specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type-specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases.
Author Collins, Francis S
Stitzel, Michael L
Akiyama, Jennifer A
Parker, Stephen C J
Taylor, D Leland
Chines, Peter S
Narisu, Narisu
Orozco, Jose Miguel
Erdos, Michael R
Pennacchio, Len A
Black, Brian L
Visel, Axel
van Bueren, Kelly Lammerts
Author_xml – sequence: 1
  givenname: Stephen C J
  surname: Parker
  fullname: Parker, Stephen C J
  organization: National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
– sequence: 2
  givenname: Michael L
  surname: Stitzel
  fullname: Stitzel, Michael L
– sequence: 3
  givenname: D Leland
  surname: Taylor
  fullname: Taylor, D Leland
– sequence: 4
  givenname: Jose Miguel
  surname: Orozco
  fullname: Orozco, Jose Miguel
– sequence: 5
  givenname: Michael R
  surname: Erdos
  fullname: Erdos, Michael R
– sequence: 6
  givenname: Jennifer A
  surname: Akiyama
  fullname: Akiyama, Jennifer A
– sequence: 7
  givenname: Kelly Lammerts
  surname: van Bueren
  fullname: van Bueren, Kelly Lammerts
– sequence: 8
  givenname: Peter S
  surname: Chines
  fullname: Chines, Peter S
– sequence: 9
  givenname: Narisu
  surname: Narisu
  fullname: Narisu, Narisu
– sequence: 10
  givenname: Brian L
  surname: Black
  fullname: Black, Brian L
– sequence: 11
  givenname: Axel
  surname: Visel
  fullname: Visel, Axel
– sequence: 12
  givenname: Len A
  surname: Pennacchio
  fullname: Pennacchio, Len A
– sequence: 13
  givenname: Francis S
  surname: Collins
  fullname: Collins, Francis S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24127591$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYMozkPX7iRLNx3zaNNmKYMvGHCj65LH7TTapjVJB_z3VhzB1b1cvnM556zQqR88IHRFyYaSkt-OXsUN5bQkjFNKTtCSEkkzkUty-m9foFWM74QQWVTkHC1YTllZSLpE3bYNQ6-S8zimAMm0GHyrvIEwH1SCiG1wB8AGui6LIxjXOIP34AEH2E_dLB08Vt7iVgU9BNxOvfLYuggqzoyLH_igglM-xQt01qguwuVxrtHbw_3r9inbvTw-b-92mZk9pYwzMJoWDSmsMppJxrXVwIFpISThgumKF6VsGC-5FYIwIywrGgl5YSkTwNbo5vfvGIbPCWKqexd_AigPwxRrmudlLkVFqhm9PqKT7sHWY3C9Cl_1X0PsG1w9a8Q
CitedBy_id crossref_primary_10_7717_peerj_3618
crossref_primary_10_1016_j_cell_2023_11_030
crossref_primary_10_1016_j_semcdb_2019_05_007
crossref_primary_10_1080_14728222_2021_1992386
crossref_primary_10_1242_dev_109496
crossref_primary_10_1172_JCI78086
crossref_primary_10_1038_s41598_018_19186_4
crossref_primary_10_1002_ijc_30735
crossref_primary_10_1016_j_tcb_2013_10_008
crossref_primary_10_1016_j_tig_2015_11_004
crossref_primary_10_1161_CIRCRESAHA_116_302832
crossref_primary_10_1016_j_devcel_2022_11_011
crossref_primary_10_1158_2159_8290_CD_17_0375
crossref_primary_10_1089_ars_2016_6695
crossref_primary_10_1038_s41591_019_0493_4
crossref_primary_10_1126_science_1259037
crossref_primary_10_1016_j_devcel_2015_12_014
crossref_primary_10_3390_epigenomes3020011
crossref_primary_10_1016_j_molmet_2019_12_006
crossref_primary_10_1038_ng_3930
crossref_primary_10_1038_nbt_3863
crossref_primary_10_1016_j_tcb_2018_04_003
crossref_primary_10_1038_s41588_021_00823_0
crossref_primary_10_1038_s41467_018_03264_2
crossref_primary_10_1186_s13059_022_02757_0
crossref_primary_10_3389_fgene_2019_00267
crossref_primary_10_1016_j_pharmthera_2015_07_004
crossref_primary_10_1186_s13073_024_01300_z
crossref_primary_10_2217_pgs_15_105
crossref_primary_10_2217_pgs_15_106
crossref_primary_10_1093_hmg_ddx293
crossref_primary_10_1002_mco2_70359
crossref_primary_10_1073_pnas_1621192114
crossref_primary_10_1093_nar_gkv1002
crossref_primary_10_2217_pgs_15_111
crossref_primary_10_1038_ng_3606
crossref_primary_10_1038_s41592_021_01076_9
crossref_primary_10_1038_ng_3605
crossref_primary_10_1002_art_40194
crossref_primary_10_1186_s13072_015_0015_7
crossref_primary_10_2217_epi_2018_0150
crossref_primary_10_1016_j_xgen_2025_100850
crossref_primary_10_1038_s41467_021_24813_2
crossref_primary_10_1002_eji_201546035
crossref_primary_10_1093_hmg_ddz228
crossref_primary_10_1007_s11892_015_0635_0
crossref_primary_10_1016_j_molcel_2022_12_032
crossref_primary_10_1111_imr_12946
crossref_primary_10_1038_s41598_018_34420_9
crossref_primary_10_1038_nature15540
crossref_primary_10_1101_gr_212720_116
crossref_primary_10_1093_nar_gkw052
crossref_primary_10_1158_2159_8290_CD_16_0653
crossref_primary_10_1053_j_gastro_2021_05_057
crossref_primary_10_1146_annurev_genom_122220_093818
crossref_primary_10_1016_j_tig_2015_02_008
crossref_primary_10_3389_frnar_2023_1194526
crossref_primary_10_1038_s41588_019_0524_6
crossref_primary_10_1186_s12967_024_05356_8
crossref_primary_10_1128_MCB_00200_19
crossref_primary_10_1111_gbb_12269
crossref_primary_10_1038_ncomms8973
crossref_primary_10_1038_s41467_023_38953_0
crossref_primary_10_1038_s41574_020_0325_0
crossref_primary_10_3389_fgene_2025_1603687
crossref_primary_10_1016_j_cell_2014_06_027
crossref_primary_10_1016_j_ajpath_2018_02_006
crossref_primary_10_1371_journal_pgen_1005694
crossref_primary_10_1016_j_stem_2019_11_011
crossref_primary_10_1242_dev_202435
crossref_primary_10_1111_jth_15754
crossref_primary_10_1038_nature18642
crossref_primary_10_3389_fphar_2024_1383580
crossref_primary_10_1016_j_jaci_2017_12_1006
crossref_primary_10_1016_j_cels_2018_07_007
crossref_primary_10_7554_eLife_04631
crossref_primary_10_1038_s41467_020_15951_0
crossref_primary_10_1038_nrg_2016_4
crossref_primary_10_1101_gr_240093_118
crossref_primary_10_1038_nature14154
crossref_primary_10_3390_cells12081191
crossref_primary_10_1186_s13073_014_0085_3
crossref_primary_10_7717_peerj_1750
crossref_primary_10_1016_j_molcel_2017_09_016
crossref_primary_10_1038_s41467_020_18581_8
crossref_primary_10_7554_eLife_51503
crossref_primary_10_1038_s41467_019_10502_8
crossref_primary_10_1101_gr_184986_114
crossref_primary_10_1093_hmg_ddw048
crossref_primary_10_1038_s41576_020_00311_x
crossref_primary_10_1002_advs_202408420
crossref_primary_10_1073_pnas_1512081112
crossref_primary_10_1146_annurev_biochem_011420_095916
crossref_primary_10_1038_nsmb_2784
crossref_primary_10_2337_db16_1253
crossref_primary_10_1093_hmg_ddw170
crossref_primary_10_3389_fimmu_2022_849451
crossref_primary_10_1016_j_ajhg_2014_03_004
crossref_primary_10_1038_nrm3949
crossref_primary_10_1007_s00125_019_4823_3
crossref_primary_10_1093_nar_gky260
crossref_primary_10_1172_JCI166919
crossref_primary_10_1158_2159_8290_CD_16_0745
crossref_primary_10_1016_j_tig_2017_01_010
crossref_primary_10_1016_j_ymeth_2017_03_012
crossref_primary_10_1016_j_ajhg_2020_10_009
crossref_primary_10_1186_s12915_021_01009_0
crossref_primary_10_1038_s41467_021_26864_x
crossref_primary_10_1111_nyas_15064
crossref_primary_10_1038_s41431_024_01593_z
crossref_primary_10_1016_j_celrep_2024_114077
crossref_primary_10_1016_j_jbc_2021_101559
crossref_primary_10_1007_s11704_020_9504_3
crossref_primary_10_1016_j_ajhg_2016_07_012
crossref_primary_10_1371_journal_pgen_1009907
crossref_primary_10_12688_f1000research_8682_1
crossref_primary_10_2337_db17_0464
crossref_primary_10_3390_cells11182830
crossref_primary_10_1242_dmm_049790
crossref_primary_10_1158_2159_8290_CD_20_1066
crossref_primary_10_1016_j_cell_2025_04_007
crossref_primary_10_1038_nmeth_3325
crossref_primary_10_1038_s41588_019_0485_9
crossref_primary_10_3389_fgene_2017_00013
crossref_primary_10_1007_s00439_022_02434_z
crossref_primary_10_1038_s41467_022_29551_7
crossref_primary_10_1080_15592294_2018_1514231
crossref_primary_10_1186_s12885_024_12124_w
crossref_primary_10_1038_s41576_019_0200_9
crossref_primary_10_1038_s41467_023_36116_9
crossref_primary_10_3390_cancers11050634
crossref_primary_10_2217_epi_2017_0157
crossref_primary_10_1073_pnas_2017148118
crossref_primary_10_1073_pnas_2206612120
crossref_primary_10_1111_imr_12208
crossref_primary_10_1038_nrg_2018_9
crossref_primary_10_1016_j_jmb_2020_07_023
crossref_primary_10_1038_s41467_018_03279_9
crossref_primary_10_1007_s10911_018_9417_z
crossref_primary_10_1371_journal_pone_0111914
crossref_primary_10_1161_CIRCRESAHA_120_315929
crossref_primary_10_1111_febs_16089
crossref_primary_10_1002_med_21730
crossref_primary_10_1002_bies_202300044
crossref_primary_10_1016_j_gde_2015_08_009
crossref_primary_10_1111_jcmm_14646
crossref_primary_10_3389_fpsyt_2019_00808
crossref_primary_10_1007_s10522_019_09834_1
crossref_primary_10_1080_19382014_2016_1182276
crossref_primary_10_1038_nmeth_3664
crossref_primary_10_1146_annurev_cancerbio_060324_114306
crossref_primary_10_1016_j_cels_2020_02_009
crossref_primary_10_1002_jcp_24872
crossref_primary_10_3390_cancers17091503
crossref_primary_10_1038_s41576_021_00398_w
crossref_primary_10_3389_fnins_2018_00874
crossref_primary_10_1016_j_yjmcc_2019_04_012
crossref_primary_10_1038_s41419_022_05309_3
crossref_primary_10_1038_nrg_2016_56
crossref_primary_10_1016_j_autrev_2018_08_010
crossref_primary_10_1038_s41594_020_0488_3
crossref_primary_10_1038_ncomms12092
crossref_primary_10_1186_s13059_021_02532_7
crossref_primary_10_1093_hmg_ddv269
crossref_primary_10_1038_s41598_017_14389_7
crossref_primary_10_3389_fphar_2025_1589455
crossref_primary_10_1016_j_cell_2021_08_025
crossref_primary_10_3389_fgene_2021_775205
crossref_primary_10_1038_s41598_019_38979_9
crossref_primary_10_1007_s10911_018_9418_y
crossref_primary_10_1016_j_jmb_2019_12_045
crossref_primary_10_1038_nmeth_3799
crossref_primary_10_3390_ijms231911680
crossref_primary_10_1038_s41574_022_00671_w
crossref_primary_10_2217_epi_14_87
crossref_primary_10_1073_pnas_2215328119
crossref_primary_10_1016_j_atherosclerosis_2018_11_031
crossref_primary_10_1038_ncomms15011
crossref_primary_10_1093_nar_gky1286
crossref_primary_10_2337_db18_0393
crossref_primary_10_1186_s12864_020_07109_5
crossref_primary_10_1080_15384101_2020_1805238
crossref_primary_10_1128_microbiolspec_MCHD_0039_2016
crossref_primary_10_1007_s13258_018_0768_z
crossref_primary_10_1038_s41594_019_0190_5
crossref_primary_10_1038_s41540_021_00208_3
crossref_primary_10_1186_s13073_014_0077_3
crossref_primary_10_1371_journal_pone_0195788
crossref_primary_10_1016_j_tig_2016_02_003
crossref_primary_10_1093_bib_bbx042
crossref_primary_10_1016_j_ygeno_2014_04_006
crossref_primary_10_1371_journal_pgen_1004633
crossref_primary_10_1186_s12864_019_5779_x
crossref_primary_10_1242_dmm_049754
crossref_primary_10_3389_fendo_2020_576632
crossref_primary_10_1007_s11892_019_1230_6
crossref_primary_10_1186_s13072_017_0158_9
crossref_primary_10_1016_j_mrrev_2024_108489
crossref_primary_10_1038_s41588_023_01424_9
crossref_primary_10_1146_annurev_pharmtox_010617_052954
crossref_primary_10_1186_s13148_024_01642_w
crossref_primary_10_1186_s13045_019_0757_y
crossref_primary_10_1038_s41467_023_35833_5
crossref_primary_10_1080_21541264_2019_1695492
crossref_primary_10_1038_s41571_024_00914_x
crossref_primary_10_1093_nar_gkv863
crossref_primary_10_3389_fncel_2019_00352
crossref_primary_10_1016_j_critrevonc_2025_104898
crossref_primary_10_1016_j_cmet_2023_03_018
crossref_primary_10_1038_nrg_2015_33
crossref_primary_10_1038_s41467_019_13598_0
crossref_primary_10_1158_0008_5472_CAN_23_3995
crossref_primary_10_1038_s41467_019_09975_4
crossref_primary_10_1038_s41467_019_09513_2
crossref_primary_10_1038_s41467_019_12720_6
crossref_primary_10_1016_j_cell_2021_07_039
crossref_primary_10_1073_pnas_1714019114
crossref_primary_10_1084_jem_20190668
crossref_primary_10_1093_hmg_ddv101
crossref_primary_10_1371_journal_pgen_1004735
crossref_primary_10_1016_j_ajhg_2017_06_005
crossref_primary_10_1016_j_semcdb_2018_07_008
crossref_primary_10_1038_leu_2014_70
crossref_primary_10_1186_s13578_022_00769_8
crossref_primary_10_1016_j_tma_2019_12_003
crossref_primary_10_3389_fimmu_2021_655590
crossref_primary_10_1002_1873_3468_12424
crossref_primary_10_1093_nar_gky1240
crossref_primary_10_1016_j_cell_2019_05_029
crossref_primary_10_1172_JCI165208
crossref_primary_10_1186_s13059_017_1177_3
crossref_primary_10_1016_j_cell_2014_11_013
crossref_primary_10_1016_j_cell_2014_11_014
crossref_primary_10_1016_j_molcel_2016_03_033
crossref_primary_10_1038_s41598_018_21024_6
crossref_primary_10_1101_gad_287417_116
crossref_primary_10_15252_msb_20209873
crossref_primary_10_1016_j_ccell_2020_08_020
crossref_primary_10_1016_j_neuron_2014_11_011
crossref_primary_10_1017_S001667231600001X
crossref_primary_10_1371_journal_pcbi_1009670
crossref_primary_10_1038_s41422_021_00515_8
crossref_primary_10_1097_HS9_0000000000000969
crossref_primary_10_1002_eji_201545713
crossref_primary_10_1038_nature13835
crossref_primary_10_1093_rheumatology_kead001
crossref_primary_10_3390_ijms23116002
crossref_primary_10_1016_j_chom_2014_12_013
crossref_primary_10_1126_science_aad2197
crossref_primary_10_1186_s13059_018_1485_2
crossref_primary_10_2217_fon_2018_0502
crossref_primary_10_1038_s41467_019_12046_3
crossref_primary_10_1016_j_cmet_2024_09_006
crossref_primary_10_1016_j_gde_2013_11_009
crossref_primary_10_3389_fendo_2021_725131
crossref_primary_10_1158_1078_0432_CCR_16_3275
crossref_primary_10_1371_journal_pone_0237055
crossref_primary_10_1186_s12864_023_09622_9
crossref_primary_10_1371_journal_pone_0114485
crossref_primary_10_1093_nar_gky1025
crossref_primary_10_1098_rsob_200255
crossref_primary_10_1158_2159_8290_CD_19_1128
crossref_primary_10_3389_fimmu_2018_02738
crossref_primary_10_1186_s12864_018_4766_y
crossref_primary_10_7554_eLife_72837
crossref_primary_10_1016_j_cell_2017_09_026
crossref_primary_10_1016_j_molmed_2016_10_004
crossref_primary_10_1096_fj_202301700RR
crossref_primary_10_1016_j_gde_2024_102165
crossref_primary_10_1101_gr_210930_116
crossref_primary_10_1113_JP276745
crossref_primary_10_3389_fendo_2016_00112
crossref_primary_10_3390_ijms232112977
crossref_primary_10_1038_ng_3167
crossref_primary_10_1016_j_tem_2016_11_005
crossref_primary_10_1134_S0026893315060059
crossref_primary_10_1016_j_coviro_2018_11_010
crossref_primary_10_1038_nprot_2017_124
crossref_primary_10_1038_srep13391
crossref_primary_10_1038_s41574_020_0355_7
crossref_primary_10_1038_nsmb_3176
crossref_primary_10_1101_gr_238022_118
crossref_primary_10_1186_s12864_015_1984_4
crossref_primary_10_1101_gr_203679_115
crossref_primary_10_1016_j_csbj_2022_05_045
crossref_primary_10_1146_annurev_genom_120423_012301
crossref_primary_10_1038_ncomms16058
crossref_primary_10_1073_pnas_1315023111
crossref_primary_10_1093_nar_gkac141
crossref_primary_10_3389_fcell_2021_653669
crossref_primary_10_2337_db19_1049
crossref_primary_10_7554_eLife_88187
crossref_primary_10_1038_s41586_021_04116_8
crossref_primary_10_1186_s13072_019_0297_2
crossref_primary_10_1016_j_it_2015_07_006
crossref_primary_10_1038_s41525_021_00232_6
crossref_primary_10_1101_gr_243824_118
crossref_primary_10_3390_cancers17060982
crossref_primary_10_1038_s41588_021_00852_9
crossref_primary_10_1038_srep17978
crossref_primary_10_1038_ncomms16069
crossref_primary_10_1111_cpr_12970
crossref_primary_10_1016_j_tcm_2015_01_014
crossref_primary_10_1016_j_molcel_2014_05_016
crossref_primary_10_1073_pnas_1711155115
crossref_primary_10_1038_ni_3753
crossref_primary_10_1016_j_jgg_2020_11_010
crossref_primary_10_1111_eci_12899
crossref_primary_10_1016_j_it_2015_07_005
crossref_primary_10_1016_j_cell_2017_02_007
crossref_primary_10_1038_s41586_023_06693_2
crossref_primary_10_1186_s12859_018_2343_7
crossref_primary_10_1093_nar_gkx1225
crossref_primary_10_7554_eLife_10870
crossref_primary_10_1016_j_cels_2020_09_004
crossref_primary_10_1038_ng_3453
crossref_primary_10_1186_s13059_019_1808_y
crossref_primary_10_1101_gr_269209_120
crossref_primary_10_1016_j_cmet_2023_09_013
crossref_primary_10_1038_s41467_018_07687_9
crossref_primary_10_1016_j_molcel_2015_02_014
crossref_primary_10_1016_j_stem_2014_05_005
crossref_primary_10_1016_j_stem_2014_05_004
crossref_primary_10_1016_j_molmet_2019_06_002
crossref_primary_10_1016_j_tem_2014_05_001
crossref_primary_10_3389_fimmu_2015_00405
crossref_primary_10_1093_bib_bbu032
crossref_primary_10_1038_s41467_019_12856_5
crossref_primary_10_1038_s41467_017_01629_7
crossref_primary_10_1093_nar_gkz1038
crossref_primary_10_1158_2159_8290_CD_21_0385
crossref_primary_10_1534_g3_117_300088
crossref_primary_10_1016_j_molcel_2020_12_047
crossref_primary_10_1038_ncomms11764
crossref_primary_10_3389_fcvm_2023_1116925
crossref_primary_10_1002_bies_201700086
crossref_primary_10_1007_s00335_015_9618_3
crossref_primary_10_3390_genes6041183
crossref_primary_10_1101_gr_197590_115
crossref_primary_10_1186_s12964_025_02254_4
crossref_primary_10_1016_j_nbd_2018_02_007
crossref_primary_10_7554_eLife_32785
crossref_primary_10_3390_cells8101281
crossref_primary_10_1093_bib_bbu018
crossref_primary_10_1093_bioadv_vbae007
crossref_primary_10_1038_s41564_020_0760_7
crossref_primary_10_1016_j_ajhg_2018_02_020
crossref_primary_10_1002_bies_201600106
crossref_primary_10_1534_genetics_118_301525
crossref_primary_10_15252_embj_2019103949
crossref_primary_10_1109_TCBB_2022_3167090
crossref_primary_10_1371_journal_pcbi_1007775
crossref_primary_10_1007_s00125_016_3967_7
crossref_primary_10_1038_s41467_018_06081_9
crossref_primary_10_1038_s41467_020_18303_0
crossref_primary_10_1186_s12915_022_01362_8
crossref_primary_10_1038_ncomms12983
crossref_primary_10_1038_s41467_022_28861_0
crossref_primary_10_1016_j_ajhg_2013_12_011
crossref_primary_10_1101_gr_188300_114
crossref_primary_10_1016_j_coisb_2016_12_016
crossref_primary_10_1016_j_tibs_2022_01_002
crossref_primary_10_1016_j_immuni_2019_03_028
crossref_primary_10_1038_s41698_020_0108_z
crossref_primary_10_1038_s41580_020_00317_7
crossref_primary_10_1172_JCI149371
crossref_primary_10_1073_pnas_1424028112
crossref_primary_10_1101_gr_247007_118
crossref_primary_10_1002_wsbm_1467
crossref_primary_10_1016_j_phrs_2023_106940
crossref_primary_10_1186_s12864_015_1905_6
crossref_primary_10_1016_j_molcel_2018_04_025
crossref_primary_10_1016_j_gendis_2025_101652
crossref_primary_10_1038_s41467_021_27924_y
crossref_primary_10_1016_j_tig_2022_05_015
crossref_primary_10_1093_bfgp_elaf003
crossref_primary_10_3389_fimmu_2021_682589
crossref_primary_10_1016_j_tig_2022_05_011
crossref_primary_10_1186_s13062_016_0148_z
crossref_primary_10_1101_gr_190603_115
crossref_primary_10_1038_s41590_023_01528_8
crossref_primary_10_1101_gr_267898_120
crossref_primary_10_1182_blood_2014_06_582700
crossref_primary_10_1016_j_cels_2017_10_003
crossref_primary_10_1016_j_clinre_2016_05_011
crossref_primary_10_1186_s12859_019_2646_3
crossref_primary_10_1007_s11892_020_01370_4
crossref_primary_10_1016_j_cels_2024_10_006
crossref_primary_10_1016_j_molcel_2014_08_024
crossref_primary_10_1038_s41375_019_0614_6
crossref_primary_10_1093_carcin_bgz153
crossref_primary_10_1038_tp_2015_169
crossref_primary_10_1038_s44318_025_00380_w
crossref_primary_10_1016_j_neuron_2022_06_004
crossref_primary_10_1101_gr_227272_117
crossref_primary_10_1038_ng_3437
crossref_primary_10_1038_ng_3674
crossref_primary_10_1016_j_tig_2014_02_006
crossref_primary_10_1038_s44319_023_00024_2
crossref_primary_10_1080_15548627_2022_2148432
crossref_primary_10_1016_j_bpj_2019_04_006
crossref_primary_10_1073_pnas_1904311116
crossref_primary_10_3389_fgene_2022_827840
crossref_primary_10_1126_science_abk3512
crossref_primary_10_1146_annurev_immunol_042718_041447
crossref_primary_10_1111_imr_12934
crossref_primary_10_1038_s41467_021_25514_6
crossref_primary_10_2337_db20_1087
crossref_primary_10_1139_gen_2020_0104
crossref_primary_10_1371_journal_pgen_1009531
crossref_primary_10_1016_j_bbamcr_2015_11_026
crossref_primary_10_1038_s41389_025_00551_8
crossref_primary_10_1016_j_ajhg_2017_01_011
crossref_primary_10_1002_pmic_202200409
crossref_primary_10_1172_JCI144833
crossref_primary_10_1172_JCI129143
crossref_primary_10_3390_biom12070995
crossref_primary_10_7554_eLife_59067
crossref_primary_10_1016_j_cell_2016_04_027
crossref_primary_10_1038_ni_2946
crossref_primary_10_1186_s12859_019_3049_1
crossref_primary_10_1371_journal_pone_0144494
crossref_primary_10_1093_nar_gkz302
crossref_primary_10_1038_nature15521
crossref_primary_10_3390_epigenomes5040021
crossref_primary_10_1093_nar_gkx482
crossref_primary_10_1186_s13059_021_02485_x
crossref_primary_10_1038_s41588_019_0457_0
crossref_primary_10_3390_ijms25063103
crossref_primary_10_4049_jimmunol_2290007
crossref_primary_10_1101_gad_308536_117
crossref_primary_10_1038_s41467_020_14916_7
crossref_primary_10_1038_s41467_021_27055_4
crossref_primary_10_1161_CIRCRESAHA_116_306819
crossref_primary_10_1007_s10620_018_5072_x
crossref_primary_10_1016_j_cell_2017_06_049
crossref_primary_10_1038_s41598_017_12335_1
crossref_primary_10_4049_jimmunol_1401867
crossref_primary_10_1038_ng_3402
crossref_primary_10_1038_ng_3404
crossref_primary_10_2217_epi_2016_0142
crossref_primary_10_1016_j_ejps_2019_01_024
crossref_primary_10_1007_s12016_016_8550_y
crossref_primary_10_2217_epi_2016_0144
crossref_primary_10_1101_gr_268482_120
crossref_primary_10_3390_cancers13205201
crossref_primary_10_7554_eLife_31977
crossref_primary_10_1007_s11892_017_0908_x
crossref_primary_10_1016_j_gde_2016_10_007
crossref_primary_10_1084_jem_20211779
crossref_primary_10_1002_bies_201600034
crossref_primary_10_1038_s41598_023_30369_6
crossref_primary_10_1007_s00439_019_02082_w
crossref_primary_10_1038_srep30509
ContentType Journal Article
Contributor Young, Alice
Thomas, Pam
Schmidt, Brian
Gupta, Jyoti
Riebow, Nancy
Park, Morgan
Han, Joel
Montemayor, Casandra
McDowell, Jenny
Mullikin, James
Thomas, James
Guan, Xiaobin
Schandler, Karen
Masiello, Cathy
Vemulapalli, Meg
Blakesley, Robert
Dekhtyar, Mila
Hargrove, April
Sison, Christina
Maduro, Quino
Gregory, Michael
Stantripop, Mal
Maskeri, Baishali
Becker, Jesse
Ho, Shi-Ling
Legaspi, Richelle
Bouffard, Gerry
Benjamin, Betty
Brooks, Shelise
Coleman, Holly
Johnson, Taccara
Lovett, Sean
Contributor_xml – sequence: 1
  givenname: Jesse
  surname: Becker
  fullname: Becker, Jesse
– sequence: 2
  givenname: Betty
  surname: Benjamin
  fullname: Benjamin, Betty
– sequence: 3
  givenname: Robert
  surname: Blakesley
  fullname: Blakesley, Robert
– sequence: 4
  givenname: Gerry
  surname: Bouffard
  fullname: Bouffard, Gerry
– sequence: 5
  givenname: Shelise
  surname: Brooks
  fullname: Brooks, Shelise
– sequence: 6
  givenname: Holly
  surname: Coleman
  fullname: Coleman, Holly
– sequence: 7
  givenname: Mila
  surname: Dekhtyar
  fullname: Dekhtyar, Mila
– sequence: 8
  givenname: Michael
  surname: Gregory
  fullname: Gregory, Michael
– sequence: 9
  givenname: Xiaobin
  surname: Guan
  fullname: Guan, Xiaobin
– sequence: 10
  givenname: Jyoti
  surname: Gupta
  fullname: Gupta, Jyoti
– sequence: 11
  givenname: Joel
  surname: Han
  fullname: Han, Joel
– sequence: 12
  givenname: April
  surname: Hargrove
  fullname: Hargrove, April
– sequence: 13
  givenname: Shi-Ling
  surname: Ho
  fullname: Ho, Shi-Ling
– sequence: 14
  givenname: Taccara
  surname: Johnson
  fullname: Johnson, Taccara
– sequence: 15
  givenname: Richelle
  surname: Legaspi
  fullname: Legaspi, Richelle
– sequence: 16
  givenname: Sean
  surname: Lovett
  fullname: Lovett, Sean
– sequence: 17
  givenname: Quino
  surname: Maduro
  fullname: Maduro, Quino
– sequence: 18
  givenname: Cathy
  surname: Masiello
  fullname: Masiello, Cathy
– sequence: 19
  givenname: Baishali
  surname: Maskeri
  fullname: Maskeri, Baishali
– sequence: 20
  givenname: Jenny
  surname: McDowell
  fullname: McDowell, Jenny
– sequence: 21
  givenname: Casandra
  surname: Montemayor
  fullname: Montemayor, Casandra
– sequence: 22
  givenname: James
  surname: Mullikin
  fullname: Mullikin, James
– sequence: 23
  givenname: Morgan
  surname: Park
  fullname: Park, Morgan
– sequence: 24
  givenname: Nancy
  surname: Riebow
  fullname: Riebow, Nancy
– sequence: 25
  givenname: Karen
  surname: Schandler
  fullname: Schandler, Karen
– sequence: 26
  givenname: Brian
  surname: Schmidt
  fullname: Schmidt, Brian
– sequence: 27
  givenname: Christina
  surname: Sison
  fullname: Sison, Christina
– sequence: 28
  givenname: Mal
  surname: Stantripop
  fullname: Stantripop, Mal
– sequence: 29
  givenname: James
  surname: Thomas
  fullname: Thomas, James
– sequence: 30
  givenname: Pam
  surname: Thomas
  fullname: Thomas, Pam
– sequence: 31
  givenname: Meg
  surname: Vemulapalli
  fullname: Vemulapalli, Meg
– sequence: 32
  givenname: Alice
  surname: Young
  fullname: Young, Alice
CorporateAuthor NISC Comparative Sequencing Program
National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program Authors
NISC Comparative Sequencing Program Authors
CorporateAuthor_xml – name: NISC Comparative Sequencing Program
– name: National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program Authors
– name: NISC Comparative Sequencing Program Authors
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1317023110
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 24127591
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01HG003988
– fundername: Intramural NIH HHS
  grantid: ZIA HG000024
– fundername: NIDDK NIH HHS
  grantid: K99 DK092251
– fundername: NIDDK NIH HHS
  grantid: K99DK092251
– fundername: NHGRI NIH HHS
  grantid: R01 HG003988
– fundername: NIDDK NIH HHS
  grantid: K99 DK099240
– fundername: NIDDK NIH HHS
  grantid: K99DK099240
– fundername: NHLBI NIH HHS
  grantid: R01HL64658
– fundername: NHLBI NIH HHS
  grantid: R01 HL064658
– fundername: NIDCR NIH HHS
  grantid: R01 DE019118
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c591t-32ecb15f05dacb2923bdbe3e2b6690362b83579f2373d6602c6d25f9e45d126e2
IEDL.DBID 7X8
ISICitedReferencesCount 516
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326243100069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 06:49:56 EDT 2025
Sat May 31 02:07:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c591t-32ecb15f05dacb2923bdbe3e2b6690362b83579f2373d6602c6d25f9e45d126e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/110/44/17921.full.pdf
PMID 24127591
PQID 1447496808
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1447496808
pubmed_primary_24127591
PublicationCentury 2000
PublicationDate 2013-10-29
PublicationDateYYYYMMDD 2013-10-29
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
SSID ssj0009580
Score 2.6119294
Snippet Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 17921
SubjectTerms Animals
Cell Differentiation - physiology
Chromatin - physiology
Chromatin Immunoprecipitation
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - physiopathology
Enhancer Elements, Genetic - genetics
Enhancer Elements, Genetic - physiology
Epigenomics - methods
Gene Expression Profiling
Gene Expression Regulation - genetics
Gene Expression Regulation - physiology
Genome-Wide Association Study
High-Throughput Nucleotide Sequencing
Humans
Insulin-Secreting Cells - metabolism
Insulin-Secreting Cells - physiology
Luciferases
Mice
Mice, Transgenic
Title Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants
URI https://www.ncbi.nlm.nih.gov/pubmed/24127591
https://www.proquest.com/docview/1447496808
Volume 110
WOSCitedRecordID wos000326243100069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDKaJ4zj1hBCiYqHqAFK3yE8VCaUlKf393CWpYEFCYskWyfad7z7bd99HyJUPJqTaAHKDSMiEEJwZFwtmnRSpldpobmqxiWw0GkwmatxeuFVtWeUqJtaB2s0s3pH3AfhnQqFQxN38g6FqFL6uthIa66STAJTBkq5sMvhBujto2AhUzKRQ0YraJ0v680JXtzEkT-Q_i6Pf8WWdZ4Y7_x3hLtluESa9b1yiS9Z8sUe67R6u6HVLNH2zT96RGRcRa0GxZQTsR30xRTcoad1oVFFXQjSkeLvPsCcT64oouJynZaNhD1alunB0qktwJlor_tH20Ydi2TpdwmEca20OyOvw8eXhibXqC8ymKl6whHtr4jREqdPWcACCxhmfeG4knKgh7xkAb5kKPMkSJ2XErXQ8DcqL1MVcen5INopZ4Y8JVcYCjpBaWmtF0H4QlAmJTYQOaSQy2yOXqxXNwbtxUrrws88q_17THjlqzJLPGxqOHLAHz2CoJ3_4-5RscdSxgKTD1RnpBNjb_pxs2uXirSovareB72j8_AWWMM-U
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromatin+stretch+enhancer+states+drive+cell-specific+gene+regulation+and+harbor+human+disease+risk+variants&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Parker%2C+Stephen+C+J&rft.au=Stitzel%2C+Michael+L&rft.au=Taylor%2C+D+Leland&rft.au=Orozco%2C+Jose+Miguel&rft.date=2013-10-29&rft.eissn=1091-6490&rft.volume=110&rft.issue=44&rft.spage=17921&rft_id=info:doi/10.1073%2Fpnas.1317023110&rft_id=info%3Apmid%2F24127591&rft_id=info%3Apmid%2F24127591&rft.externalDocID=24127591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon