Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends
The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data” challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and commun...
Saved in:
| Published in: | BioData mining Vol. 7; no. 1; p. 22 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
29.10.2014
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1756-0381, 1756-0381 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data” challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data.
The MapReduce programming framework uses two tasks common in functional programming: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation.
In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields. |
|---|---|
| AbstractList | Doc number: 22 Abstract: The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. The MapReduce programming framework uses two tasks common in functional programming: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields. The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. THE MAPREDUCE PROGRAMMING FRAMEWORK USES TWO TASKS COMMON IN FUNCTIONAL PROGRAMMING: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields. The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. THE MAPREDUCE PROGRAMMING FRAMEWORK USES TWO TASKS COMMON IN FUNCTIONAL PROGRAMMING: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields.The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. THE MAPREDUCE PROGRAMMING FRAMEWORK USES TWO TASKS COMMON IN FUNCTIONAL PROGRAMMING: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields. The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data” challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. The MapReduce programming framework uses two tasks common in functional programming: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields. |
| ArticleNumber | 22 |
| Author | Far, Behrouz H Mohammed, Emad A Naugler, Christopher |
| AuthorAffiliation | 2 Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada 1 Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada |
| AuthorAffiliation_xml | – name: 2 Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada – name: 1 Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada |
| Author_xml | – sequence: 1 givenname: Emad A surname: Mohammed fullname: Mohammed, Emad A organization: Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary – sequence: 2 givenname: Behrouz H surname: Far fullname: Far, Behrouz H organization: Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary – sequence: 3 givenname: Christopher surname: Naugler fullname: Naugler, Christopher email: Christopher.Naugler@cls.ab.ca organization: Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25383096$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1rFTEUxYNU7IduXUrATTfTJpmZTOJCKMWqUBFE1-FOkpmmzkvGJFPpf9-8vvp4FoWuEnJ_53DvzTlEez54i9BrSk4oFfyUdi2vSC1o1VWMPUMH24e9nfs-OkzpmhDOSFu_QPusrUVNJD9AN2fzPDkN2QWfcBhwvrL4C8zfrFm0xXMMY4TVyvkRD-Vif4f4E-eA9eR8kU24dyM2kAGDh-k2ufQO6yVG6zOewJukYbalZvCw5CVanEvJpJfo-QBTsq8eziP04-LD9_NP1eXXj5_Pzy4r3UqSK0O1FKLmtTHU0FY20PV9LVupCbeasWEADa0hUgMIYigfBqkp0dATITrN6iP0fuM7L_3KGl3aijCpOboVxFsVwKm_K95dqTHcqIaxpmyoGBw_GMTwa7Epq5VL2k5lNhuWpCgvJCNU8iegrJNc8FY8BWVlWk66gr59hF6HJZZd31NUNEJQWqg3u3NuB_zz0QU42QA6hpSiHbYIJWqdJLUOi1qHRXWKrTfXPBJol-9jUvbkpv_LTjeyVPz9aONOu_9W3AGqudvV |
| CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2015_10_012 crossref_primary_10_1088_1757_899X_782_2_022011 crossref_primary_10_1080_10408363_2018_1561640 crossref_primary_10_3390_scipharm92040064 crossref_primary_10_1109_JBHI_2018_2879381 crossref_primary_10_1016_j_jbi_2018_03_014 crossref_primary_10_1109_ACCESS_2018_2857499 crossref_primary_10_1109_TBME_2015_2422751 crossref_primary_10_1002_widm_1206 crossref_primary_10_1155_2017_6120820 crossref_primary_10_2196_14017 crossref_primary_10_1371_journal_pone_0145791 crossref_primary_10_1007_s00530_020_00736_8 crossref_primary_10_5858_arpa_2015_0507_RA crossref_primary_10_1080_17517575_2020_1812005 crossref_primary_10_1109_ACCESS_2016_2626316 crossref_primary_10_1109_ACCESS_2018_2883149 crossref_primary_10_1109_ACCESS_2023_3332030 crossref_primary_10_1177_1932296815583505 crossref_primary_10_4018_IJEACH_2019010108 crossref_primary_10_1155_2021_6635463 crossref_primary_10_1155_2017_6261802 crossref_primary_10_1186_s12859_017_1881_8 crossref_primary_10_1186_s40537_023_00801_9 crossref_primary_10_1007_s00521_016_2780_z crossref_primary_10_1080_10426914_2023_2238056 crossref_primary_10_1016_j_ijmedinf_2018_03_013 crossref_primary_10_1007_s11277_018_5331_3 crossref_primary_10_1108_TQM_02_2021_0051 crossref_primary_10_3390_healthcare6020054 crossref_primary_10_1093_gigascience_giaa042 crossref_primary_10_1007_s11227_016_1883_8 crossref_primary_10_1109_JBHI_2015_2450362 crossref_primary_10_3390_ijerph192215231 crossref_primary_10_1007_s10844_019_00557_w crossref_primary_10_1016_j_jbi_2019_103311 crossref_primary_10_1016_j_procs_2020_03_078 crossref_primary_10_1080_12460125_2020_1869432 crossref_primary_10_1177_14604582241294217 crossref_primary_10_1093_gigascience_giy052 crossref_primary_10_3390_su15086655 crossref_primary_10_1007_s10115_018_1248_0 crossref_primary_10_4018_JGIM_2018070104 crossref_primary_10_46632_daai_5_1_5 crossref_primary_10_1038_s41598_018_36180_y crossref_primary_10_4018_IJAMC_2018100102 |
| Cites_doi | 10.1093/bioinformatics/btp236 10.1186/1471-2105-14-S4-S1 10.1186/1471-2105-11-S12-S1 10.1364/JOSAA.1.000612 10.1186/1752-0509-8-5 10.1109/SERVICES.2011.95 10.1155/2013/361327 10.1007/978-1-4471-4474-8_22 10.1109/TSMCB.2003.818557 10.1186/1745-6150-7-43 10.1186/1471-2105-15-30 10.1016/S0166-2236(98)01300-9 10.1145/640075.640119 10.1109/IPDPS.2009.5161005 10.1016/j.bbrc.2012.08.101 10.1186/1471-2105-13-200 10.1186/1471-2105-7-3 10.1142/S1793536909000047 10.1007/s11606-013-2455-8 10.1017/CBO9780511598951.003 10.1007/BF00308809 10.1159/isbn.978-1-908541-19-2 10.1136/amiajnl-2012-001093 10.1109/CLOUD.2012.123 10.1145/1327452.1327492 10.1186/1472-6807-13-S1-S3 10.1111/j.1574-6968.1999.tb13575.x 10.1186/1471-2148-7-41 10.1103/RevModPhys.65.413 10.1186/1748-7188-7-12 10.1109/WCSE.2010.93 10.1097/01.ccm.0000435667.15070.9c 10.1186/1471-2105-13-324 10.1109/MSST.2010.5496972 10.1056/NEJMc1314515 10.1186/1751-0473-6-13 10.1145/1272998.1273005 10.1186/1472-6947-12-151 10.1016/j.jneuroim.2010.05.016 10.1007/978-3-642-30567-2_16 10.1186/1471-2164-14-425 10.1007/978-3-319-06932-6_51 10.14778/1687553.1687609 10.1007/978-3-319-03746-2_50 10.1118/1.3660200 10.1145/1454115.1454152 10.3389/neuro.09.031.2009 10.1093/bioinformatics/bts647 10.1093/bioinformatics/btt528 10.1101/gr.107524.110 10.1109/JPROC.2008.917757 10.1090/S0002-9939-1976-0416888-0 10.1145/1376616.1376726 10.1016/S0079-6603(00)66025-7 10.1186/2047-2501-2-3 10.1109/eScience.2008.62 10.1093/bioinformatics/btl379 10.1016/j.jom.2013.03.001 |
| ContentType | Journal Article |
| Copyright | Mohammed et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. 2014 Mohammed et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Copyright © 2014 Mohammed et al.; licensee BioMed Central Ltd. 2014 Mohammed et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Mohammed et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. – notice: 2014 Mohammed et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. – notice: Copyright © 2014 Mohammed et al.; licensee BioMed Central Ltd. 2014 Mohammed et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QO 7SC 7X7 7XB 8AL 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1186/1756-0381-7-22 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Public Health ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed Computer and Information Systems Abstracts Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1756-0381 |
| EndPage | 22 |
| ExternalDocumentID | PMC4224309 3486227051 25383096 10_1186_1756_0381_7_22 |
| Genre | Journal Article Review |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 5GY 5VS 6J9 7X7 8C1 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DWQXO E3Z EBD EBLON EBS EJD ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR ISR ITC K6V K7- KQ8 LK8 M48 M7P ML~ M~E O5R O5S OK1 P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP ~8M AAYXX AFFHD CITATION 2VQ ALIPV C1A IPNFZ NPM RIG 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c590t-d1c988363dd1d1594a7bb3959c06ec22ffaca5d09caa80d16ff9c10cab0887c23 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346027900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1756-0381 |
| IngestDate | Tue Nov 04 01:56:57 EST 2025 Fri Sep 05 06:25:49 EDT 2025 Tue Oct 07 09:24:43 EDT 2025 Fri Sep 05 14:22:43 EDT 2025 Sat Nov 29 14:49:03 EST 2025 Mon Jul 21 05:22:14 EDT 2025 Tue Nov 18 21:23:55 EST 2025 Sat Nov 29 06:06:38 EST 2025 Sat Sep 06 07:24:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Clinical data analysis Distributed programming Clinical big data analysis Hadoop Big data Bioinformatics MapReduce |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c590t-d1c988363dd1d1594a7bb3959c06ec22ffaca5d09caa80d16ff9c10cab0887c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1621848811?pq-origsite=%requestingapplication% |
| PMID | 25383096 |
| PQID | 1621848811 |
| PQPubID | 55347 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4224309 proquest_miscellaneous_1642220196 proquest_miscellaneous_1627968658 proquest_miscellaneous_1622594607 proquest_journals_1621848811 pubmed_primary_25383096 crossref_primary_10_1186_1756_0381_7_22 crossref_citationtrail_10_1186_1756_0381_7_22 springer_journals_10_1186_1756_0381_7_22 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-29 |
| PublicationDateYYYYMMDD | 2014-10-29 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BioData mining |
| PublicationTitleAbbrev | BioData Mining |
| PublicationTitleAlternate | BioData Min |
| PublicationYear | 2014 |
| Publisher | BioMed Central Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V |
| References | M Gaggero (120_CR54) 2008 B Xu (120_CR48) 2012; 426 F Omri (120_CR36) 2012 S Zhao (120_CR69) 2013; 14 Z Wu (120_CR72) 2009; 1 W Wang (120_CR30) 2011 W-P Chen (120_CR37) 2014; 24 L Wang (120_CR73) 2012 TA Tatusova (120_CR56) 1999; 174 Y Aphinyanaphongs (120_CR31) 2012; 192 S Herculano-Houzel (120_CR91) 2009; 3 B MacLean (120_CR45) 2006; 22 JG Reid (120_CR71) 2014; 15 L Feldkamp (120_CR77) 1984; 1 ME Colosimo (120_CR64) 2011; 6 J Dean (120_CR11) 2008; 51 JS Almeida (120_CR63) 2012; 7 M Hämäläinen (120_CR89) 1993; 65 AB Friedman (120_CR81) 2014; 370 SL Peyton Jones (120_CR12) 1987 GF Coulouris (120_CR3) 2005 A Darling (120_CR57) 2003; 2003 A McKenna (120_CR44) 2010; 20 A Matsunaga (120_CR55) 2008 S Devaraj (120_CR80) 2013; 31 W-P Lee (120_CR66) 2014; 8 E Kohlwey (120_CR34) 2011 S Yaramakala (120_CR32) 2005 J Gurtowski (120_CR70) 2012; 15.13 Y-L Lin (120_CR46) 2013; 2013 X Qiu (120_CR53) 2009 Y Wang (120_CR62) 2013; 14 L Gao (120_CR65) 2007; 7 D Markonis (120_CR75) 2012 H Horiguchi (120_CR33) 2012; 12 120_CR21 120_CR22 DE Bell (120_CR6) 1988; 1 120_CR16 A Rajaraman (120_CR2) 2012 GS Sadasivam (120_CR58) 2010 M Isard (120_CR52) 2007; 41 B Meng (120_CR76) 2011; 38 RC Taylor (120_CR26) 2010; 11 G Kumar (120_CR92) 2014; 42 M de Oliveira Branco (120_CR4) 2009 L Dai (120_CR27) 2012; 7 H Huang (120_CR47) 2013; 29 MA Musen (120_CR79) 2014 W Raghupathi (120_CR5) 2014; 2 D Purves (120_CR88) 1990 W Gropp (120_CR51) 1999 RS Kaplan (120_CR78) 2011; 89 MJ Brodie (120_CR85) 2012 F Wang (120_CR74) 2011 N Raghava (120_CR35) 2011 M Jonas (120_CR29) 2014 120_CR28 N Satish (120_CR9) 2009 NV Chawla (120_CR83) 2013; 28 120_CR23 H Nordberg (120_CR40) 2013; 29 T White (120_CR14) 2012 120_CR24 120_CR25 DR Bean (120_CR49) 1976; 55 C-F Juang (120_CR67) 2004; 34 H Braak (120_CR90) 1991; 82 RE Bryant (120_CR13) 2007 GM Shepherd (120_CR87) 1998; 21 J Xiaojing (120_CR18) 2010 B Zhang (120_CR68) 2013; 13 A Thusoo (120_CR19) 2009; 2 R Díaz-Uriarte (120_CR61) 2006; 7 S Shuman (120_CR1) 2000; 66 K Shvachko (120_CR15) 2010 M Olson (120_CR17) 2010; 1 AE Youssef (120_CR93) 2014; 2 S Schönherr (120_CR59) 2012; 13 120_CR41 120_CR42 JD Owens (120_CR8) 2008; 96 M Mazurek (120_CR82) 2014 Y-J Chang (120_CR43) 2012 MC Schatz (120_CR50) 2009; 25 AV Nguyen (120_CR39) 2011 PF Fabene (120_CR86) 2010; 224 S Lewis (120_CR60) 2012; 13 CM Cusack (120_CR84) 2013; 20 B He (120_CR10) 2008 C Olston (120_CR20) 2008 I Foster (120_CR7) 2003 K Zhang (120_CR38) 2003 |
| References_xml | – volume-title: The Implementation of Functional Programming Languages (Prentice-Hall International Series in Computer Science) year: 1987 ident: 120_CR12 – volume: 25 start-page: 1363 issue: 11 year: 2009 ident: 120_CR50 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp236 – volume: 14 start-page: 1 issue: 16 year: 2013 ident: 120_CR62 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-S4-S1 – volume: 11 start-page: S1 issue: Suppl 12 year: 2010 ident: 120_CR26 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-S12-S1 – volume: 1 start-page: 612 issue: 6 year: 1984 ident: 120_CR77 publication-title: JOSA A doi: 10.1364/JOSAA.1.000612 – volume-title: Distributed Systems: Concepts and Design: Pearson Education year: 2005 ident: 120_CR3 – volume: 15.13 start-page: 11 year: 2012 ident: 120_CR70 publication-title: Curr Protoc Bioinformatics – ident: 120_CR16 – start-page: 6 volume-title: Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers: 2009 year: 2009 ident: 120_CR53 – volume: 8 start-page: 5 issue: 1 year: 2014 ident: 120_CR66 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-8-5 – start-page: 597 volume-title: Services (SERVICES), 2011 IEEE World Congress on: 2011 year: 2011 ident: 120_CR34 doi: 10.1109/SERVICES.2011.95 – volume: 2013 start-page: 1 year: 2013 ident: 120_CR46 publication-title: Int J Genomics doi: 10.1155/2013/361327 – start-page: 643 volume-title: Biomedical Informatics year: 2014 ident: 120_CR79 doi: 10.1007/978-1-4471-4474-8_22 – volume: 34 start-page: 997 issue: 2 year: 2004 ident: 120_CR67 publication-title: Syst Man Cybern B Cybern IEEE Trans on doi: 10.1109/TSMCB.2003.818557 – volume: 7 start-page: 43 issue: 1 year: 2012 ident: 120_CR27 publication-title: Biol Direct doi: 10.1186/1745-6150-7-43 – ident: 120_CR22 – ident: 120_CR41 – volume: 1 start-page: 14 issue: 3 year: 2010 ident: 120_CR17 publication-title: IQT Quart – start-page: 482 volume-title: Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE International Conference on: 2011 year: 2011 ident: 120_CR35 – ident: 120_CR42 – volume: 15 start-page: 30 issue: 1 year: 2014 ident: 120_CR71 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-30 – volume: 21 start-page: 460 issue: 11 year: 1998 ident: 120_CR87 publication-title: Trends Neurosci doi: 10.1016/S0166-2236(98)01300-9 – start-page: 332 volume-title: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology: 2003 year: 2003 ident: 120_CR38 doi: 10.1145/640075.640119 – start-page: 1 volume-title: Parallel & Distributed Processing, 2009 IPDPS 2009 IEEE International Symposium on: 2009 year: 2009 ident: 120_CR9 doi: 10.1109/IPDPS.2009.5161005 – volume: 426 start-page: 395 issue: 3 year: 2012 ident: 120_CR48 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2012.08.101 – volume: 2 start-page: 1 issue: 2 year: 2014 ident: 120_CR93 publication-title: Int J Ambient Syst Appl – start-page: 1464 volume-title: AMIA Annual Symposium Proceedings: 2011 year: 2011 ident: 120_CR30 – volume: 13 start-page: 200 issue: 1 year: 2012 ident: 120_CR59 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-200 – volume: 7 start-page: 3 issue: 1 year: 2006 ident: 120_CR61 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-3 – volume: 1 start-page: 1 issue: 01 year: 2009 ident: 120_CR72 publication-title: Adv Adapt Data Anal doi: 10.1142/S1793536909000047 – volume: 28 start-page: 660 issue: 3 year: 2013 ident: 120_CR83 publication-title: J Gen Intern Med doi: 10.1007/s11606-013-2455-8 – volume-title: AAAI Spring Symposium: Computational Physiology: 2011 year: 2011 ident: 120_CR39 – volume-title: Using MPI: Portable Parallel Programming With the Message-Passing Interface year: 1999 ident: 120_CR51 – volume: 24 start-page: 1383 issue: 1 year: 2014 ident: 120_CR37 publication-title: Biomed Mater Eng – volume: 1 start-page: 9 year: 1988 ident: 120_CR6 publication-title: Decis Mak doi: 10.1017/CBO9780511598951.003 – volume: 82 start-page: 239 issue: 4 year: 1991 ident: 120_CR90 publication-title: Acta Neuropathol doi: 10.1007/BF00308809 – volume-title: Fast Facts: Epilepsy year: 2012 ident: 120_CR85 doi: 10.1159/isbn.978-1-908541-19-2 – volume: 192 start-page: 667 year: 2012 ident: 120_CR31 publication-title: Stud Health Technol Inform – volume: 20 start-page: 134 issue: 1 year: 2013 ident: 120_CR84 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-001093 – start-page: 155 volume-title: Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on: 2012 year: 2012 ident: 120_CR43 doi: 10.1109/CLOUD.2012.123 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 120_CR11 publication-title: Commun ACM doi: 10.1145/1327452.1327492 – ident: 120_CR21 – volume: 13 start-page: S3 issue: Suppl 1 year: 2013 ident: 120_CR68 publication-title: BMC Struct Biol doi: 10.1186/1472-6807-13-S1-S3 – volume: 174 start-page: 247 issue: 2 year: 1999 ident: 120_CR56 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1999.tb13575.x – ident: 120_CR25 – volume: 7 start-page: 41 issue: 1 year: 2007 ident: 120_CR65 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-41 – volume: 65 start-page: 413 issue: 2 year: 1993 ident: 120_CR89 publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.65.413 – volume: 7 start-page: 12 issue: 1 year: 2012 ident: 120_CR63 publication-title: Algorithms Mol Biol doi: 10.1186/1748-7188-7-12 – volume-title: Mining of Massive Datasets year: 2012 ident: 120_CR2 – start-page: 17 volume-title: 2010 Second WRI World Congress on Software Engineering: 2010 year: 2010 ident: 120_CR18 doi: 10.1109/WCSE.2010.93 – volume: 42 start-page: 583 issue: 3 year: 2014 ident: 120_CR92 publication-title: Crit Care Med doi: 10.1097/01.ccm.0000435667.15070.9c – volume: 13 start-page: 324 issue: 1 year: 2012 ident: 120_CR60 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-324 – start-page: 1 volume-title: Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on: 2010 year: 2010 ident: 120_CR15 doi: 10.1109/MSST.2010.5496972 – volume: 89 start-page: 46 issue: 9 year: 2011 ident: 120_CR78 publication-title: Harv Bus Rev – volume-title: Distributed Data Management for Large Scale Applications year: 2009 ident: 120_CR4 – volume: 370 start-page: 484 issue: 5 year: 2014 ident: 120_CR81 publication-title: N Engl J Med doi: 10.1056/NEJMc1314515 – start-page: 164 volume-title: ICPADS: 2012 year: 2012 ident: 120_CR73 – volume: 6 start-page: 13 year: 2011 ident: 120_CR64 publication-title: Source Code Biol Med doi: 10.1186/1751-0473-6-13 – volume: 41 start-page: 59 issue: 3 year: 2007 ident: 120_CR52 publication-title: ACM SIGOPS Oper Syst Rev doi: 10.1145/1272998.1273005 – start-page: 1 volume-title: Data-intensive supercomputing: The case for DISC year: 2007 ident: 120_CR13 – start-page: 1 volume-title: Hadoop-gis: A high performance query system for analytical medical imaging with mapreduce year: 2011 ident: 120_CR74 – volume: 12 start-page: 151 issue: 1 year: 2012 ident: 120_CR33 publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-12-151 – volume: 224 start-page: 22 issue: 1 year: 2010 ident: 120_CR86 publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2010.05.016 – ident: 120_CR24 – start-page: 4 volume-title: Data Mining, Fifth IEEE International Conference on: 2005 year: 2005 ident: 120_CR32 – volume-title: Hadoop: The Definitive Guide year: 2012 ident: 120_CR14 – ident: 120_CR28 – start-page: 192 volume-title: Networked Digital Technologies year: 2012 ident: 120_CR36 doi: 10.1007/978-3-642-30567-2_16 – volume-title: Body and Brain: A Trophic Theory of Neural Connections year: 1990 ident: 120_CR88 – volume: 2003 start-page: 1 year: 2003 ident: 120_CR57 publication-title: Proc Cluster World – volume: 14 start-page: 425 issue: 1 year: 2013 ident: 120_CR69 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-425 – start-page: 527 volume-title: Beyond Databases, Architectures, and Structures year: 2014 ident: 120_CR82 doi: 10.1007/978-3-319-06932-6_51 – volume: 2 start-page: 1626 issue: 2 year: 2009 ident: 120_CR19 publication-title: Proc VLDB Endowment doi: 10.14778/1687553.1687609 – start-page: 679 volume-title: Annual Update in Intensive Care and Emergency Medicine 2014 year: 2014 ident: 120_CR29 doi: 10.1007/978-3-319-03746-2_50 – volume-title: Cloud Computing and Its Applications year: 2008 ident: 120_CR54 – volume: 38 start-page: 6603 issue: 12 year: 2011 ident: 120_CR76 publication-title: Med Phys doi: 10.1118/1.3660200 – start-page: 1 volume-title: HISB: 2012 year: 2012 ident: 120_CR75 – start-page: 260 volume-title: Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques: 2008 year: 2008 ident: 120_CR10 doi: 10.1145/1454115.1454152 – volume-title: The Grid 2: Blueprint for a new Computing Infrastructure year: 2003 ident: 120_CR7 – volume: 3 start-page: 1 year: 2009 ident: 120_CR91 publication-title: Front Hum Neurosci doi: 10.3389/neuro.09.031.2009 – volume: 29 start-page: 135 issue: 1 year: 2013 ident: 120_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts647 – volume: 29 start-page: 3014 issue: 23 year: 2013 ident: 120_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt528 – volume: 20 start-page: 1297 issue: 9 year: 2010 ident: 120_CR44 publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 96 start-page: 879 issue: 5 year: 2008 ident: 120_CR8 publication-title: Proc IEEE doi: 10.1109/JPROC.2008.917757 – start-page: 2 volume-title: Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud: 2010 year: 2010 ident: 120_CR58 – volume: 55 start-page: 385 issue: 2 year: 1976 ident: 120_CR49 publication-title: Proc Am Math Soc doi: 10.1090/S0002-9939-1976-0416888-0 – start-page: 1099 volume-title: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data: 2008 year: 2008 ident: 120_CR20 doi: 10.1145/1376616.1376726 – volume: 66 start-page: 1 year: 2000 ident: 120_CR1 publication-title: Prog Nucleic Acid Res Mol Biol doi: 10.1016/S0079-6603(00)66025-7 – ident: 120_CR23 – volume: 2 start-page: 3 issue: 1 year: 2014 ident: 120_CR5 publication-title: Health Inform Sci Syst doi: 10.1186/2047-2501-2-3 – start-page: 222 volume-title: eScience, 2008 eScience’08 IEEE Fourth International Conference on: 2008 year: 2008 ident: 120_CR55 doi: 10.1109/eScience.2008.62 – volume: 22 start-page: 2830 issue: 22 year: 2006 ident: 120_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl379 – volume: 31 start-page: 181 issue: 4 year: 2013 ident: 120_CR80 publication-title: J Oper Manage doi: 10.1016/j.jom.2013.03.001 |
| SSID | ssj0062053 |
| Score | 2.3485723 |
| SecondaryResourceType | review_article |
| Snippet | The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data”... The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data"... Doc number: 22 Abstract: The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22 |
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Cloning Clusters Computation Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data Mining and Knowledge Discovery Data processing Data storage Fault tolerance Life Sciences Mathematical analysis Mathematical models Medical Programming Review |
| SummonAdditionalLinks | – databaseName: Springer Online Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFD8hKIkvKuLHFElNTPClsWu3fvhGjMQHJAaV8LZ0_dCb6C6BQeJ_72m33XC9SOS5p1vXnq_u_PorwGshQh28kWhI2tJKBU9NjJJGFzRvo9dVBsgeH6jDQ31yYj6vAZvOwmS0-1SSzJ46m7WWbzHO4d4XAwxVlKPTvYOhTqfLGo6-HE--V3LUqZGacbXPcuhZySdXYZF_1UZzyNl_cPvBPoT7Y3pJ9gZ92IS10D2CjeHCyd9bcLl3pV5N5pFg-kc-2dOjROAayAjW-oVvInFCbZF-Tqbzk6SdfScJVErsSGbyjriB4YnkQ8MJToVtngxcJaTPkNvH8G3_w9f3H-l48wJ1tWE99aUzWgspvC89JjyVVW0rTG0ck8FxHqN1tvbMOGs186WM0biSOdsmp-W4eALr3bwLz4BYwW3CMSrmXFW7WsvQal-h2UuJDkYUQKdFadxIS55ux_jZ5O2Jlk2ayybNZaMazgvYXcifDoQc_5Tcnta4GQ3zvCll2tNqXZYFvFo0o0mlOontwvwiy-CmsJJM3SijjNSYv90kk_6vJQKiAp4OqrUYMsdAI1hqUUtKtxBItN_LLd3sR6b_xodW2LWAN5PqXfm8a2fi-f-LvoB7OOIqRWdutmG9P7sIL-Guu-xn52c72dj-AMpFKFo priority: 102 providerName: Springer Nature |
| Title | Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends |
| URI | https://link.springer.com/article/10.1186/1756-0381-7-22 https://www.ncbi.nlm.nih.gov/pubmed/25383096 https://www.proquest.com/docview/1621848811 https://www.proquest.com/docview/1622594607 https://www.proquest.com/docview/1627968658 https://www.proquest.com/docview/1642220196 https://pubmed.ncbi.nlm.nih.gov/PMC4224309 |
| Volume | 7 |
| WOSCitedRecordID | wos000346027900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: RBZ dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: 8C1 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: RSV dateStart: 20081201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfA8CozISErxYS5zEH7ygMW0CwaqowFR4iRzbgUpbUtZsEv89Z8cpK4O-8GKpumvl5s53Z_uX3yH0PE1tbo1ksJCEIhm3hsi6ZqTWVtCqNiLzANnjD3w8FtOpLMKB2yLAKoeY6AO1abU7I99NmNuMCJEkr-c_iOsa5W5XQwuNDbTlWBKoh-4VQyRmFDwsEDUmgu1CpoTdM6Qowgmlq4noSnV5FST5x02pT0CHt_936nfQrVB64r3eV-6ia7a5h270zSh_3kcXe5fusnFbYygN8ZGaTxy5q8UByHUKc8P1gOjCXYuHdytxNfuGHeAUq0B08grrnv0J-xeKHdQKZAb3PCa483DcB-jz4cGn_bckdGUgOpdxR0yipRApS41JDBRDmeJVlcpc6phZTWldK61yE0utlIhNwupa6iTWqnIBTdN0G202bWMfIaxSqhzGkcdaZ7nOBbOVMBmEBMYg-KQRIoOJSh0oy13njJPSb10EK51JS2fSkpeURujFUn_ek3X8U3NnMFUZFu2i_G2nCD1bimG5uTsU1dj23OvAhjFjMV-rwyUTUNut03Fnb46cKEIPe0dbTplCEkpjJ-ErLrhUcJTgq5Jm9t1Tg8OPZvDVCL0cnPXS3_vrk3i8_kk8QTdhlpnL1lTuoM3u7Nw-Rdf1RTdbnI3QBp9yPwoYxX4yQltvDsbFZOTPNmB8z8nIL0oYi_wryIt3R8UX-DT5ePwLRMU_JQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqAoIL-xIoYCQQXKwmTuIFCaEKqFrNdIRQQb2ljhc6UpkMnbSof4rfyHtZhg6FufXA2S-R7Xxvi5-_R8jzNPW5d1qAIinDMukd0yEIFqxXvAxOZU2B7JehHI3U3p7-uEJ-9ndhsKyyt4mNoXaVxX_k64nAZESpJHk7_c6waxServYtNFpYDPzpD0jZZm-238P3fcH55ofdd1us6yrAbK7jmrnEaqVSkTqXOHDmmZFlmepc21h4y3kIxprcxdoao2KXiBC0TWJrSlRIi0QHYPIvZamSqFcDyXrLLzgguiOGTJRYB88M2Tq4RCYZ54uO71w0e74o84-T2cbhbd7437bqJrnehdZ0o9WFW2TFT26TK22zzdM75GTjzFk9rQKF0JfumOknJK_1tCtU-wZ7QUNfsUbrivZ3R2k5_kqxoJaajsjlNbUtuxVtLkxjKRmMOdrytNC6KTe-Sz5fyKLvkdVJNfEPCDUpN1jDKWNrs9zmSvhSuQxMnhBgXNOIsB4She0o2bEzyGHRpGZKFAihAiFUyILziLycy09bMpJ_Sq710Cg6ozQrfuMiIs_mw2BO8IzITHx13MhAQpyJWC6VkVooiF2XyeC_RSRfisj9FtjzKXNwsmmMI3IB8nMBpDxfHJmMDxrqc3hpBo9G5FWvHGeW99edeLh8J56Sq1u7O8NiuD0aPCLXYMYZRiZcr5HV-ujYPyaX7Uk9nh09aVSdkv2LVphfjp2T6g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6qyqJe2JdAASMhwcVqYideEJcKGIEoo4ql6s1yvMBIJTNq00r8e56zjDoMVEic_Zw49lvjz58BnnEequC1QENSlpYyeKpjFDS6oFgdvSo7gOzBnpxO1eGh3t-AV-NZmA7tPm5J9mcaEktT0-4sfOxNXIkdjHlYB2OwoZIydMCXygSiT7X654PRDwuG-jXQNK73WQ1Da7nlOkTyt33SLvxMrv_fwG_AtSHtJLu9ntyEjdDcgiv9RZQ_b8PZ7rl9bDKPBNNC8tEuPiVi10AGENcPfCuJI5qLtHMynqsk9ewbSWBTYgeSk5fE9cxPpDtMnGBW2OZJz2FC2g6Kewe-Tt5-ef2ODjcyUFfpvKW-cFopLrj3hcdEqLSyrrmutMtFcIzFaJ2tfK6dtSr3hYhRuyJ3tk7OzDF-FzabeRPuA7Gc2YRvlLlzZeUqJUKtfInuQAh0PDwDOi6QcQNdebo148h0ZYsSJs2lSXNppGEsg-dL-UVP1PFXye1xvc1gsCemEKnWVaooMni6bEZTS_sntgnz004Gi8VS5PJCGamFwrzuIpn03y0RE2Vwr1ez5ZAZBiCepxa5ooBLgUQHvtrSzL53tOD40BK7ZvBiVMNzn_fHmXjw76JP4Or-m4nZez_98BC2cPBlCuBMb8Nme3waHsFld9bOTo4fdzb4C2oaNCI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+the+MapReduce+programming+framework+to+clinical+big+data+analysis%3A+current+landscape+and+future+trends&rft.jtitle=BioData+mining&rft.au=Mohammed%2C+Emad+A&rft.au=Far%2C+Behrouz+H&rft.au=Naugler%2C+Christopher&rft.date=2014-10-29&rft.pub=Springer+Nature+B.V&rft.eissn=1756-0381&rft.volume=7&rft_id=info:doi/10.1186%2F1756-0381-7-22&rft.externalDocID=3486227051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0381&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0381&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0381&client=summon |