Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization

Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. [Display omitted] •Combined experimental and theoretical study on citronellal cyclization toward isopulegol stereoisomers.•Lewis acid homogeneous catalysts (ZnBr2 and ATPH) versus...

Full description

Saved in:
Bibliographic Details
Published in:Journal of catalysis Vol. 305; pp. 118 - 129
Main Authors: Vandichel, Matthias, Vermoortele, Frederik, Cottenie, Stijn, De Vos, Dirk E., Waroquier, Michel, Van Speybroeck, Veronique
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 01.09.2013
Elsevier
Elsevier BV
Subjects:
ISSN:0021-9517, 1090-2694
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. [Display omitted] •Combined experimental and theoretical study on citronellal cyclization toward isopulegol stereoisomers.•Lewis acid homogeneous catalysts (ZnBr2 and ATPH) versus Cu3BTC2 as hetereogeneous MOF catalyst.•Search for catalyst with the highest activity and highest selectivity toward (−)-isopulegol diastereomer.•ATPH is the most active catalyst with selectivity of about 94% at 298K.•Catalytic conversion in Cu3BTC2 strongly dependent on size of catalyst particles due to diffusional restrictions. Industrial (−)-menthol production generally relies on the hydrogenation of (−)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2, aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal–organic framework Cu3BTC2 (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3(BTC-(NO2)3)2 Lewis catalyst – in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group – is predicted to be very selective.
AbstractList Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. Display Omitted * Combined experimental and theoretical study on citronellal cyclization toward isopulegol stereoisomers. * Lewis acid homogeneous catalysts (ZnBr2 and ATPH) versus Cu3BTC2 as hetereogeneous MOF catalyst. * Search for catalyst with the highest activity and highest selectivity toward (-)-isopulegol diastereomer. * ATPH is the most active catalyst with selectivity of about 94% at 298K. * Catalytic conversion in Cu3BTC2 strongly dependent on size of catalyst particles due to diffusional restrictions. Industrial (-)-menthol production generally relies on the hydrogenation of (-)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2, aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal-organic framework Cu3BTC2 (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3(BTC-(NO2)3)2 Lewis catalyst - in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group - is predicted to be very selective.
Graphical abstract Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. Display Omitted Industrial (-)-menthol production generally relies on the hydrogenation of (-)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2 , aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal-organic framework Cu3 BTC2 (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3 (BTC-(NO2 )3 )2 Lewis catalyst - in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group - is predicted to be very selective. [PUBLICATION ABSTRACT]
Industrial (−)-menthol production generally relies on the hydrogenation of (−)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr₂, aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal–organic framework Cu₃BTC₂ (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr₂ and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu₃(BTC-(NO₂)₃)₂ Lewis catalyst – in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group – is predicted to be very selective.
Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. [Display omitted] •Combined experimental and theoretical study on citronellal cyclization toward isopulegol stereoisomers.•Lewis acid homogeneous catalysts (ZnBr2 and ATPH) versus Cu3BTC2 as hetereogeneous MOF catalyst.•Search for catalyst with the highest activity and highest selectivity toward (−)-isopulegol diastereomer.•ATPH is the most active catalyst with selectivity of about 94% at 298K.•Catalytic conversion in Cu3BTC2 strongly dependent on size of catalyst particles due to diffusional restrictions. Industrial (−)-menthol production generally relies on the hydrogenation of (−)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2, aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal–organic framework Cu3BTC2 (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3(BTC-(NO2)3)2 Lewis catalyst – in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group – is predicted to be very selective.
Author Vermoortele, Frederik
Vandichel, Matthias
Waroquier, Michel
Cottenie, Stijn
De Vos, Dirk E.
Van Speybroeck, Veronique
Author_xml – sequence: 1
  givenname: Matthias
  surname: Vandichel
  fullname: Vandichel, Matthias
  organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
– sequence: 2
  givenname: Frederik
  surname: Vermoortele
  fullname: Vermoortele, Frederik
  organization: Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
– sequence: 3
  givenname: Stijn
  surname: Cottenie
  fullname: Cottenie, Stijn
  organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
– sequence: 4
  givenname: Dirk E.
  surname: De Vos
  fullname: De Vos, Dirk E.
  email: dirk.devos@biw.kuleuven.be
  organization: Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
– sequence: 5
  givenname: Michel
  surname: Waroquier
  fullname: Waroquier, Michel
  organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
– sequence: 6
  givenname: Veronique
  surname: Van Speybroeck
  fullname: Van Speybroeck, Veronique
  email: veronique.vanspeybroeck@ugent.be
  organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27571811$$DView record in Pascal Francis
BookMark eNp9kU9v1DAQxSNUJLaFL8CFSAiJS8KM4_yxxAVVFCqtxAF6tmYdu3WU2ovtXbR8-jrd9tLD-jIH_97M03vnxZnzThfFe4QaAbsvUz0pSjUDbGrgNWD_qlghCKhYJ_hZsQJgWIkW-zfFeYwTAGLbDqtie-2ivb1LpXVlutMlqWT3Nh1KcmM5WopJB-2jnvXzhzflnoL1u1iu9T8bs8SOZb5O8yGmWBofHjcpm0I2Oc80l-qgZvufkvXubfHa0Bz1u6d5Udxcff9z-bNa__pxffltXalWQKq6vjcgOhw5aNSkkXfABTFkJEh1hm-oH5gxmo2Cq41SaFjTcA5k9AZJNBfF5-PebfB_dzomeW-jWuw4nb1LBsvrRN9k9OMLdPK74LI7mUPiohuADyepRoiuH1qETH16oigqmk0gp2yU22DvKRwk69seB8TMDUdOBR9j0EbmvB4DSoHsLBHkUqyc5FKsXIqVwGUuNkvZC-nz9pOiD0eRIS_pNmRPN78z0C0pcNYugX09Ejq3src6yKisdkqPNuTy5ejtqQMPlSzINg
CODEN JCTLA5
CitedBy_id crossref_primary_10_1002_cctc_201601689
crossref_primary_10_1002_ceur_202500251
crossref_primary_10_1007_s10904_019_01251_8
crossref_primary_10_1016_j_jcat_2018_09_001
crossref_primary_10_1155_2014_950190
crossref_primary_10_1016_j_jcat_2015_08_015
crossref_primary_10_1016_j_molstruc_2017_12_083
crossref_primary_10_3390_nano11061396
crossref_primary_10_1016_j_scp_2023_101125
crossref_primary_10_1039_C7CS00033B
crossref_primary_10_1016_j_poly_2018_02_014
crossref_primary_10_1016_j_mcat_2018_09_009
crossref_primary_10_1002_cctc_201700734
crossref_primary_10_1007_s11144_019_01617_6
crossref_primary_10_1002_cben_202000013
crossref_primary_10_1007_s11164_017_3237_4
crossref_primary_10_3762_bjoc_18_38
crossref_primary_10_1002_cssc_201700318
crossref_primary_10_1016_j_apcata_2016_02_014
crossref_primary_10_1002_cssc_201702435
crossref_primary_10_1021_ja507119n
crossref_primary_10_1007_s11164_020_04190_z
crossref_primary_10_1007_s11705_022_2225_4
crossref_primary_10_1002_open_202000291
crossref_primary_10_1016_j_jcat_2014_10_007
crossref_primary_10_1016_j_apcata_2021_118426
crossref_primary_10_1007_s10562_022_04178_x
crossref_primary_10_1080_01614940_2016_1128193
crossref_primary_10_1002_cctc_201402189
crossref_primary_10_3390_app15052609
crossref_primary_10_1080_14786419_2024_2332949
crossref_primary_10_1002_cctc_202001346
crossref_primary_10_1016_j_cattod_2020_06_034
crossref_primary_10_1039_D4CY00618F
Cites_doi 10.1016/j.jcat.2011.04.004
10.1039/B313738D
10.1016/j.theochem.2010.07.011
10.1126/science.1056598
10.1016/S0926-860X(99)00560-8
10.1103/PhysRevLett.78.1396
10.1002/anie.201108565
10.1021/ar700111a
10.1039/C0CS00069H
10.1039/b807080f
10.1063/1.2789429
10.1002/jcc.20495
10.1021/ic201376t
10.1016/S0926-860X(02)00136-9
10.1103/PhysRevB.49.14251
10.1002/adma.201000197
10.3184/146867812X13332734805828
10.1021/ja8014154
10.1021/ci8000748
10.1021/cr200274s
10.1002/anie.200806063
10.1021/cr2003147
10.1103/PhysRevLett.77.3865
10.1016/0927-0256(96)00008-0
10.1016/j.ccr.2009.05.019
10.1039/b807083k
10.1021/cr00013a014
10.1063/1.448799
10.1103/PhysRevB.47.558
10.1016/j.jcat.2004.11.015
10.1021/cr00054a001
10.1002/cctc.201000201
10.1063/1.3382344
10.1021/ja052025+
10.1039/b802430h
10.1021/jo902493w
10.1016/j.jcat.2011.09.014
10.1016/j.micromeso.2008.10.035
10.1103/PhysRevB.50.17953
10.1039/b802426j
10.1021/ja802121u
10.1002/chem.201100712
10.1007/s11243-009-9188-x
10.1021/ct1005505
10.1126/science.283.5405.1148
10.1021/ja058777l
10.1039/b802256a
10.1016/j.micromeso.2003.12.027
10.1021/ct800132a
10.1039/b919543m
10.1039/b802352m
10.1002/anie.200906491
10.1007/s00214-007-0310-x
10.1039/b821297j
10.1021/cr200190s
10.1039/C0CS00130A
10.1021/jf0512609
10.1039/b804757j
10.1039/C0CS00040J
10.1002/cphc.201100602
10.1021/ic900478z
10.1021/jo00118a035
10.1016/j.tet.2008.06.036
10.1002/chem.200600220
10.1103/PhysRevB.54.11169
10.1021/jp8021437
10.1021/jz101378z
10.1039/b804680h
10.1021/ja049408c
10.1021/jp205985v
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2014 INIST-CNRS
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.jcat.2013.04.017
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 129
ExternalDocumentID 3408819421
3018379741
27571811
10_1016_j_jcat_2013_04_017
US201600004259
S0021951713001401
Genre News
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
AFXIZ
AGCQF
AGRNS
7S9
L.6
ID FETCH-LOGICAL-c590t-677f0961d40e1eae146049a212a9ac6f4ba782ffe2d94cbcc1f233440afeb1a93
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322501000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9517
IngestDate Sun Sep 28 07:36:48 EDT 2025
Fri Jul 25 03:55:21 EDT 2025
Sun Nov 09 08:13:18 EST 2025
Wed Apr 02 07:15:13 EDT 2025
Sat Nov 29 05:01:07 EST 2025
Tue Nov 18 21:05:18 EST 2025
Wed Dec 27 19:28:24 EST 2023
Fri Feb 23 02:27:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Heterogeneous catalysis
Citronellal cyclization
ATPH
Chemical kinetics
Lewis acids
Diastereoselective catalysis
Activity
ZnBr2
Selectivity
Cu-BTC
Lewis acid
Citronellal
Catalytic reaction
Diastereoselectivity
ZnBr
Cyclization
Kinetics
Catalyst
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590t-677f0961d40e1eae146049a212a9ac6f4ba782ffe2d94cbcc1f233440afeb1a93
Notes http://dx.doi.org/10.1016/j.jcat.2013.04.017
SourceType-Scholarly Journals-1
ObjectType-News-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S0021951713001401-fx1_lrg.jpg
PQID 1399678510
PQPubID 32080
PageCount 12
ParticipantIDs proquest_miscellaneous_2000006973
proquest_journals_1554968048
proquest_journals_1399678510
pascalfrancis_primary_27571811
crossref_citationtrail_10_1016_j_jcat_2013_04_017
crossref_primary_10_1016_j_jcat_2013_04_017
fao_agris_US201600004259
elsevier_sciencedirect_doi_10_1016_j_jcat_2013_04_017
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: San Diego
PublicationTitle Journal of catalysis
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier BV
References Vermoortele, Vandichel, Van de Voorde, Ameloot, Waroquier, Van Speybroeck, De Vos (b0220) 2012; 51
Catak, Hemelsoet, Hermosilla, Waroquier, Van Speybroeck (b0250) 2011; 17
Wenzel, Fischer, Hoffmann, Froba (b0395) 2009; 48
Rocha, Carlos, Paz, Ananias (b0145) 2011; 40
Carlos, Ferreira, de Zea Bermudez, Julian-Lopez, Escribano (b0140) 2011; 40
Yongzhong, Yuntong, Jaenicke, Chuah (b0075) 2005; 229
Perdew, Burke, Ernzerhof (b0300) 1997; 78
J.C. Leffingwell, D. Leffingwel, Chiral Chemistry in Flavours & Fragrances, Speciality Chemicals Magazine, 2011, pp. 30–33.
Milone, Gangemi, Neri, Pistone, Galvagno (b0020) 2000; 199
G. Heydrich, G. Gralla, M. Rauls, J. Schmidt-Leithoff, K. Ebel, W. Krause, S. Oehlenschlager, C. Jakel, M. Friedrich, J. Bergner, N. Kashani-Shirazi, R. Paciello, Method for Producing Optically Active, Racemic Menthol, BASF SE, US 2010/0249467 A1, 2010.
M. Friedrich, K. Ebel, N. Gotz, W. Krausee, C. Zahm, Diarylphenoxy Aluminium Compounds, BASF SE, US 7,608,742 B2, 2009.
Corma, Renz (b0070) 2004
Perdew, Burke, Ernzerhof (b0295) 1996; 77
Férey, Serre, Devic, Maurin, Jobic, Llewellyn, De Weireld, Vimont, Daturi, Chang (b0085) 2011; 40
I. Takeshi, O. Yoshiki, H. Yoji, Takasago Perfumery Co. Ltd., EP1225163 (A2), 2002.
Hay, Wadt (b0230) 1985; 82
Zhao, Truhlar (b0245) 2008; 41
BASF, BASF Press Release: BASF Adds L-menthol to Product Range, June 1, 2010.
Gascon, Kapteijn (b0120) 2010; 49
Wu, Qiu, Wang, Li, Xu, Wu, Jiang (b0205) 2009; 34
H. Itoh, Y. Hori, Aluminum Complex and Use thereof, 2011.
Farrusseng, Aguado, Pinel (b0160) 2009; 48
Ma, Abney, Lin (b0165) 2009; 38
Chen, Eddaoudi, Hyde, O’Keeffe, Yaghi (b0385) 2001; 291
Ghysels, Van Neck, Waroquier (b0225) 2007; 127
Grajciar, Bludsky, Nachtigall (b0290) 2010; 1
G. Heydrich, G. Gralla, K. Ebel, M. Friedrich, Recovery of phenol Ligands During the Production of Isopulegol, BASF SE, US 8,003,829 B2, 2011.
Allendorf, Bauer, Bhakta, Houk (b0135) 2009; 38
Seeman (b0330) 1983; 83
Zardoost, Gholami, Irani, Siadati (b0370) 2012; 37
Verstraelen, Van Speybroeck, Waroquier (b0265) 2008; 48
Kresse, Hafner (b0275) 1993; 47
Yang, Tong, Zhang (b0355) 2010; 957
Lawrence, Hopp (b0010) 2006
Li, Kuppler, Zhou (b0115) 2009; 38
Zhao, Truhlar (b0240) 2008; 120
Chui, Lo, Charmant, Orpen, Williams (b0180) 1999; 283
Li, Sculley, Zhou (b0125) 2012; 112
Grimme, Antony, Ehrlich, Krieg (b0235) 2010; 132
Donoghue, Helquist, Norrby, Wiest (b0325) 2008; 4
Liu, Xuan, Cui (b0130) 2010; 22
Alaerts, Seguin, Poelman, Thibault-Starzyk, Jacobs, De Vos (b0175) 2006; 12
Marx, Kleist, Baiker (b0210) 2011; 281
De Rosa, Giordano, Granato, Katovic, Siciliano, Tripicchio (b0190) 2005; 53
Han, Mendoza-Cortes, Goddard Iii (b0090) 2009; 38
Yoon, Srirambalaji, Kim (b0170) 2012; 112
Sun, Ma, Ke, Collins, Zhou (b0375) 2006; 128
Iwata, Okeda, Hori (b0015) 2002
M. Friedrich, K. Ebel, N. Götz, Method for the Production of Isopulegol, BASF SE, Ludwigshafen (DE), 2009, p. 9.
Leus, Vandichel, Liu, Muylaert, Musschoot, Pyl, Vrielinck, Callens, Marin, Detavernier, Wiper, Khimyak, Waroquier, Van Speybroeck, Van der Voort (b0260) 2012; 285
Perez-Mayoral, Cejka (b0195) 2011; 3
Wannakao, Khongpracha, Limtrakul (b0350) 2011; 115
Tranchemontagne, Hunt, Yaghi (b0185) 2008; 64
Kresse, Furthmüller (b0285) 1996; 6
Boronat, Concepcion, Corma, Navarro, Renz, Valencia (b0060) 2009; 11
Kresse, Furthmüller (b0280) 1996; 54
Choomwattana, Maihom, Khongpracha, Probst, Limtrakul (b0345) 2008; 112
Murray, Dinca, Long (b0095) 2009; 38
Rowsell, Millward, Park, Yaghi (b0100) 2004; 126
Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (b0155) 2009; 38
Catak, D’Hooghe, De Kimpe, Waroquier, Van Speybroeck (b0255) 2010; 75
Grimme (b0310) 2006; 27
Cychosz, Wong-Foy, Matzger (b0400) 2008; 130
Kuppler, Timmons, Fang, Li, Makal, Young, Yuan, Zhao, Zhuang, Zhou (b0110) 2009; 253
Kresse, Hafner (b0270) 1994; 49
Schlichte, Kratzke, Kaskel (b0200) 2004; 73
Furukawa, Go, Ko, Park, Uribe-Romo, Kim, O’Keeffe, Yaghi (b0390) 2011; 50
Boronat, Corma, Renz (b0065) 2008
Seo, Hundal, Jang, Hwang, Jun, Chang (b0340) 2009; 119
Suh, Park, Prasad, Lim (b0105) 2012; 112
Blöchl (b0305) 1994; 50
Czaja, Trukhan, Muller (b0080) 2009; 38
Mikami, Shimizu (b0360) 1992; 92
Kikukawa, Yamaguchi, Nakagawa, Uehara, Uchida, Yamaguchi, Mizuno (b0365) 2008; 130
Rubes, Grajciar, Bludsky, Wiersum, Llewellyn, Nachtigall (b0380) 2012; 13
De Moor, Ghysels, Reyniers, Van Speybroeck, Waroquier, Marin (b0315) 2011; 7
Kurmoo (b0150) 2009; 38
Vimont, Thibault-Starzyk, Daturi (b0405) 2010; 39
Kropp, Breton, Craig, Crawford, Durland, Jones, Raleigh (b0030) 1995; 60
Milone, Perri, Pistone, Neri, Galvagno (b0025) 2002; 233
Reetz, Meiswinkel, Mehler, Angermund, Graf, Thiel, Mynott, Blackmond (b0320) 2005; 127
Catak (10.1016/j.jcat.2013.04.017_b0255) 2010; 75
Perdew (10.1016/j.jcat.2013.04.017_b0295) 1996; 77
Zhao (10.1016/j.jcat.2013.04.017_b0245) 2008; 41
10.1016/j.jcat.2013.04.017_b0335
Lee (10.1016/j.jcat.2013.04.017_b0155) 2009; 38
10.1016/j.jcat.2013.04.017_b0215
Milone (10.1016/j.jcat.2013.04.017_b0025) 2002; 233
Rowsell (10.1016/j.jcat.2013.04.017_b0100) 2004; 126
Catak (10.1016/j.jcat.2013.04.017_b0250) 2011; 17
Kresse (10.1016/j.jcat.2013.04.017_b0285) 1996; 6
Allendorf (10.1016/j.jcat.2013.04.017_b0135) 2009; 38
Leus (10.1016/j.jcat.2013.04.017_b0260) 2012; 285
Han (10.1016/j.jcat.2013.04.017_b0090) 2009; 38
Ghysels (10.1016/j.jcat.2013.04.017_b0225) 2007; 127
Sun (10.1016/j.jcat.2013.04.017_b0375) 2006; 128
Wannakao (10.1016/j.jcat.2013.04.017_b0350) 2011; 115
Kresse (10.1016/j.jcat.2013.04.017_b0270) 1994; 49
10.1016/j.jcat.2013.04.017_b0005
Li (10.1016/j.jcat.2013.04.017_b0115) 2009; 38
Rubes (10.1016/j.jcat.2013.04.017_b0380) 2012; 13
Kropp (10.1016/j.jcat.2013.04.017_b0030) 1995; 60
Suh (10.1016/j.jcat.2013.04.017_b0105) 2012; 112
Choomwattana (10.1016/j.jcat.2013.04.017_b0345) 2008; 112
Wu (10.1016/j.jcat.2013.04.017_b0205) 2009; 34
Hay (10.1016/j.jcat.2013.04.017_b0230) 1985; 82
Donoghue (10.1016/j.jcat.2013.04.017_b0325) 2008; 4
Grimme (10.1016/j.jcat.2013.04.017_b0235) 2010; 132
10.1016/j.jcat.2013.04.017_b0050
Zardoost (10.1016/j.jcat.2013.04.017_b0370) 2012; 37
Grimme (10.1016/j.jcat.2013.04.017_b0310) 2006; 27
Corma (10.1016/j.jcat.2013.04.017_b0070) 2004
Alaerts (10.1016/j.jcat.2013.04.017_b0175) 2006; 12
Tranchemontagne (10.1016/j.jcat.2013.04.017_b0185) 2008; 64
Boronat (10.1016/j.jcat.2013.04.017_b0065) 2008
Murray (10.1016/j.jcat.2013.04.017_b0095) 2009; 38
10.1016/j.jcat.2013.04.017_b0055
Czaja (10.1016/j.jcat.2013.04.017_b0080) 2009; 38
Chui (10.1016/j.jcat.2013.04.017_b0180) 1999; 283
Yongzhong (10.1016/j.jcat.2013.04.017_b0075) 2005; 229
De Rosa (10.1016/j.jcat.2013.04.017_b0190) 2005; 53
Grajciar (10.1016/j.jcat.2013.04.017_b0290) 2010; 1
Kikukawa (10.1016/j.jcat.2013.04.017_b0365) 2008; 130
Vimont (10.1016/j.jcat.2013.04.017_b0405) 2010; 39
Vermoortele (10.1016/j.jcat.2013.04.017_b0220) 2012; 51
10.1016/j.jcat.2013.04.017_b0040
Furukawa (10.1016/j.jcat.2013.04.017_b0390) 2011; 50
Marx (10.1016/j.jcat.2013.04.017_b0210) 2011; 281
Yang (10.1016/j.jcat.2013.04.017_b0355) 2010; 957
10.1016/j.jcat.2013.04.017_b0045
Kresse (10.1016/j.jcat.2013.04.017_b0275) 1993; 47
Lawrence (10.1016/j.jcat.2013.04.017_b0010) 2006
Yoon (10.1016/j.jcat.2013.04.017_b0170) 2012; 112
Li (10.1016/j.jcat.2013.04.017_b0125) 2012; 112
Iwata (10.1016/j.jcat.2013.04.017_b0015) 2002
Boronat (10.1016/j.jcat.2013.04.017_b0060) 2009; 11
Blöchl (10.1016/j.jcat.2013.04.017_b0305) 1994; 50
Mikami (10.1016/j.jcat.2013.04.017_b0360) 1992; 92
Zhao (10.1016/j.jcat.2013.04.017_b0240) 2008; 120
Gascon (10.1016/j.jcat.2013.04.017_b0120) 2010; 49
Reetz (10.1016/j.jcat.2013.04.017_b0320) 2005; 127
Rocha (10.1016/j.jcat.2013.04.017_b0145) 2011; 40
Kurmoo (10.1016/j.jcat.2013.04.017_b0150) 2009; 38
Férey (10.1016/j.jcat.2013.04.017_b0085) 2011; 40
Chen (10.1016/j.jcat.2013.04.017_b0385) 2001; 291
Carlos (10.1016/j.jcat.2013.04.017_b0140) 2011; 40
Ma (10.1016/j.jcat.2013.04.017_b0165) 2009; 38
Farrusseng (10.1016/j.jcat.2013.04.017_b0160) 2009; 48
Wenzel (10.1016/j.jcat.2013.04.017_b0395) 2009; 48
Liu (10.1016/j.jcat.2013.04.017_b0130) 2010; 22
Seeman (10.1016/j.jcat.2013.04.017_b0330) 1983; 83
Milone (10.1016/j.jcat.2013.04.017_b0020) 2000; 199
Kuppler (10.1016/j.jcat.2013.04.017_b0110) 2009; 253
Perez-Mayoral (10.1016/j.jcat.2013.04.017_b0195) 2011; 3
Verstraelen (10.1016/j.jcat.2013.04.017_b0265) 2008; 48
Perdew (10.1016/j.jcat.2013.04.017_b0300) 1997; 78
10.1016/j.jcat.2013.04.017_b0035
Seo (10.1016/j.jcat.2013.04.017_b0340) 2009; 119
Schlichte (10.1016/j.jcat.2013.04.017_b0200) 2004; 73
Kresse (10.1016/j.jcat.2013.04.017_b0280) 1996; 54
Cychosz (10.1016/j.jcat.2013.04.017_b0400) 2008; 130
De Moor (10.1016/j.jcat.2013.04.017_b0315) 2011; 7
References_xml – volume: 40
  start-page: 550
  year: 2011
  end-page: 562
  ident: b0085
  article-title: Why hybrid porous solids capture greenhouse gases?
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 17953
  year: 1994
  ident: b0305
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 1090
  year: 2011
  end-page: 1101
  ident: b0315
  article-title: Normal mode analysis in zeolites: toward an efficient calculation of adsorption entropies
  publication-title: J. Chem. Theory Comput.
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: b0310
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
– volume: 60
  start-page: 4146
  year: 1995
  end-page: 4152
  ident: b0030
  article-title: Surface-mediated reactions. 6. Effects of silica-gel and alumina on acid-catalyzed reactions
  publication-title: J. Org. Chem.
– volume: 38
  year: 2009
  ident: b0080
  article-title: Industrial applications of metal–organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 130
  start-page: 15872
  year: 2008
  end-page: 15878
  ident: b0365
  article-title: Synthesis of a dialuminum-substituted silicotungstate and the diastereoselective cyclization of citronellal derivatives
  publication-title: J. Am. Chem. Soc.
– volume: 229
  start-page: 404
  year: 2005
  end-page: 413
  ident: b0075
  article-title: Cyclisation of citronellal over zirconium zeolite beta—a highly diastereoselective catalyst to (±)-isopulegol
  publication-title: J. Catal.
– volume: 73
  start-page: 81
  year: 2004
  end-page: 88
  ident: b0200
  article-title: Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound CU3(BTC)(2)
  publication-title: Microporous Mesoporous Mater.
– reference: J.C. Leffingwell, D. Leffingwel, Chiral Chemistry in Flavours & Fragrances, Speciality Chemicals Magazine, 2011, pp. 30–33.
– volume: 132
  year: 2010
  ident: b0235
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
  publication-title: J. Chem. Phys.
– reference: G. Heydrich, G. Gralla, M. Rauls, J. Schmidt-Leithoff, K. Ebel, W. Krause, S. Oehlenschlager, C. Jakel, M. Friedrich, J. Bergner, N. Kashani-Shirazi, R. Paciello, Method for Producing Optically Active, Racemic Menthol, BASF SE, US 2010/0249467 A1, 2010.
– start-page: 550
  year: 2004
  end-page: 551
  ident: b0070
  article-title: Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl-ene reaction
  publication-title: Chem. Commun.
– volume: 127
  start-page: 10305
  year: 2005
  end-page: 10313
  ident: b0320
  article-title: Why are BINOL-based monophosphites such efficient ligands in Rh-catalyzed asymmetric olefin hydrogenation?
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 6559
  year: 2009
  end-page: 6565
  ident: b0395
  article-title: Highly porous metal–organic framework containing a novel organosilicon linker – a promising material for hydrogen storage
  publication-title: Inorg. Chem.
– volume: 17
  start-page: 12027
  year: 2011
  end-page: 12036
  ident: b0250
  article-title: Competitive reactions of organophosphorus radicals on coke surfaces
  publication-title: Chem. – Eur. J.
– volume: 48
  start-page: 1530
  year: 2008
  end-page: 1541
  ident: b0265
  article-title: ZEOBUILDER: a GUI toolkit for the construction of complex molecular structures on the nanoscale with building blocks
  publication-title: J. Chem. Inf. Model.
– reference: M. Friedrich, K. Ebel, N. Gotz, W. Krausee, C. Zahm, Diarylphenoxy Aluminium Compounds, BASF SE, US 7,608,742 B2, 2009.
– volume: 120
  start-page: 215
  year: 2008
  end-page: 241
  ident: b0240
  article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals
  publication-title: Theor. Chem. Acc.
– reference: H. Itoh, Y. Hori, Aluminum Complex and Use thereof, 2011.
– volume: 285
  start-page: 196
  year: 2012
  end-page: 207
  ident: b0260
  article-title: The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene
  publication-title: J. Catal.
– volume: 38
  start-page: 1477
  year: 2009
  end-page: 1504
  ident: b0115
  article-title: Selective gas adsorption and separation in metal–organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 14251
  year: 1994
  ident: b0270
  article-title: Ab initio molecular-dynamics simulation of the liquid–metal-amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 9147
  year: 2011
  end-page: 9152
  ident: b0390
  article-title: Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals
  publication-title: Inorg. Chem.
– volume: 83
  start-page: 83
  year: 1983
  end-page: 134
  ident: b0330
  article-title: Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics
  publication-title: Chem. Rev.
– volume: 199
  start-page: 239
  year: 2000
  end-page: 244
  ident: b0020
  article-title: Selective one step synthesis of (−)menthol from (+)citronellal on Ru supported on modified SiO(2)
  publication-title: Appl. Catal. A – Gen.
– volume: 49
  start-page: 1530
  year: 2010
  end-page: 1532
  ident: b0120
  article-title: Metal-Organic Framework Membranes-High Potential, Bright Future? Angew
  publication-title: Chem.-Int. Ed.
– volume: 283
  start-page: 1148
  year: 1999
  end-page: 1150
  ident: b0180
  article-title: A chemically functionalizable nanoporous material Cu-3(TMA)(2)(H
  publication-title: Science
– volume: 38
  start-page: 1248
  year: 2009
  end-page: 1256
  ident: b0165
  article-title: Enantioselective catalysis with homochiral metal–organic frameworks
  publication-title: Chem. Soc. Rev.
– reference: BASF, BASF Press Release: BASF Adds L-menthol to Product Range, June 1, 2010.
– volume: 40
  start-page: 926
  year: 2011
  end-page: 940
  ident: b0145
  article-title: Luminescent multifunctional lanthanides-based metal–organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  ident: b0155
  article-title: Metal–organic framework materials as catalysts
  publication-title: Chem. Soc. Rev.
– volume: 233
  start-page: 151
  year: 2002
  end-page: 157
  ident: b0025
  article-title: Isomerisation of (+)citronellal over Zn(II) supported catalysts
  publication-title: Appl. Catal. A – Gen.
– volume: 64
  start-page: 8553
  year: 2008
  end-page: 8557
  ident: b0185
  article-title: Room temperature synthesis of metal–organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0
  publication-title: Tetrahedron
– volume: 39
  start-page: 4928
  year: 2010
  end-page: 4950
  ident: b0405
  article-title: Analysing and understanding the active site by IR spectroscopy
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 7502
  year: 2009
  end-page: 7513
  ident: b0160
  article-title: Metal–organic frameworks: opportunities for catalysis
  publication-title: Angew. Chem. – Int. Ed.
– volume: 82
  start-page: 270
  year: 1985
  end-page: 283
  ident: b0230
  article-title: Abinitio effective core potentials for molecular calculations – potentials for the transition-metal atoms Sc to Hg
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 869
  year: 2012
  end-page: 932
  ident: b0125
  article-title: Metal–organic frameworks for separations
  publication-title: Chem. Rev.
– volume: 51
  start-page: 4887
  year: 2012
  end-page: 4890
  ident: b0220
  article-title: Electronic effects of linker substitution on lewis acid catalysis with metal–organic frameworks
  publication-title: Angew. Chem. – Int. Ed.
– volume: 47
  start-page: 558
  year: 1993
  ident: b0275
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
– volume: 53
  start-page: 8306
  year: 2005
  end-page: 8309
  ident: b0190
  article-title: Chemical pretreatment of olive oil mill wastewater using a metal–organic framework catalyst
  publication-title: J. Agric. Food Chem.
– volume: 77
  start-page: 3865
  year: 1996
  ident: b0295
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– reference: I. Takeshi, O. Yoshiki, H. Yoji, Takasago Perfumery Co. Ltd., EP1225163 (A2), 2002.
– volume: 112
  start-page: 10855
  year: 2008
  end-page: 10861
  ident: b0345
  article-title: Structures and mechanisms of the carbonyl-ene reaction between MOF-11 encapsulated formaldehyde and propylene: an ONIOM study
  publication-title: J. Phys. Chem. C
– volume: 957
  start-page: 84
  year: 2010
  end-page: 89
  ident: b0355
  article-title: Influence of Lewis acids and substituents on carbonyl-ene reactions: a density functional theory study
  publication-title: J. Mol. Struct. – Theochem
– volume: 253
  start-page: 3042
  year: 2009
  end-page: 3066
  ident: b0110
  article-title: Potential applications of metal–organic frameworks
  publication-title: Coord. Chem. Rev.
– volume: 291
  start-page: 1021
  year: 2001
  end-page: 1023
  ident: b0385
  article-title: Interwoven metal–organic framework on a periodic minimal surface with extra-large pores
  publication-title: Science
– volume: 126
  start-page: 5666
  year: 2004
  end-page: 5667
  ident: b0100
  article-title: Hydrogen sorption in functionalized metal–organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 12486
  year: 2011
  end-page: 12492
  ident: b0350
  article-title: Density functional theory study of the carbonyl-ene reaction of encapsulated formaldehyde in Cu(I), Ag(I), and Au(I) exchanged FAU zeolites
  publication-title: J. Phys. Chem. A
– volume: 119
  start-page: 331
  year: 2009
  end-page: 337
  ident: b0340
  article-title: Microwave synthesis of hybrid inorganic-organic materials including porous Cu-3(BTC)(2) from Cu(II)-trimesate mixture
  publication-title: Microporous Mesoporous Mater.
– volume: 127
  start-page: 164108
  year: 2007
  ident: b0225
  article-title: Cartesian formulation of the mobile block Hessian approach to vibrational analysis in partially optimized systems
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 488
  year: 2012
  end-page: 495
  ident: b0380
  article-title: Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in CuBTC MOF
  publication-title: ChemPhysChem
– volume: 281
  start-page: 76
  year: 2011
  end-page: 87
  ident: b0210
  article-title: Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives
  publication-title: J. Catal.
– volume: 38
  start-page: 1460
  year: 2009
  end-page: 1476
  ident: b0090
  article-title: Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 128
  start-page: 3896
  year: 2006
  end-page: 3897
  ident: b0375
  article-title: An interweaving MOF with high hydrogen uptake
  publication-title: J. Am. Chem. Soc.
– year: 2002
  ident: b0015
  article-title: Process for Producing Isopulegol
– volume: 22
  start-page: 4112
  year: 2010
  end-page: 4135
  ident: b0130
  article-title: Engineering homochiral metal–organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation
  publication-title: Adv. Mater.
– year: 2006
  ident: b0010
  article-title: Natural and Synthetic Menthol
– reference: G. Heydrich, G. Gralla, K. Ebel, M. Friedrich, Recovery of phenol Ligands During the Production of Isopulegol, BASF SE, US 8,003,829 B2, 2011.
– volume: 130
  start-page: 6938
  year: 2008
  end-page: 6939
  ident: b0400
  article-title: Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1330
  year: 2009
  end-page: 1352
  ident: b0135
  article-title: Luminescent metal–organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 41
  start-page: 157
  year: 2008
  end-page: 167
  ident: b0245
  article-title: Density functionals with broad applicability in chemistry
  publication-title: Acc. Chem. Res.
– volume: 112
  start-page: 1196
  year: 2012
  end-page: 1231
  ident: b0170
  article-title: Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis
  publication-title: Chem. Rev.
– volume: 54
  start-page: 11169
  year: 1996
  ident: b0280
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 34
  start-page: 263
  year: 2009
  end-page: 268
  ident: b0205
  article-title: Kinetics of oxidation of hydroquinone to p-benzoquinone catalyzed by microporous metal–organic frameworks M-3(BTC)(2) M
  publication-title: Transition Met. Chem.
– volume: 4
  start-page: 1313
  year: 2008
  end-page: 1323
  ident: b0325
  article-title: Development of a Q2MM force field for the asymmetric rhodium catalyzed hydrogenation of enamides
  publication-title: J. Chem. Theory Comput.
– volume: 40
  start-page: 536
  year: 2011
  end-page: 549
  ident: b0140
  article-title: Progress on lanthanide-based organic–inorganic hybrid phosphors
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 3354
  year: 2010
  end-page: 3359
  ident: b0290
  article-title: Water adsorption on coordinatively unsaturated sites in CuBTC MOF
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 2876
  year: 2009
  end-page: 2884
  ident: b0060
  article-title: Reactivity in the confined spaces of zeolites: the interplay between spectroscopy and theory to develop structure–activity relationships for catalysis
  publication-title: Phys. Chem. Chem. Phys.
– volume: 112
  start-page: 782
  year: 2012
  end-page: 835
  ident: b0105
  article-title: Hydrogen storage in metal–organic frameworks
  publication-title: Chem. Rev.
– reference: M. Friedrich, K. Ebel, N. Götz, Method for the Production of Isopulegol, BASF SE, Ludwigshafen (DE), 2009, p. 9.
– volume: 38
  start-page: 1353
  year: 2009
  end-page: 1379
  ident: b0150
  article-title: Magnetic metal–organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 75
  start-page: 885
  year: 2010
  end-page: 896
  ident: b0255
  article-title: Intramolecular pi-pi stacking interactions in 2-substituted N,N-dibenzylaziridinium ions and their regioselectivity in nucleophilic ring-opening reactions
  publication-title: J. Org. Chem.
– volume: 6
  start-page: 15
  year: 1996
  ident: b0285
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 92
  start-page: 1021
  year: 1992
  end-page: 1050
  ident: b0360
  article-title: Asymmetric ene reactions in organic-synthesis
  publication-title: Chem. Rev.
– year: 2008
  ident: b0065
  article-title: Turning Points in Solid-State, Materials and Surface Science
– volume: 3
  start-page: 157
  year: 2011
  end-page: 159
  ident: b0195
  article-title: Cu-3(BTC)(2): a metal–organic framework catalyst for the Friedlander reaction
  publication-title: ChemCatChem
– volume: 37
  start-page: 173
  year: 2012
  end-page: 182
  ident: b0370
  article-title: A density functional theory study of cyclization of citronellal
  publication-title: Prog. React. Kinet. Mech.
– volume: 38
  start-page: 1294
  year: 2009
  end-page: 1314
  ident: b0095
  article-title: Hydrogen storage in metal–organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 78
  start-page: 1396
  year: 1997
  ident: b0300
  article-title: Erratum: generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 7353
  year: 2006
  end-page: 7363
  ident: b0175
  article-title: Probing the Lewis acidity and catalytic activity of the metal–organic framework Cu-3(btc)(2) (BTC
  publication-title: Chem. – Eur. J.
– volume: 281
  start-page: 76
  year: 2011
  ident: 10.1016/j.jcat.2013.04.017_b0210
  article-title: Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.04.004
– start-page: 550
  year: 2004
  ident: 10.1016/j.jcat.2013.04.017_b0070
  article-title: Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl-ene reaction
  publication-title: Chem. Commun.
  doi: 10.1039/B313738D
– volume: 957
  start-page: 84
  year: 2010
  ident: 10.1016/j.jcat.2013.04.017_b0355
  article-title: Influence of Lewis acids and substituents on carbonyl-ene reactions: a density functional theory study
  publication-title: J. Mol. Struct. – Theochem
  doi: 10.1016/j.theochem.2010.07.011
– volume: 291
  start-page: 1021
  year: 2001
  ident: 10.1016/j.jcat.2013.04.017_b0385
  article-title: Interwoven metal–organic framework on a periodic minimal surface with extra-large pores
  publication-title: Science
  doi: 10.1126/science.1056598
– volume: 199
  start-page: 239
  year: 2000
  ident: 10.1016/j.jcat.2013.04.017_b0020
  article-title: Selective one step synthesis of (−)menthol from (+)citronellal on Ru supported on modified SiO(2)
  publication-title: Appl. Catal. A – Gen.
  doi: 10.1016/S0926-860X(99)00560-8
– ident: 10.1016/j.jcat.2013.04.017_b0045
– volume: 78
  start-page: 1396
  year: 1997
  ident: 10.1016/j.jcat.2013.04.017_b0300
  article-title: Erratum: generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1396
– volume: 51
  start-page: 4887
  year: 2012
  ident: 10.1016/j.jcat.2013.04.017_b0220
  article-title: Electronic effects of linker substitution on lewis acid catalysis with metal–organic frameworks
  publication-title: Angew. Chem. – Int. Ed.
  doi: 10.1002/anie.201108565
– ident: 10.1016/j.jcat.2013.04.017_b0215
– volume: 41
  start-page: 157
  year: 2008
  ident: 10.1016/j.jcat.2013.04.017_b0245
  article-title: Density functionals with broad applicability in chemistry
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700111a
– volume: 40
  start-page: 536
  year: 2011
  ident: 10.1016/j.jcat.2013.04.017_b0140
  article-title: Progress on lanthanide-based organic–inorganic hybrid phosphors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00069H
– volume: 38
  start-page: 1450
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0155
  article-title: Metal–organic framework materials as catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 127
  start-page: 164108
  year: 2007
  ident: 10.1016/j.jcat.2013.04.017_b0225
  article-title: Cartesian formulation of the mobile block Hessian approach to vibrational analysis in partially optimized systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2789429
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.jcat.2013.04.017_b0310
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 50
  start-page: 9147
  year: 2011
  ident: 10.1016/j.jcat.2013.04.017_b0390
  article-title: Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201376t
– year: 2002
  ident: 10.1016/j.jcat.2013.04.017_b0015
– volume: 233
  start-page: 151
  year: 2002
  ident: 10.1016/j.jcat.2013.04.017_b0025
  article-title: Isomerisation of (+)citronellal over Zn(II) supported catalysts
  publication-title: Appl. Catal. A – Gen.
  doi: 10.1016/S0926-860X(02)00136-9
– volume: 49
  start-page: 14251
  year: 1994
  ident: 10.1016/j.jcat.2013.04.017_b0270
  article-title: Ab initio molecular-dynamics simulation of the liquid–metal-amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 22
  start-page: 4112
  year: 2010
  ident: 10.1016/j.jcat.2013.04.017_b0130
  article-title: Engineering homochiral metal–organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000197
– volume: 37
  start-page: 173
  year: 2012
  ident: 10.1016/j.jcat.2013.04.017_b0370
  article-title: A density functional theory study of cyclization of citronellal
  publication-title: Prog. React. Kinet. Mech.
  doi: 10.3184/146867812X13332734805828
– ident: 10.1016/j.jcat.2013.04.017_b0050
– ident: 10.1016/j.jcat.2013.04.017_b0035
– volume: 130
  start-page: 15872
  year: 2008
  ident: 10.1016/j.jcat.2013.04.017_b0365
  article-title: Synthesis of a dialuminum-substituted silicotungstate and the diastereoselective cyclization of citronellal derivatives
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8014154
– volume: 48
  start-page: 1530
  year: 2008
  ident: 10.1016/j.jcat.2013.04.017_b0265
  article-title: ZEOBUILDER: a GUI toolkit for the construction of complex molecular structures on the nanoscale with building blocks
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci8000748
– volume: 112
  start-page: 782
  year: 2012
  ident: 10.1016/j.jcat.2013.04.017_b0105
  article-title: Hydrogen storage in metal–organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr200274s
– volume: 48
  start-page: 7502
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0160
  article-title: Metal–organic frameworks: opportunities for catalysis
  publication-title: Angew. Chem. – Int. Ed.
  doi: 10.1002/anie.200806063
– volume: 112
  start-page: 1196
  year: 2012
  ident: 10.1016/j.jcat.2013.04.017_b0170
  article-title: Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003147
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jcat.2013.04.017_b0295
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– ident: 10.1016/j.jcat.2013.04.017_b0005
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.jcat.2013.04.017_b0285
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 253
  start-page: 3042
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0110
  article-title: Potential applications of metal–organic frameworks
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2009.05.019
– volume: 38
  start-page: 1248
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0165
  article-title: Enantioselective catalysis with homochiral metal–organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807083k
– year: 2008
  ident: 10.1016/j.jcat.2013.04.017_b0065
– volume: 92
  start-page: 1021
  year: 1992
  ident: 10.1016/j.jcat.2013.04.017_b0360
  article-title: Asymmetric ene reactions in organic-synthesis
  publication-title: Chem. Rev.
  doi: 10.1021/cr00013a014
– volume: 82
  start-page: 270
  year: 1985
  ident: 10.1016/j.jcat.2013.04.017_b0230
  article-title: Abinitio effective core potentials for molecular calculations – potentials for the transition-metal atoms Sc to Hg
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448799
– volume: 47
  start-page: 558
  year: 1993
  ident: 10.1016/j.jcat.2013.04.017_b0275
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 229
  start-page: 404
  year: 2005
  ident: 10.1016/j.jcat.2013.04.017_b0075
  article-title: Cyclisation of citronellal over zirconium zeolite beta—a highly diastereoselective catalyst to (±)-isopulegol
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.11.015
– volume: 83
  start-page: 83
  year: 1983
  ident: 10.1016/j.jcat.2013.04.017_b0330
  article-title: Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics
  publication-title: Chem. Rev.
  doi: 10.1021/cr00054a001
– volume: 3
  start-page: 157
  year: 2011
  ident: 10.1016/j.jcat.2013.04.017_b0195
  article-title: Cu-3(BTC)(2): a metal–organic framework catalyst for the Friedlander reaction
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000201
– volume: 132
  year: 2010
  ident: 10.1016/j.jcat.2013.04.017_b0235
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 127
  start-page: 10305
  year: 2005
  ident: 10.1016/j.jcat.2013.04.017_b0320
  article-title: Why are BINOL-based monophosphites such efficient ligands in Rh-catalyzed asymmetric olefin hydrogenation?
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052025+
– volume: 38
  start-page: 1460
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0090
  article-title: Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802430h
– volume: 75
  start-page: 885
  year: 2010
  ident: 10.1016/j.jcat.2013.04.017_b0255
  article-title: Intramolecular pi-pi stacking interactions in 2-substituted N,N-dibenzylaziridinium ions and their regioselectivity in nucleophilic ring-opening reactions
  publication-title: J. Org. Chem.
  doi: 10.1021/jo902493w
– volume: 285
  start-page: 196
  year: 2012
  ident: 10.1016/j.jcat.2013.04.017_b0260
  article-title: The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.09.014
– volume: 119
  start-page: 331
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0340
  article-title: Microwave synthesis of hybrid inorganic-organic materials including porous Cu-3(BTC)(2) from Cu(II)-trimesate mixture
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.10.035
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.jcat.2013.04.017_b0305
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– ident: 10.1016/j.jcat.2013.04.017_b0335
– volume: 38
  start-page: 1477
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0115
  article-title: Selective gas adsorption and separation in metal–organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802426j
– volume: 130
  start-page: 6938
  year: 2008
  ident: 10.1016/j.jcat.2013.04.017_b0400
  article-title: Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja802121u
– volume: 17
  start-page: 12027
  year: 2011
  ident: 10.1016/j.jcat.2013.04.017_b0250
  article-title: Competitive reactions of organophosphorus radicals on coke surfaces
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201100712
– volume: 34
  start-page: 263
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0205
  article-title: Kinetics of oxidation of hydroquinone to p-benzoquinone catalyzed by microporous metal–organic frameworks M-3(BTC)(2) M=copper(II), cobalt(II), or nickel(II); BTC=benzene-1,3,5-tricarboxylate using molecular oxygen
  publication-title: Transition Met. Chem.
  doi: 10.1007/s11243-009-9188-x
– volume: 7
  start-page: 1090
  year: 2011
  ident: 10.1016/j.jcat.2013.04.017_b0315
  article-title: Normal mode analysis in zeolites: toward an efficient calculation of adsorption entropies
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct1005505
– volume: 283
  start-page: 1148
  year: 1999
  ident: 10.1016/j.jcat.2013.04.017_b0180
  article-title: A chemically functionalizable nanoporous material Cu-3(TMA)(2)(H2O)(3) (n)
  publication-title: Science
  doi: 10.1126/science.283.5405.1148
– volume: 128
  start-page: 3896
  year: 2006
  ident: 10.1016/j.jcat.2013.04.017_b0375
  article-title: An interweaving MOF with high hydrogen uptake
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058777l
– volume: 38
  start-page: 1294
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0095
  article-title: Hydrogen storage in metal–organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802256a
– volume: 73
  start-page: 81
  year: 2004
  ident: 10.1016/j.jcat.2013.04.017_b0200
  article-title: Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound CU3(BTC)(2)
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2003.12.027
– volume: 4
  start-page: 1313
  year: 2008
  ident: 10.1016/j.jcat.2013.04.017_b0325
  article-title: Development of a Q2MM force field for the asymmetric rhodium catalyzed hydrogenation of enamides
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800132a
– volume: 39
  start-page: 4928
  year: 2010
  ident: 10.1016/j.jcat.2013.04.017_b0405
  article-title: Analysing and understanding the active site by IR spectroscopy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b919543m
– volume: 38
  start-page: 1330
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0135
  article-title: Luminescent metal–organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802352m
– volume: 49
  start-page: 1530
  year: 2010
  ident: 10.1016/j.jcat.2013.04.017_b0120
  article-title: Metal-Organic Framework Membranes-High Potential, Bright Future? Angew
  publication-title: Chem.-Int. Ed.
  doi: 10.1002/anie.200906491
– volume: 120
  start-page: 215
  year: 2008
  ident: 10.1016/j.jcat.2013.04.017_b0240
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 11
  start-page: 2876
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0060
  article-title: Reactivity in the confined spaces of zeolites: the interplay between spectroscopy and theory to develop structure–activity relationships for catalysis
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b821297j
– volume: 112
  start-page: 869
  year: 2012
  ident: 10.1016/j.jcat.2013.04.017_b0125
  article-title: Metal–organic frameworks for separations
  publication-title: Chem. Rev.
  doi: 10.1021/cr200190s
– volume: 40
  start-page: 926
  year: 2011
  ident: 10.1016/j.jcat.2013.04.017_b0145
  article-title: Luminescent multifunctional lanthanides-based metal–organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00130A
– volume: 53
  start-page: 8306
  year: 2005
  ident: 10.1016/j.jcat.2013.04.017_b0190
  article-title: Chemical pretreatment of olive oil mill wastewater using a metal–organic framework catalyst
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0512609
– year: 2006
  ident: 10.1016/j.jcat.2013.04.017_b0010
– volume: 38
  start-page: 1353
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0150
  article-title: Magnetic metal–organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b804757j
– volume: 40
  start-page: 550
  year: 2011
  ident: 10.1016/j.jcat.2013.04.017_b0085
  article-title: Why hybrid porous solids capture greenhouse gases?
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00040J
– volume: 13
  start-page: 488
  year: 2012
  ident: 10.1016/j.jcat.2013.04.017_b0380
  article-title: Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in CuBTC MOF
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201100602
– volume: 48
  start-page: 6559
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0395
  article-title: Highly porous metal–organic framework containing a novel organosilicon linker – a promising material for hydrogen storage
  publication-title: Inorg. Chem.
  doi: 10.1021/ic900478z
– volume: 60
  start-page: 4146
  year: 1995
  ident: 10.1016/j.jcat.2013.04.017_b0030
  article-title: Surface-mediated reactions. 6. Effects of silica-gel and alumina on acid-catalyzed reactions
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00118a035
– volume: 64
  start-page: 8553
  year: 2008
  ident: 10.1016/j.jcat.2013.04.017_b0185
  article-title: Room temperature synthesis of metal–organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.06.036
– ident: 10.1016/j.jcat.2013.04.017_b0040
– volume: 12
  start-page: 7353
  year: 2006
  ident: 10.1016/j.jcat.2013.04.017_b0175
  article-title: Probing the Lewis acidity and catalytic activity of the metal–organic framework Cu-3(btc)(2) (BTC=benzene-1,3,5-tricarboxylate)
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200600220
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.jcat.2013.04.017_b0280
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 112
  start-page: 10855
  year: 2008
  ident: 10.1016/j.jcat.2013.04.017_b0345
  article-title: Structures and mechanisms of the carbonyl-ene reaction between MOF-11 encapsulated formaldehyde and propylene: an ONIOM study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8021437
– volume: 1
  start-page: 3354
  year: 2010
  ident: 10.1016/j.jcat.2013.04.017_b0290
  article-title: Water adsorption on coordinatively unsaturated sites in CuBTC MOF
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz101378z
– volume: 38
  year: 2009
  ident: 10.1016/j.jcat.2013.04.017_b0080
  article-title: Industrial applications of metal–organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b804680h
– volume: 126
  start-page: 5666
  year: 2004
  ident: 10.1016/j.jcat.2013.04.017_b0100
  article-title: Hydrogen sorption in functionalized metal–organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049408c
– volume: 115
  start-page: 12486
  year: 2011
  ident: 10.1016/j.jcat.2013.04.017_b0350
  article-title: Density functional theory study of the carbonyl-ene reaction of encapsulated formaldehyde in Cu(I), Ag(I), and Au(I) exchanged FAU zeolites
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp205985v
– ident: 10.1016/j.jcat.2013.04.017_b0055
SSID ssj0011558
Score 2.3468385
Snippet Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. [Display omitted] •Combined...
Industrial (−)-menthol production generally relies on the hydrogenation of (−)-isopulegol, which is in turn produced with high selectivity by cyclization of...
Graphical abstract Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. Display Omitted...
Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. Display Omitted * Combined...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Acids
Activity
aluminum
ATPH
Catalysis
Catalysts
Chemical kinetics
Chemistry
citronellal
Citronellal cyclization
Cu-BTC
Diastereoselective catalysis
energy
Exact sciences and technology
General and physical chemistry
Heterogeneous catalysis
hydrogen
Hydrogenation
Lewis acids
ligands
nitrogen dioxide
Selectivity
stereoisomers
temperature
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
ZnBr2
Title Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization
URI https://dx.doi.org/10.1016/j.jcat.2013.04.017
https://www.proquest.com/docview/1399678510
https://www.proquest.com/docview/1554968048
https://www.proquest.com/docview/2000006973
Volume 305
WOSCitedRecordID wos000322501000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011558
  issn: 0021-9517
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2QQIeEAzQCmMyEuKlypSLk9SPU9nE0FSQ1k19sxzHGSlVWppQtn_Iz-Kc2MkydhE88BJVde2mPV_O-Xx8LoS8S4NIDZRKHJW6rsN0EDsJ90EgUaIHgyxIAibrZhPxaDSYTPiXtbVfTS7MahYXxeDigi_-q6jhPRA2ps7-g7jbReENeA1ChyuIHa5_JfijosQNdxPAiIkLdX8I9JADGLAwgp6XdfsbMwB0cQU7ZoyFPdY_8xKm5Gm_9utcllXZBiKqHN3mGC0166tLNbMZnHfQWzs_bzn7GSbQYNypSRGqqq-5vBoEAzHHuF8T3Xy4xBoXeZtFNJxXwO3NUcpJlU9bRH_Q_TMTKAi6-5tNq7BODGwowbtOjKvsmrOussbokdCkdu5po59d7jqYfNtV4IEbdlSwZ_T5DdNgvBTTvSl6dPEe6hK3zerdOtyjz-Lw9PhYjA8m4-uj1u6DZvY48733i-8O9i_Dc37bzGWdbPpxyEG_bu4fHUw-tSdawNsMK7A_yiZwmVjDP-_pLpK0nsk5Ru_KEh7gzHReuUEiamY0fkqeWJnTfQPFZ2RNF1vk4bDpJLhFHneKXj4nCwtQmhcUYEUbgFLAB70NoHSeUQtQWgOUIkBpC1AKAK1X6gCUdgD6gpweHoyHHx3b98NRIXcrJ4rjDDsRpczVnpYajDnsYyWQLMmlijKWSOC1Wab9lDOVKOVlfhAw5soMmIfkwUuyUcDXbROaRsrzQQspP0yYSiOZAJ31ojRlDCMIwh7xmj9aKFsUH3uzzEQT_TgVKByBwhEuEyCcHum3cxamJMy9nw4b-QlLag1ZFQDMe-dtg7CFPAdbL05PfKwE6dYmlvfI7jUEtHcByAOq6Xk9stNAQljNVArY6nFgpmCDbx-GfQWPBmDQe-RtOwxAwQNEWWiQMbasRXrL4-DV_Uu8Jo-unvIdslEtf-g35IFaVXm53LWPxm9Ljvel
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+in+the+activity+and+diastereoselectivity+of+various+Lewis+acid+catalysts+for+the+citronellal+cyclization&rft.jtitle=Journal+of+catalysis&rft.au=Vandichel%2C+Matthias&rft.au=Vermoortele%2C+Frederik&rft.au=Cottenie%2C+Stijn&rft.au=De+Vos%2C+Dirk+E&rft.date=2013-09-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=305&rft.spage=118&rft_id=info:doi/10.1016%2Fj.jcat.2013.04.017&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3408819421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon