Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization
Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. [Display omitted] •Combined experimental and theoretical study on citronellal cyclization toward isopulegol stereoisomers.•Lewis acid homogeneous catalysts (ZnBr2 and ATPH) versus...
Saved in:
| Published in: | Journal of catalysis Vol. 305; pp. 118 - 129 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier Inc
01.09.2013
Elsevier Elsevier BV |
| Subjects: | |
| ISSN: | 0021-9517, 1090-2694 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. [Display omitted]
•Combined experimental and theoretical study on citronellal cyclization toward isopulegol stereoisomers.•Lewis acid homogeneous catalysts (ZnBr2 and ATPH) versus Cu3BTC2 as hetereogeneous MOF catalyst.•Search for catalyst with the highest activity and highest selectivity toward (−)-isopulegol diastereomer.•ATPH is the most active catalyst with selectivity of about 94% at 298K.•Catalytic conversion in Cu3BTC2 strongly dependent on size of catalyst particles due to diffusional restrictions.
Industrial (−)-menthol production generally relies on the hydrogenation of (−)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2, aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal–organic framework Cu3BTC2 (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3(BTC-(NO2)3)2 Lewis catalyst – in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group – is predicted to be very selective. |
|---|---|
| AbstractList | Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. Display Omitted * Combined experimental and theoretical study on citronellal cyclization toward isopulegol stereoisomers. * Lewis acid homogeneous catalysts (ZnBr2 and ATPH) versus Cu3BTC2 as hetereogeneous MOF catalyst. * Search for catalyst with the highest activity and highest selectivity toward (-)-isopulegol diastereomer. * ATPH is the most active catalyst with selectivity of about 94% at 298K. * Catalytic conversion in Cu3BTC2 strongly dependent on size of catalyst particles due to diffusional restrictions. Industrial (-)-menthol production generally relies on the hydrogenation of (-)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2, aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal-organic framework Cu3BTC2 (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3(BTC-(NO2)3)2 Lewis catalyst - in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group - is predicted to be very selective. Graphical abstract Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. Display Omitted Industrial (-)-menthol production generally relies on the hydrogenation of (-)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2 , aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal-organic framework Cu3 BTC2 (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3 (BTC-(NO2 )3 )2 Lewis catalyst - in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group - is predicted to be very selective. [PUBLICATION ABSTRACT] Industrial (−)-menthol production generally relies on the hydrogenation of (−)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr₂, aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal–organic framework Cu₃BTC₂ (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr₂ and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu₃(BTC-(NO₂)₃)₂ Lewis catalyst – in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group – is predicted to be very selective. Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. [Display omitted] •Combined experimental and theoretical study on citronellal cyclization toward isopulegol stereoisomers.•Lewis acid homogeneous catalysts (ZnBr2 and ATPH) versus Cu3BTC2 as hetereogeneous MOF catalyst.•Search for catalyst with the highest activity and highest selectivity toward (−)-isopulegol diastereomer.•ATPH is the most active catalyst with selectivity of about 94% at 298K.•Catalytic conversion in Cu3BTC2 strongly dependent on size of catalyst particles due to diffusional restrictions. Industrial (−)-menthol production generally relies on the hydrogenation of (−)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2, aluminum tris(2,6-diphenylphenoxide) (ATPH), and the heterogeneous metal–organic framework Cu3BTC2 (BTC=benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereoisomer (>99%). The performance of the catalysts was evaluated as a function of temperature, which revealed that a higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free-energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights, rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3(BTC-(NO2)3)2 Lewis catalyst – in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group – is predicted to be very selective. |
| Author | Vermoortele, Frederik Vandichel, Matthias Waroquier, Michel Cottenie, Stijn De Vos, Dirk E. Van Speybroeck, Veronique |
| Author_xml | – sequence: 1 givenname: Matthias surname: Vandichel fullname: Vandichel, Matthias organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium – sequence: 2 givenname: Frederik surname: Vermoortele fullname: Vermoortele, Frederik organization: Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium – sequence: 3 givenname: Stijn surname: Cottenie fullname: Cottenie, Stijn organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium – sequence: 4 givenname: Dirk E. surname: De Vos fullname: De Vos, Dirk E. email: dirk.devos@biw.kuleuven.be organization: Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium – sequence: 5 givenname: Michel surname: Waroquier fullname: Waroquier, Michel organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium – sequence: 6 givenname: Veronique surname: Van Speybroeck fullname: Van Speybroeck, Veronique email: veronique.vanspeybroeck@ugent.be organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27571811$$DView record in Pascal Francis |
| BookMark | eNp9kU9v1DAQxSNUJLaFL8CFSAiJS8KM4_yxxAVVFCqtxAF6tmYdu3WU2ovtXbR8-jrd9tLD-jIH_97M03vnxZnzThfFe4QaAbsvUz0pSjUDbGrgNWD_qlghCKhYJ_hZsQJgWIkW-zfFeYwTAGLbDqtie-2ivb1LpXVlutMlqWT3Nh1KcmM5WopJB-2jnvXzhzflnoL1u1iu9T8bs8SOZb5O8yGmWBofHjcpm0I2Oc80l-qgZvufkvXubfHa0Bz1u6d5Udxcff9z-bNa__pxffltXalWQKq6vjcgOhw5aNSkkXfABTFkJEh1hm-oH5gxmo2Cq41SaFjTcA5k9AZJNBfF5-PebfB_dzomeW-jWuw4nb1LBsvrRN9k9OMLdPK74LI7mUPiohuADyepRoiuH1qETH16oigqmk0gp2yU22DvKRwk69seB8TMDUdOBR9j0EbmvB4DSoHsLBHkUqyc5FKsXIqVwGUuNkvZC-nz9pOiD0eRIS_pNmRPN78z0C0pcNYugX09Ejq3src6yKisdkqPNuTy5ejtqQMPlSzINg |
| CODEN | JCTLA5 |
| CitedBy_id | crossref_primary_10_1002_cctc_201601689 crossref_primary_10_1002_ceur_202500251 crossref_primary_10_1007_s10904_019_01251_8 crossref_primary_10_1016_j_jcat_2018_09_001 crossref_primary_10_1155_2014_950190 crossref_primary_10_1016_j_jcat_2015_08_015 crossref_primary_10_1016_j_molstruc_2017_12_083 crossref_primary_10_3390_nano11061396 crossref_primary_10_1016_j_scp_2023_101125 crossref_primary_10_1039_C7CS00033B crossref_primary_10_1016_j_poly_2018_02_014 crossref_primary_10_1016_j_mcat_2018_09_009 crossref_primary_10_1002_cctc_201700734 crossref_primary_10_1007_s11144_019_01617_6 crossref_primary_10_1002_cben_202000013 crossref_primary_10_1007_s11164_017_3237_4 crossref_primary_10_3762_bjoc_18_38 crossref_primary_10_1002_cssc_201700318 crossref_primary_10_1016_j_apcata_2016_02_014 crossref_primary_10_1002_cssc_201702435 crossref_primary_10_1021_ja507119n crossref_primary_10_1007_s11164_020_04190_z crossref_primary_10_1007_s11705_022_2225_4 crossref_primary_10_1002_open_202000291 crossref_primary_10_1016_j_jcat_2014_10_007 crossref_primary_10_1016_j_apcata_2021_118426 crossref_primary_10_1007_s10562_022_04178_x crossref_primary_10_1080_01614940_2016_1128193 crossref_primary_10_1002_cctc_201402189 crossref_primary_10_3390_app15052609 crossref_primary_10_1080_14786419_2024_2332949 crossref_primary_10_1002_cctc_202001346 crossref_primary_10_1016_j_cattod_2020_06_034 crossref_primary_10_1039_D4CY00618F |
| Cites_doi | 10.1016/j.jcat.2011.04.004 10.1039/B313738D 10.1016/j.theochem.2010.07.011 10.1126/science.1056598 10.1016/S0926-860X(99)00560-8 10.1103/PhysRevLett.78.1396 10.1002/anie.201108565 10.1021/ar700111a 10.1039/C0CS00069H 10.1039/b807080f 10.1063/1.2789429 10.1002/jcc.20495 10.1021/ic201376t 10.1016/S0926-860X(02)00136-9 10.1103/PhysRevB.49.14251 10.1002/adma.201000197 10.3184/146867812X13332734805828 10.1021/ja8014154 10.1021/ci8000748 10.1021/cr200274s 10.1002/anie.200806063 10.1021/cr2003147 10.1103/PhysRevLett.77.3865 10.1016/0927-0256(96)00008-0 10.1016/j.ccr.2009.05.019 10.1039/b807083k 10.1021/cr00013a014 10.1063/1.448799 10.1103/PhysRevB.47.558 10.1016/j.jcat.2004.11.015 10.1021/cr00054a001 10.1002/cctc.201000201 10.1063/1.3382344 10.1021/ja052025+ 10.1039/b802430h 10.1021/jo902493w 10.1016/j.jcat.2011.09.014 10.1016/j.micromeso.2008.10.035 10.1103/PhysRevB.50.17953 10.1039/b802426j 10.1021/ja802121u 10.1002/chem.201100712 10.1007/s11243-009-9188-x 10.1021/ct1005505 10.1126/science.283.5405.1148 10.1021/ja058777l 10.1039/b802256a 10.1016/j.micromeso.2003.12.027 10.1021/ct800132a 10.1039/b919543m 10.1039/b802352m 10.1002/anie.200906491 10.1007/s00214-007-0310-x 10.1039/b821297j 10.1021/cr200190s 10.1039/C0CS00130A 10.1021/jf0512609 10.1039/b804757j 10.1039/C0CS00040J 10.1002/cphc.201100602 10.1021/ic900478z 10.1021/jo00118a035 10.1016/j.tet.2008.06.036 10.1002/chem.200600220 10.1103/PhysRevB.54.11169 10.1021/jp8021437 10.1021/jz101378z 10.1039/b804680h 10.1021/ja049408c 10.1021/jp205985v |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. 2014 INIST-CNRS Copyright © 2013 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
| DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1016/j.jcat.2013.04.017 |
| DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1090-2694 |
| EndPage | 129 |
| ExternalDocumentID | 3408819421 3018379741 27571811 10_1016_j_jcat_2013_04_017 US201600004259 S0021951713001401 |
| Genre | News |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- ABPIF ABPTK FBQ 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH AFXIZ AGCQF AGRNS 7S9 L.6 |
| ID | FETCH-LOGICAL-c590t-677f0961d40e1eae146049a212a9ac6f4ba782ffe2d94cbcc1f233440afeb1a93 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322501000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9517 |
| IngestDate | Sun Sep 28 07:36:48 EDT 2025 Fri Jul 25 03:55:21 EDT 2025 Sun Nov 09 08:13:18 EST 2025 Wed Apr 02 07:15:13 EDT 2025 Sat Nov 29 05:01:07 EST 2025 Tue Nov 18 21:05:18 EST 2025 Wed Dec 27 19:28:24 EST 2023 Fri Feb 23 02:27:02 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heterogeneous catalysis Citronellal cyclization ATPH Chemical kinetics Lewis acids Diastereoselective catalysis Activity ZnBr2 Selectivity Cu-BTC Lewis acid Citronellal Catalytic reaction Diastereoselectivity ZnBr Cyclization Kinetics Catalyst |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c590t-677f0961d40e1eae146049a212a9ac6f4ba782ffe2d94cbcc1f233440afeb1a93 |
| Notes | http://dx.doi.org/10.1016/j.jcat.2013.04.017 SourceType-Scholarly Journals-1 ObjectType-News-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0021951713001401-fx1_lrg.jpg |
| PQID | 1399678510 |
| PQPubID | 32080 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2000006973 proquest_journals_1554968048 proquest_journals_1399678510 pascalfrancis_primary_27571811 crossref_citationtrail_10_1016_j_jcat_2013_04_017 crossref_primary_10_1016_j_jcat_2013_04_017 fao_agris_US201600004259 elsevier_sciencedirect_doi_10_1016_j_jcat_2013_04_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-01 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: San Diego |
| PublicationTitle | Journal of catalysis |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc Elsevier Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier BV |
| References | Vermoortele, Vandichel, Van de Voorde, Ameloot, Waroquier, Van Speybroeck, De Vos (b0220) 2012; 51 Catak, Hemelsoet, Hermosilla, Waroquier, Van Speybroeck (b0250) 2011; 17 Wenzel, Fischer, Hoffmann, Froba (b0395) 2009; 48 Rocha, Carlos, Paz, Ananias (b0145) 2011; 40 Carlos, Ferreira, de Zea Bermudez, Julian-Lopez, Escribano (b0140) 2011; 40 Yongzhong, Yuntong, Jaenicke, Chuah (b0075) 2005; 229 Perdew, Burke, Ernzerhof (b0300) 1997; 78 J.C. Leffingwell, D. Leffingwel, Chiral Chemistry in Flavours & Fragrances, Speciality Chemicals Magazine, 2011, pp. 30–33. Milone, Gangemi, Neri, Pistone, Galvagno (b0020) 2000; 199 G. Heydrich, G. Gralla, M. Rauls, J. Schmidt-Leithoff, K. Ebel, W. Krause, S. Oehlenschlager, C. Jakel, M. Friedrich, J. Bergner, N. Kashani-Shirazi, R. Paciello, Method for Producing Optically Active, Racemic Menthol, BASF SE, US 2010/0249467 A1, 2010. M. Friedrich, K. Ebel, N. Gotz, W. Krausee, C. Zahm, Diarylphenoxy Aluminium Compounds, BASF SE, US 7,608,742 B2, 2009. Corma, Renz (b0070) 2004 Perdew, Burke, Ernzerhof (b0295) 1996; 77 Férey, Serre, Devic, Maurin, Jobic, Llewellyn, De Weireld, Vimont, Daturi, Chang (b0085) 2011; 40 I. Takeshi, O. Yoshiki, H. Yoji, Takasago Perfumery Co. Ltd., EP1225163 (A2), 2002. Hay, Wadt (b0230) 1985; 82 Zhao, Truhlar (b0245) 2008; 41 BASF, BASF Press Release: BASF Adds L-menthol to Product Range, June 1, 2010. Gascon, Kapteijn (b0120) 2010; 49 Wu, Qiu, Wang, Li, Xu, Wu, Jiang (b0205) 2009; 34 H. Itoh, Y. Hori, Aluminum Complex and Use thereof, 2011. Farrusseng, Aguado, Pinel (b0160) 2009; 48 Ma, Abney, Lin (b0165) 2009; 38 Chen, Eddaoudi, Hyde, O’Keeffe, Yaghi (b0385) 2001; 291 Ghysels, Van Neck, Waroquier (b0225) 2007; 127 Grajciar, Bludsky, Nachtigall (b0290) 2010; 1 G. Heydrich, G. Gralla, K. Ebel, M. Friedrich, Recovery of phenol Ligands During the Production of Isopulegol, BASF SE, US 8,003,829 B2, 2011. Allendorf, Bauer, Bhakta, Houk (b0135) 2009; 38 Seeman (b0330) 1983; 83 Zardoost, Gholami, Irani, Siadati (b0370) 2012; 37 Verstraelen, Van Speybroeck, Waroquier (b0265) 2008; 48 Kresse, Hafner (b0275) 1993; 47 Yang, Tong, Zhang (b0355) 2010; 957 Lawrence, Hopp (b0010) 2006 Li, Kuppler, Zhou (b0115) 2009; 38 Zhao, Truhlar (b0240) 2008; 120 Chui, Lo, Charmant, Orpen, Williams (b0180) 1999; 283 Li, Sculley, Zhou (b0125) 2012; 112 Grimme, Antony, Ehrlich, Krieg (b0235) 2010; 132 Donoghue, Helquist, Norrby, Wiest (b0325) 2008; 4 Liu, Xuan, Cui (b0130) 2010; 22 Alaerts, Seguin, Poelman, Thibault-Starzyk, Jacobs, De Vos (b0175) 2006; 12 Marx, Kleist, Baiker (b0210) 2011; 281 De Rosa, Giordano, Granato, Katovic, Siciliano, Tripicchio (b0190) 2005; 53 Han, Mendoza-Cortes, Goddard Iii (b0090) 2009; 38 Yoon, Srirambalaji, Kim (b0170) 2012; 112 Sun, Ma, Ke, Collins, Zhou (b0375) 2006; 128 Iwata, Okeda, Hori (b0015) 2002 M. Friedrich, K. Ebel, N. Götz, Method for the Production of Isopulegol, BASF SE, Ludwigshafen (DE), 2009, p. 9. Leus, Vandichel, Liu, Muylaert, Musschoot, Pyl, Vrielinck, Callens, Marin, Detavernier, Wiper, Khimyak, Waroquier, Van Speybroeck, Van der Voort (b0260) 2012; 285 Perez-Mayoral, Cejka (b0195) 2011; 3 Wannakao, Khongpracha, Limtrakul (b0350) 2011; 115 Tranchemontagne, Hunt, Yaghi (b0185) 2008; 64 Kresse, Furthmüller (b0285) 1996; 6 Boronat, Concepcion, Corma, Navarro, Renz, Valencia (b0060) 2009; 11 Kresse, Furthmüller (b0280) 1996; 54 Choomwattana, Maihom, Khongpracha, Probst, Limtrakul (b0345) 2008; 112 Murray, Dinca, Long (b0095) 2009; 38 Rowsell, Millward, Park, Yaghi (b0100) 2004; 126 Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (b0155) 2009; 38 Catak, D’Hooghe, De Kimpe, Waroquier, Van Speybroeck (b0255) 2010; 75 Grimme (b0310) 2006; 27 Cychosz, Wong-Foy, Matzger (b0400) 2008; 130 Kuppler, Timmons, Fang, Li, Makal, Young, Yuan, Zhao, Zhuang, Zhou (b0110) 2009; 253 Kresse, Hafner (b0270) 1994; 49 Schlichte, Kratzke, Kaskel (b0200) 2004; 73 Furukawa, Go, Ko, Park, Uribe-Romo, Kim, O’Keeffe, Yaghi (b0390) 2011; 50 Boronat, Corma, Renz (b0065) 2008 Seo, Hundal, Jang, Hwang, Jun, Chang (b0340) 2009; 119 Suh, Park, Prasad, Lim (b0105) 2012; 112 Blöchl (b0305) 1994; 50 Czaja, Trukhan, Muller (b0080) 2009; 38 Mikami, Shimizu (b0360) 1992; 92 Kikukawa, Yamaguchi, Nakagawa, Uehara, Uchida, Yamaguchi, Mizuno (b0365) 2008; 130 Rubes, Grajciar, Bludsky, Wiersum, Llewellyn, Nachtigall (b0380) 2012; 13 De Moor, Ghysels, Reyniers, Van Speybroeck, Waroquier, Marin (b0315) 2011; 7 Kurmoo (b0150) 2009; 38 Vimont, Thibault-Starzyk, Daturi (b0405) 2010; 39 Kropp, Breton, Craig, Crawford, Durland, Jones, Raleigh (b0030) 1995; 60 Milone, Perri, Pistone, Neri, Galvagno (b0025) 2002; 233 Reetz, Meiswinkel, Mehler, Angermund, Graf, Thiel, Mynott, Blackmond (b0320) 2005; 127 Catak (10.1016/j.jcat.2013.04.017_b0255) 2010; 75 Perdew (10.1016/j.jcat.2013.04.017_b0295) 1996; 77 Zhao (10.1016/j.jcat.2013.04.017_b0245) 2008; 41 10.1016/j.jcat.2013.04.017_b0335 Lee (10.1016/j.jcat.2013.04.017_b0155) 2009; 38 10.1016/j.jcat.2013.04.017_b0215 Milone (10.1016/j.jcat.2013.04.017_b0025) 2002; 233 Rowsell (10.1016/j.jcat.2013.04.017_b0100) 2004; 126 Catak (10.1016/j.jcat.2013.04.017_b0250) 2011; 17 Kresse (10.1016/j.jcat.2013.04.017_b0285) 1996; 6 Allendorf (10.1016/j.jcat.2013.04.017_b0135) 2009; 38 Leus (10.1016/j.jcat.2013.04.017_b0260) 2012; 285 Han (10.1016/j.jcat.2013.04.017_b0090) 2009; 38 Ghysels (10.1016/j.jcat.2013.04.017_b0225) 2007; 127 Sun (10.1016/j.jcat.2013.04.017_b0375) 2006; 128 Wannakao (10.1016/j.jcat.2013.04.017_b0350) 2011; 115 Kresse (10.1016/j.jcat.2013.04.017_b0270) 1994; 49 10.1016/j.jcat.2013.04.017_b0005 Li (10.1016/j.jcat.2013.04.017_b0115) 2009; 38 Rubes (10.1016/j.jcat.2013.04.017_b0380) 2012; 13 Kropp (10.1016/j.jcat.2013.04.017_b0030) 1995; 60 Suh (10.1016/j.jcat.2013.04.017_b0105) 2012; 112 Choomwattana (10.1016/j.jcat.2013.04.017_b0345) 2008; 112 Wu (10.1016/j.jcat.2013.04.017_b0205) 2009; 34 Hay (10.1016/j.jcat.2013.04.017_b0230) 1985; 82 Donoghue (10.1016/j.jcat.2013.04.017_b0325) 2008; 4 Grimme (10.1016/j.jcat.2013.04.017_b0235) 2010; 132 10.1016/j.jcat.2013.04.017_b0050 Zardoost (10.1016/j.jcat.2013.04.017_b0370) 2012; 37 Grimme (10.1016/j.jcat.2013.04.017_b0310) 2006; 27 Corma (10.1016/j.jcat.2013.04.017_b0070) 2004 Alaerts (10.1016/j.jcat.2013.04.017_b0175) 2006; 12 Tranchemontagne (10.1016/j.jcat.2013.04.017_b0185) 2008; 64 Boronat (10.1016/j.jcat.2013.04.017_b0065) 2008 Murray (10.1016/j.jcat.2013.04.017_b0095) 2009; 38 10.1016/j.jcat.2013.04.017_b0055 Czaja (10.1016/j.jcat.2013.04.017_b0080) 2009; 38 Chui (10.1016/j.jcat.2013.04.017_b0180) 1999; 283 Yongzhong (10.1016/j.jcat.2013.04.017_b0075) 2005; 229 De Rosa (10.1016/j.jcat.2013.04.017_b0190) 2005; 53 Grajciar (10.1016/j.jcat.2013.04.017_b0290) 2010; 1 Kikukawa (10.1016/j.jcat.2013.04.017_b0365) 2008; 130 Vimont (10.1016/j.jcat.2013.04.017_b0405) 2010; 39 Vermoortele (10.1016/j.jcat.2013.04.017_b0220) 2012; 51 10.1016/j.jcat.2013.04.017_b0040 Furukawa (10.1016/j.jcat.2013.04.017_b0390) 2011; 50 Marx (10.1016/j.jcat.2013.04.017_b0210) 2011; 281 Yang (10.1016/j.jcat.2013.04.017_b0355) 2010; 957 10.1016/j.jcat.2013.04.017_b0045 Kresse (10.1016/j.jcat.2013.04.017_b0275) 1993; 47 Lawrence (10.1016/j.jcat.2013.04.017_b0010) 2006 Yoon (10.1016/j.jcat.2013.04.017_b0170) 2012; 112 Li (10.1016/j.jcat.2013.04.017_b0125) 2012; 112 Iwata (10.1016/j.jcat.2013.04.017_b0015) 2002 Boronat (10.1016/j.jcat.2013.04.017_b0060) 2009; 11 Blöchl (10.1016/j.jcat.2013.04.017_b0305) 1994; 50 Mikami (10.1016/j.jcat.2013.04.017_b0360) 1992; 92 Zhao (10.1016/j.jcat.2013.04.017_b0240) 2008; 120 Gascon (10.1016/j.jcat.2013.04.017_b0120) 2010; 49 Reetz (10.1016/j.jcat.2013.04.017_b0320) 2005; 127 Rocha (10.1016/j.jcat.2013.04.017_b0145) 2011; 40 Kurmoo (10.1016/j.jcat.2013.04.017_b0150) 2009; 38 Férey (10.1016/j.jcat.2013.04.017_b0085) 2011; 40 Chen (10.1016/j.jcat.2013.04.017_b0385) 2001; 291 Carlos (10.1016/j.jcat.2013.04.017_b0140) 2011; 40 Ma (10.1016/j.jcat.2013.04.017_b0165) 2009; 38 Farrusseng (10.1016/j.jcat.2013.04.017_b0160) 2009; 48 Wenzel (10.1016/j.jcat.2013.04.017_b0395) 2009; 48 Liu (10.1016/j.jcat.2013.04.017_b0130) 2010; 22 Seeman (10.1016/j.jcat.2013.04.017_b0330) 1983; 83 Milone (10.1016/j.jcat.2013.04.017_b0020) 2000; 199 Kuppler (10.1016/j.jcat.2013.04.017_b0110) 2009; 253 Perez-Mayoral (10.1016/j.jcat.2013.04.017_b0195) 2011; 3 Verstraelen (10.1016/j.jcat.2013.04.017_b0265) 2008; 48 Perdew (10.1016/j.jcat.2013.04.017_b0300) 1997; 78 10.1016/j.jcat.2013.04.017_b0035 Seo (10.1016/j.jcat.2013.04.017_b0340) 2009; 119 Schlichte (10.1016/j.jcat.2013.04.017_b0200) 2004; 73 Kresse (10.1016/j.jcat.2013.04.017_b0280) 1996; 54 Cychosz (10.1016/j.jcat.2013.04.017_b0400) 2008; 130 De Moor (10.1016/j.jcat.2013.04.017_b0315) 2011; 7 |
| References_xml | – volume: 40 start-page: 550 year: 2011 end-page: 562 ident: b0085 article-title: Why hybrid porous solids capture greenhouse gases? publication-title: Chem. Soc. Rev. – volume: 50 start-page: 17953 year: 1994 ident: b0305 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 7 start-page: 1090 year: 2011 end-page: 1101 ident: b0315 article-title: Normal mode analysis in zeolites: toward an efficient calculation of adsorption entropies publication-title: J. Chem. Theory Comput. – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: b0310 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. – volume: 60 start-page: 4146 year: 1995 end-page: 4152 ident: b0030 article-title: Surface-mediated reactions. 6. Effects of silica-gel and alumina on acid-catalyzed reactions publication-title: J. Org. Chem. – volume: 38 year: 2009 ident: b0080 article-title: Industrial applications of metal–organic frameworks publication-title: Chem. Soc. Rev. – volume: 130 start-page: 15872 year: 2008 end-page: 15878 ident: b0365 article-title: Synthesis of a dialuminum-substituted silicotungstate and the diastereoselective cyclization of citronellal derivatives publication-title: J. Am. Chem. Soc. – volume: 229 start-page: 404 year: 2005 end-page: 413 ident: b0075 article-title: Cyclisation of citronellal over zirconium zeolite beta—a highly diastereoselective catalyst to (±)-isopulegol publication-title: J. Catal. – volume: 73 start-page: 81 year: 2004 end-page: 88 ident: b0200 article-title: Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound CU3(BTC)(2) publication-title: Microporous Mesoporous Mater. – reference: J.C. Leffingwell, D. Leffingwel, Chiral Chemistry in Flavours & Fragrances, Speciality Chemicals Magazine, 2011, pp. 30–33. – volume: 132 year: 2010 ident: b0235 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu publication-title: J. Chem. Phys. – reference: G. Heydrich, G. Gralla, M. Rauls, J. Schmidt-Leithoff, K. Ebel, W. Krause, S. Oehlenschlager, C. Jakel, M. Friedrich, J. Bergner, N. Kashani-Shirazi, R. Paciello, Method for Producing Optically Active, Racemic Menthol, BASF SE, US 2010/0249467 A1, 2010. – start-page: 550 year: 2004 end-page: 551 ident: b0070 article-title: Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl-ene reaction publication-title: Chem. Commun. – volume: 127 start-page: 10305 year: 2005 end-page: 10313 ident: b0320 article-title: Why are BINOL-based monophosphites such efficient ligands in Rh-catalyzed asymmetric olefin hydrogenation? publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 6559 year: 2009 end-page: 6565 ident: b0395 article-title: Highly porous metal–organic framework containing a novel organosilicon linker – a promising material for hydrogen storage publication-title: Inorg. Chem. – volume: 17 start-page: 12027 year: 2011 end-page: 12036 ident: b0250 article-title: Competitive reactions of organophosphorus radicals on coke surfaces publication-title: Chem. – Eur. J. – volume: 48 start-page: 1530 year: 2008 end-page: 1541 ident: b0265 article-title: ZEOBUILDER: a GUI toolkit for the construction of complex molecular structures on the nanoscale with building blocks publication-title: J. Chem. Inf. Model. – reference: M. Friedrich, K. Ebel, N. Gotz, W. Krausee, C. Zahm, Diarylphenoxy Aluminium Compounds, BASF SE, US 7,608,742 B2, 2009. – volume: 120 start-page: 215 year: 2008 end-page: 241 ident: b0240 article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals publication-title: Theor. Chem. Acc. – reference: H. Itoh, Y. Hori, Aluminum Complex and Use thereof, 2011. – volume: 285 start-page: 196 year: 2012 end-page: 207 ident: b0260 article-title: The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene publication-title: J. Catal. – volume: 38 start-page: 1477 year: 2009 end-page: 1504 ident: b0115 article-title: Selective gas adsorption and separation in metal–organic frameworks publication-title: Chem. Soc. Rev. – volume: 49 start-page: 14251 year: 1994 ident: b0270 article-title: Ab initio molecular-dynamics simulation of the liquid–metal-amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B – volume: 50 start-page: 9147 year: 2011 end-page: 9152 ident: b0390 article-title: Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals publication-title: Inorg. Chem. – volume: 83 start-page: 83 year: 1983 end-page: 134 ident: b0330 article-title: Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics publication-title: Chem. Rev. – volume: 199 start-page: 239 year: 2000 end-page: 244 ident: b0020 article-title: Selective one step synthesis of (−)menthol from (+)citronellal on Ru supported on modified SiO(2) publication-title: Appl. Catal. A – Gen. – volume: 49 start-page: 1530 year: 2010 end-page: 1532 ident: b0120 article-title: Metal-Organic Framework Membranes-High Potential, Bright Future? Angew publication-title: Chem.-Int. Ed. – volume: 283 start-page: 1148 year: 1999 end-page: 1150 ident: b0180 article-title: A chemically functionalizable nanoporous material Cu-3(TMA)(2)(H publication-title: Science – volume: 38 start-page: 1248 year: 2009 end-page: 1256 ident: b0165 article-title: Enantioselective catalysis with homochiral metal–organic frameworks publication-title: Chem. Soc. Rev. – reference: BASF, BASF Press Release: BASF Adds L-menthol to Product Range, June 1, 2010. – volume: 40 start-page: 926 year: 2011 end-page: 940 ident: b0145 article-title: Luminescent multifunctional lanthanides-based metal–organic frameworks publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 ident: b0155 article-title: Metal–organic framework materials as catalysts publication-title: Chem. Soc. Rev. – volume: 233 start-page: 151 year: 2002 end-page: 157 ident: b0025 article-title: Isomerisation of (+)citronellal over Zn(II) supported catalysts publication-title: Appl. Catal. A – Gen. – volume: 64 start-page: 8553 year: 2008 end-page: 8557 ident: b0185 article-title: Room temperature synthesis of metal–organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 publication-title: Tetrahedron – volume: 39 start-page: 4928 year: 2010 end-page: 4950 ident: b0405 article-title: Analysing and understanding the active site by IR spectroscopy publication-title: Chem. Soc. Rev. – volume: 48 start-page: 7502 year: 2009 end-page: 7513 ident: b0160 article-title: Metal–organic frameworks: opportunities for catalysis publication-title: Angew. Chem. – Int. Ed. – volume: 82 start-page: 270 year: 1985 end-page: 283 ident: b0230 article-title: Abinitio effective core potentials for molecular calculations – potentials for the transition-metal atoms Sc to Hg publication-title: J. Chem. Phys. – volume: 112 start-page: 869 year: 2012 end-page: 932 ident: b0125 article-title: Metal–organic frameworks for separations publication-title: Chem. Rev. – volume: 51 start-page: 4887 year: 2012 end-page: 4890 ident: b0220 article-title: Electronic effects of linker substitution on lewis acid catalysis with metal–organic frameworks publication-title: Angew. Chem. – Int. Ed. – volume: 47 start-page: 558 year: 1993 ident: b0275 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B – volume: 53 start-page: 8306 year: 2005 end-page: 8309 ident: b0190 article-title: Chemical pretreatment of olive oil mill wastewater using a metal–organic framework catalyst publication-title: J. Agric. Food Chem. – volume: 77 start-page: 3865 year: 1996 ident: b0295 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – reference: I. Takeshi, O. Yoshiki, H. Yoji, Takasago Perfumery Co. Ltd., EP1225163 (A2), 2002. – volume: 112 start-page: 10855 year: 2008 end-page: 10861 ident: b0345 article-title: Structures and mechanisms of the carbonyl-ene reaction between MOF-11 encapsulated formaldehyde and propylene: an ONIOM study publication-title: J. Phys. Chem. C – volume: 957 start-page: 84 year: 2010 end-page: 89 ident: b0355 article-title: Influence of Lewis acids and substituents on carbonyl-ene reactions: a density functional theory study publication-title: J. Mol. Struct. – Theochem – volume: 253 start-page: 3042 year: 2009 end-page: 3066 ident: b0110 article-title: Potential applications of metal–organic frameworks publication-title: Coord. Chem. Rev. – volume: 291 start-page: 1021 year: 2001 end-page: 1023 ident: b0385 article-title: Interwoven metal–organic framework on a periodic minimal surface with extra-large pores publication-title: Science – volume: 126 start-page: 5666 year: 2004 end-page: 5667 ident: b0100 article-title: Hydrogen sorption in functionalized metal–organic frameworks publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 12486 year: 2011 end-page: 12492 ident: b0350 article-title: Density functional theory study of the carbonyl-ene reaction of encapsulated formaldehyde in Cu(I), Ag(I), and Au(I) exchanged FAU zeolites publication-title: J. Phys. Chem. A – volume: 119 start-page: 331 year: 2009 end-page: 337 ident: b0340 article-title: Microwave synthesis of hybrid inorganic-organic materials including porous Cu-3(BTC)(2) from Cu(II)-trimesate mixture publication-title: Microporous Mesoporous Mater. – volume: 127 start-page: 164108 year: 2007 ident: b0225 article-title: Cartesian formulation of the mobile block Hessian approach to vibrational analysis in partially optimized systems publication-title: J. Chem. Phys. – volume: 13 start-page: 488 year: 2012 end-page: 495 ident: b0380 article-title: Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in CuBTC MOF publication-title: ChemPhysChem – volume: 281 start-page: 76 year: 2011 end-page: 87 ident: b0210 article-title: Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives publication-title: J. Catal. – volume: 38 start-page: 1460 year: 2009 end-page: 1476 ident: b0090 article-title: Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks publication-title: Chem. Soc. Rev. – volume: 128 start-page: 3896 year: 2006 end-page: 3897 ident: b0375 article-title: An interweaving MOF with high hydrogen uptake publication-title: J. Am. Chem. Soc. – year: 2002 ident: b0015 article-title: Process for Producing Isopulegol – volume: 22 start-page: 4112 year: 2010 end-page: 4135 ident: b0130 article-title: Engineering homochiral metal–organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation publication-title: Adv. Mater. – year: 2006 ident: b0010 article-title: Natural and Synthetic Menthol – reference: G. Heydrich, G. Gralla, K. Ebel, M. Friedrich, Recovery of phenol Ligands During the Production of Isopulegol, BASF SE, US 8,003,829 B2, 2011. – volume: 130 start-page: 6938 year: 2008 end-page: 6939 ident: b0400 article-title: Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1330 year: 2009 end-page: 1352 ident: b0135 article-title: Luminescent metal–organic frameworks publication-title: Chem. Soc. Rev. – volume: 41 start-page: 157 year: 2008 end-page: 167 ident: b0245 article-title: Density functionals with broad applicability in chemistry publication-title: Acc. Chem. Res. – volume: 112 start-page: 1196 year: 2012 end-page: 1231 ident: b0170 article-title: Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis publication-title: Chem. Rev. – volume: 54 start-page: 11169 year: 1996 ident: b0280 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 34 start-page: 263 year: 2009 end-page: 268 ident: b0205 article-title: Kinetics of oxidation of hydroquinone to p-benzoquinone catalyzed by microporous metal–organic frameworks M-3(BTC)(2) M publication-title: Transition Met. Chem. – volume: 4 start-page: 1313 year: 2008 end-page: 1323 ident: b0325 article-title: Development of a Q2MM force field for the asymmetric rhodium catalyzed hydrogenation of enamides publication-title: J. Chem. Theory Comput. – volume: 40 start-page: 536 year: 2011 end-page: 549 ident: b0140 article-title: Progress on lanthanide-based organic–inorganic hybrid phosphors publication-title: Chem. Soc. Rev. – volume: 1 start-page: 3354 year: 2010 end-page: 3359 ident: b0290 article-title: Water adsorption on coordinatively unsaturated sites in CuBTC MOF publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 2876 year: 2009 end-page: 2884 ident: b0060 article-title: Reactivity in the confined spaces of zeolites: the interplay between spectroscopy and theory to develop structure–activity relationships for catalysis publication-title: Phys. Chem. Chem. Phys. – volume: 112 start-page: 782 year: 2012 end-page: 835 ident: b0105 article-title: Hydrogen storage in metal–organic frameworks publication-title: Chem. Rev. – reference: M. Friedrich, K. Ebel, N. Götz, Method for the Production of Isopulegol, BASF SE, Ludwigshafen (DE), 2009, p. 9. – volume: 38 start-page: 1353 year: 2009 end-page: 1379 ident: b0150 article-title: Magnetic metal–organic frameworks publication-title: Chem. Soc. Rev. – volume: 75 start-page: 885 year: 2010 end-page: 896 ident: b0255 article-title: Intramolecular pi-pi stacking interactions in 2-substituted N,N-dibenzylaziridinium ions and their regioselectivity in nucleophilic ring-opening reactions publication-title: J. Org. Chem. – volume: 6 start-page: 15 year: 1996 ident: b0285 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 92 start-page: 1021 year: 1992 end-page: 1050 ident: b0360 article-title: Asymmetric ene reactions in organic-synthesis publication-title: Chem. Rev. – year: 2008 ident: b0065 article-title: Turning Points in Solid-State, Materials and Surface Science – volume: 3 start-page: 157 year: 2011 end-page: 159 ident: b0195 article-title: Cu-3(BTC)(2): a metal–organic framework catalyst for the Friedlander reaction publication-title: ChemCatChem – volume: 37 start-page: 173 year: 2012 end-page: 182 ident: b0370 article-title: A density functional theory study of cyclization of citronellal publication-title: Prog. React. Kinet. Mech. – volume: 38 start-page: 1294 year: 2009 end-page: 1314 ident: b0095 article-title: Hydrogen storage in metal–organic frameworks publication-title: Chem. Soc. Rev. – volume: 78 start-page: 1396 year: 1997 ident: b0300 article-title: Erratum: generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 12 start-page: 7353 year: 2006 end-page: 7363 ident: b0175 article-title: Probing the Lewis acidity and catalytic activity of the metal–organic framework Cu-3(btc)(2) (BTC publication-title: Chem. – Eur. J. – volume: 281 start-page: 76 year: 2011 ident: 10.1016/j.jcat.2013.04.017_b0210 article-title: Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives publication-title: J. Catal. doi: 10.1016/j.jcat.2011.04.004 – start-page: 550 year: 2004 ident: 10.1016/j.jcat.2013.04.017_b0070 article-title: Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl-ene reaction publication-title: Chem. Commun. doi: 10.1039/B313738D – volume: 957 start-page: 84 year: 2010 ident: 10.1016/j.jcat.2013.04.017_b0355 article-title: Influence of Lewis acids and substituents on carbonyl-ene reactions: a density functional theory study publication-title: J. Mol. Struct. – Theochem doi: 10.1016/j.theochem.2010.07.011 – volume: 291 start-page: 1021 year: 2001 ident: 10.1016/j.jcat.2013.04.017_b0385 article-title: Interwoven metal–organic framework on a periodic minimal surface with extra-large pores publication-title: Science doi: 10.1126/science.1056598 – volume: 199 start-page: 239 year: 2000 ident: 10.1016/j.jcat.2013.04.017_b0020 article-title: Selective one step synthesis of (−)menthol from (+)citronellal on Ru supported on modified SiO(2) publication-title: Appl. Catal. A – Gen. doi: 10.1016/S0926-860X(99)00560-8 – ident: 10.1016/j.jcat.2013.04.017_b0045 – volume: 78 start-page: 1396 year: 1997 ident: 10.1016/j.jcat.2013.04.017_b0300 article-title: Erratum: generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1396 – volume: 51 start-page: 4887 year: 2012 ident: 10.1016/j.jcat.2013.04.017_b0220 article-title: Electronic effects of linker substitution on lewis acid catalysis with metal–organic frameworks publication-title: Angew. Chem. – Int. Ed. doi: 10.1002/anie.201108565 – ident: 10.1016/j.jcat.2013.04.017_b0215 – volume: 41 start-page: 157 year: 2008 ident: 10.1016/j.jcat.2013.04.017_b0245 article-title: Density functionals with broad applicability in chemistry publication-title: Acc. Chem. Res. doi: 10.1021/ar700111a – volume: 40 start-page: 536 year: 2011 ident: 10.1016/j.jcat.2013.04.017_b0140 article-title: Progress on lanthanide-based organic–inorganic hybrid phosphors publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00069H – volume: 38 start-page: 1450 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0155 article-title: Metal–organic framework materials as catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/b807080f – volume: 127 start-page: 164108 year: 2007 ident: 10.1016/j.jcat.2013.04.017_b0225 article-title: Cartesian formulation of the mobile block Hessian approach to vibrational analysis in partially optimized systems publication-title: J. Chem. Phys. doi: 10.1063/1.2789429 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.jcat.2013.04.017_b0310 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 50 start-page: 9147 year: 2011 ident: 10.1016/j.jcat.2013.04.017_b0390 article-title: Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals publication-title: Inorg. Chem. doi: 10.1021/ic201376t – year: 2002 ident: 10.1016/j.jcat.2013.04.017_b0015 – volume: 233 start-page: 151 year: 2002 ident: 10.1016/j.jcat.2013.04.017_b0025 article-title: Isomerisation of (+)citronellal over Zn(II) supported catalysts publication-title: Appl. Catal. A – Gen. doi: 10.1016/S0926-860X(02)00136-9 – volume: 49 start-page: 14251 year: 1994 ident: 10.1016/j.jcat.2013.04.017_b0270 article-title: Ab initio molecular-dynamics simulation of the liquid–metal-amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 22 start-page: 4112 year: 2010 ident: 10.1016/j.jcat.2013.04.017_b0130 article-title: Engineering homochiral metal–organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation publication-title: Adv. Mater. doi: 10.1002/adma.201000197 – volume: 37 start-page: 173 year: 2012 ident: 10.1016/j.jcat.2013.04.017_b0370 article-title: A density functional theory study of cyclization of citronellal publication-title: Prog. React. Kinet. Mech. doi: 10.3184/146867812X13332734805828 – ident: 10.1016/j.jcat.2013.04.017_b0050 – ident: 10.1016/j.jcat.2013.04.017_b0035 – volume: 130 start-page: 15872 year: 2008 ident: 10.1016/j.jcat.2013.04.017_b0365 article-title: Synthesis of a dialuminum-substituted silicotungstate and the diastereoselective cyclization of citronellal derivatives publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8014154 – volume: 48 start-page: 1530 year: 2008 ident: 10.1016/j.jcat.2013.04.017_b0265 article-title: ZEOBUILDER: a GUI toolkit for the construction of complex molecular structures on the nanoscale with building blocks publication-title: J. Chem. Inf. Model. doi: 10.1021/ci8000748 – volume: 112 start-page: 782 year: 2012 ident: 10.1016/j.jcat.2013.04.017_b0105 article-title: Hydrogen storage in metal–organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr200274s – volume: 48 start-page: 7502 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0160 article-title: Metal–organic frameworks: opportunities for catalysis publication-title: Angew. Chem. – Int. Ed. doi: 10.1002/anie.200806063 – volume: 112 start-page: 1196 year: 2012 ident: 10.1016/j.jcat.2013.04.017_b0170 article-title: Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis publication-title: Chem. Rev. doi: 10.1021/cr2003147 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jcat.2013.04.017_b0295 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – ident: 10.1016/j.jcat.2013.04.017_b0005 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.jcat.2013.04.017_b0285 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 253 start-page: 3042 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0110 article-title: Potential applications of metal–organic frameworks publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2009.05.019 – volume: 38 start-page: 1248 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0165 article-title: Enantioselective catalysis with homochiral metal–organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b807083k – year: 2008 ident: 10.1016/j.jcat.2013.04.017_b0065 – volume: 92 start-page: 1021 year: 1992 ident: 10.1016/j.jcat.2013.04.017_b0360 article-title: Asymmetric ene reactions in organic-synthesis publication-title: Chem. Rev. doi: 10.1021/cr00013a014 – volume: 82 start-page: 270 year: 1985 ident: 10.1016/j.jcat.2013.04.017_b0230 article-title: Abinitio effective core potentials for molecular calculations – potentials for the transition-metal atoms Sc to Hg publication-title: J. Chem. Phys. doi: 10.1063/1.448799 – volume: 47 start-page: 558 year: 1993 ident: 10.1016/j.jcat.2013.04.017_b0275 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 229 start-page: 404 year: 2005 ident: 10.1016/j.jcat.2013.04.017_b0075 article-title: Cyclisation of citronellal over zirconium zeolite beta—a highly diastereoselective catalyst to (±)-isopulegol publication-title: J. Catal. doi: 10.1016/j.jcat.2004.11.015 – volume: 83 start-page: 83 year: 1983 ident: 10.1016/j.jcat.2013.04.017_b0330 article-title: Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics publication-title: Chem. Rev. doi: 10.1021/cr00054a001 – volume: 3 start-page: 157 year: 2011 ident: 10.1016/j.jcat.2013.04.017_b0195 article-title: Cu-3(BTC)(2): a metal–organic framework catalyst for the Friedlander reaction publication-title: ChemCatChem doi: 10.1002/cctc.201000201 – volume: 132 year: 2010 ident: 10.1016/j.jcat.2013.04.017_b0235 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 127 start-page: 10305 year: 2005 ident: 10.1016/j.jcat.2013.04.017_b0320 article-title: Why are BINOL-based monophosphites such efficient ligands in Rh-catalyzed asymmetric olefin hydrogenation? publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052025+ – volume: 38 start-page: 1460 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0090 article-title: Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b802430h – volume: 75 start-page: 885 year: 2010 ident: 10.1016/j.jcat.2013.04.017_b0255 article-title: Intramolecular pi-pi stacking interactions in 2-substituted N,N-dibenzylaziridinium ions and their regioselectivity in nucleophilic ring-opening reactions publication-title: J. Org. Chem. doi: 10.1021/jo902493w – volume: 285 start-page: 196 year: 2012 ident: 10.1016/j.jcat.2013.04.017_b0260 article-title: The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene publication-title: J. Catal. doi: 10.1016/j.jcat.2011.09.014 – volume: 119 start-page: 331 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0340 article-title: Microwave synthesis of hybrid inorganic-organic materials including porous Cu-3(BTC)(2) from Cu(II)-trimesate mixture publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.10.035 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.jcat.2013.04.017_b0305 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – ident: 10.1016/j.jcat.2013.04.017_b0335 – volume: 38 start-page: 1477 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0115 article-title: Selective gas adsorption and separation in metal–organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b802426j – volume: 130 start-page: 6938 year: 2008 ident: 10.1016/j.jcat.2013.04.017_b0400 article-title: Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja802121u – volume: 17 start-page: 12027 year: 2011 ident: 10.1016/j.jcat.2013.04.017_b0250 article-title: Competitive reactions of organophosphorus radicals on coke surfaces publication-title: Chem. – Eur. J. doi: 10.1002/chem.201100712 – volume: 34 start-page: 263 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0205 article-title: Kinetics of oxidation of hydroquinone to p-benzoquinone catalyzed by microporous metal–organic frameworks M-3(BTC)(2) M=copper(II), cobalt(II), or nickel(II); BTC=benzene-1,3,5-tricarboxylate using molecular oxygen publication-title: Transition Met. Chem. doi: 10.1007/s11243-009-9188-x – volume: 7 start-page: 1090 year: 2011 ident: 10.1016/j.jcat.2013.04.017_b0315 article-title: Normal mode analysis in zeolites: toward an efficient calculation of adsorption entropies publication-title: J. Chem. Theory Comput. doi: 10.1021/ct1005505 – volume: 283 start-page: 1148 year: 1999 ident: 10.1016/j.jcat.2013.04.017_b0180 article-title: A chemically functionalizable nanoporous material Cu-3(TMA)(2)(H2O)(3) (n) publication-title: Science doi: 10.1126/science.283.5405.1148 – volume: 128 start-page: 3896 year: 2006 ident: 10.1016/j.jcat.2013.04.017_b0375 article-title: An interweaving MOF with high hydrogen uptake publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058777l – volume: 38 start-page: 1294 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0095 article-title: Hydrogen storage in metal–organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b802256a – volume: 73 start-page: 81 year: 2004 ident: 10.1016/j.jcat.2013.04.017_b0200 article-title: Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound CU3(BTC)(2) publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2003.12.027 – volume: 4 start-page: 1313 year: 2008 ident: 10.1016/j.jcat.2013.04.017_b0325 article-title: Development of a Q2MM force field for the asymmetric rhodium catalyzed hydrogenation of enamides publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800132a – volume: 39 start-page: 4928 year: 2010 ident: 10.1016/j.jcat.2013.04.017_b0405 article-title: Analysing and understanding the active site by IR spectroscopy publication-title: Chem. Soc. Rev. doi: 10.1039/b919543m – volume: 38 start-page: 1330 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0135 article-title: Luminescent metal–organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b802352m – volume: 49 start-page: 1530 year: 2010 ident: 10.1016/j.jcat.2013.04.017_b0120 article-title: Metal-Organic Framework Membranes-High Potential, Bright Future? Angew publication-title: Chem.-Int. Ed. doi: 10.1002/anie.200906491 – volume: 120 start-page: 215 year: 2008 ident: 10.1016/j.jcat.2013.04.017_b0240 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 11 start-page: 2876 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0060 article-title: Reactivity in the confined spaces of zeolites: the interplay between spectroscopy and theory to develop structure–activity relationships for catalysis publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b821297j – volume: 112 start-page: 869 year: 2012 ident: 10.1016/j.jcat.2013.04.017_b0125 article-title: Metal–organic frameworks for separations publication-title: Chem. Rev. doi: 10.1021/cr200190s – volume: 40 start-page: 926 year: 2011 ident: 10.1016/j.jcat.2013.04.017_b0145 article-title: Luminescent multifunctional lanthanides-based metal–organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00130A – volume: 53 start-page: 8306 year: 2005 ident: 10.1016/j.jcat.2013.04.017_b0190 article-title: Chemical pretreatment of olive oil mill wastewater using a metal–organic framework catalyst publication-title: J. Agric. Food Chem. doi: 10.1021/jf0512609 – year: 2006 ident: 10.1016/j.jcat.2013.04.017_b0010 – volume: 38 start-page: 1353 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0150 article-title: Magnetic metal–organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b804757j – volume: 40 start-page: 550 year: 2011 ident: 10.1016/j.jcat.2013.04.017_b0085 article-title: Why hybrid porous solids capture greenhouse gases? publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00040J – volume: 13 start-page: 488 year: 2012 ident: 10.1016/j.jcat.2013.04.017_b0380 article-title: Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in CuBTC MOF publication-title: ChemPhysChem doi: 10.1002/cphc.201100602 – volume: 48 start-page: 6559 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0395 article-title: Highly porous metal–organic framework containing a novel organosilicon linker – a promising material for hydrogen storage publication-title: Inorg. Chem. doi: 10.1021/ic900478z – volume: 60 start-page: 4146 year: 1995 ident: 10.1016/j.jcat.2013.04.017_b0030 article-title: Surface-mediated reactions. 6. Effects of silica-gel and alumina on acid-catalyzed reactions publication-title: J. Org. Chem. doi: 10.1021/jo00118a035 – volume: 64 start-page: 8553 year: 2008 ident: 10.1016/j.jcat.2013.04.017_b0185 article-title: Room temperature synthesis of metal–organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 publication-title: Tetrahedron doi: 10.1016/j.tet.2008.06.036 – ident: 10.1016/j.jcat.2013.04.017_b0040 – volume: 12 start-page: 7353 year: 2006 ident: 10.1016/j.jcat.2013.04.017_b0175 article-title: Probing the Lewis acidity and catalytic activity of the metal–organic framework Cu-3(btc)(2) (BTC=benzene-1,3,5-tricarboxylate) publication-title: Chem. – Eur. J. doi: 10.1002/chem.200600220 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.jcat.2013.04.017_b0280 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 112 start-page: 10855 year: 2008 ident: 10.1016/j.jcat.2013.04.017_b0345 article-title: Structures and mechanisms of the carbonyl-ene reaction between MOF-11 encapsulated formaldehyde and propylene: an ONIOM study publication-title: J. Phys. Chem. C doi: 10.1021/jp8021437 – volume: 1 start-page: 3354 year: 2010 ident: 10.1016/j.jcat.2013.04.017_b0290 article-title: Water adsorption on coordinatively unsaturated sites in CuBTC MOF publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101378z – volume: 38 year: 2009 ident: 10.1016/j.jcat.2013.04.017_b0080 article-title: Industrial applications of metal–organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b804680h – volume: 126 start-page: 5666 year: 2004 ident: 10.1016/j.jcat.2013.04.017_b0100 article-title: Hydrogen sorption in functionalized metal–organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049408c – volume: 115 start-page: 12486 year: 2011 ident: 10.1016/j.jcat.2013.04.017_b0350 article-title: Density functional theory study of the carbonyl-ene reaction of encapsulated formaldehyde in Cu(I), Ag(I), and Au(I) exchanged FAU zeolites publication-title: J. Phys. Chem. A doi: 10.1021/jp205985v – ident: 10.1016/j.jcat.2013.04.017_b0055 |
| SSID | ssj0011558 |
| Score | 2.3468385 |
| Snippet | Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. [Display omitted]
•Combined... Industrial (−)-menthol production generally relies on the hydrogenation of (−)-isopulegol, which is in turn produced with high selectivity by cyclization of... Graphical abstract Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. Display Omitted... Both experiment and theory predict ATPH as most active and selective Lewis acid catalyst in the citronellal cyclization. Display Omitted * Combined... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118 |
| SubjectTerms | Acids Activity aluminum ATPH Catalysis Catalysts Chemical kinetics Chemistry citronellal Citronellal cyclization Cu-BTC Diastereoselective catalysis energy Exact sciences and technology General and physical chemistry Heterogeneous catalysis hydrogen Hydrogenation Lewis acids ligands nitrogen dioxide Selectivity stereoisomers temperature Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ZnBr2 |
| Title | Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization |
| URI | https://dx.doi.org/10.1016/j.jcat.2013.04.017 https://www.proquest.com/docview/1399678510 https://www.proquest.com/docview/1554968048 https://www.proquest.com/docview/2000006973 |
| Volume | 305 |
| WOSCitedRecordID | wos000322501000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011558 issn: 0021-9517 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2QQIeEAzQCmMyEuKlypSLk9SPU9nE0FSQ1k19sxzHGSlVWppQtn_Iz-Kc2MkydhE88BJVde2mPV_O-Xx8LoS8S4NIDZRKHJW6rsN0EDsJ90EgUaIHgyxIAibrZhPxaDSYTPiXtbVfTS7MahYXxeDigi_-q6jhPRA2ps7-g7jbReENeA1ChyuIHa5_JfijosQNdxPAiIkLdX8I9JADGLAwgp6XdfsbMwB0cQU7ZoyFPdY_8xKm5Gm_9utcllXZBiKqHN3mGC0166tLNbMZnHfQWzs_bzn7GSbQYNypSRGqqq-5vBoEAzHHuF8T3Xy4xBoXeZtFNJxXwO3NUcpJlU9bRH_Q_TMTKAi6-5tNq7BODGwowbtOjKvsmrOussbokdCkdu5po59d7jqYfNtV4IEbdlSwZ_T5DdNgvBTTvSl6dPEe6hK3zerdOtyjz-Lw9PhYjA8m4-uj1u6DZvY48733i-8O9i_Dc37bzGWdbPpxyEG_bu4fHUw-tSdawNsMK7A_yiZwmVjDP-_pLpK0nsk5Ru_KEh7gzHReuUEiamY0fkqeWJnTfQPFZ2RNF1vk4bDpJLhFHneKXj4nCwtQmhcUYEUbgFLAB70NoHSeUQtQWgOUIkBpC1AKAK1X6gCUdgD6gpweHoyHHx3b98NRIXcrJ4rjDDsRpczVnpYajDnsYyWQLMmlijKWSOC1Wab9lDOVKOVlfhAw5soMmIfkwUuyUcDXbROaRsrzQQspP0yYSiOZAJ31ojRlDCMIwh7xmj9aKFsUH3uzzEQT_TgVKByBwhEuEyCcHum3cxamJMy9nw4b-QlLag1ZFQDMe-dtg7CFPAdbL05PfKwE6dYmlvfI7jUEtHcByAOq6Xk9stNAQljNVArY6nFgpmCDbx-GfQWPBmDQe-RtOwxAwQNEWWiQMbasRXrL4-DV_Uu8Jo-unvIdslEtf-g35IFaVXm53LWPxm9Ljvel |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+in+the+activity+and+diastereoselectivity+of+various+Lewis+acid+catalysts+for+the+citronellal+cyclization&rft.jtitle=Journal+of+catalysis&rft.au=Vandichel%2C+Matthias&rft.au=Vermoortele%2C+Frederik&rft.au=Cottenie%2C+Stijn&rft.au=De+Vos%2C+Dirk+E&rft.date=2013-09-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=305&rft.spage=118&rft_id=info:doi/10.1016%2Fj.jcat.2013.04.017&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3408819421 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |