Application of machine learning techniques for warfarin dosage prediction: a case study on the MIMIC-III dataset

Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science Vol. 11; p. e2612
Main Authors: Wani, Aasim Ayaz, Abeer, Fatima
Format: Journal Article
Language:English
Published: United States PeerJ. Ltd 02.01.2025
PeerJ
PeerJ Inc
Subjects:
ISSN:2376-5992, 2376-5992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments.
AbstractList Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments.
Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments.Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments.
ArticleNumber e2612
Audience Academic
Author Wani, Aasim Ayaz
Abeer, Fatima
Author_xml – sequence: 1
  givenname: Aasim Ayaz
  orcidid: 0000-0001-5151-0084
  surname: Wani
  fullname: Wani, Aasim Ayaz
  organization: School of Engineering, Cornell University, Ithaca, New York, United States
– sequence: 2
  givenname: Fatima
  surname: Abeer
  fullname: Abeer, Fatima
  organization: Jahurul Islam Medical College, University of Dhaka, Bhagalpur, Bangladesh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39896040$$D View this record in MEDLINE/PubMed
https://hal.science/hal-05054622$$DView record in HAL
BookMark eNp1ks1v2yAYxq2p09plPe46Ie2yHpwBtjHsUkXVtlpKNWkfZ4ThdULkGA9It_73w0lXNdUGB9DL73leQM_L7GRwA2TZa4LndU3q9yOA3-Q6zCkj9Fl2Roua5ZUQ9OTR_jQ7D2GDMSYVSUO8yE4LwQXDJT7LxsU49laraN2AXIe2Sq_tAKgH5Qc7rFAEvR7szx0E1DmPfinfKW8HZFxQK0CjB2P1pP6AFNIqAApxZ-5QsotrQDfNTXOVN02DjIrpNL7KnneqD3B-v86yH58-fr-6zpdfPjdXi2WuKy5iDooWCkTJNG5NxTqNOWuhZNgUQCg3xAgFQHhXVIyYQukSmG61YaYoCIAoZllz8DVObeTo7Vb5O-mUlfuC8yupfLS6B4mFaA3ULW-1KlmrOSmx6QhTmNGapI6z7PLgNe7aLRgNQ_SqPzI9PhnsWq7crSSk5mUtquRwcXBYP9FdL5ZyquEKVyWj9JYk9t19N--mf49ya4OGvlcDuF2QBWGUV5iTyfbtAV2p9A47dC611xMuF5xSWpei5Ima_4NK08DW6pSozqb6keDiSJCYCL_jSu1CkM23r8fsm8d_8_C4vxFLQH4AtHcheOgeEILllGK5T7HUQU4pTnzxhNc27vOZbm37_6j-ADxf9pE
CitedBy_id crossref_primary_10_4236_msa_2025_162005
Cites_doi 10.1038/s41598-018-24271-9
10.48550/arXiv.1802.03426
10.18637/jss.v045.i03
10.3390/make3030027
10.4236/oalib.1106947
10.1186/s12874-024-02310-6
10.1016/j.jclinepi.2006.01.014
10.3389/fphar.2021.749786
10.1146/annurev.psych.58.110405.085530
10.1186/s40537-021-00516-9
10.3182/20130902-3-CN-3020.00044
10.1098/rsta.2015.0202
10.1109/TKDE.2019.2947676
10.1038/sdata.2016.35
10.48550/arXiv.1312.6114
10.3389/fpubh.2020.00164
10.1111/jcpt.13127
10.1016/j.phymed.2024.155479
10.30880/jscdm.2021.02.01.003
10.1007/s10115-023-02010-5
10.1056/NEJMsa1103053
10.1016/j.compbiolchem.2017.06.002
10.1038/s43856-022-00165-w
10.1101/167858
10.1038/s41569-021-00549-w
10.1093/ajcp/aqw064
10.1038/s42256-022-00596-z
10.1016/j.heliyon.2023.e13200
10.1016/j.jclinepi.2019.02.016
10.3390/e25010137
10.1038/s41598-023-49831-6
10.1111/j.1540-5907.2010.00447.x
10.2196/30805
10.1109/TMC.2023.3339089
10.1214/18-STS644
10.1186/s40360-017-0153-6
10.3389/fphar.2019.01550
10.1007/s13748-015-0080-y
10.1109/TNN.2005.845141
10.1038/s41598-024-55110-9
10.1136/bmjopen-2013-002847
10.1080/01621459.2016.1240079
10.1007/978-0-387-84858-7
10.1016/j.patcog.2020.107501
10.1007/978-3-030-56485-8
10.1145/3422622
10.1038/s41597-019-0103-9
10.1136/bmj.b2393
10.1002/wics.101
10.1093/bib/bbab489
ContentType Journal Article
Copyright 2025 Wani and Abeer.
COPYRIGHT 2025 PeerJ. Ltd.
Attribution
2025 Wani and Abeer 2025 Wani and Abeer
Copyright_xml – notice: 2025 Wani and Abeer.
– notice: COPYRIGHT 2025 PeerJ. Ltd.
– notice: Attribution
– notice: 2025 Wani and Abeer 2025 Wani and Abeer
DBID AAYXX
CITATION
NPM
ISR
7X8
1XC
VOOES
5PM
DOA
DOI 10.7717/peerj-cs.2612
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_099bde7b8bca46bc8140df16a062710d
PMC11784795
oai:HAL:hal-05054622v1
A822274948
39896040
10_7717_peerj_cs_2612
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
H13
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c589t-ea23ae946c0bd56fc086be460d3e128d1d9aee18f3561d3ac4e6cbcd6d331ee93
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479759800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Mon Nov 10 04:34:35 EST 2025
Tue Nov 04 02:05:34 EST 2025
Tue Oct 14 20:35:59 EDT 2025
Sun Nov 09 04:55:22 EST 2025
Tue Nov 11 10:50:20 EST 2025
Tue Nov 04 18:24:43 EST 2025
Thu Nov 13 15:57:48 EST 2025
Mon Jul 21 05:47:35 EDT 2025
Sat Nov 29 03:22:04 EST 2025
Tue Nov 18 22:07:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Dimensionality reduction
Variational autoencoders
Medical research
Machine learning
Missing value imputation
Generative adversarial networks
Artificial intelligence
Denoising autoencoders
Language English
License https://creativecommons.org/licenses/by/4.0
2025 Wani and Abeer.
Attribution: http://creativecommons.org/licenses/by
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-ea23ae946c0bd56fc086be460d3e128d1d9aee18f3561d3ac4e6cbcd6d331ee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5151-0084
OpenAccessLink https://doaj.org/article/099bde7b8bca46bc8140df16a062710d
PMID 39896040
PQID 3162850815
PQPubID 23479
PageCount e2612
ParticipantIDs doaj_primary_oai_doaj_org_article_099bde7b8bca46bc8140df16a062710d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11784795
hal_primary_oai_HAL_hal_05054622v1
proquest_miscellaneous_3162850815
gale_infotracmisc_A822274948
gale_infotracacademiconefile_A822274948
gale_incontextgauss_ISR_A822274948
pubmed_primary_39896040
crossref_primary_10_7717_peerj_cs_2612
crossref_citationtrail_10_7717_peerj_cs_2612
PublicationCentury 2000
PublicationDate 2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2025
Publisher PeerJ. Ltd
PeerJ
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ
– name: PeerJ Inc
References Choi (10.7717/peerj-cs.2612/ref-9) 2023; 13
Zafar (10.7717/peerj-cs.2612/ref-59) 2021; 3
Wang (10.7717/peerj-cs.2612/ref-54) 2023
Madley-Dowd (10.7717/peerj-cs.2612/ref-34) 2019; 110
Donders (10.7717/peerj-cs.2612/ref-12) 2006; 59
Johnson (10.7717/peerj-cs.2612/ref-25) 2016; 3
Bolón-Canedo (10.7717/peerj-cs.2612/ref-6) 2016; 5
Ding (10.7717/peerj-cs.2612/ref-11) 2013; 46
Ramasamy (10.7717/peerj-cs.2612/ref-41) 2020; 7
Mitra (10.7717/peerj-cs.2612/ref-36) 2023; 5
Genuer (10.7717/peerj-cs.2612/ref-15) 2020
van der Maaten (10.7717/peerj-cs.2612/ref-51) 2008; 9
Kobak (10.7717/peerj-cs.2612/ref-28) 2019
Nazabal (10.7717/peerj-cs.2612/ref-38) 2020; 107
Duarte (10.7717/peerj-cs.2612/ref-13) 2021; 18
Lan (10.7717/peerj-cs.2612/ref-29) 2020; 8
Kingma (10.7717/peerj-cs.2612/ref-27) 2013
Troy (10.7717/peerj-cs.2612/ref-49) 2021; 2
Sohrabi (10.7717/peerj-cs.2612/ref-45) 2017; 69
Goodfellow (10.7717/peerj-cs.2612/ref-17) 2020; 63
Roche-Lima (10.7717/peerj-cs.2612/ref-42) 2020; 10
Theng (10.7717/peerj-cs.2612/ref-48) 2024; 66
Abdi (10.7717/peerj-cs.2612/ref-1) 2010; 2
Gondara (10.7717/peerj-cs.2612/ref-16) 2018
Little (10.7717/peerj-cs.2612/ref-30) 2019; 793
Yoon (10.7717/peerj-cs.2612/ref-58) 2018
Liu (10.7717/peerj-cs.2612/ref-31) 2017; 18
Luo (10.7717/peerj-cs.2612/ref-33) 2016; 145
Afrose (10.7717/peerj-cs.2612/ref-3) 2022; 2
Emmanuel (10.7717/peerj-cs.2612/ref-14) 2021; 8
Hariri (10.7717/peerj-cs.2612/ref-19) 2019; 33
Chua (10.7717/peerj-cs.2612/ref-10) 2021; 23
Budnitz (10.7717/peerj-cs.2612/ref-7) 2011; 365
Vincent (10.7717/peerj-cs.2612/ref-52) 2008
Beaulieu-Jones (10.7717/peerj-cs.2612/ref-4) 2017
Bishop (10.7717/peerj-cs.2612/ref-5) 2006; 4
Yang (10.7717/peerj-cs.2612/ref-57) 2023; 9
Harutyunyan (10.7717/peerj-cs.2612/ref-20) 2019; 6
Waljee (10.7717/peerj-cs.2612/ref-53) 2013; 3
Xue (10.7717/peerj-cs.2612/ref-56) 2024; 128
Honaker (10.7717/peerj-cs.2612/ref-23) 2010; 54
Che (10.7717/peerj-cs.2612/ref-8) 2018; 8
Graham (10.7717/peerj-cs.2612/ref-18) 2009; 60
Shah (10.7717/peerj-cs.2612/ref-44) 2020; 45
Jolliffe (10.7717/peerj-cs.2612/ref-26) 2016; 374
Luo (10.7717/peerj-cs.2612/ref-32) 2022; 23
Hastie (10.7717/peerj-cs.2612/ref-22) 2009; 2
McInnes (10.7717/peerj-cs.2612/ref-35) 2018
Sterne (10.7717/peerj-cs.2612/ref-47) 2009; 338
Afkanpour (10.7717/peerj-cs.2612/ref-2) 2024; 24
Murray (10.7717/peerj-cs.2612/ref-37) 2018; 33
Johnson (10.7717/peerj-cs.2612/ref-24) 2017; 112
Petch (10.7717/peerj-cs.2612/ref-39) 2024; 14
Van Buuren (10.7717/peerj-cs.2612/ref-50) 2011; 45
Hasan (10.7717/peerj-cs.2612/ref-21) 2021; 2
Qin (10.7717/peerj-cs.2612/ref-40) 2023; 25
Steiner (10.7717/peerj-cs.2612/ref-46) 2021; 12
Xu (10.7717/peerj-cs.2612/ref-55) 2005; 16
Rubin (10.7717/peerj-cs.2612/ref-43) 2004; 81
References_xml – volume: 8
  start-page: 6085
  issue: 1
  year: 2018
  ident: 10.7717/peerj-cs.2612/ref-8
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-24271-9
– year: 2018
  ident: 10.7717/peerj-cs.2612/ref-35
  article-title: Umap: uniform manifold approximation and projection for dimension reduction
  doi: 10.48550/arXiv.1802.03426
– volume: 45
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.7717/peerj-cs.2612/ref-50
  article-title: mice: multivariate imputation by chained equations in r
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v045.i03
– volume: 3
  start-page: 525
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.2612/ref-59
  article-title: Deterministic local interpretable model-agnostic explanations for stable explainability
  publication-title: Machine Learning and Knowledge Extraction
  doi: 10.3390/make3030027
– volume: 7
  start-page: e6947
  issue: 11
  year: 2020
  ident: 10.7717/peerj-cs.2612/ref-41
  article-title: Non-clinical factors associated with international normalized ratio control in patients on warfarin therapy: a review paper
  publication-title: Open Access Library Journal
  doi: 10.4236/oalib.1106947
– volume: 24
  start-page: 188
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2612/ref-2
  article-title: Identify the most appropriate imputation method for handling missing values in clinical structured datasets: a systematic review
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/s12874-024-02310-6
– volume: 59
  start-page: 1087
  issue: 10
  year: 2006
  ident: 10.7717/peerj-cs.2612/ref-12
  article-title: A gentle introduction to imputation of missing values
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2006.01.014
– volume: 2
  start-page: e211693
  volume-title: JAMA Health Forum
  year: 2021
  ident: 10.7717/peerj-cs.2612/ref-49
  article-title: National trends in use of and spending on oral anticoagulants among us medicare beneficiaries from 2011 to 2019
– volume: 12
  start-page: 749786
  year: 2021
  ident: 10.7717/peerj-cs.2612/ref-46
  article-title: Machine learning for prediction of stable warfarin dose in us Latinos and Latin Americans
  publication-title: Frontiers in Pharmacology
  doi: 10.3389/fphar.2021.749786
– volume: 60
  start-page: 549
  issue: 1
  year: 2009
  ident: 10.7717/peerj-cs.2612/ref-18
  article-title: Missing data analysis: making it work in the real world
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev.psych.58.110405.085530
– volume: 4
  volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 10.7717/peerj-cs.2612/ref-5
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2612/ref-14
  article-title: A survey on missing data in machine learning
  publication-title: Journal of Big data
  doi: 10.1186/s40537-021-00516-9
– volume: 46
  start-page: 12
  issue: 20
  year: 2013
  ident: 10.7717/peerj-cs.2612/ref-11
  article-title: An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20130902-3-CN-3020.00044
– volume: 374
  start-page: 20150202
  issue: 2065
  year: 2016
  ident: 10.7717/peerj-cs.2612/ref-26
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.2015.0202
– volume: 33
  start-page: 1479
  issue: 4
  year: 2019
  ident: 10.7717/peerj-cs.2612/ref-19
  article-title: Extended isolation forest
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2019.2947676
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.7717/peerj-cs.2612/ref-25
  article-title: Mimic-iii, a freely accessible critical care database
  publication-title: Scientific Data
  doi: 10.1038/sdata.2016.35
– year: 2013
  ident: 10.7717/peerj-cs.2612/ref-27
  article-title: Auto-encoding variational bayes
  doi: 10.48550/arXiv.1312.6114
– volume: 793
  volume-title: Statistical analysis with missing data
  year: 2019
  ident: 10.7717/peerj-cs.2612/ref-30
– volume: 8
  start-page: 164
  year: 2020
  ident: 10.7717/peerj-cs.2612/ref-29
  article-title: Generative adversarial networks and its applications in biomedical informatics
  publication-title: Frontiers in Public Health
  doi: 10.3389/fpubh.2020.00164
– volume: 45
  start-page: 547
  issue: 3
  year: 2020
  ident: 10.7717/peerj-cs.2612/ref-44
  article-title: Genotype-guided warfarin therapy: still of only questionable value two decades on
  publication-title: Journal of Clinical Pharmacy and Therapeutics
  doi: 10.1111/jcpt.13127
– volume: 128
  start-page: 155479
  year: 2024
  ident: 10.7717/peerj-cs.2612/ref-56
  article-title: Warfarin-a natural anticoagulant: a review of research trends for precision medication
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2024.155479
– volume: 2
  start-page: 20
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2612/ref-21
  article-title: A review of principal component analysis algorithm for dimensionality reduction
  publication-title: Journal of Soft Computing and Data Mining
  doi: 10.30880/jscdm.2021.02.01.003
– volume: 66
  start-page: 1575
  issue: 3
  year: 2024
  ident: 10.7717/peerj-cs.2612/ref-48
  article-title: Feature selection techniques for machine learning: a survey of more than two decades of research
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-023-02010-5
– volume: 365
  start-page: 2002
  issue: 21
  year: 2011
  ident: 10.7717/peerj-cs.2612/ref-7
  article-title: Emergency hospitalizations for adverse drug events in older americans
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMsa1103053
– volume: 69
  start-page: 126
  issue: 3
  year: 2017
  ident: 10.7717/peerj-cs.2612/ref-45
  article-title: Multi-objective feature selection for warfarin dose prediction
  publication-title: Computational Biology and Chemistry
  doi: 10.1016/j.compbiolchem.2017.06.002
– volume: 2
  start-page: 111
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2612/ref-3
  article-title: Subpopulation-specific machine learning prognosis for underrepresented patients with double prioritized bias correction
  publication-title: Communications Medicine
  doi: 10.1038/s43856-022-00165-w
– start-page: 167858
  year: 2017
  ident: 10.7717/peerj-cs.2612/ref-4
  article-title: Characterizing and managing missing structured data in electronic health records
  publication-title: BioRxiv
  doi: 10.1101/167858
– volume: 18
  start-page: 649
  issue: 9
  year: 2021
  ident: 10.7717/peerj-cs.2612/ref-13
  article-title: Pharmacogenetics to guide cardiovascular drug therapy
  publication-title: Nature Reviews Cardiology
  doi: 10.1038/s41569-021-00549-w
– start-page: 5689
  year: 2018
  ident: 10.7717/peerj-cs.2612/ref-58
  article-title: Gain: missing data imputation using generative adversarial nets
– volume: 145
  start-page: 778
  issue: 6
  year: 2016
  ident: 10.7717/peerj-cs.2612/ref-33
  article-title: Using machine learning to predict laboratory test results
  publication-title: American Journal of Clinical Pathology
  doi: 10.1093/ajcp/aqw064
– start-page: 1096
  year: 2008
  ident: 10.7717/peerj-cs.2612/ref-52
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 5
  start-page: 13
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2612/ref-36
  article-title: Learning from data with structured missingness
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-022-00596-z
– volume: 9
  start-page: e13200
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2612/ref-57
  article-title: Mortality prediction among icu inpatients based on mimic-iii database results from the conditional medical generative adversarial network
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e13200
– volume: 110
  start-page: 63
  year: 2019
  ident: 10.7717/peerj-cs.2612/ref-34
  article-title: The proportion of missing data should not be used to guide decisions on multiple imputation
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2019.02.016
– volume: 25
  start-page: 137
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2612/ref-40
  article-title: Imputegan: generative adversarial network for multivariate time series imputation
  publication-title: Entropy
  doi: 10.3390/e25010137
– volume: 13
  start-page: 22461
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2612/ref-9
  article-title: Machine learning models to predict the warfarin discharge dosage using clinical information of inpatients from south korea
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-49831-6
– volume: 54
  start-page: 561
  issue: 2
  year: 2010
  ident: 10.7717/peerj-cs.2612/ref-23
  article-title: What to do about missing values in time-series cross-section data
  publication-title: American Journal of Political Science
  doi: 10.1111/j.1540-5907.2010.00447.x
– volume: 23
  start-page: e30805
  issue: 12
  year: 2021
  ident: 10.7717/peerj-cs.2612/ref-10
  article-title: Health care analytics with time-invariant and time-variant feature importance to predict hospital-acquired acute kidney injury: observational longitudinal study
  publication-title: Journal of Medical Internet Research
  doi: 10.2196/30805
– year: 2023
  ident: 10.7717/peerj-cs.2612/ref-54
  article-title: Large-scale spatiotemporal fracture data completion in sparse crowdsensing
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2023.3339089
– volume: 33
  start-page: 142
  year: 2018
  ident: 10.7717/peerj-cs.2612/ref-37
  article-title: Multiple imputation: a review of practical and theoretical findings
  publication-title: Statistical Science
  doi: 10.1214/18-STS644
– volume: 18
  start-page: 1
  year: 2017
  ident: 10.7717/peerj-cs.2612/ref-31
  article-title: Data-driven prediction of adverse drug reactions induced by drug-drug interactions
  publication-title: BMC Pharmacology and Toxicology
  doi: 10.1186/s40360-017-0153-6
– volume: 10
  start-page: 1550
  year: 2020
  ident: 10.7717/peerj-cs.2612/ref-42
  article-title: Machine learning algorithm for predicting warfarin dose in caribbean hispanics using pharmacogenetic data
  publication-title: Frontiers in Pharmacology
  doi: 10.3389/fphar.2019.01550
– volume: 5
  start-page: 65
  issue: 2
  year: 2016
  ident: 10.7717/peerj-cs.2612/ref-6
  article-title: Feature selection for high-dimensional data
  publication-title: Progress in Artificial Intelligence
  doi: 10.1007/s13748-015-0080-y
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.7717/peerj-cs.2612/ref-55
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.845141
– volume: 14
  start-page: 4516
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2612/ref-39
  article-title: Optimizing warfarin dosing for patients with atrial fibrillation using machine learning
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-55110-9
– volume: 3
  start-page: e002847
  issue: 8
  year: 2013
  ident: 10.7717/peerj-cs.2612/ref-53
  article-title: Comparison of imputation methods for missing laboratory data in medicine
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2013-002847
– volume: 81
  volume-title: Multiple imputation for nonresponse in surveys
  year: 2004
  ident: 10.7717/peerj-cs.2612/ref-43
– start-page: 260
  year: 2018
  ident: 10.7717/peerj-cs.2612/ref-16
  article-title: Mida: multiple imputation using denoising autoencoders
– volume: 112
  start-page: 1
  issue: 517
  year: 2017
  ident: 10.7717/peerj-cs.2612/ref-24
  article-title: On the reproducibility of psychological science
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2016.1240079
– volume: 2
  volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2009
  ident: 10.7717/peerj-cs.2612/ref-22
  doi: 10.1007/978-0-387-84858-7
– volume: 107
  start-page: 107501
  issue: 11
  year: 2020
  ident: 10.7717/peerj-cs.2612/ref-38
  article-title: Handling incomplete heterogeneous data using VAEs
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107501
– volume-title: Random forests
  year: 2020
  ident: 10.7717/peerj-cs.2612/ref-15
  doi: 10.1007/978-3-030-56485-8
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 10.7717/peerj-cs.2612/ref-17
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
  doi: 10.1145/3422622
– start-page: 124
  year: 2019
  ident: 10.7717/peerj-cs.2612/ref-28
  article-title: Heavy-tailed kernels reveal a finer cluster structure in t-sne visualisations
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.7717/peerj-cs.2612/ref-51
  article-title: Visualizing data using t-sne
  publication-title: Journal of Machine Learning Research
– volume: 6
  start-page: 96
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.2612/ref-20
  article-title: Multitask learning and benchmarking with clinical time series data
  publication-title: Scientific Data
  doi: 10.1038/s41597-019-0103-9
– volume: 338
  start-page: b2393
  year: 2009
  ident: 10.7717/peerj-cs.2612/ref-47
  article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
  publication-title: BMJ
  doi: 10.1136/bmj.b2393
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  ident: 10.7717/peerj-cs.2612/ref-1
  article-title: Principal component analysis
  publication-title: Wiley Interdisciplinary Reviews: Computational Statistics
  doi: 10.1002/wics.101
– volume: 23
  start-page: bbab489
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2612/ref-32
  article-title: Evaluating the state of the art in missing data imputation for clinical data
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbab489
SSID ssj0001511119
Score 2.292431
Snippet Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient...
SourceID doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2612
SubjectTerms Artificial Intelligence
Bioinformatics
Computational Biology
Computer Science
Data Mining and Machine Learning
Data Science
Deep learning
Denoising autoencoders
Dimensionality reduction
Dosage and administration
Drugs
Machine learning
Medical research
Neural networks
Warfarin
Title Application of machine learning techniques for warfarin dosage prediction: a case study on the MIMIC-III dataset
URI https://www.ncbi.nlm.nih.gov/pubmed/39896040
https://www.proquest.com/docview/3162850815
https://hal.science/hal-05054622
https://pubmed.ncbi.nlm.nih.gov/PMC11784795
https://doaj.org/article/099bde7b8bca46bc8140df16a062710d
Volume 11
WOSCitedRecordID wos001479759800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RwoEL74ehREuF4IKp3w9uaZWqEU0UFZACl9U-xm0ROFGclBu_nRnbCTEIceGylrxje70zu_uNPfsNwAudx1HqaesGsc7cSFl0yQXjjzhJXNgoUF7Drn-ajsfZdJpPtlJ9cUxYQw_cdNwBIRhtMdWZNipKtGGGJlv4iWJ-Xd-zPPt6ab7lTDX7g3kqyBtSzZRcloM54uKLa6o3zJnVWYRqrv7NjLxzwQGRf6LN34Mmt1ah4ztwq4WPot80-y5cw_Ie3F6nZhDtSL0P8_6vH9NiVohvdcwkijZJxLnYcLdWgmCr-K4WBXnNpbAzjjQT8wX_wOGr3wolDC11oiaiFXQ7goxiRHPekTscDgWHmFa4fAAfjwcfjk7cNrmCa-IsX7qoglBhHiWGNBUnhSHfRmOUeDZEWrOsb3OF6GdFSAjLhspEmBhtbGLD0EfMw4ewW85KfAwiDNLCeiRnPc0JKZW2GR0SjJQ2WBQOvF73tjQt8zgnwPgqyQNh5chaOdJUkpXjwMuN-Lyh3Pib4CGrbiPETNn1CbIf2dqP_Jf9OLDPipfMhVFysM25WlWVHL4_k30GTynz5zjwqhUqZtRyo9q9C_T-TJ_VkdzrSNJgNZ3qfbKvTotP-qeSz3FKwSgJgivfgedr85N8PYfBlThbVTL0eccrobjYgUeNOW7uFeYZE-14DmQdQ-08rFtTXl7UhOK-nxJIyeMn_6NDn8LNgHMk82eqYA92l4sVPoMb5mp5WS16sJNOsx5cPxyMJ2e9etBS-S51qRz9GFA5iT9T_WQ4mnz6CTMgTJM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+techniques+for+warfarin+dosage+prediction%3A+a+case+study+on+the+MIMIC-III+dataset&rft.jtitle=PeerJ.+Computer+science&rft.au=Wani%2C+Aasim+Ayaz&rft.au=Abeer%2C+Fatima&rft.date=2025-01-02&rft.eissn=2376-5992&rft.volume=11&rft.spage=e2612&rft_id=info:doi/10.7717%2Fpeerj-cs.2612&rft_id=info%3Apmid%2F39896040&rft.externalDocID=39896040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon