Application of machine learning techniques for warfarin dosage prediction: a case study on the MIMIC-III dataset
Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using...
Saved in:
| Published in: | PeerJ. Computer science Vol. 11; p. e2612 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
PeerJ. Ltd
02.01.2025
PeerJ PeerJ Inc |
| Subjects: | |
| ISSN: | 2376-5992, 2376-5992 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments. |
|---|---|
| AbstractList | Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments. Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments.Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments. |
| ArticleNumber | e2612 |
| Audience | Academic |
| Author | Wani, Aasim Ayaz Abeer, Fatima |
| Author_xml | – sequence: 1 givenname: Aasim Ayaz orcidid: 0000-0001-5151-0084 surname: Wani fullname: Wani, Aasim Ayaz organization: School of Engineering, Cornell University, Ithaca, New York, United States – sequence: 2 givenname: Fatima surname: Abeer fullname: Abeer, Fatima organization: Jahurul Islam Medical College, University of Dhaka, Bhagalpur, Bangladesh |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39896040$$D View this record in MEDLINE/PubMed https://hal.science/hal-05054622$$DView record in HAL |
| BookMark | eNp1ks1v2yAYxq2p09plPe46Ie2yHpwBtjHsUkXVtlpKNWkfZ4ThdULkGA9It_73w0lXNdUGB9DL73leQM_L7GRwA2TZa4LndU3q9yOA3-Q6zCkj9Fl2Roua5ZUQ9OTR_jQ7D2GDMSYVSUO8yE4LwQXDJT7LxsU49laraN2AXIe2Sq_tAKgH5Qc7rFAEvR7szx0E1DmPfinfKW8HZFxQK0CjB2P1pP6AFNIqAApxZ-5QsotrQDfNTXOVN02DjIrpNL7KnneqD3B-v86yH58-fr-6zpdfPjdXi2WuKy5iDooWCkTJNG5NxTqNOWuhZNgUQCg3xAgFQHhXVIyYQukSmG61YaYoCIAoZllz8DVObeTo7Vb5O-mUlfuC8yupfLS6B4mFaA3ULW-1KlmrOSmx6QhTmNGapI6z7PLgNe7aLRgNQ_SqPzI9PhnsWq7crSSk5mUtquRwcXBYP9FdL5ZyquEKVyWj9JYk9t19N--mf49ya4OGvlcDuF2QBWGUV5iTyfbtAV2p9A47dC611xMuF5xSWpei5Ima_4NK08DW6pSozqb6keDiSJCYCL_jSu1CkM23r8fsm8d_8_C4vxFLQH4AtHcheOgeEILllGK5T7HUQU4pTnzxhNc27vOZbm37_6j-ADxf9pE |
| CitedBy_id | crossref_primary_10_4236_msa_2025_162005 |
| Cites_doi | 10.1038/s41598-018-24271-9 10.48550/arXiv.1802.03426 10.18637/jss.v045.i03 10.3390/make3030027 10.4236/oalib.1106947 10.1186/s12874-024-02310-6 10.1016/j.jclinepi.2006.01.014 10.3389/fphar.2021.749786 10.1146/annurev.psych.58.110405.085530 10.1186/s40537-021-00516-9 10.3182/20130902-3-CN-3020.00044 10.1098/rsta.2015.0202 10.1109/TKDE.2019.2947676 10.1038/sdata.2016.35 10.48550/arXiv.1312.6114 10.3389/fpubh.2020.00164 10.1111/jcpt.13127 10.1016/j.phymed.2024.155479 10.30880/jscdm.2021.02.01.003 10.1007/s10115-023-02010-5 10.1056/NEJMsa1103053 10.1016/j.compbiolchem.2017.06.002 10.1038/s43856-022-00165-w 10.1101/167858 10.1038/s41569-021-00549-w 10.1093/ajcp/aqw064 10.1038/s42256-022-00596-z 10.1016/j.heliyon.2023.e13200 10.1016/j.jclinepi.2019.02.016 10.3390/e25010137 10.1038/s41598-023-49831-6 10.1111/j.1540-5907.2010.00447.x 10.2196/30805 10.1109/TMC.2023.3339089 10.1214/18-STS644 10.1186/s40360-017-0153-6 10.3389/fphar.2019.01550 10.1007/s13748-015-0080-y 10.1109/TNN.2005.845141 10.1038/s41598-024-55110-9 10.1136/bmjopen-2013-002847 10.1080/01621459.2016.1240079 10.1007/978-0-387-84858-7 10.1016/j.patcog.2020.107501 10.1007/978-3-030-56485-8 10.1145/3422622 10.1038/s41597-019-0103-9 10.1136/bmj.b2393 10.1002/wics.101 10.1093/bib/bbab489 |
| ContentType | Journal Article |
| Copyright | 2025 Wani and Abeer. COPYRIGHT 2025 PeerJ. Ltd. Attribution 2025 Wani and Abeer 2025 Wani and Abeer |
| Copyright_xml | – notice: 2025 Wani and Abeer. – notice: COPYRIGHT 2025 PeerJ. Ltd. – notice: Attribution – notice: 2025 Wani and Abeer 2025 Wani and Abeer |
| DBID | AAYXX CITATION NPM ISR 7X8 1XC VOOES 5PM DOA |
| DOI | 10.7717/peerj-cs.2612 |
| DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_099bde7b8bca46bc8140df16a062710d PMC11784795 oai:HAL:hal-05054622v1 A822274948 39896040 10_7717_peerj_cs_2612 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM H13 NPM 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c589t-ea23ae946c0bd56fc086be460d3e128d1d9aee18f3561d3ac4e6cbcd6d331ee93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479759800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2376-5992 |
| IngestDate | Mon Nov 10 04:34:35 EST 2025 Tue Nov 04 02:05:34 EST 2025 Tue Oct 14 20:35:59 EDT 2025 Sun Nov 09 04:55:22 EST 2025 Tue Nov 11 10:50:20 EST 2025 Tue Nov 04 18:24:43 EST 2025 Thu Nov 13 15:57:48 EST 2025 Mon Jul 21 05:47:35 EDT 2025 Sat Nov 29 03:22:04 EST 2025 Tue Nov 18 22:07:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Dimensionality reduction Variational autoencoders Medical research Machine learning Missing value imputation Generative adversarial networks Artificial intelligence Denoising autoencoders |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2025 Wani and Abeer. Attribution: http://creativecommons.org/licenses/by This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c589t-ea23ae946c0bd56fc086be460d3e128d1d9aee18f3561d3ac4e6cbcd6d331ee93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5151-0084 |
| OpenAccessLink | https://doaj.org/article/099bde7b8bca46bc8140df16a062710d |
| PMID | 39896040 |
| PQID | 3162850815 |
| PQPubID | 23479 |
| PageCount | e2612 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_099bde7b8bca46bc8140df16a062710d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11784795 hal_primary_oai_HAL_hal_05054622v1 proquest_miscellaneous_3162850815 gale_infotracmisc_A822274948 gale_infotracacademiconefile_A822274948 gale_incontextgauss_ISR_A822274948 pubmed_primary_39896040 crossref_primary_10_7717_peerj_cs_2612 crossref_citationtrail_10_7717_peerj_cs_2612 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-02 |
| PublicationDateYYYYMMDD | 2025-01-02 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2025 |
| Publisher | PeerJ. Ltd PeerJ PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ – name: PeerJ Inc |
| References | Choi (10.7717/peerj-cs.2612/ref-9) 2023; 13 Zafar (10.7717/peerj-cs.2612/ref-59) 2021; 3 Wang (10.7717/peerj-cs.2612/ref-54) 2023 Madley-Dowd (10.7717/peerj-cs.2612/ref-34) 2019; 110 Donders (10.7717/peerj-cs.2612/ref-12) 2006; 59 Johnson (10.7717/peerj-cs.2612/ref-25) 2016; 3 Bolón-Canedo (10.7717/peerj-cs.2612/ref-6) 2016; 5 Ding (10.7717/peerj-cs.2612/ref-11) 2013; 46 Ramasamy (10.7717/peerj-cs.2612/ref-41) 2020; 7 Mitra (10.7717/peerj-cs.2612/ref-36) 2023; 5 Genuer (10.7717/peerj-cs.2612/ref-15) 2020 van der Maaten (10.7717/peerj-cs.2612/ref-51) 2008; 9 Kobak (10.7717/peerj-cs.2612/ref-28) 2019 Nazabal (10.7717/peerj-cs.2612/ref-38) 2020; 107 Duarte (10.7717/peerj-cs.2612/ref-13) 2021; 18 Lan (10.7717/peerj-cs.2612/ref-29) 2020; 8 Kingma (10.7717/peerj-cs.2612/ref-27) 2013 Troy (10.7717/peerj-cs.2612/ref-49) 2021; 2 Sohrabi (10.7717/peerj-cs.2612/ref-45) 2017; 69 Goodfellow (10.7717/peerj-cs.2612/ref-17) 2020; 63 Roche-Lima (10.7717/peerj-cs.2612/ref-42) 2020; 10 Theng (10.7717/peerj-cs.2612/ref-48) 2024; 66 Abdi (10.7717/peerj-cs.2612/ref-1) 2010; 2 Gondara (10.7717/peerj-cs.2612/ref-16) 2018 Little (10.7717/peerj-cs.2612/ref-30) 2019; 793 Yoon (10.7717/peerj-cs.2612/ref-58) 2018 Liu (10.7717/peerj-cs.2612/ref-31) 2017; 18 Luo (10.7717/peerj-cs.2612/ref-33) 2016; 145 Afrose (10.7717/peerj-cs.2612/ref-3) 2022; 2 Emmanuel (10.7717/peerj-cs.2612/ref-14) 2021; 8 Hariri (10.7717/peerj-cs.2612/ref-19) 2019; 33 Chua (10.7717/peerj-cs.2612/ref-10) 2021; 23 Budnitz (10.7717/peerj-cs.2612/ref-7) 2011; 365 Vincent (10.7717/peerj-cs.2612/ref-52) 2008 Beaulieu-Jones (10.7717/peerj-cs.2612/ref-4) 2017 Bishop (10.7717/peerj-cs.2612/ref-5) 2006; 4 Yang (10.7717/peerj-cs.2612/ref-57) 2023; 9 Harutyunyan (10.7717/peerj-cs.2612/ref-20) 2019; 6 Waljee (10.7717/peerj-cs.2612/ref-53) 2013; 3 Xue (10.7717/peerj-cs.2612/ref-56) 2024; 128 Honaker (10.7717/peerj-cs.2612/ref-23) 2010; 54 Che (10.7717/peerj-cs.2612/ref-8) 2018; 8 Graham (10.7717/peerj-cs.2612/ref-18) 2009; 60 Shah (10.7717/peerj-cs.2612/ref-44) 2020; 45 Jolliffe (10.7717/peerj-cs.2612/ref-26) 2016; 374 Luo (10.7717/peerj-cs.2612/ref-32) 2022; 23 Hastie (10.7717/peerj-cs.2612/ref-22) 2009; 2 McInnes (10.7717/peerj-cs.2612/ref-35) 2018 Sterne (10.7717/peerj-cs.2612/ref-47) 2009; 338 Afkanpour (10.7717/peerj-cs.2612/ref-2) 2024; 24 Murray (10.7717/peerj-cs.2612/ref-37) 2018; 33 Johnson (10.7717/peerj-cs.2612/ref-24) 2017; 112 Petch (10.7717/peerj-cs.2612/ref-39) 2024; 14 Van Buuren (10.7717/peerj-cs.2612/ref-50) 2011; 45 Hasan (10.7717/peerj-cs.2612/ref-21) 2021; 2 Qin (10.7717/peerj-cs.2612/ref-40) 2023; 25 Steiner (10.7717/peerj-cs.2612/ref-46) 2021; 12 Xu (10.7717/peerj-cs.2612/ref-55) 2005; 16 Rubin (10.7717/peerj-cs.2612/ref-43) 2004; 81 |
| References_xml | – volume: 8 start-page: 6085 issue: 1 year: 2018 ident: 10.7717/peerj-cs.2612/ref-8 article-title: Recurrent neural networks for multivariate time series with missing values publication-title: Scientific Reports doi: 10.1038/s41598-018-24271-9 – year: 2018 ident: 10.7717/peerj-cs.2612/ref-35 article-title: Umap: uniform manifold approximation and projection for dimension reduction doi: 10.48550/arXiv.1802.03426 – volume: 45 start-page: 1 issue: 3 year: 2011 ident: 10.7717/peerj-cs.2612/ref-50 article-title: mice: multivariate imputation by chained equations in r publication-title: Journal of Statistical Software doi: 10.18637/jss.v045.i03 – volume: 3 start-page: 525 issue: 3 year: 2021 ident: 10.7717/peerj-cs.2612/ref-59 article-title: Deterministic local interpretable model-agnostic explanations for stable explainability publication-title: Machine Learning and Knowledge Extraction doi: 10.3390/make3030027 – volume: 7 start-page: e6947 issue: 11 year: 2020 ident: 10.7717/peerj-cs.2612/ref-41 article-title: Non-clinical factors associated with international normalized ratio control in patients on warfarin therapy: a review paper publication-title: Open Access Library Journal doi: 10.4236/oalib.1106947 – volume: 24 start-page: 188 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2612/ref-2 article-title: Identify the most appropriate imputation method for handling missing values in clinical structured datasets: a systematic review publication-title: BMC Medical Research Methodology doi: 10.1186/s12874-024-02310-6 – volume: 59 start-page: 1087 issue: 10 year: 2006 ident: 10.7717/peerj-cs.2612/ref-12 article-title: A gentle introduction to imputation of missing values publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2006.01.014 – volume: 2 start-page: e211693 volume-title: JAMA Health Forum year: 2021 ident: 10.7717/peerj-cs.2612/ref-49 article-title: National trends in use of and spending on oral anticoagulants among us medicare beneficiaries from 2011 to 2019 – volume: 12 start-page: 749786 year: 2021 ident: 10.7717/peerj-cs.2612/ref-46 article-title: Machine learning for prediction of stable warfarin dose in us Latinos and Latin Americans publication-title: Frontiers in Pharmacology doi: 10.3389/fphar.2021.749786 – volume: 60 start-page: 549 issue: 1 year: 2009 ident: 10.7717/peerj-cs.2612/ref-18 article-title: Missing data analysis: making it work in the real world publication-title: Annual Review of Psychology doi: 10.1146/annurev.psych.58.110405.085530 – volume: 4 volume-title: Pattern recognition and machine learning year: 2006 ident: 10.7717/peerj-cs.2612/ref-5 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2612/ref-14 article-title: A survey on missing data in machine learning publication-title: Journal of Big data doi: 10.1186/s40537-021-00516-9 – volume: 46 start-page: 12 issue: 20 year: 2013 ident: 10.7717/peerj-cs.2612/ref-11 article-title: An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window publication-title: IFAC Proceedings Volumes doi: 10.3182/20130902-3-CN-3020.00044 – volume: 374 start-page: 20150202 issue: 2065 year: 2016 ident: 10.7717/peerj-cs.2612/ref-26 article-title: Principal component analysis: a review and recent developments publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2015.0202 – volume: 33 start-page: 1479 issue: 4 year: 2019 ident: 10.7717/peerj-cs.2612/ref-19 article-title: Extended isolation forest publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2019.2947676 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10.7717/peerj-cs.2612/ref-25 article-title: Mimic-iii, a freely accessible critical care database publication-title: Scientific Data doi: 10.1038/sdata.2016.35 – year: 2013 ident: 10.7717/peerj-cs.2612/ref-27 article-title: Auto-encoding variational bayes doi: 10.48550/arXiv.1312.6114 – volume: 793 volume-title: Statistical analysis with missing data year: 2019 ident: 10.7717/peerj-cs.2612/ref-30 – volume: 8 start-page: 164 year: 2020 ident: 10.7717/peerj-cs.2612/ref-29 article-title: Generative adversarial networks and its applications in biomedical informatics publication-title: Frontiers in Public Health doi: 10.3389/fpubh.2020.00164 – volume: 45 start-page: 547 issue: 3 year: 2020 ident: 10.7717/peerj-cs.2612/ref-44 article-title: Genotype-guided warfarin therapy: still of only questionable value two decades on publication-title: Journal of Clinical Pharmacy and Therapeutics doi: 10.1111/jcpt.13127 – volume: 128 start-page: 155479 year: 2024 ident: 10.7717/peerj-cs.2612/ref-56 article-title: Warfarin-a natural anticoagulant: a review of research trends for precision medication publication-title: Phytomedicine doi: 10.1016/j.phymed.2024.155479 – volume: 2 start-page: 20 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2612/ref-21 article-title: A review of principal component analysis algorithm for dimensionality reduction publication-title: Journal of Soft Computing and Data Mining doi: 10.30880/jscdm.2021.02.01.003 – volume: 66 start-page: 1575 issue: 3 year: 2024 ident: 10.7717/peerj-cs.2612/ref-48 article-title: Feature selection techniques for machine learning: a survey of more than two decades of research publication-title: Knowledge and Information Systems doi: 10.1007/s10115-023-02010-5 – volume: 365 start-page: 2002 issue: 21 year: 2011 ident: 10.7717/peerj-cs.2612/ref-7 article-title: Emergency hospitalizations for adverse drug events in older americans publication-title: New England Journal of Medicine doi: 10.1056/NEJMsa1103053 – volume: 69 start-page: 126 issue: 3 year: 2017 ident: 10.7717/peerj-cs.2612/ref-45 article-title: Multi-objective feature selection for warfarin dose prediction publication-title: Computational Biology and Chemistry doi: 10.1016/j.compbiolchem.2017.06.002 – volume: 2 start-page: 111 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2612/ref-3 article-title: Subpopulation-specific machine learning prognosis for underrepresented patients with double prioritized bias correction publication-title: Communications Medicine doi: 10.1038/s43856-022-00165-w – start-page: 167858 year: 2017 ident: 10.7717/peerj-cs.2612/ref-4 article-title: Characterizing and managing missing structured data in electronic health records publication-title: BioRxiv doi: 10.1101/167858 – volume: 18 start-page: 649 issue: 9 year: 2021 ident: 10.7717/peerj-cs.2612/ref-13 article-title: Pharmacogenetics to guide cardiovascular drug therapy publication-title: Nature Reviews Cardiology doi: 10.1038/s41569-021-00549-w – start-page: 5689 year: 2018 ident: 10.7717/peerj-cs.2612/ref-58 article-title: Gain: missing data imputation using generative adversarial nets – volume: 145 start-page: 778 issue: 6 year: 2016 ident: 10.7717/peerj-cs.2612/ref-33 article-title: Using machine learning to predict laboratory test results publication-title: American Journal of Clinical Pathology doi: 10.1093/ajcp/aqw064 – start-page: 1096 year: 2008 ident: 10.7717/peerj-cs.2612/ref-52 article-title: Extracting and composing robust features with denoising autoencoders – volume: 5 start-page: 13 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2612/ref-36 article-title: Learning from data with structured missingness publication-title: Nature Machine Intelligence doi: 10.1038/s42256-022-00596-z – volume: 9 start-page: e13200 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2612/ref-57 article-title: Mortality prediction among icu inpatients based on mimic-iii database results from the conditional medical generative adversarial network publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e13200 – volume: 110 start-page: 63 year: 2019 ident: 10.7717/peerj-cs.2612/ref-34 article-title: The proportion of missing data should not be used to guide decisions on multiple imputation publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2019.02.016 – volume: 25 start-page: 137 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2612/ref-40 article-title: Imputegan: generative adversarial network for multivariate time series imputation publication-title: Entropy doi: 10.3390/e25010137 – volume: 13 start-page: 22461 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2612/ref-9 article-title: Machine learning models to predict the warfarin discharge dosage using clinical information of inpatients from south korea publication-title: Scientific Reports doi: 10.1038/s41598-023-49831-6 – volume: 54 start-page: 561 issue: 2 year: 2010 ident: 10.7717/peerj-cs.2612/ref-23 article-title: What to do about missing values in time-series cross-section data publication-title: American Journal of Political Science doi: 10.1111/j.1540-5907.2010.00447.x – volume: 23 start-page: e30805 issue: 12 year: 2021 ident: 10.7717/peerj-cs.2612/ref-10 article-title: Health care analytics with time-invariant and time-variant feature importance to predict hospital-acquired acute kidney injury: observational longitudinal study publication-title: Journal of Medical Internet Research doi: 10.2196/30805 – year: 2023 ident: 10.7717/peerj-cs.2612/ref-54 article-title: Large-scale spatiotemporal fracture data completion in sparse crowdsensing publication-title: IEEE Transactions on Mobile Computing doi: 10.1109/TMC.2023.3339089 – volume: 33 start-page: 142 year: 2018 ident: 10.7717/peerj-cs.2612/ref-37 article-title: Multiple imputation: a review of practical and theoretical findings publication-title: Statistical Science doi: 10.1214/18-STS644 – volume: 18 start-page: 1 year: 2017 ident: 10.7717/peerj-cs.2612/ref-31 article-title: Data-driven prediction of adverse drug reactions induced by drug-drug interactions publication-title: BMC Pharmacology and Toxicology doi: 10.1186/s40360-017-0153-6 – volume: 10 start-page: 1550 year: 2020 ident: 10.7717/peerj-cs.2612/ref-42 article-title: Machine learning algorithm for predicting warfarin dose in caribbean hispanics using pharmacogenetic data publication-title: Frontiers in Pharmacology doi: 10.3389/fphar.2019.01550 – volume: 5 start-page: 65 issue: 2 year: 2016 ident: 10.7717/peerj-cs.2612/ref-6 article-title: Feature selection for high-dimensional data publication-title: Progress in Artificial Intelligence doi: 10.1007/s13748-015-0080-y – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 10.7717/peerj-cs.2612/ref-55 article-title: Survey of clustering algorithms publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2005.845141 – volume: 14 start-page: 4516 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2612/ref-39 article-title: Optimizing warfarin dosing for patients with atrial fibrillation using machine learning publication-title: Scientific Reports doi: 10.1038/s41598-024-55110-9 – volume: 3 start-page: e002847 issue: 8 year: 2013 ident: 10.7717/peerj-cs.2612/ref-53 article-title: Comparison of imputation methods for missing laboratory data in medicine publication-title: BMJ Open doi: 10.1136/bmjopen-2013-002847 – volume: 81 volume-title: Multiple imputation for nonresponse in surveys year: 2004 ident: 10.7717/peerj-cs.2612/ref-43 – start-page: 260 year: 2018 ident: 10.7717/peerj-cs.2612/ref-16 article-title: Mida: multiple imputation using denoising autoencoders – volume: 112 start-page: 1 issue: 517 year: 2017 ident: 10.7717/peerj-cs.2612/ref-24 article-title: On the reproducibility of psychological science publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2016.1240079 – volume: 2 volume-title: The elements of statistical learning: data mining, inference, and prediction year: 2009 ident: 10.7717/peerj-cs.2612/ref-22 doi: 10.1007/978-0-387-84858-7 – volume: 107 start-page: 107501 issue: 11 year: 2020 ident: 10.7717/peerj-cs.2612/ref-38 article-title: Handling incomplete heterogeneous data using VAEs publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107501 – volume-title: Random forests year: 2020 ident: 10.7717/peerj-cs.2612/ref-15 doi: 10.1007/978-3-030-56485-8 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 10.7717/peerj-cs.2612/ref-17 article-title: Generative adversarial networks publication-title: Communications of the ACM doi: 10.1145/3422622 – start-page: 124 year: 2019 ident: 10.7717/peerj-cs.2612/ref-28 article-title: Heavy-tailed kernels reveal a finer cluster structure in t-sne visualisations – volume: 9 start-page: 2579 year: 2008 ident: 10.7717/peerj-cs.2612/ref-51 article-title: Visualizing data using t-sne publication-title: Journal of Machine Learning Research – volume: 6 start-page: 96 issue: 1 year: 2019 ident: 10.7717/peerj-cs.2612/ref-20 article-title: Multitask learning and benchmarking with clinical time series data publication-title: Scientific Data doi: 10.1038/s41597-019-0103-9 – volume: 338 start-page: b2393 year: 2009 ident: 10.7717/peerj-cs.2612/ref-47 article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls publication-title: BMJ doi: 10.1136/bmj.b2393 – volume: 2 start-page: 433 issue: 4 year: 2010 ident: 10.7717/peerj-cs.2612/ref-1 article-title: Principal component analysis publication-title: Wiley Interdisciplinary Reviews: Computational Statistics doi: 10.1002/wics.101 – volume: 23 start-page: bbab489 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2612/ref-32 article-title: Evaluating the state of the art in missing data imputation for clinical data publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbab489 |
| SSID | ssj0001511119 |
| Score | 2.292431 |
| Snippet | Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient... |
| SourceID | doaj pubmedcentral hal proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e2612 |
| SubjectTerms | Artificial Intelligence Bioinformatics Computational Biology Computer Science Data Mining and Machine Learning Data Science Deep learning Denoising autoencoders Dimensionality reduction Dosage and administration Drugs Machine learning Medical research Neural networks Warfarin |
| Title | Application of machine learning techniques for warfarin dosage prediction: a case study on the MIMIC-III dataset |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39896040 https://www.proquest.com/docview/3162850815 https://hal.science/hal-05054622 https://pubmed.ncbi.nlm.nih.gov/PMC11784795 https://doaj.org/article/099bde7b8bca46bc8140df16a062710d |
| Volume | 11 |
| WOSCitedRecordID | wos001479759800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: P5Z dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: K7- dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: PIMPY dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RwoEL74ehREuF4IKp3w9uaZWqEU0UFZACl9U-xm0ROFGclBu_nRnbCTEIceGylrxje70zu_uNPfsNwAudx1HqaesGsc7cSFl0yQXjjzhJXNgoUF7Drn-ajsfZdJpPtlJ9cUxYQw_cdNwBIRhtMdWZNipKtGGGJlv4iWJ-Xd-zPPt6ab7lTDX7g3kqyBtSzZRcloM54uKLa6o3zJnVWYRqrv7NjLxzwQGRf6LN34Mmt1ah4ztwq4WPot80-y5cw_Ie3F6nZhDtSL0P8_6vH9NiVohvdcwkijZJxLnYcLdWgmCr-K4WBXnNpbAzjjQT8wX_wOGr3wolDC11oiaiFXQ7goxiRHPekTscDgWHmFa4fAAfjwcfjk7cNrmCa-IsX7qoglBhHiWGNBUnhSHfRmOUeDZEWrOsb3OF6GdFSAjLhspEmBhtbGLD0EfMw4ewW85KfAwiDNLCeiRnPc0JKZW2GR0SjJQ2WBQOvF73tjQt8zgnwPgqyQNh5chaOdJUkpXjwMuN-Lyh3Pib4CGrbiPETNn1CbIf2dqP_Jf9OLDPipfMhVFysM25WlWVHL4_k30GTynz5zjwqhUqZtRyo9q9C_T-TJ_VkdzrSNJgNZ3qfbKvTotP-qeSz3FKwSgJgivfgedr85N8PYfBlThbVTL0eccrobjYgUeNOW7uFeYZE-14DmQdQ-08rFtTXl7UhOK-nxJIyeMn_6NDn8LNgHMk82eqYA92l4sVPoMb5mp5WS16sJNOsx5cPxyMJ2e9etBS-S51qRz9GFA5iT9T_WQ4mnz6CTMgTJM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+techniques+for+warfarin+dosage+prediction%3A+a+case+study+on+the+MIMIC-III+dataset&rft.jtitle=PeerJ.+Computer+science&rft.au=Wani%2C+Aasim+Ayaz&rft.au=Abeer%2C+Fatima&rft.date=2025-01-02&rft.eissn=2376-5992&rft.volume=11&rft.spage=e2612&rft_id=info:doi/10.7717%2Fpeerj-cs.2612&rft_id=info%3Apmid%2F39896040&rft.externalDocID=39896040 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |