Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis
Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40...
Uložené v:
| Vydané v: | Journal of the American College of Cardiology Ročník 71; číslo 5; s. 527 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
06.02.2018
|
| Predmet: | |
| ISSN: | 1558-3597, 1558-3597 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity.
This study evaluates the potential of TRAF-STOP treatment in atherosclerosis.
The effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe
) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages.
TRAF-STOP treatment of young Apoe
mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe
mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair "classical" immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and β2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe
mice.
TRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis. |
|---|---|
| AbstractList | Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity.BACKGROUNDDisrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity.This study evaluates the potential of TRAF-STOP treatment in atherosclerosis.OBJECTIVESThis study evaluates the potential of TRAF-STOP treatment in atherosclerosis.The effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe-/-) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages.METHODSThe effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe-/-) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages.TRAF-STOP treatment of young Apoe-/- mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe-/- mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair "classical" immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and β2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe-/- mice.RESULTSTRAF-STOP treatment of young Apoe-/- mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe-/- mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair "classical" immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and β2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe-/- mice.TRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis.CONCLUSIONSTRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis. Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity. This study evaluates the potential of TRAF-STOP treatment in atherosclerosis. The effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe ) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages. TRAF-STOP treatment of young Apoe mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair "classical" immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and β2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe mice. TRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis. |
| Author | van Tiel, Claudia M Aarts, Suzanne A B M Kuiper, Johan de Winther, Menno P J Duchene, Johan Baxter, Samantha Kusters, Pascal J H Slütter, Bram Bleijlevens, Boris den Toom, Myrthe Seijkens, Tom T P Lameijer, Marnix Beckers, Linda Schrijver, Roy Boon, Louis Weber, Christian Lutgens, Esther Mulder, Willem J M Gerdes, Norbert Tang, Jun Aslani, Maria van 't Veer, Cornelis Duivenvoorden, Raphael Fisher, Edward A Gijbels, Marion J Megens, Remco T A Kooij, Gijs Fay, Francois Hoeksema, Marten A Atzler, Dorothee Vriend, Gert Zarzycka, Barbara Jongejan, Aldo Soehnlein, Oliver Moerland, Perry D Nicolaes, Gerry A |
| Author_xml | – sequence: 1 givenname: Tom T P surname: Seijkens fullname: Seijkens, Tom T P organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany – sequence: 2 givenname: Claudia M surname: van Tiel fullname: van Tiel, Claudia M organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands – sequence: 3 givenname: Pascal J H surname: Kusters fullname: Kusters, Pascal J H organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands – sequence: 4 givenname: Dorothee surname: Atzler fullname: Atzler, Dorothee organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Walther-Straub-Institut for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany – sequence: 5 givenname: Oliver surname: Soehnlein fullname: Soehnlein, Oliver organization: Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany – sequence: 6 givenname: Barbara surname: Zarzycka fullname: Zarzycka, Barbara organization: Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands – sequence: 7 givenname: Suzanne A B M surname: Aarts fullname: Aarts, Suzanne A B M organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands – sequence: 8 givenname: Marnix surname: Lameijer fullname: Lameijer, Marnix organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands – sequence: 9 givenname: Marion J surname: Gijbels fullname: Gijbels, Marion J organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands – sequence: 10 givenname: Linda surname: Beckers fullname: Beckers, Linda organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands – sequence: 11 givenname: Myrthe surname: den Toom fullname: den Toom, Myrthe organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands – sequence: 12 givenname: Bram surname: Slütter fullname: Slütter, Bram organization: Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands – sequence: 13 givenname: Johan surname: Kuiper fullname: Kuiper, Johan organization: Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands – sequence: 14 givenname: Johan surname: Duchene fullname: Duchene, Johan organization: Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany – sequence: 15 givenname: Maria surname: Aslani fullname: Aslani, Maria organization: Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany – sequence: 16 givenname: Remco T A surname: Megens fullname: Megens, Remco T A organization: Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands – sequence: 17 givenname: Cornelis surname: van 't Veer fullname: van 't Veer, Cornelis organization: Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands – sequence: 18 givenname: Gijs surname: Kooij fullname: Kooij, Gijs organization: Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, the Netherlands – sequence: 19 givenname: Roy surname: Schrijver fullname: Schrijver, Roy organization: German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany – sequence: 20 givenname: Marten A surname: Hoeksema fullname: Hoeksema, Marten A organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands – sequence: 21 givenname: Louis surname: Boon fullname: Boon, Louis organization: Bioceros BV, Utrecht, the Netherlands – sequence: 22 givenname: Francois surname: Fay fullname: Fay, Francois organization: Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York – sequence: 23 givenname: Jun surname: Tang fullname: Tang, Jun organization: Bioceros BV, Utrecht, the Netherlands; Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York – sequence: 24 givenname: Samantha surname: Baxter fullname: Baxter, Samantha organization: Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York – sequence: 25 givenname: Aldo surname: Jongejan fullname: Jongejan, Aldo organization: Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands – sequence: 26 givenname: Perry D surname: Moerland fullname: Moerland, Perry D organization: Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands – sequence: 27 givenname: Gert surname: Vriend fullname: Vriend, Gert organization: Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands – sequence: 28 givenname: Boris surname: Bleijlevens fullname: Bleijlevens, Boris organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands – sequence: 29 givenname: Edward A surname: Fisher fullname: Fisher, Edward A organization: Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York – sequence: 30 givenname: Raphael surname: Duivenvoorden fullname: Duivenvoorden, Raphael organization: Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands – sequence: 31 givenname: Norbert surname: Gerdes fullname: Gerdes, Norbert organization: Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany – sequence: 32 givenname: Menno P J surname: de Winther fullname: de Winther, Menno P J organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany – sequence: 33 givenname: Gerry A surname: Nicolaes fullname: Nicolaes, Gerry A organization: Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands – sequence: 34 givenname: Willem J M surname: Mulder fullname: Mulder, Willem J M organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York – sequence: 35 givenname: Christian surname: Weber fullname: Weber, Christian organization: Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands – sequence: 36 givenname: Esther surname: Lutgens fullname: Lutgens, Esther email: E.Lutgens@amc.uva.nl organization: Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany. Electronic address: E.Lutgens@amc.uva.nl |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29406859$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAYhC1URD_gDzCgjCwJthPbeceqUKjUCqmUOXpjO2mq1ClxMvDvaUSRWO5Oukc33JSMXOMsIfeMRowy-XSIDqh1xClTEWMRFeKKTJgQaRgLUKN_eUym3h8opTJlcEPGHJJzFDAhmx22pe0qVwaL54SGK2d6bU2w286XMvioSof1UFYu2KBum9MeS-uDrR0wH8y7vW0br-tBK39Lrgusvb27-Ix8Ll92i7dw_f66WszXoRYpdKFSEsCAZBoVNSpnhcVcpkokSaoKlueISc5VLDm1OUctE4pQGEBqaBwD8hl5_N09tc1Xb32XHSuvbV2js03vMwYADDhV8Rl9uKB9frQmO7XVEdvv7O8C_gNvk1-d |
| CitedBy_id | crossref_primary_10_1097_MD_0000000000034439 crossref_primary_10_3389_fcell_2020_581641 crossref_primary_10_1080_14737140_2021_1979396 crossref_primary_10_3389_fcvm_2023_1171764 crossref_primary_10_1016_j_bbrc_2021_03_147 crossref_primary_10_1515_med_2022_0471 crossref_primary_10_1016_j_atherosclerosis_2020_07_027 crossref_primary_10_1038_s41598_025_08315_5 crossref_primary_10_1002_path_5205 crossref_primary_10_1038_s41569_023_00986_9 crossref_primary_10_1007_s11936_023_01024_0 crossref_primary_10_1161_ATVBAHA_118_311569 crossref_primary_10_1016_j_jacc_2018_12_083 crossref_primary_10_12688_f1000research_18901_1 crossref_primary_10_2147_IJN_S381483 crossref_primary_10_1016_j_rpth_2025_102691 crossref_primary_10_1093_eurheartj_ehad304 crossref_primary_10_1016_j_ijcard_2019_09_013 crossref_primary_10_3389_fgene_2022_905988 crossref_primary_10_1038_s41392_022_01082_z crossref_primary_10_1097_MD_0000000000037718 crossref_primary_10_1016_j_bbi_2019_01_028 crossref_primary_10_1038_s41551_018_0241_y crossref_primary_10_3390_biology11030408 crossref_primary_10_3390_cardiogenetics12010002 crossref_primary_10_20517_2574_1209_2025_40 crossref_primary_10_1016_j_vph_2021_106884 crossref_primary_10_1016_j_atherosclerosis_2019_05_006 crossref_primary_10_1016_j_matt_2024_09_016 crossref_primary_10_1038_s41569_019_0164_7 crossref_primary_10_1002_advs_202504990 crossref_primary_10_1016_j_addr_2018_12_005 crossref_primary_10_1097_CRD_0000000000000727 crossref_primary_10_3390_cells8080927 crossref_primary_10_3389_fphar_2023_1119847 crossref_primary_10_1016_j_imbio_2019_151899 crossref_primary_10_3390_ijms23042046 crossref_primary_10_1111_joim_13001 crossref_primary_10_1016_j_jaccao_2022_11_011 crossref_primary_10_3389_fimmu_2019_01107 crossref_primary_10_1007_s12410_019_9501_9 crossref_primary_10_1016_j_biomaterials_2019_119605 crossref_primary_10_1016_j_addr_2021_01_005 crossref_primary_10_13005_bbra_3067 crossref_primary_10_1016_j_compbiomed_2025_110721 crossref_primary_10_1002_adtp_202100083 crossref_primary_10_1039_D0BM00196A crossref_primary_10_3389_fimmu_2023_1130438 crossref_primary_10_1016_j_atherosclerosis_2021_09_024 crossref_primary_10_1038_s41569_021_00668_4 crossref_primary_10_1093_cvr_cvz286 crossref_primary_10_1161_CIRCRESAHA_121_320436 crossref_primary_10_1007_s12265_020_09961_y crossref_primary_10_2147_JIR_S276982 crossref_primary_10_2174_0113816128272185231024115046 crossref_primary_10_1155_2020_8131754 crossref_primary_10_1007_s10557_022_07362_8 crossref_primary_10_1016_j_tips_2024_04_010 crossref_primary_10_1002_adfm_202301053 crossref_primary_10_1038_s41598_025_07989_1 crossref_primary_10_1016_j_cpcardiol_2024_102396 crossref_primary_10_1161_JAHA_123_034066 crossref_primary_10_1016_j_jconrel_2022_06_053 crossref_primary_10_1371_journal_pone_0314555 crossref_primary_10_3389_fphar_2022_995061 crossref_primary_10_1016_j_apmt_2022_101466 crossref_primary_10_1016_j_pharmthera_2018_08_012 crossref_primary_10_3390_ijms25041958 crossref_primary_10_3390_medicina57121324 crossref_primary_10_1093_labmed_lmz049 crossref_primary_10_1016_j_pharep_2018_06_006 crossref_primary_10_3389_fphar_2022_1079185 crossref_primary_10_1093_eurheartj_ehz283 crossref_primary_10_3390_ijms25063206 crossref_primary_10_1186_s12951_023_02228_z crossref_primary_10_1016_j_jconrel_2021_03_027 crossref_primary_10_1136_jitc_2019_000300 crossref_primary_10_1007_s11596_023_2818_2 crossref_primary_10_3390_pharmaceutics17091141 crossref_primary_10_3389_fphar_2020_570603 crossref_primary_10_1016_j_jaccao_2020_08_007 crossref_primary_10_1093_qjmed_hcab207 crossref_primary_10_1016_j_actbio_2021_10_024 crossref_primary_10_1093_eurheartj_ehaa484 crossref_primary_10_1016_j_mce_2022_111776 crossref_primary_10_3389_fcvm_2022_826630 crossref_primary_10_1080_14740338_2022_2036717 crossref_primary_10_1038_s41573_021_00198_1 crossref_primary_10_1016_j_micinf_2023_105175 crossref_primary_10_1007_s12265_020_09994_3 crossref_primary_10_1038_s44161_023_00232_y crossref_primary_10_1093_cvr_cvz206 crossref_primary_10_1016_j_atherosclerosis_2023_02_008 crossref_primary_10_1126_scitranslmed_aay1063 crossref_primary_10_1055_a_1661_0020 crossref_primary_10_3390_ijms21228533 crossref_primary_10_1016_j_biomaterials_2019_119474 crossref_primary_10_1161_CIRCRESAHA_118_313129 crossref_primary_10_1002_ctm2_1406 crossref_primary_10_1007_s11886_023_01908_4 crossref_primary_10_3390_jcm11030865 crossref_primary_10_1016_j_apsb_2020_12_018 crossref_primary_10_1016_j_heliyon_2024_e32073 crossref_primary_10_1002_adfm_202421512 crossref_primary_10_1093_cvr_cvac084 crossref_primary_10_1002_mco2_70269 crossref_primary_10_1002_hed_27604 crossref_primary_10_3390_immuno2040039 crossref_primary_10_1038_s41467_025_61789_9 crossref_primary_10_1136_heartjnl_2024_325408 crossref_primary_10_1186_s12951_025_03360_8 crossref_primary_10_1096_fj_201903203RR crossref_primary_10_3389_fphar_2022_962596 crossref_primary_10_1016_j_ijcard_2020_10_076 crossref_primary_10_1080_1744666X_2020_1860757 crossref_primary_10_1096_fj_202402873R crossref_primary_10_3389_fcvm_2020_588075 crossref_primary_10_1002_eji_202350520 crossref_primary_10_3390_jcm10143185 crossref_primary_10_2217_nnm_2020_0223 crossref_primary_10_1038_s41569_018_0024_x crossref_primary_10_1016_j_jtauto_2025_100288 crossref_primary_10_53941_ijddp_2024_100022 crossref_primary_10_1016_j_canlet_2020_05_021 crossref_primary_10_1016_j_jddst_2021_102473 crossref_primary_10_1002_pro_4429 crossref_primary_10_1371_journal_pone_0202150 crossref_primary_10_2147_IJN_S328723 crossref_primary_10_3390_cells9091987 crossref_primary_10_1080_10408398_2020_1870926 crossref_primary_10_4155_fmc_2018_0433 crossref_primary_10_1016_j_jacc_2017_12_023 crossref_primary_10_1016_j_bcp_2021_114869 crossref_primary_10_1096_fj_202200716R crossref_primary_10_1016_j_yexcr_2022_113270 crossref_primary_10_1186_s40580_019_0214_1 crossref_primary_10_1016_j_pharmthera_2020_107709 crossref_primary_10_1093_cvr_cvac022 crossref_primary_10_1093_eurheartj_ehac793 crossref_primary_10_1161_ATVBAHA_118_307742 crossref_primary_10_1161_CIRCRESAHA_118_313143 crossref_primary_10_1016_j_ijcard_2018_12_076 crossref_primary_10_1126_sciadv_adu3919 crossref_primary_10_1038_s41467_021_23909_z crossref_primary_10_1038_s41577_021_00580_5 crossref_primary_10_1007_s00395_024_01045_1 crossref_primary_10_1161_ATVBAHA_118_312002 crossref_primary_10_1093_eurheartj_ehz919 crossref_primary_10_1016_j_addr_2024_115204 crossref_primary_10_1038_s41569_021_00629_x crossref_primary_10_1007_s00011_024_01921_5 crossref_primary_10_1038_s41569_018_0073_1 crossref_primary_10_1016_j_ijcard_2019_08_008 crossref_primary_10_1038_s44161_022_00208_4 |
| ContentType | Journal Article |
| Copyright | Published by Elsevier Inc. |
| Copyright_xml | – notice: Published by Elsevier Inc. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.jacc.2017.11.055 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1558-3597 |
| ExternalDocumentID | 29406859 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: P01 HL131478 – fundername: NHLBI NIH HHS grantid: R01 HL118440 – fundername: NHLBI NIH HHS grantid: R01 HL125703 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 18M 1B1 1P~ 1~. 1~5 2WC 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ AABNK AABVL AACTN AAEDT AAEDW AAIKJ AAKUH AALRI AAOAW AAQFI AAQQT AAXUO ABBQC ABFNM ABFRF ABLJU ABMAC ABMZM ABOCM ACGFO ACGFS ACIUM ACJTP ACPRK ADBBV ADEZE ADVLN AEFWE AEKER AENEX AEVXI AEXQZ AFCTW AFETI AFRAH AFRHN AFTJW AGYEJ AHMBA AITUG AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BLXMC CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FNPLU G-Q GBLVA GX1 H13 HVGLF IHE IXB J1W K-O KQ8 L7B MO0 N9A NPM O-L O9- OA. OAUVE OK1 OL~ OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SCC SDF SDG SDP SES SSZ TR2 UNMZH UV1 W8F WH7 WOQ WOW YYM YZZ Z5R 7X8 ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c589t-77699d961ca70d7b1feab68754487f1bbaa4b273620eb2ac640a9fd9a0d0339a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 166 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423996800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1558-3597 |
| IngestDate | Sun Sep 28 13:38:49 EDT 2025 Thu Apr 03 06:53:42 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | atherosclerosis drug development nanotechnology inflammation immunology |
| Language | English |
| License | Published by Elsevier Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c589t-77699d961ca70d7b1feab68754487f1bbaa4b273620eb2ac640a9fd9a0d0339a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.clinicalkey.es/playcontent/1-s2.0-S0735109717417815 |
| PMID | 29406859 |
| PQID | 1999192073 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1999192073 pubmed_primary_29406859 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-06 |
| PublicationDateYYYYMMDD | 2018-02-06 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American College of Cardiology |
| PublicationTitleAlternate | J Am Coll Cardiol |
| PublicationYear | 2018 |
| References | 29717214 - Nat Rev Cardiol. 2018 Jun;15(6):317 29406860 - J Am Coll Cardiol. 2018 Feb 6;71(5):543-546 |
| References_xml | – reference: 29406860 - J Am Coll Cardiol. 2018 Feb 6;71(5):543-546 – reference: 29717214 - Nat Rev Cardiol. 2018 Jun;15(6):317 |
| SSID | ssj0006819 |
| Score | 2.6061165 |
| Snippet | Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 527 |
| SubjectTerms | Aniline Compounds - pharmacology Animals Atherosclerosis - pathology Atherosclerosis - prevention & control CD40 Ligand - antagonists & inhibitors Cell Culture Techniques Cell Movement - drug effects Disease Models, Animal Humans Macrophages - drug effects Mice Mice, Inbred C57BL Monocytes - drug effects Propiophenones - pharmacology Signal Transduction - drug effects TNF Receptor-Associated Factor 6 - antagonists & inhibitors |
| Title | Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29406859 https://www.proquest.com/docview/1999192073 |
| Volume | 71 |
| WOSCitedRecordID | wos000423996800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG7UNcaL78f6CiZeqy3Q18lsVokXNpt1TfZG2gKKB1hl9fc7BTZ7MjHxUg4EQqbTmY_O9PsQugk4lTZgFBtI1ziUSmOpQoFDKnJmfMWtasUmxGgkZzM17jbc6q6tchkTm0CdVtbtkd-54_KARsAj7-cf2KlGuepqJ6GxjnoBQBm3MMVsxRbOZSPsASlT4gCQc3dopu3vetfWURhScetYPBn7HWI2qSba_e9H7qGdDmR6g9Yr9tFaVh6grbgrox-ieNr0f0PW8oYPIcFOv8NmqTedDCLuPRevDp3DzaL0Yu00vt4g6tTexNG8wnXgQGNVw6thLOoj9BI9TodPuNNVwJZJtQBAzZVKFadWC5IKQ_NMGy4dFZ4UOTVG69AArOE-gf9ubXlItMpTpUlKgkBp_xhtlFWZnSKPMmkJTCfPOQ81yaUmzFCVEutLbgjvo-uloRLwW1eM0GVWfdXJylR9dNJaO5m3BBuJrwBmSKbO_vD0OdqGSZRNIzW_QL0cVm12iTbt96KoP68ah4BxNI5_ABqkvT8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+CD40-Induced+TRAF6+Signaling+in+Macrophages+Reduces+Atherosclerosis&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Seijkens%2C+Tom+T+P&rft.au=van+Tiel%2C+Claudia+M&rft.au=Kusters%2C+Pascal+J+H&rft.au=Atzler%2C+Dorothee&rft.date=2018-02-06&rft.eissn=1558-3597&rft.volume=71&rft.issue=5&rft.spage=527&rft_id=info:doi/10.1016%2Fj.jacc.2017.11.055&rft_id=info%3Apmid%2F29406859&rft_id=info%3Apmid%2F29406859&rft.externalDocID=29406859 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-3597&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-3597&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-3597&client=summon |