Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation
Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample...
Gespeichert in:
| Veröffentlicht in: | BMC bioinformatics Jg. 8; H. 1; S. 234 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
BioMed Central Ltd
02.07.2007
BioMed Central BMC |
| Schlagworte: | |
| ISSN: | 1471-2105, 1471-2105 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES).
Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra.
We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra. |
|---|---|
| AbstractList | Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES).
Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra.
We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra. Abstract Background Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES). Results Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra. Conclusion We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra. Background Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) super(1)H, projections of 2D super(1)H, super(1)H J-resolved (pJRES), and intact 2D J-resolved (JRES). Results Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra. Conclusion We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra. Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES).BACKGROUNDClassifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES).Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra.RESULTSHere, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra.We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra.CONCLUSIONWe have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra. |
| ArticleNumber | 234 |
| Audience | Academic |
| Author | Ludwig, Christian Viant, Mark R Parsons, Helen M Günther, Ulrich L |
| AuthorAffiliation | 3 School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK 1 Centre for Systems Biology, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK 2 The Henry Wellcome Building for Biomolecular NMR Spectroscopy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK |
| AuthorAffiliation_xml | – name: 2 The Henry Wellcome Building for Biomolecular NMR Spectroscopy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK – name: 3 School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK – name: 1 Centre for Systems Biology, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK |
| Author_xml | – sequence: 1 givenname: Helen M surname: Parsons fullname: Parsons, Helen M – sequence: 2 givenname: Christian surname: Ludwig fullname: Ludwig, Christian – sequence: 3 givenname: Ulrich L surname: Günther fullname: Günther, Ulrich L – sequence: 4 givenname: Mark R surname: Viant fullname: Viant, Mark R |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17605789$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1DAUhSNURB-wZocsISGxSBvHceJskKqKx0gFpAJr69q-zrhK7MHOVPRv8IvxzJSqg0AoCyf3fufc2D7HxYEPHoviOa1OKRXtGW06Wta04qUoa9Y8Ko7uKwcP3g-L45Suq4p2ouJPikPatRXvRH9U_FxMqxhu0BA9QkrOOg2zC56A1usI-pY4T2hJwBtSl8ZN6FNuw0g-fbwiE86gwhgmpxMxMANZJ-cHMi-R3EB04DWSlBk3um1jQI8R8kceOIYhI_NyInMEn2yI03b00-KxhTHhs7v1pPj27u3Xiw_l5ef3i4vzy1Jz0c9loxRnjFvWNo2ymqG1VlNuOgXaKuzqHrDnVtvO1Ng2Bpq6VqJra1txYymyk2Kx8zUBruUqugnirQzg5LYQ4iAhzk6PKFnftdBYhkyoRvUtKNUjhVaZjlmjdPZ6s_NardWERqPPexr3TPc73i3lEG4k7VveCJENXt0ZxPB9jWmWk0saxxE8hnWSrahZX1X8v2BdsaZpaZ_BlztwgLwD523Ig_UGlue0FYwLtp17-hcqPwbzpeawWZfre4LXe4LMzPhjHmCdklx8udpnXzw8lfvj-B2_DPAdoGNIKaKV2s3bEOS_cKOkldzEXG6CLDdBlkLmmGfd2R-6e-t_KH4B5FUBRg |
| CitedBy_id | crossref_primary_10_1016_j_fsi_2013_09_037 crossref_primary_10_1002_clen_201000515 crossref_primary_10_1007_s11306_011_0350_z crossref_primary_10_3389_fmolb_2021_669082 crossref_primary_10_1007_s11105_011_0368_4 crossref_primary_10_1016_j_clnu_2020_10_051 crossref_primary_10_1371_journal_pone_0004251 crossref_primary_10_1086_689590 crossref_primary_10_1214_20_BA1208 crossref_primary_10_1016_j_ecoenv_2018_03_040 crossref_primary_10_1039_C6AY03102A crossref_primary_10_1002_etc_446 crossref_primary_10_1155_2016_9162074 crossref_primary_10_1016_j_jprot_2013_09_001 crossref_primary_10_1111_raq_12146 crossref_primary_10_1002_nbm_1345 crossref_primary_10_1007_s10646_010_0569_x crossref_primary_10_1016_j_chemolab_2020_104169 crossref_primary_10_1289_ehp_0900985 crossref_primary_10_1002_mrc_2501 crossref_primary_10_1007_s00344_011_9244_6 crossref_primary_10_1038_srep40275 crossref_primary_10_1093_icb_ict015 crossref_primary_10_1371_journal_pone_0056422 crossref_primary_10_1016_j_etap_2011_05_006 crossref_primary_10_1371_journal_pone_0026155 crossref_primary_10_1016_j_chemolab_2011_05_006 crossref_primary_10_1088_1755_1315_252_3_032166 crossref_primary_10_3390_md9091566 crossref_primary_10_1021_es9008689 crossref_primary_10_1016_j_fsi_2017_02_042 crossref_primary_10_3390_md11114158 crossref_primary_10_1016_j_jfoodeng_2019_109684 crossref_primary_10_1016_j_foodres_2025_116327 crossref_primary_10_1016_j_physa_2013_12_054 crossref_primary_10_1016_j_chemosphere_2015_08_029 crossref_primary_10_1515_biol_2022_0556 crossref_primary_10_1016_j_aquatox_2010_08_005 crossref_primary_10_3390_ijms24021591 crossref_primary_10_1111_are_13178 crossref_primary_10_1016_j_chroma_2011_01_024 crossref_primary_10_3390_metabo10110470 crossref_primary_10_1007_s11306_018_1321_4 crossref_primary_10_1016_j_etap_2013_11_016 crossref_primary_10_3390_molecules25173972 crossref_primary_10_3390_metabo15010048 crossref_primary_10_1016_j_etap_2014_02_015 crossref_primary_10_1016_j_ab_2017_02_006 crossref_primary_10_1038_s41598_017_03108_x crossref_primary_10_1002_tox_22057 crossref_primary_10_1007_s00343_013_2124_0 crossref_primary_10_1016_j_aca_2017_09_019 crossref_primary_10_1111_anu_12420 crossref_primary_10_1016_j_aquatox_2009_07_005 crossref_primary_10_1002_cem_2880 crossref_primary_10_1007_s11306_011_0347_7 crossref_primary_10_1038_ncomms1562 crossref_primary_10_1371_journal_pone_0165884 crossref_primary_10_1186_1741_7007_6_25 crossref_primary_10_1007_s10886_016_0771_2 crossref_primary_10_1371_journal_pone_0164394 crossref_primary_10_1016_j_aquatox_2016_03_012 crossref_primary_10_1002_pca_1186 crossref_primary_10_1038_s41597_020_0545_0 crossref_primary_10_3390_app12062824 crossref_primary_10_1016_j_fsi_2013_05_009 crossref_primary_10_4155_fmc_09_54 crossref_primary_10_1007_s00344_012_9305_5 crossref_primary_10_1039_B808986H crossref_primary_10_1016_j_fsi_2014_05_033 crossref_primary_10_1093_gigascience_giae005 crossref_primary_10_1007_s11306_020_01686_y crossref_primary_10_1016_j_etap_2010_12_003 crossref_primary_10_1016_j_pocean_2015_04_022 crossref_primary_10_1038_s41597_022_01264_y crossref_primary_10_1111_acel_13149 crossref_primary_10_1007_s11306_012_0415_7 crossref_primary_10_1038_srep25125 crossref_primary_10_1038_nprot_2016_156 crossref_primary_10_1016_j_neo_2016_11_003 crossref_primary_10_1016_j_toxlet_2015_10_031 crossref_primary_10_1016_j_fsi_2016_11_051 crossref_primary_10_1016_j_hal_2017_12_002 crossref_primary_10_1016_j_aquaculture_2014_10_023 crossref_primary_10_1371_journal_pone_0235415 crossref_primary_10_1002_clen_201100208 crossref_primary_10_1007_s11306_016_1030_9 crossref_primary_10_1016_j_etap_2014_04_007 crossref_primary_10_1002_nbm_1428 crossref_primary_10_1016_j_aquatox_2017_09_010 crossref_primary_10_3390_metabo7010008 crossref_primary_10_1093_toxsci_kfq247 crossref_primary_10_1007_s11356_014_3859_7 crossref_primary_10_1007_s00300_013_1375_8 crossref_primary_10_1002_mrc_5373 crossref_primary_10_3390_metabo12010029 crossref_primary_10_1016_j_jprot_2013_08_004 crossref_primary_10_1016_j_trac_2007_12_001 crossref_primary_10_1007_s11306_011_0366_4 crossref_primary_10_1016_j_ecoenv_2012_03_016 crossref_primary_10_1016_j_lwt_2025_118507 crossref_primary_10_1007_s11306_008_0133_3 crossref_primary_10_1002_art_38021 crossref_primary_10_1016_j_chemosphere_2015_01_055 crossref_primary_10_1016_j_ecoenv_2012_02_022 crossref_primary_10_1007_s11306_008_0152_0 crossref_primary_10_3390_cancers13133140 crossref_primary_10_1007_s00216_013_6856_7 crossref_primary_10_1016_j_cbpc_2021_109022 crossref_primary_10_1007_s11306_011_0355_7 crossref_primary_10_1016_j_ab_2007_10_002 crossref_primary_10_3390_metabo12080679 crossref_primary_10_1002_clen_201000410 crossref_primary_10_1186_1471_2105_12_413 crossref_primary_10_1016_j_fsi_2013_09_014 crossref_primary_10_1158_0008_5472_CAN_15_0202 crossref_primary_10_1371_journal_pone_0187545 crossref_primary_10_1007_s10646_012_0992_2 crossref_primary_10_1007_s00343_013_2037_y crossref_primary_10_1007_s11306_010_0221_z crossref_primary_10_3389_fimmu_2021_725641 crossref_primary_10_1007_s10646_011_0699_9 crossref_primary_10_1007_s10646_017_1777_4 crossref_primary_10_1186_1471_2105_9_280 crossref_primary_10_1593_neo_81396 crossref_primary_10_1007_s11306_014_0693_3 crossref_primary_10_1007_s11306_009_0194_y crossref_primary_10_1093_treephys_tpz049 crossref_primary_10_3389_fpubh_2020_00176 crossref_primary_10_1016_j_csda_2017_06_001 crossref_primary_10_1089_omi_2009_0139 crossref_primary_10_1016_j_jprot_2014_08_010 crossref_primary_10_1016_j_marenvres_2011_04_002 crossref_primary_10_1186_1471_2105_12_366 crossref_primary_10_1016_j_ecoenv_2015_05_005 crossref_primary_10_1128_JVI_00187_16 crossref_primary_10_1021_es1037222 crossref_primary_10_1016_j_chemosphere_2017_08_083 crossref_primary_10_1093_bib_bbv077 crossref_primary_10_1038_sdata_2014_12 crossref_primary_10_1002_mrc_2535 crossref_primary_10_3390_metabo13070879 crossref_primary_10_1007_s11306_007_0092_0 |
| Cites_doi | 10.1021/es062745w 10.1093/bioinformatics/btg178 10.1016/j.bbrc.2003.09.092 10.1038/ng1031 10.1016/j.tibtech.2004.03.007 10.1016/S0003-2670(03)00094-1 10.1093/bioinformatics/btg245 10.1093/bioinformatics/18.suppl_1.S105 10.1186/1471-2164-7-142 10.1007/s10886-006-9152-6 10.1007/s11306-005-4429-2 10.1006/jmre.2000.2121 10.1089/1536231041388348 10.1017/CBO9780511812651 10.1016/j.phytochem.2006.08.018 10.1021/ac0156870 10.1016/j.ab.2003.07.026 10.1016/S0003-2670(03)00060-6 10.1016/S0079-6565(00)00036-4 10.1093/bioinformatics/btg107 10.1074/jbc.M410200200 10.1016/0308-8146(95)00220-0 10.1007/s11306-006-0043-1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2007 BioMed Central Ltd. Copyright © 2007 Parsons et al; licensee BioMed Central Ltd. 2007 Parsons et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: COPYRIGHT 2007 BioMed Central Ltd. – notice: Copyright © 2007 Parsons et al; licensee BioMed Central Ltd. 2007 Parsons et al; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7QO 8FD FR3 P64 7X8 5PM DOA |
| DOI | 10.1186/1471-2105-8-234 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Science (Gale In Context) Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 234 |
| ExternalDocumentID | oai_doaj_org_article_3976a4f3e38b4b96abb9e1a6bd73fdbc PMC1965488 A168358388 17605789 10_1186_1471_2105_8_234 |
| Genre | Comparative Study Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO ICD IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB ALIPV CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM |
| ID | FETCH-LOGICAL-c589t-4bb5335f3644bfc3efffc15d7bacfbe729ae95fcf7d2e64da422b8762f05df1e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 184 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000249273600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:53:15 EDT 2025 Thu Aug 21 18:43:01 EDT 2025 Thu Sep 04 16:24:54 EDT 2025 Tue Oct 07 09:25:49 EDT 2025 Mon Oct 20 23:18:27 EDT 2025 Mon Oct 20 17:17:52 EDT 2025 Thu Oct 16 16:11:53 EDT 2025 Thu Apr 03 06:56:55 EDT 2025 Sat Nov 29 02:18:00 EST 2025 Tue Nov 18 21:54:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c589t-4bb5335f3644bfc3efffc15d7bacfbe729ae95fcf7d2e64da422b8762f05df1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Undefined-3 |
| OpenAccessLink | https://doaj.org/article/3976a4f3e38b4b96abb9e1a6bd73fdbc |
| PMID | 17605789 |
| PQID | 20344619 |
| PQPubID | 23462 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3976a4f3e38b4b96abb9e1a6bd73fdbc pubmedcentral_primary_oai_pubmedcentral_nih_gov_1965488 proquest_miscellaneous_68239005 proquest_miscellaneous_20344619 gale_infotracmisc_A168358388 gale_infotracacademiconefile_A168358388 gale_incontextgauss_ISR_A168358388 pubmed_primary_17605789 crossref_citationtrail_10_1186_1471_2105_8_234 crossref_primary_10_1186_1471_2105_8_234 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-07-02 |
| PublicationDateYYYYMMDD | 2007-07-02 |
| PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-02 day: 02 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2007 |
| Publisher | BioMed Central Ltd BioMed Central BMC |
| Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
| References | 1606_CR22 HT Widarto (1606_CR18) 2006; 32 L Eriksson (1606_CR3) 2001 MR Viant (1606_CR15) 2003; 310 GA Churchill (1606_CR8) 2002; 32 1606_CR27 CY Lin (1606_CR23) 2007; 3 JC Lindon (1606_CR5) 2001; 39 ME Dumas (1606_CR17) 2002; 74 Y Wang (1606_CR20) 2003; 323 SC Geller (1606_CR13) 2003; 19 BP Durbin (1606_CR14) 2002; 18 HC Keun (1606_CR10) 2003; 490 GLAH Jones (1606_CR6) 2004; 280 A Hines (1606_CR24) 2007; 41 S Golotvin (1606_CR26) 2000; 146 PV Purohit (1606_CR11) 2004; 8 MR Viant (1606_CR21) 2005; 1 A Craig (1606_CR9) 2006; 78 O Beckonert (1606_CR4) 2003; 490 B Durbin (1606_CR25) 2003; 19 DM Rocke (1606_CR12) 2003; 19 BD Ripley (1606_CR7) 1996 R Goodacre (1606_CR1) 2004; 22 YS Liang (1606_CR19) 2006; 67 HH van den Berg Robert (1606_CR2) 2006; 7 L Forveille (1606_CR16) 1996; 57 |
| References_xml | – volume: 78 start-page: 2262 issue: 7 year: 2006 ident: 1606_CR9 publication-title: Analytical chemistry(Washington, DC) – volume: 41 start-page: 3375 year: 2007 ident: 1606_CR24 publication-title: Environmental Science & Technology doi: 10.1021/es062745w – volume: 19 start-page: 1360 year: 2003 ident: 1606_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg178 – volume: 310 start-page: 943 year: 2003 ident: 1606_CR15 publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2003.09.092 – volume-title: Multi-and megavariate data analysis: principles and applications year: 2001 ident: 1606_CR3 – volume: 32 start-page: 490 year: 2002 ident: 1606_CR8 publication-title: Nature Genetics doi: 10.1038/ng1031 – volume: 22 start-page: 245 year: 2004 ident: 1606_CR1 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2004.03.007 – volume: 490 start-page: 265 year: 2003 ident: 1606_CR10 publication-title: Analytica Chimica Acta doi: 10.1016/S0003-2670(03)00094-1 – volume: 19 start-page: 1817 year: 2003 ident: 1606_CR13 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg245 – volume: 18 start-page: S105 year: 2002 ident: 1606_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S105 – volume: 7 start-page: 142 year: 2006 ident: 1606_CR2 publication-title: BMC Genomics doi: 10.1186/1471-2164-7-142 – ident: 1606_CR22 – volume: 32 start-page: 2417 year: 2006 ident: 1606_CR18 publication-title: Journal of Chemical Ecology doi: 10.1007/s10886-006-9152-6 – volume: 1 start-page: 149 year: 2005 ident: 1606_CR21 publication-title: Metabolomics doi: 10.1007/s11306-005-4429-2 – volume: 146 start-page: 122 year: 2000 ident: 1606_CR26 publication-title: J Magn Reson doi: 10.1006/jmre.2000.2121 – volume: 8 start-page: 118 year: 2004 ident: 1606_CR11 publication-title: OMICS doi: 10.1089/1536231041388348 – volume-title: Pattern Recognition and Neural Networks year: 1996 ident: 1606_CR7 doi: 10.1017/CBO9780511812651 – volume: 67 start-page: 2503 year: 2006 ident: 1606_CR19 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2006.08.018 – volume: 74 start-page: 2261 year: 2002 ident: 1606_CR17 publication-title: Anal Chem doi: 10.1021/ac0156870 – volume: 323 start-page: 26 year: 2003 ident: 1606_CR20 publication-title: Anal Biochem doi: 10.1016/j.ab.2003.07.026 – volume: 490 start-page: 3 year: 2003 ident: 1606_CR4 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(03)00060-6 – volume: 39 start-page: 1 year: 2001 ident: 1606_CR5 publication-title: Progress in Nuclear Magnetic Resonance Spectroscopy doi: 10.1016/S0079-6565(00)00036-4 – volume: 19 start-page: 966 year: 2003 ident: 1606_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg107 – volume: 280 start-page: 7530 year: 2004 ident: 1606_CR6 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M410200200 – volume: 57 start-page: 441 year: 1996 ident: 1606_CR16 publication-title: Food Chemistry doi: 10.1016/0308-8146(95)00220-0 – ident: 1606_CR27 – volume: 3 start-page: 55 year: 2007 ident: 1606_CR23 publication-title: Metabolomics doi: 10.1007/s11306-006-0043-1 |
| SSID | ssj0017805 |
| Score | 2.3378637 |
| Snippet | Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques... Background Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification... Abstract Background Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 234 |
| SubjectTerms | Algorithms Analysis of Variance Data Interpretation, Statistical Gene Expression Profiling - methods Health aspects Magnetic Resonance Spectroscopy - methods Metabolomics Multivariate analysis Nuclear magnetic resonance Proteome - metabolism Sensitivity and Specificity |
| Title | Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17605789 https://www.proquest.com/docview/20344619 https://www.proquest.com/docview/68239005 https://pubmed.ncbi.nlm.nih.gov/PMC1965488 https://doaj.org/article/3976a4f3e38b4b96abb9e1a6bd73fdbc |
| Volume | 8 |
| WOSCitedRecordID | wos000249273600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4t3QUiyEBBfTPBzbORbUCg5doQLS3iw_tyu1WbTJVuqFH9FfzEySXTZCFRcue4gnu9bMF_ub7PgbQt4Kl_vKRce8sCnjsvTMchFY4KaSPhcuWts1m5CTiZpOq69brb6wJqyXB-4dd4j7peGxCIWy3FbCWFuFzAjrZRG9dbj6AutZJ1PD_weo1N-dK5IZg6SmHER9MiUON9cYQKTgo_2ok-3_e3He2p3GlZNbW9HJI_Jw4JD0qJ_7Y3In1E_I_b6r5PVTctO_KAieOqTGWAvUuZ8a51ZL467pvKYZo6b2NGce5f17aQ46OT2jl6EFXFzgYeWGYv0oxdL4GQWiSK8gsUaUUKCUWFTbDcx64ep5Az8IEwCT9vyStluEeFE_Iz9Ojr9_-syG1gvMlapqGbcWeGAZC6BLNroixBhdVnppDUQvACM3oSqjixDPILg3PM8tLqwxLX3MQvGc7NSLOuwSWphgjVdZFCl8VypNpXgojeSpy21V2oR8WAdAu0GXHNtjXOguP1FCY8Q0RkwrDRFLyPvNDT97SY7bTT9iRDdmqKXdXQCE6QFh-l8IS8gbxINGtYway3FmZtU0-su3M32UCWCwqlAqIe8Go7iA2TsznG4AH6DA1shyf2QJj7MbDb9ew07jENbA1WGxanSO6oyQ795uIVReVLCsJuRFD9M__pGQtkoF98oRgEeeGY_U8_NObRwlJ2GVf_k_XLlHHqzfjaf5Ptlpl6vwitxzV-28WR6Qu3KqDroHGT5Pfx3_BjlmUbs |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+classification+accuracy+in+1-+and+2-dimensional+NMR+metabolomics+data+using+the+variance+stabilising+generalised+logarithm+transformation&rft.jtitle=BMC+bioinformatics&rft.au=Parsons%2C+Helen+M&rft.au=Ludwig%2C+Christian&rft.au=Gunther%2C+Ulrich+L&rft.au=Viant%2C+Mark+R&rft.date=2007-07-02&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=8&rft.spage=234&rft_id=info:doi/10.1186%2F1471-2105-8-234&rft.externalDBID=ISR&rft.externalDocID=A168358388 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |