RintC: fast and accuracy-aware decomposition of distributions of RNA secondary structures with extended logsumexp

Background Analysis of secondary structures is essential for understanding the functions of RNAs. Because RNA molecules thermally fluctuate, it is necessary to analyze the probability distributions of their secondary structures. Existing methods, however, are not applicable to long RNAs owing to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics Jg. 21; H. 1; S. 210 - 19
Hauptverfasser: Takizawa, Hiroki, Iwakiri, Junichi, Asai, Kiyoshi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 24.05.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1471-2105, 1471-2105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Analysis of secondary structures is essential for understanding the functions of RNAs. Because RNA molecules thermally fluctuate, it is necessary to analyze the probability distributions of their secondary structures. Existing methods, however, are not applicable to long RNAs owing to their high computational complexity. Additionally, previous research has suffered from two numerical difficulties: overflow and significant numerical errors. Result In this research, we reduced the computational complexity of calculating the landscape of the probability distribution of secondary structures by introducing a maximum-span constraint. In addition, we resolved numerical computation problems through two techniques: extended logsumexp and accuracy-guaranteed numerical computation. We analyzed the stability of the secondary structures of 16S ribosomal RNAs at various temperatures without overflow. The results obtained are consistent with previous research on thermophilic bacteria, suggesting that our method is applicable in thermal stability analysis. Furthermore, we quantitatively assessed numerical stability using our method.. Conclusion These results demonstrate that the proposed method is applicable to long RNAs..
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-020-3535-5