Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review

Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by art...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of imaging Ročník 9; číslo 4; s. 81
Hlavní autori: Kebaili, Aghiles, Lapuyade-Lahorgue, Jérôme, Ruan, Su
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 01.04.2023
MDPI
Predmet:
ISSN:2313-433X, 2313-433X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.
AbstractList Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.
Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.
Audience Academic
Author Ruan, Su
Lapuyade-Lahorgue, Jérôme
Kebaili, Aghiles
AuthorAffiliation Université Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen, France
AuthorAffiliation_xml – name: Université Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen, France
Author_xml – sequence: 1
  givenname: Aghiles
  orcidid: 0009-0000-6114-7733
  surname: Kebaili
  fullname: Kebaili, Aghiles
– sequence: 2
  givenname: Jérôme
  orcidid: 0000-0002-2638-6795
  surname: Lapuyade-Lahorgue
  fullname: Lapuyade-Lahorgue, Jérôme
– sequence: 3
  givenname: Su
  orcidid: 0000-0001-8785-6917
  surname: Ruan
  fullname: Ruan, Su
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37103232$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04090590$$DView record in HAL
BookMark eNp1kktv1DAUhSNUREvpmh2yxAYW0_qZxGxQ1AIdMQgJgcTOunGcjEeJHZxkUP99PU0LnREosmJdn_PZvj7PkyPnnUmSlwSfMybxxcZ20FjXSMwxzsmT5IQywhacsZ9Hj-bHydkwbDDGRNI45LPkmGUEM8roSfL5ypgerQwEF0mo6PvgQa_NgGof0BWMgIqp6YwbYbTeIevQF1NZDS1azru_QwX6ZrbW_H6RPK2hHczZ_f80-fHxw_fL68Xq66flZbFaaJHLcUGykpZ5qjPKUw1pzUgtBaEZw7LimKYlrzAHnVU1p6LiJSszDFDVJWEy1aZkp8ly5lYeNqoPsQ3hRnmw6q7gQ6MgjFa3RuE0pbQsuWGccaikrCKACmAgBM84j6z3M6ufys7EVTcGaPeg-yvOrlXjt4pgwnnG8kh4OxPWB77rYqV2tfg6EguJtyRq39zvFvyvyQyj6uygTduCM34aFM1xKiVLxe5grw-kGz8FF_t6pxKc5Cz9q2og3ta62sdD6h1UFZnANBdUiqg6_4cqfpXprI6hqm2s7xlePe7Kn2s95CYKxCzQwQ9DMLXSdk5IJNs2dkftIqoOIhp9Fwe-B_T_HLfhzOYa
CitedBy_id crossref_primary_10_1007_s00330_025_11649_3
crossref_primary_10_1109_ACCESS_2025_3566627
crossref_primary_10_1109_ACCESS_2025_3584376
crossref_primary_10_3390_biomedicines13061446
crossref_primary_10_3390_diagnostics14010089
crossref_primary_10_1016_j_patter_2025_101212
crossref_primary_10_1093_cercor_bhae393
crossref_primary_10_1016_j_aei_2025_103134
crossref_primary_10_1016_j_compbiomed_2025_109834
crossref_primary_10_3390_app13158793
crossref_primary_10_3390_bioengineering10121421
crossref_primary_10_1016_j_cmpb_2024_108363
crossref_primary_10_1007_s11760_025_04577_8
crossref_primary_10_1109_ACCESS_2024_3354724
crossref_primary_10_3390_surgeries6030050
crossref_primary_10_1016_j_cmpb_2025_108724
crossref_primary_10_1016_j_knosys_2024_112202
crossref_primary_10_3390_make7010001
crossref_primary_10_3390_s25020494
crossref_primary_10_1016_j_compbiomed_2025_110501
crossref_primary_10_1038_s41598_024_72312_3
crossref_primary_10_1088_2057_1976_ad5207
crossref_primary_10_1109_TBME_2024_3384014
crossref_primary_10_3390_jimaging10120329
crossref_primary_10_1016_j_iswa_2025_200512
crossref_primary_10_3390_rs16193562
crossref_primary_10_3389_fdmed_2025_1618246
crossref_primary_10_1177_15563316251335334
crossref_primary_10_3390_j7010003
crossref_primary_10_1007_s10278_024_01107_9
crossref_primary_10_1038_s41598_025_00600_7
crossref_primary_10_3390_diagnostics15151938
crossref_primary_10_1016_j_atech_2025_101258
crossref_primary_10_1007_s41870_024_02234_w
crossref_primary_10_1016_j_bspc_2025_108469
crossref_primary_10_1016_j_compeleceng_2024_109823
crossref_primary_10_1016_j_health_2024_100330
crossref_primary_10_1038_s41598_024_69119_7
crossref_primary_10_3390_jimaging9100232
crossref_primary_10_1109_ACCESS_2024_3389669
crossref_primary_10_1016_j_rineng_2025_104267
crossref_primary_10_1002_mp_17909
crossref_primary_10_1177_15330338251342860
crossref_primary_10_3389_fphy_2024_1379873
crossref_primary_10_3390_bioengineering10121348
crossref_primary_10_3389_fcvm_2025_1512356
crossref_primary_10_1016_j_ipm_2025_104216
crossref_primary_10_1038_s41598_025_86752_y
crossref_primary_10_1016_j_oooo_2025_07_009
crossref_primary_10_1007_s40747_024_01729_0
crossref_primary_10_1016_j_compmedimag_2025_102532
crossref_primary_10_1016_j_jmsy_2024_04_021
crossref_primary_10_1016_j_compbiomed_2025_111052
crossref_primary_10_1515_mr_2024_0086
crossref_primary_10_1007_s11596_025_00008_4
crossref_primary_10_3389_fonc_2025_1492758
crossref_primary_10_1007_s11760_025_04111_w
crossref_primary_10_3390_axioms12050462
crossref_primary_10_1016_j_envsoft_2025_106338
crossref_primary_10_37394_232027_2025_7_14
crossref_primary_10_1109_TCDS_2024_3489357
crossref_primary_10_1002_clc_24148
crossref_primary_10_3390_bioengineering12050538
crossref_primary_10_3390_bioengineering10121435
crossref_primary_10_1016_j_measen_2025_101867
crossref_primary_10_1016_j_neucom_2024_128167
crossref_primary_10_1007_s10462_025_11116_x
crossref_primary_10_3389_fninf_2025_1568116
crossref_primary_10_3390_biomimetics8070519
crossref_primary_10_1038_s41598_025_16760_5
crossref_primary_10_1016_j_neucom_2024_128360
crossref_primary_10_3390_biomedinformatics5030037
crossref_primary_10_1007_s00383_023_05609_5
crossref_primary_10_1007_s11831_025_10302_y
crossref_primary_10_3390_electronics14091735
crossref_primary_10_1016_j_bspc_2024_106920
crossref_primary_10_1016_j_ymeth_2025_04_016
crossref_primary_10_1038_s41598_025_87358_0
crossref_primary_10_1080_24725579_2025_2510966
crossref_primary_10_1111_ele_14397
crossref_primary_10_1016_j_compeleceng_2024_109446
crossref_primary_10_1016_j_iot_2024_101298
crossref_primary_10_1109_ACCESS_2025_3557804
crossref_primary_10_3390_app15094704
crossref_primary_10_1016_j_imu_2024_101575
crossref_primary_10_1038_s41551_025_01456_y
crossref_primary_10_1109_ACCESS_2024_3501475
crossref_primary_10_3390_diagnostics14080848
crossref_primary_10_1016_j_patrec_2024_11_023
crossref_primary_10_1016_j_compmedimag_2024_102325
crossref_primary_10_3390_bioengineering12030235
crossref_primary_10_1038_s41598_025_11955_2
crossref_primary_10_1016_j_compbiomed_2025_110996
crossref_primary_10_1016_j_compbiomed_2025_110799
crossref_primary_10_3390_diagnostics14070694
crossref_primary_10_1016_j_identj_2025_103878
Cites_doi 10.1007/978-3-031-16980-9_10
10.1007/978-3-319-24574-4_28
10.1109/JBHI.2020.2964016
10.1007/978-3-031-33380-4_14
10.1109/CVPR.2017.19
10.1016/j.cmpb.2021.106018
10.1007/s11036-020-01678-1
10.1016/j.media.2015.08.009
10.1016/j.neucom.2018.09.013
10.1038/s41597-019-0322-0
10.1016/j.cell.2018.02.010
10.1007/978-3-030-00934-2_52
10.1007/978-3-031-16431-6_51
10.1109/CVPRW53098.2021.00201
10.1109/TIT.1967.1053964
10.1007/978-981-15-4992-2_30
10.1016/j.patcog.2021.108417
10.1007/978-3-030-00536-8_1
10.3390/jimaging8050130
10.1016/j.patrec.2005.10.010
10.1007/978-3-031-16446-0_47
10.1016/j.cmpb.2021.106113
10.1186/s13244-022-01237-0
10.1109/ICMLA.2019.00137
10.1109/TCBB.2021.3065361
10.1016/j.asoc.2021.107836
10.1109/ICBK50248.2020.00041
10.1007/978-3-658-25326-4_7
10.1016/j.patrec.2022.04.019
10.1016/j.media.2022.102708
10.3390/biomedicines10020223
10.1109/TMI.2019.2901750
10.1109/ISBI.2019.8759585
10.1109/ICSP56322.2022.9965350
10.1007/978-3-031-16980-9_8
10.1109/JBHI.2020.3042523
10.1016/j.media.2020.101944
10.1007/978-3-030-32248-9_14
10.1016/j.media.2022.102723
10.1109/TBME.2018.2814538
10.1111/1754-9485.13261
10.1109/TMI.2018.2837502
10.1016/j.compmedimag.2019.101684
10.1109/CVPR.2019.00244
10.1109/ICCV.2017.304
10.1038/s41598-019-52737-x
10.7557/18.6803
10.1109/CVPR.2017.369
10.1016/j.cmpb.2021.106019
10.1007/978-3-319-68127-6_1
10.1109/ACCESS.2019.2947606
10.1007/978-3-031-18576-2_12
10.1109/97.995823
10.3390/fi14120351
10.1109/ITIA50152.2020.9312330
10.1016/j.media.2005.02.002
10.1016/j.acra.2005.05.027
10.1016/j.compbiomed.2022.105382
10.1016/j.zemedi.2018.11.002
10.1007/978-3-319-68127-6_2
10.1016/j.compbiomed.2022.105603
10.1109/TIT.2010.2068870
10.1016/j.compmedimag.2018.10.005
10.1186/s40537-019-0197-0
10.1364/BOE.449796
10.1016/j.cogsys.2018.12.007
10.1109/CCDC49329.2020.9164303
10.1145/3440067.3440073
10.1109/TMI.2019.2914656
10.1016/j.neuroimage.2013.05.041
10.1109/CVPR.2018.00068
10.1016/j.compbiomed.2022.105444
10.1109/TMI.2004.825627
10.3390/e24040436
10.1002/mp.12748
10.1007/978-3-030-59725-2_57
10.1093/ije/dyaa135
10.1088/1741-2552/ac1179
10.1109/CVPR52688.2022.01042
10.1109/ACCESS.2020.2994762
10.1109/CVPR52729.2023.00976
10.1002/mp.13695
10.1109/IUS52206.2021.9593403
10.1186/s40708-020-00104-2
10.1109/CVPR.2017.632
10.1007/978-3-030-11723-8_7
10.1109/TPAMI.2022.3185773
10.1007/978-3-031-16980-9_4
10.1109/ICCV.2017.244
10.1007/978-3-030-86340-1_47
10.1109/TIP.2003.819861
10.1145/3065386
10.1007/978-3-030-59728-3_64
10.1016/j.media.2019.101552
10.1016/j.mri.2021.06.001
10.1109/ISBI.2018.8363678
10.1109/WACV56688.2023.00204
10.1109/ISBI52829.2022.9761590
10.1007/978-3-030-42750-4_6
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
1XC
5PM
DOA
DOI 10.3390/jimaging9040081
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_06622bb4e3434ad99dceb25a3a554744
PMC10144738
oai:HAL:hal-04090590v1
A750285295
37103232
10_3390_jimaging9040081
Genre Journal Article
Review
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
1XC
IPNFZ
RIG
5PM
ID FETCH-LOGICAL-c589t-17b2b86c7246ca6f31f95127309d4026b4d04ac7df425d4b3b70aadfb1396ceb3
IEDL.DBID DOA
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000977408400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-433X
IngestDate Fri Oct 03 12:51:57 EDT 2025
Tue Nov 04 02:06:45 EST 2025
Tue Nov 18 06:20:29 EST 2025
Sun Nov 09 13:42:34 EST 2025
Fri Jul 25 03:44:23 EDT 2025
Tue Nov 11 11:10:01 EST 2025
Tue Nov 04 18:32:51 EST 2025
Mon Jul 21 06:01:32 EDT 2025
Sat Nov 29 07:13:13 EST 2025
Tue Nov 18 20:49:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords generative models
deep learning
variational autoencoders
data augmentation
diffusion models
medical imaging
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-17b2b86c7246ca6f31f95127309d4026b4d04ac7df425d4b3b70aadfb1396ceb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMCID: PMC10144738
ORCID 0000-0002-2638-6795
0009-0000-6114-7733
0000-0001-8785-6917
OpenAccessLink https://doaj.org/article/06622bb4e3434ad99dceb25a3a554744
PMID 37103232
PQID 2806541836
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_06622bb4e3434ad99dceb25a3a554744
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10144738
hal_primary_oai_HAL_hal_04090590v1
proquest_miscellaneous_2806993654
proquest_journals_2806541836
gale_infotracmisc_A750285295
gale_infotracacademiconefile_A750285295
pubmed_primary_37103232
crossref_citationtrail_10_3390_jimaging9040081
crossref_primary_10_3390_jimaging9040081
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of imaging
PublicationTitleAlternate J Imaging
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_137
ref_93
ref_92
ref_91
ref_138
Qiang (ref_86) 2021; 18
Guan (ref_63) 2022; 145
ref_11
ref_99
Islam (ref_7) 2020; 7
ref_10
ref_98
ref_133
ref_97
ref_132
ref_96
ref_135
ref_95
ref_134
ref_19
ref_18
ref_17
ref_16
Chadebec (ref_82) 2022; 45
Pesteie (ref_81) 2019; 38
Ho (ref_20) 2020; 33
Ren (ref_162) 2021; 54
ref_127
Nguyen (ref_150) 2010; 56
ref_25
Jiang (ref_69) 2019; 46
Gan (ref_90) 2022; 13
Krizhevsky (ref_8) 2017; 60
ref_24
ref_120
ref_21
ref_122
ref_121
ref_123
Han (ref_49) 2019; 7
ref_29
ref_28
ref_27
ref_26
Bullitt (ref_124) 2005; 12
Dar (ref_47) 2019; 38
ref_72
ref_159
ref_71
Pang (ref_57) 2021; 203
Yurt (ref_46) 2021; 70
Diamant (ref_42) 2018; 321
ref_79
Sun (ref_54) 2020; 24
ref_153
ref_75
ref_154
ref_74
ref_157
ref_73
ref_156
ref_160
Armanious (ref_77) 2020; 79
Yi (ref_14) 2019; 58
Lundervold (ref_5) 2019; 29
ref_83
Bai (ref_128) 2015; 26
ref_147
ref_80
ref_140
ref_89
ref_142
ref_88
ref_141
ref_87
ref_144
ref_143
ref_85
ref_84
Waheed (ref_52) 2020; 8
Hirte (ref_61) 2021; 81
Barile (ref_58) 2021; 206
Kermany (ref_131) 2018; 172
Jones (ref_136) 2020; 49
ref_50
Shen (ref_59) 2021; 202
Talo (ref_161) 2019; 54
ref_56
ref_55
ref_53
ref_51
Vaserstein (ref_148) 1969; 5
Wang (ref_152) 2002; 9
Jiang (ref_70) 2020; 25
Sandfort (ref_12) 2019; 9
Mahapatra (ref_13) 2019; 71
ref_60
ref_68
Smith (ref_130) 2013; 80
ref_67
ref_66
ref_163
ref_65
ref_64
ref_62
Chlap (ref_22) 2021; 65
Delgado (ref_158) 2021; 112
Nyholm (ref_105) 2018; 45
ref_115
ref_114
ref_117
ref_116
ref_119
ref_118
ref_36
Staal (ref_125) 2004; 23
ref_35
Shorten (ref_23) 2019; 6
ref_34
ref_33
Stegmann (ref_129) 2006; 10
ref_32
ref_111
ref_31
ref_110
Zhou (ref_9) 2022; 158
ref_30
Yang (ref_78) 2021; 26
ref_113
ref_112
Dhariwal (ref_37) 2021; 34
ref_39
ref_38
Nie (ref_76) 2018; 65
Ali (ref_15) 2022; 13
Sheikh (ref_151) 2005; 7
Fawcett (ref_149) 2006; 27
Saharia (ref_155) 2022; 35
ref_104
ref_103
ref_106
ref_108
ref_107
ref_109
Gretton (ref_145) 2012; 13
ref_45
ref_44
ref_43
ref_100
ref_41
ref_102
ref_40
ref_101
ref_1
Song (ref_6) 2021; 18
ref_2
Zhou (ref_3) 2022; 124
Bernard (ref_126) 2018; 37
ref_48
Cover (ref_146) 1967; 13
Wang (ref_139) 2004; 13
ref_4
References_xml – ident: ref_117
– ident: ref_83
  doi: 10.1007/978-3-031-16980-9_10
– ident: ref_27
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_100
– volume: 24
  start-page: 2303
  year: 2020
  ident: ref_54
  article-title: An adversarial learning approach to medical image synthesis for lesion detection
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2964016
– ident: ref_115
  doi: 10.1007/978-3-031-33380-4_14
– ident: ref_140
  doi: 10.1109/CVPR.2017.19
– volume: 203
  start-page: 106018
  year: 2021
  ident: ref_57
  article-title: Semi-supervised GAN-based radiomics model for data augmentation in breast ultrasound mass classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106018
– volume: 26
  start-page: 415
  year: 2021
  ident: ref_78
  article-title: Synthesizing multi-contrast MR images via novel 3D conditional Variational auto-encoding GAN
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-020-01678-1
– ident: ref_39
– ident: ref_88
– volume: 26
  start-page: 133
  year: 2015
  ident: ref_128
  article-title: A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.08.009
– volume: 321
  start-page: 321
  year: 2018
  ident: ref_42
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– ident: ref_71
– ident: ref_135
  doi: 10.1038/s41597-019-0322-0
– volume: 172
  start-page: 1122
  year: 2018
  ident: ref_131
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 13
  start-page: 723
  year: 2012
  ident: ref_145
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– ident: ref_92
  doi: 10.1007/978-3-030-00934-2_52
– volume: 35
  start-page: 36479
  year: 2022
  ident: ref_155
  article-title: Photorealistic text-to-image diffusion models with deep language understanding
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_114
– ident: ref_4
– ident: ref_31
– ident: ref_120
– ident: ref_10
– ident: ref_119
  doi: 10.1007/978-3-031-16431-6_51
– ident: ref_132
  doi: 10.1109/CVPRW53098.2021.00201
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_146
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– ident: ref_62
  doi: 10.1007/978-981-15-4992-2_30
– ident: ref_103
– volume: 124
  start-page: 108417
  year: 2022
  ident: ref_3
  article-title: A Tri-Attention fusion guided multi-modal segmentation network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108417
– ident: ref_68
  doi: 10.1007/978-3-030-00536-8_1
– ident: ref_1
  doi: 10.3390/jimaging8050130
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_149
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 34
  start-page: 8780
  year: 2021
  ident: ref_37
  article-title: Diffusion models beat gans on image synthesis
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_91
  doi: 10.1007/978-3-031-16446-0_47
– volume: 206
  start-page: 106113
  year: 2021
  ident: ref_58
  article-title: Data augmentation using generative adversarial neural networks on brain structural connectivity in multiple sclerosis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106113
– ident: ref_28
– ident: ref_53
– volume: 13
  start-page: 98
  year: 2022
  ident: ref_15
  article-title: The role of generative adversarial networks in brain MRI: A scoping review
  publication-title: Insights Imaging
  doi: 10.1186/s13244-022-01237-0
– ident: ref_85
  doi: 10.1109/ICMLA.2019.00137
– volume: 18
  start-page: 2775
  year: 2021
  ident: ref_6
  article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2021.3065361
– volume: 112
  start-page: 107836
  year: 2021
  ident: ref_158
  article-title: Deep learning with small datasets: Using autoencoders to address limited datasets in construction management
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107836
– ident: ref_48
  doi: 10.1109/ICBK50248.2020.00041
– ident: ref_102
  doi: 10.1007/978-3-658-25326-4_7
– volume: 54
  start-page: 1
  year: 2021
  ident: ref_162
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv. (CSUR)
– ident: ref_134
– ident: ref_11
– volume: 158
  start-page: 125
  year: 2022
  ident: ref_9
  article-title: Missing Data Imputation via Conditional Generator and Correlation Learning for Multimodal Brain Tumor Segmentation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.04.019
– volume: 5
  start-page: 64
  year: 1969
  ident: ref_148
  article-title: Markov processes over denumerable products of spaces, describing large systems of automata
  publication-title: Probl. Peredachi Informatsii
– ident: ref_157
– ident: ref_73
  doi: 10.1016/j.media.2022.102708
– ident: ref_106
– ident: ref_44
– ident: ref_64
  doi: 10.3390/biomedicines10020223
– volume: 38
  start-page: 2375
  year: 2019
  ident: ref_47
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2901750
– ident: ref_51
  doi: 10.1109/ISBI.2019.8759585
– ident: ref_163
– ident: ref_160
  doi: 10.1109/ICSP56322.2022.9965350
– ident: ref_101
  doi: 10.1007/978-3-031-16980-9_8
– volume: 25
  start-page: 441
  year: 2020
  ident: ref_70
  article-title: COVID-19 CT image synthesis with a conditional generative adversarial network
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3042523
– volume: 70
  start-page: 101944
  year: 2021
  ident: ref_46
  article-title: mustGAN: Multi-stream generative adversarial networks for MR image synthesis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101944
– ident: ref_143
– ident: ref_25
– ident: ref_50
  doi: 10.1007/978-3-030-32248-9_14
– ident: ref_33
– ident: ref_112
– ident: ref_65
  doi: 10.1016/j.media.2022.102723
– volume: 65
  start-page: 2720
  year: 2018
  ident: ref_76
  article-title: Medical image synthesis with deep convolutional adversarial networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2814538
– volume: 65
  start-page: 545
  year: 2021
  ident: ref_22
  article-title: A review of medical image data augmentation techniques for deep learning applications
  publication-title: J. Med. Imaging Radiat. Oncol.
  doi: 10.1111/1754-9485.13261
– ident: ref_137
– volume: 37
  start-page: 2514
  year: 2018
  ident: ref_126
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2837502
– volume: 79
  start-page: 101684
  year: 2020
  ident: ref_77
  article-title: MedGAN: Medical image translation using GANs
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101684
– ident: ref_45
  doi: 10.1109/CVPR.2019.00244
– ident: ref_99
  doi: 10.1109/ICCV.2017.304
– volume: 9
  start-page: 16884
  year: 2019
  ident: ref_12
  article-title: Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52737-x
– ident: ref_96
  doi: 10.7557/18.6803
– ident: ref_154
– ident: ref_36
– ident: ref_19
– ident: ref_109
– volume: 33
  start-page: 6840
  year: 2020
  ident: ref_20
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_127
  doi: 10.1109/CVPR.2017.369
– volume: 202
  start-page: 106019
  year: 2021
  ident: ref_59
  article-title: Mass image synthesis in mammogram with contextual information based on gans
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106019
– ident: ref_74
  doi: 10.1007/978-3-319-68127-6_1
– volume: 7
  start-page: 156966
  year: 2019
  ident: ref_49
  article-title: Combining noise-to-image and image-to-image GANs: Brain MR image augmentation for tumor detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947606
– ident: ref_97
  doi: 10.1007/978-3-031-18576-2_12
– ident: ref_142
– volume: 9
  start-page: 81
  year: 2002
  ident: ref_152
  article-title: A universal image quality index
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.995823
– ident: ref_153
  doi: 10.3390/fi14120351
– ident: ref_32
– ident: ref_56
  doi: 10.1109/ITIA50152.2020.9312330
– ident: ref_113
– ident: ref_159
– ident: ref_84
– volume: 10
  start-page: 19
  year: 2006
  ident: ref_129
  article-title: Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2005.02.002
– volume: 12
  start-page: 1232
  year: 2005
  ident: ref_124
  article-title: Vessel tortuosity and brain tumor malignancy: A blinded study1
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2005.05.027
– ident: ref_16
  doi: 10.1016/j.compbiomed.2022.105382
– volume: 29
  start-page: 102
  year: 2019
  ident: ref_5
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Zeitschrift für Medizinische Physik
  doi: 10.1016/j.zemedi.2018.11.002
– ident: ref_75
  doi: 10.1007/978-3-319-68127-6_2
– ident: ref_35
– ident: ref_94
  doi: 10.1016/j.compbiomed.2022.105603
– ident: ref_104
– volume: 56
  start-page: 5847
  year: 2010
  ident: ref_150
  article-title: Estimating divergence functionals and the likelihood ratio by convex risk minimization
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2010.2068870
– volume: 71
  start-page: 30
  year: 2019
  ident: ref_13
  article-title: Image super-resolution using progressive generative adversarial networks for medical image analysis
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.10.005
– volume: 6
  start-page: 1
  year: 2019
  ident: ref_23
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 13
  start-page: 1188
  year: 2022
  ident: ref_90
  article-title: Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.449796
– ident: ref_118
– volume: 54
  start-page: 176
  year: 2019
  ident: ref_161
  article-title: Application of deep transfer learning for automated brain abnormality classification using MR images
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.12.007
– ident: ref_72
  doi: 10.1109/CCDC49329.2020.9164303
– ident: ref_123
  doi: 10.1145/3440067.3440073
– volume: 38
  start-page: 2807
  year: 2019
  ident: ref_81
  article-title: Adaptive augmentation of medical data using independently conditional variational auto-encoders
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2914656
– volume: 80
  start-page: 62
  year: 2013
  ident: ref_130
  article-title: The WU-Minn human connectome project: An overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: ref_141
  doi: 10.1109/CVPR.2018.00068
– volume: 145
  start-page: 105444
  year: 2022
  ident: ref_63
  article-title: Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105444
– volume: 23
  start-page: 501
  year: 2004
  ident: ref_125
  article-title: Ridge-based vessel segmentation in color images of the retina
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.825627
– ident: ref_2
  doi: 10.3390/e24040436
– ident: ref_87
– volume: 45
  start-page: 1295
  year: 2018
  ident: ref_105
  article-title: MR and CT data with multiobserver delineations of organs in the pelvic area—Part of the Gold Atlas project
  publication-title: Med. Phys.
  doi: 10.1002/mp.12748
– ident: ref_55
  doi: 10.1007/978-3-030-59725-2_57
– volume: 7
  start-page: 2117
  year: 2005
  ident: ref_151
  article-title: A visual information fidelity approach to video quality assessment
  publication-title: First Int. Workshop Video Process. Qual. Metrics Consum. Electron.
– ident: ref_66
– volume: 49
  start-page: 1441
  year: 2020
  ident: ref_136
  article-title: Cohort Profile Update: Southall and Brent Revisited (SABRE) study: A UK population-based comparison of cardiovascular disease and diabetes in people of European, South Asian and African Caribbean heritage
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyaa135
– ident: ref_38
– ident: ref_107
– ident: ref_17
– volume: 18
  start-page: 0460b6
  year: 2021
  ident: ref_86
  article-title: Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac1179
– ident: ref_110
– ident: ref_98
  doi: 10.1109/CVPR52688.2022.01042
– volume: 8
  start-page: 91916
  year: 2020
  ident: ref_52
  article-title: Covidgan: Data augmentation using auxiliary classifier gan for improved covid-19 detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994762
– ident: ref_144
– ident: ref_24
– ident: ref_34
– ident: ref_156
  doi: 10.1109/CVPR52729.2023.00976
– volume: 46
  start-page: 4392
  year: 2019
  ident: ref_69
  article-title: Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets
  publication-title: Med. Phys.
  doi: 10.1002/mp.13695
– ident: ref_89
  doi: 10.1109/IUS52206.2021.9593403
– ident: ref_138
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_7
  article-title: GAN-based synthetic brain PET image generation
  publication-title: Brain Inform.
  doi: 10.1186/s40708-020-00104-2
– ident: ref_26
  doi: 10.1109/CVPR.2017.632
– ident: ref_40
– ident: ref_67
  doi: 10.1007/978-3-030-11723-8_7
– volume: 45
  start-page: 2879
  year: 2022
  ident: ref_82
  article-title: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3185773
– ident: ref_80
  doi: 10.1007/978-3-031-16980-9_4
– ident: ref_30
  doi: 10.1109/ICCV.2017.244
– ident: ref_18
– ident: ref_111
– ident: ref_21
– ident: ref_79
– ident: ref_60
  doi: 10.1007/978-3-030-86340-1_47
– ident: ref_116
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_139
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_8
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: ref_29
– ident: ref_122
– ident: ref_93
  doi: 10.1007/978-3-030-59728-3_64
– volume: 58
  start-page: 101552
  year: 2019
  ident: ref_14
  article-title: Generative adversarial network in medical imaging: A review
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101552
– volume: 81
  start-page: 60
  year: 2021
  ident: ref_61
  article-title: Realistic generation of diffusion-weighted magnetic resonance brain images with deep generative models
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2021.06.001
– ident: ref_41
  doi: 10.1109/ISBI.2018.8363678
– ident: ref_108
  doi: 10.1109/WACV56688.2023.00204
– ident: ref_133
– ident: ref_43
– ident: ref_95
  doi: 10.1109/ISBI52829.2022.9761590
– ident: ref_121
  doi: 10.1007/978-3-030-42750-4_6
– ident: ref_147
SSID ssj0001920199
Score 2.613377
SecondaryResourceType review_article
Snippet Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in...
SourceID doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 81
SubjectTerms Algorithms
Data acquisition
Data augmentation
Deep learning
Diagnostic imaging
diffusion models
Electronic data processing
Generative adversarial networks
generative models
Image analysis
Image processing
Image segmentation
Life Sciences
Machine learning
Medical imaging
Methods
Review
Technology application
Tomography
Training
variational autoencoders
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lc9MwEN6hKQc48H4YAiMYZuDixrEUW-LCGEqnHaCTA8yUk0YPOw1DnZBHfz-7tpLWZeDE1VLsdfbT6pO1-hbglfKIDOOSOLE8iREUPDaydLFTo5E0xvJhVTXFJvLjY3lyosbhePQypFVuYmITqFu1Z8rbxiA88DNHX8wHzX6gQDhm7-a_YqohRXutoaDGDuyS8FbSg93x0Zfx94tvLgqnO6VahR-Oq_3Bj-lZUwxIEZblsDM5NRr-20i9c0qJkn-y0KvJlJdmp4Pb__e97sCtwFJZ0cLqLlwr63tw85J24X34tF-WcxbkWSesCNrk5ZIhDWb7ZmVYsZ6chaNNNZvWLGwKsaP233jLCtZuTTyAbwcfv344jENlhtiNpFrFw9ymVmYuT0XmTFahR5GpIRNKlMcFaWYFQsC43FfofS8st3lijK8s8s3M4fr9IfTqWV0-BuZ5Wckkt1IgdXPemsSqoUfegesgl6U2gr2NS7QLsuVUPeOnxuUL-VBf8WEEb7Y_mLeKHX_v-p58vO1GUtvNhdliosPI1SSRn1orSi64MF4p9LRNR4YbZGK5EBG8JoRoCghomDPhXAO-Hklr6QI5WSppPzWCfqcnDmTXaX6JGOsYc1h81nQNzVV0SvgcTe5vYKRDtFnqC9RE8GLbTLenDLq6nK3bPshFsV8Ej1rEbh_Fc5JV5GkEsoPlji3dlnp62miRU6lnkXP55N92PYUbKbLDNuWpD73VYl0-g-vufDVdLp6HcfobWTVNsQ
  priority: 102
  providerName: ProQuest
Title Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/37103232
https://www.proquest.com/docview/2806541836
https://www.proquest.com/docview/2806993654
https://hal.science/hal-04090590
https://pubmed.ncbi.nlm.nih.gov/PMC10144738
https://doaj.org/article/06622bb4e3434ad99dceb25a3a554744
Volume 9
WOSCitedRecordID wos000977408400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: P5Z
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: PIMPY
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xwQM8THyOsFIZhAQvYWnsxDZvGdu0CagiBFLhJfJXtk4sm9Z2fz_nOIuaIcQLD82DfWmv57P9O_n8O4A30qJnKJPEiaZJjE5BYyWciY3MMqGUppO6botN8OlUzGayXCv15XPCAj1wMNyuZyhPtWaOMsqUldIaDAYzRRVuhJy1TKAJl2vB1FnALfiRgcuHYly_ezY_b8v-SO-1YjLYhlq2_n5N3jj1KZF_4s3baZNr-9DhQ9jqACQpguKP4I5rHsODNVrBJ_Bp37lL0jGnnpCiow13C4IIleyrpSLF6uS8u3XUkHlDuvMachzU_0AKEk4NnsL3w4NvH4_irmhCbDIhl_GE61SL3PCU5UblNRobQRSClERajBVzzXB0lOG2xoGxTFPNE6VsrREK5mha-gw2m4vGPQdiqatFwrVgiKqM1SrRcmIREmCIYvJUR_D-xoaV6RjFfWGLXxVGFt7o1S2jR_Cuf-EykGn8XXTPD0ov5lmw2wb0jarzjepfvhHBWz-klZ-rqJhR3ZUD_Hue9aoqEC6lwh91RjAaSOIcM4Pu1-gUA2WOis-Vb0N1pb_Ae40qj258puoWgkXVHlwzXDfzCF713f7rfXJb4y5WQQZhIspFsB1crP8pyj3jIU0jEAPnG-gy7Gnmpy1NuK_CzDgVL_6HKXfgforwLuQsjWBzebVyL-GeuV7OF1dj2OAzMYa7ewfT8uu4nYr4LLOf2FYefyl__AZJTTeM
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aOiTggfslUMAgELyEpbGb2EgIBcrUql3VhyGNJ2M7TlfE0tLLEH-K38hxknbLELztgdfYSU6S7xx_jo-_A_BcpIgMZQI_0DTwERTUV9wa34h2myulaSvLimIT8XDIDw_FaAt-rffCuLTKdUwsAnU6Ne4f-W6xAsgQgNG72XffVY1yq6vrEholLPr25w-csi3e9jr4fV-E4d7Hgw9dv6oq4Js2F0u_FetQ88jEIYuMijK0BlkGjuKBSHEyFWmG5isTpxlanjJNdRwolWYauVJkcO6J192GHYatQQN2Rr390efTvzoCB1QhSg0hSkWw-3VyXJQbEs5beKs2_BVVAjZjwfaRS8X8k-eeT9c8M_7tXf_f3twNuFYxbZKUrnETtmx-C66e0V-8Df2OtTNSScyOSVLpq9sFQSpPOmqpSLIaH1fbs3IyyUm1sEV65ft-QxJSLq_cgU8X8jR3oZFPc3sfSEptxoNYc4b006RaBVq0UuROOJczUag9eL3-6NJU0uuuAsg3iVMwhxJ5DiUevNqcMCtVR_7e9b1D0aabkwsvDkznY1lFH-lk_kOtmaWMMpUKgVjSYVtRhWwyZsyDlw6D0gU1NMyoam8GPp6TB5MJ8sqQuzVhD5q1nhiMTK35GaK4Zkw3GUh3DM0VbqfzCZrcXANVVhFzIU9R6sHTTbO7vMsCzO10VfZBPo39PLhX-sTmVjR20pA09IDXvKVmS70lnxwVeuquXDWLKX_wb7uewOXuwf5ADnrD_kO4EiLbLVO4mtBYzlf2EVwyJ8vJYv64igoEvly0O_0GsZWfSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9tHULwwPdHoIBBIHgJTeM0sZEQyuiqVZ2qCjFpb8Z2nK6IpaUfQ_xr_HWcE7dbhuBtD7zGTnpOf3f-Xe58B_CSZ4gMqQM_UDTwERTUl8xoX_NOh0mpaDvPy2YTyXDIjo74aAt-rc_C2LTKtU0sDXU21fYbeauMAEYIwLiVu7SIUbf3Yfbdtx2kbKR13U6jgsjA_PyB7tvifb-L__WrMOztff6477sOA77uML7024kKFYt1EkaxlnGOkiHjwB094Bk6VrGKcClSJ1mOq8giRVUSSJnlCnlTrNEPxeduw05C0elpwM7u3nD06ewLD8fNlfOqnhClPGh9nZyUrYe41RzWrm2FZceAzb6wfWzTMv_kvBdTN8_thb2b__NbvAU3HAMnaaUyt2HLFHfg-rm6jHdh0DVmRlzp2TFJXd11syBI8UlXLiVJV-MTd2yrIJOCuIAX6Vfv_h1JSRV2uQeHl7Ka-9AopoV5CCSjJmdBoliEtFRnSgaKtzPkVOjj6ThUHrxdA0BoV5Lddgb5JtA1s4gRFxDjwZvNDbOqGsnfp-5aRG2m2TLi5YXpfCycVRK2_H-oVGRoRCOZcY64UmFHUoksM4kiD15bPApr7FAwLd2ZDVyeLRsmUuSbIbOxYg-atZlopHRt-AUiuibMfnog7DUUl9sT0KcocnMNWuEs6UKcIdaD55th-3ibHViY6aqagzwb53nwoNKPzU_RxJaMpKEHrKY5NVnqI8XkuKyzbttYRwllj_4t1zO4ijokDvrDwWO4FiIJrjK7mtBYzlfmCVzRp8vJYv7UGQgCXy5bm34DSGWn4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approaches+for+Data+Augmentation+in+Medical+Imaging%3A+A+Review&rft.jtitle=Journal+of+imaging&rft.au=Kebaili%2C+Aghiles&rft.au=Lapuyade-Lahorgue%2C+J%C3%A9r%C3%B4me&rft.au=Ruan%2C+Su&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2313-433X&rft.eissn=2313-433X&rft.volume=9&rft.issue=4&rft_id=info:doi/10.3390%2Fjimaging9040081&rft.externalDocID=A750285295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon