Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review
Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by art...
Uložené v:
| Vydané v: | Journal of imaging Ročník 9; číslo 4; s. 81 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
01.04.2023
MDPI |
| Predmet: | |
| ISSN: | 2313-433X, 2313-433X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis. |
|---|---|
| AbstractList | Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis. Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis. |
| Audience | Academic |
| Author | Ruan, Su Lapuyade-Lahorgue, Jérôme Kebaili, Aghiles |
| AuthorAffiliation | Université Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen, France |
| AuthorAffiliation_xml | – name: Université Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen, France |
| Author_xml | – sequence: 1 givenname: Aghiles orcidid: 0009-0000-6114-7733 surname: Kebaili fullname: Kebaili, Aghiles – sequence: 2 givenname: Jérôme orcidid: 0000-0002-2638-6795 surname: Lapuyade-Lahorgue fullname: Lapuyade-Lahorgue, Jérôme – sequence: 3 givenname: Su orcidid: 0000-0001-8785-6917 surname: Ruan fullname: Ruan, Su |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37103232$$D View this record in MEDLINE/PubMed https://hal.science/hal-04090590$$DView record in HAL |
| BookMark | eNp1kktv1DAUhSNUREvpmh2yxAYW0_qZxGxQ1AIdMQgJgcTOunGcjEeJHZxkUP99PU0LnREosmJdn_PZvj7PkyPnnUmSlwSfMybxxcZ20FjXSMwxzsmT5IQywhacsZ9Hj-bHydkwbDDGRNI45LPkmGUEM8roSfL5ypgerQwEF0mo6PvgQa_NgGof0BWMgIqp6YwbYbTeIevQF1NZDS1azru_QwX6ZrbW_H6RPK2hHczZ_f80-fHxw_fL68Xq66flZbFaaJHLcUGykpZ5qjPKUw1pzUgtBaEZw7LimKYlrzAHnVU1p6LiJSszDFDVJWEy1aZkp8ly5lYeNqoPsQ3hRnmw6q7gQ6MgjFa3RuE0pbQsuWGccaikrCKACmAgBM84j6z3M6ufys7EVTcGaPeg-yvOrlXjt4pgwnnG8kh4OxPWB77rYqV2tfg6EguJtyRq39zvFvyvyQyj6uygTduCM34aFM1xKiVLxe5grw-kGz8FF_t6pxKc5Cz9q2og3ta62sdD6h1UFZnANBdUiqg6_4cqfpXprI6hqm2s7xlePe7Kn2s95CYKxCzQwQ9DMLXSdk5IJNs2dkftIqoOIhp9Fwe-B_T_HLfhzOYa |
| CitedBy_id | crossref_primary_10_1007_s00330_025_11649_3 crossref_primary_10_1109_ACCESS_2025_3566627 crossref_primary_10_1109_ACCESS_2025_3584376 crossref_primary_10_3390_biomedicines13061446 crossref_primary_10_3390_diagnostics14010089 crossref_primary_10_1016_j_patter_2025_101212 crossref_primary_10_1093_cercor_bhae393 crossref_primary_10_1016_j_aei_2025_103134 crossref_primary_10_1016_j_compbiomed_2025_109834 crossref_primary_10_3390_app13158793 crossref_primary_10_3390_bioengineering10121421 crossref_primary_10_1016_j_cmpb_2024_108363 crossref_primary_10_1007_s11760_025_04577_8 crossref_primary_10_1109_ACCESS_2024_3354724 crossref_primary_10_3390_surgeries6030050 crossref_primary_10_1016_j_cmpb_2025_108724 crossref_primary_10_1016_j_knosys_2024_112202 crossref_primary_10_3390_make7010001 crossref_primary_10_3390_s25020494 crossref_primary_10_1016_j_compbiomed_2025_110501 crossref_primary_10_1038_s41598_024_72312_3 crossref_primary_10_1088_2057_1976_ad5207 crossref_primary_10_1109_TBME_2024_3384014 crossref_primary_10_3390_jimaging10120329 crossref_primary_10_1016_j_iswa_2025_200512 crossref_primary_10_3390_rs16193562 crossref_primary_10_3389_fdmed_2025_1618246 crossref_primary_10_1177_15563316251335334 crossref_primary_10_3390_j7010003 crossref_primary_10_1007_s10278_024_01107_9 crossref_primary_10_1038_s41598_025_00600_7 crossref_primary_10_3390_diagnostics15151938 crossref_primary_10_1016_j_atech_2025_101258 crossref_primary_10_1007_s41870_024_02234_w crossref_primary_10_1016_j_bspc_2025_108469 crossref_primary_10_1016_j_compeleceng_2024_109823 crossref_primary_10_1016_j_health_2024_100330 crossref_primary_10_1038_s41598_024_69119_7 crossref_primary_10_3390_jimaging9100232 crossref_primary_10_1109_ACCESS_2024_3389669 crossref_primary_10_1016_j_rineng_2025_104267 crossref_primary_10_1002_mp_17909 crossref_primary_10_1177_15330338251342860 crossref_primary_10_3389_fphy_2024_1379873 crossref_primary_10_3390_bioengineering10121348 crossref_primary_10_3389_fcvm_2025_1512356 crossref_primary_10_1016_j_ipm_2025_104216 crossref_primary_10_1038_s41598_025_86752_y crossref_primary_10_1016_j_oooo_2025_07_009 crossref_primary_10_1007_s40747_024_01729_0 crossref_primary_10_1016_j_compmedimag_2025_102532 crossref_primary_10_1016_j_jmsy_2024_04_021 crossref_primary_10_1016_j_compbiomed_2025_111052 crossref_primary_10_1515_mr_2024_0086 crossref_primary_10_1007_s11596_025_00008_4 crossref_primary_10_3389_fonc_2025_1492758 crossref_primary_10_1007_s11760_025_04111_w crossref_primary_10_3390_axioms12050462 crossref_primary_10_1016_j_envsoft_2025_106338 crossref_primary_10_37394_232027_2025_7_14 crossref_primary_10_1109_TCDS_2024_3489357 crossref_primary_10_1002_clc_24148 crossref_primary_10_3390_bioengineering12050538 crossref_primary_10_3390_bioengineering10121435 crossref_primary_10_1016_j_measen_2025_101867 crossref_primary_10_1016_j_neucom_2024_128167 crossref_primary_10_1007_s10462_025_11116_x crossref_primary_10_3389_fninf_2025_1568116 crossref_primary_10_3390_biomimetics8070519 crossref_primary_10_1038_s41598_025_16760_5 crossref_primary_10_1016_j_neucom_2024_128360 crossref_primary_10_3390_biomedinformatics5030037 crossref_primary_10_1007_s00383_023_05609_5 crossref_primary_10_1007_s11831_025_10302_y crossref_primary_10_3390_electronics14091735 crossref_primary_10_1016_j_bspc_2024_106920 crossref_primary_10_1016_j_ymeth_2025_04_016 crossref_primary_10_1038_s41598_025_87358_0 crossref_primary_10_1080_24725579_2025_2510966 crossref_primary_10_1111_ele_14397 crossref_primary_10_1016_j_compeleceng_2024_109446 crossref_primary_10_1016_j_iot_2024_101298 crossref_primary_10_1109_ACCESS_2025_3557804 crossref_primary_10_3390_app15094704 crossref_primary_10_1016_j_imu_2024_101575 crossref_primary_10_1038_s41551_025_01456_y crossref_primary_10_1109_ACCESS_2024_3501475 crossref_primary_10_3390_diagnostics14080848 crossref_primary_10_1016_j_patrec_2024_11_023 crossref_primary_10_1016_j_compmedimag_2024_102325 crossref_primary_10_3390_bioengineering12030235 crossref_primary_10_1038_s41598_025_11955_2 crossref_primary_10_1016_j_compbiomed_2025_110996 crossref_primary_10_1016_j_compbiomed_2025_110799 crossref_primary_10_3390_diagnostics14070694 crossref_primary_10_1016_j_identj_2025_103878 |
| Cites_doi | 10.1007/978-3-031-16980-9_10 10.1007/978-3-319-24574-4_28 10.1109/JBHI.2020.2964016 10.1007/978-3-031-33380-4_14 10.1109/CVPR.2017.19 10.1016/j.cmpb.2021.106018 10.1007/s11036-020-01678-1 10.1016/j.media.2015.08.009 10.1016/j.neucom.2018.09.013 10.1038/s41597-019-0322-0 10.1016/j.cell.2018.02.010 10.1007/978-3-030-00934-2_52 10.1007/978-3-031-16431-6_51 10.1109/CVPRW53098.2021.00201 10.1109/TIT.1967.1053964 10.1007/978-981-15-4992-2_30 10.1016/j.patcog.2021.108417 10.1007/978-3-030-00536-8_1 10.3390/jimaging8050130 10.1016/j.patrec.2005.10.010 10.1007/978-3-031-16446-0_47 10.1016/j.cmpb.2021.106113 10.1186/s13244-022-01237-0 10.1109/ICMLA.2019.00137 10.1109/TCBB.2021.3065361 10.1016/j.asoc.2021.107836 10.1109/ICBK50248.2020.00041 10.1007/978-3-658-25326-4_7 10.1016/j.patrec.2022.04.019 10.1016/j.media.2022.102708 10.3390/biomedicines10020223 10.1109/TMI.2019.2901750 10.1109/ISBI.2019.8759585 10.1109/ICSP56322.2022.9965350 10.1007/978-3-031-16980-9_8 10.1109/JBHI.2020.3042523 10.1016/j.media.2020.101944 10.1007/978-3-030-32248-9_14 10.1016/j.media.2022.102723 10.1109/TBME.2018.2814538 10.1111/1754-9485.13261 10.1109/TMI.2018.2837502 10.1016/j.compmedimag.2019.101684 10.1109/CVPR.2019.00244 10.1109/ICCV.2017.304 10.1038/s41598-019-52737-x 10.7557/18.6803 10.1109/CVPR.2017.369 10.1016/j.cmpb.2021.106019 10.1007/978-3-319-68127-6_1 10.1109/ACCESS.2019.2947606 10.1007/978-3-031-18576-2_12 10.1109/97.995823 10.3390/fi14120351 10.1109/ITIA50152.2020.9312330 10.1016/j.media.2005.02.002 10.1016/j.acra.2005.05.027 10.1016/j.compbiomed.2022.105382 10.1016/j.zemedi.2018.11.002 10.1007/978-3-319-68127-6_2 10.1016/j.compbiomed.2022.105603 10.1109/TIT.2010.2068870 10.1016/j.compmedimag.2018.10.005 10.1186/s40537-019-0197-0 10.1364/BOE.449796 10.1016/j.cogsys.2018.12.007 10.1109/CCDC49329.2020.9164303 10.1145/3440067.3440073 10.1109/TMI.2019.2914656 10.1016/j.neuroimage.2013.05.041 10.1109/CVPR.2018.00068 10.1016/j.compbiomed.2022.105444 10.1109/TMI.2004.825627 10.3390/e24040436 10.1002/mp.12748 10.1007/978-3-030-59725-2_57 10.1093/ije/dyaa135 10.1088/1741-2552/ac1179 10.1109/CVPR52688.2022.01042 10.1109/ACCESS.2020.2994762 10.1109/CVPR52729.2023.00976 10.1002/mp.13695 10.1109/IUS52206.2021.9593403 10.1186/s40708-020-00104-2 10.1109/CVPR.2017.632 10.1007/978-3-030-11723-8_7 10.1109/TPAMI.2022.3185773 10.1007/978-3-031-16980-9_4 10.1109/ICCV.2017.244 10.1007/978-3-030-86340-1_47 10.1109/TIP.2003.819861 10.1145/3065386 10.1007/978-3-030-59728-3_64 10.1016/j.media.2019.101552 10.1016/j.mri.2021.06.001 10.1109/ISBI.2018.8363678 10.1109/WACV56688.2023.00204 10.1109/ISBI52829.2022.9761590 10.1007/978-3-030-42750-4_6 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. licence_http://creativecommons.org/publicdomain/zero 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: licence_http://creativecommons.org/publicdomain/zero – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 1XC 5PM DOA |
| DOI | 10.3390/jimaging9040081 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2313-433X |
| ExternalDocumentID | oai_doaj_org_article_06622bb4e3434ad99dceb25a3a554744 PMC10144738 oai:HAL:hal-04090590v1 A750285295 37103232 10_3390_jimaging9040081 |
| Genre | Journal Article Review |
| GeographicLocations | France |
| GeographicLocations_xml | – name: France |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHR ITC KQ8 MODMG M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 1XC IPNFZ RIG 5PM |
| ID | FETCH-LOGICAL-c589t-17b2b86c7246ca6f31f95127309d4026b4d04ac7df425d4b3b70aadfb1396ceb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 126 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000977408400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2313-433X |
| IngestDate | Fri Oct 03 12:51:57 EDT 2025 Tue Nov 04 02:06:45 EST 2025 Tue Nov 18 06:20:29 EST 2025 Sun Nov 09 13:42:34 EST 2025 Fri Jul 25 03:44:23 EDT 2025 Tue Nov 11 11:10:01 EST 2025 Tue Nov 04 18:32:51 EST 2025 Mon Jul 21 06:01:32 EDT 2025 Sat Nov 29 07:13:13 EST 2025 Tue Nov 18 20:49:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | generative models deep learning variational autoencoders data augmentation diffusion models medical imaging |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c589t-17b2b86c7246ca6f31f95127309d4026b4d04ac7df425d4b3b70aadfb1396ceb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 PMCID: PMC10144738 |
| ORCID | 0000-0002-2638-6795 0009-0000-6114-7733 0000-0001-8785-6917 |
| OpenAccessLink | https://doaj.org/article/06622bb4e3434ad99dceb25a3a554744 |
| PMID | 37103232 |
| PQID | 2806541836 |
| PQPubID | 2059558 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_06622bb4e3434ad99dceb25a3a554744 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10144738 hal_primary_oai_HAL_hal_04090590v1 proquest_miscellaneous_2806993654 proquest_journals_2806541836 gale_infotracmisc_A750285295 gale_infotracacademiconefile_A750285295 pubmed_primary_37103232 crossref_citationtrail_10_3390_jimaging9040081 crossref_primary_10_3390_jimaging9040081 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Journal of imaging |
| PublicationTitleAlternate | J Imaging |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 ref_137 ref_93 ref_92 ref_91 ref_138 Qiang (ref_86) 2021; 18 Guan (ref_63) 2022; 145 ref_11 ref_99 Islam (ref_7) 2020; 7 ref_10 ref_98 ref_133 ref_97 ref_132 ref_96 ref_135 ref_95 ref_134 ref_19 ref_18 ref_17 ref_16 Chadebec (ref_82) 2022; 45 Pesteie (ref_81) 2019; 38 Ho (ref_20) 2020; 33 Ren (ref_162) 2021; 54 ref_127 Nguyen (ref_150) 2010; 56 ref_25 Jiang (ref_69) 2019; 46 Gan (ref_90) 2022; 13 Krizhevsky (ref_8) 2017; 60 ref_24 ref_120 ref_21 ref_122 ref_121 ref_123 Han (ref_49) 2019; 7 ref_29 ref_28 ref_27 ref_26 Bullitt (ref_124) 2005; 12 Dar (ref_47) 2019; 38 ref_72 ref_159 ref_71 Pang (ref_57) 2021; 203 Yurt (ref_46) 2021; 70 Diamant (ref_42) 2018; 321 ref_79 Sun (ref_54) 2020; 24 ref_153 ref_75 ref_154 ref_74 ref_157 ref_73 ref_156 ref_160 Armanious (ref_77) 2020; 79 Yi (ref_14) 2019; 58 Lundervold (ref_5) 2019; 29 ref_83 Bai (ref_128) 2015; 26 ref_147 ref_80 ref_140 ref_89 ref_142 ref_88 ref_141 ref_87 ref_144 ref_143 ref_85 ref_84 Waheed (ref_52) 2020; 8 Hirte (ref_61) 2021; 81 Barile (ref_58) 2021; 206 Kermany (ref_131) 2018; 172 Jones (ref_136) 2020; 49 ref_50 Shen (ref_59) 2021; 202 Talo (ref_161) 2019; 54 ref_56 ref_55 ref_53 ref_51 Vaserstein (ref_148) 1969; 5 Wang (ref_152) 2002; 9 Jiang (ref_70) 2020; 25 Sandfort (ref_12) 2019; 9 Mahapatra (ref_13) 2019; 71 ref_60 ref_68 Smith (ref_130) 2013; 80 ref_67 ref_66 ref_163 ref_65 ref_64 ref_62 Chlap (ref_22) 2021; 65 Delgado (ref_158) 2021; 112 Nyholm (ref_105) 2018; 45 ref_115 ref_114 ref_117 ref_116 ref_119 ref_118 ref_36 Staal (ref_125) 2004; 23 ref_35 Shorten (ref_23) 2019; 6 ref_34 ref_33 Stegmann (ref_129) 2006; 10 ref_32 ref_111 ref_31 ref_110 Zhou (ref_9) 2022; 158 ref_30 Yang (ref_78) 2021; 26 ref_113 ref_112 Dhariwal (ref_37) 2021; 34 ref_39 ref_38 Nie (ref_76) 2018; 65 Ali (ref_15) 2022; 13 Sheikh (ref_151) 2005; 7 Fawcett (ref_149) 2006; 27 Saharia (ref_155) 2022; 35 ref_104 ref_103 ref_106 ref_108 ref_107 ref_109 Gretton (ref_145) 2012; 13 ref_45 ref_44 ref_43 ref_100 ref_41 ref_102 ref_40 ref_101 ref_1 Song (ref_6) 2021; 18 ref_2 Zhou (ref_3) 2022; 124 Bernard (ref_126) 2018; 37 ref_48 Cover (ref_146) 1967; 13 Wang (ref_139) 2004; 13 ref_4 |
| References_xml | – ident: ref_117 – ident: ref_83 doi: 10.1007/978-3-031-16980-9_10 – ident: ref_27 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_100 – volume: 24 start-page: 2303 year: 2020 ident: ref_54 article-title: An adversarial learning approach to medical image synthesis for lesion detection publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2964016 – ident: ref_115 doi: 10.1007/978-3-031-33380-4_14 – ident: ref_140 doi: 10.1109/CVPR.2017.19 – volume: 203 start-page: 106018 year: 2021 ident: ref_57 article-title: Semi-supervised GAN-based radiomics model for data augmentation in breast ultrasound mass classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106018 – volume: 26 start-page: 415 year: 2021 ident: ref_78 article-title: Synthesizing multi-contrast MR images via novel 3D conditional Variational auto-encoding GAN publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-020-01678-1 – ident: ref_39 – ident: ref_88 – volume: 26 start-page: 133 year: 2015 ident: ref_128 article-title: A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.08.009 – volume: 321 start-page: 321 year: 2018 ident: ref_42 article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – ident: ref_71 – ident: ref_135 doi: 10.1038/s41597-019-0322-0 – volume: 172 start-page: 1122 year: 2018 ident: ref_131 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – volume: 13 start-page: 723 year: 2012 ident: ref_145 article-title: A kernel two-sample test publication-title: J. Mach. Learn. Res. – ident: ref_92 doi: 10.1007/978-3-030-00934-2_52 – volume: 35 start-page: 36479 year: 2022 ident: ref_155 article-title: Photorealistic text-to-image diffusion models with deep language understanding publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_114 – ident: ref_4 – ident: ref_31 – ident: ref_120 – ident: ref_10 – ident: ref_119 doi: 10.1007/978-3-031-16431-6_51 – ident: ref_132 doi: 10.1109/CVPRW53098.2021.00201 – volume: 13 start-page: 21 year: 1967 ident: ref_146 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – ident: ref_62 doi: 10.1007/978-981-15-4992-2_30 – ident: ref_103 – volume: 124 start-page: 108417 year: 2022 ident: ref_3 article-title: A Tri-Attention fusion guided multi-modal segmentation network publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108417 – ident: ref_68 doi: 10.1007/978-3-030-00536-8_1 – ident: ref_1 doi: 10.3390/jimaging8050130 – volume: 27 start-page: 861 year: 2006 ident: ref_149 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 34 start-page: 8780 year: 2021 ident: ref_37 article-title: Diffusion models beat gans on image synthesis publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_91 doi: 10.1007/978-3-031-16446-0_47 – volume: 206 start-page: 106113 year: 2021 ident: ref_58 article-title: Data augmentation using generative adversarial neural networks on brain structural connectivity in multiple sclerosis publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106113 – ident: ref_28 – ident: ref_53 – volume: 13 start-page: 98 year: 2022 ident: ref_15 article-title: The role of generative adversarial networks in brain MRI: A scoping review publication-title: Insights Imaging doi: 10.1186/s13244-022-01237-0 – ident: ref_85 doi: 10.1109/ICMLA.2019.00137 – volume: 18 start-page: 2775 year: 2021 ident: ref_6 article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2021.3065361 – volume: 112 start-page: 107836 year: 2021 ident: ref_158 article-title: Deep learning with small datasets: Using autoencoders to address limited datasets in construction management publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107836 – ident: ref_48 doi: 10.1109/ICBK50248.2020.00041 – ident: ref_102 doi: 10.1007/978-3-658-25326-4_7 – volume: 54 start-page: 1 year: 2021 ident: ref_162 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. (CSUR) – ident: ref_134 – ident: ref_11 – volume: 158 start-page: 125 year: 2022 ident: ref_9 article-title: Missing Data Imputation via Conditional Generator and Correlation Learning for Multimodal Brain Tumor Segmentation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2022.04.019 – volume: 5 start-page: 64 year: 1969 ident: ref_148 article-title: Markov processes over denumerable products of spaces, describing large systems of automata publication-title: Probl. Peredachi Informatsii – ident: ref_157 – ident: ref_73 doi: 10.1016/j.media.2022.102708 – ident: ref_106 – ident: ref_44 – ident: ref_64 doi: 10.3390/biomedicines10020223 – volume: 38 start-page: 2375 year: 2019 ident: ref_47 article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2901750 – ident: ref_51 doi: 10.1109/ISBI.2019.8759585 – ident: ref_163 – ident: ref_160 doi: 10.1109/ICSP56322.2022.9965350 – ident: ref_101 doi: 10.1007/978-3-031-16980-9_8 – volume: 25 start-page: 441 year: 2020 ident: ref_70 article-title: COVID-19 CT image synthesis with a conditional generative adversarial network publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3042523 – volume: 70 start-page: 101944 year: 2021 ident: ref_46 article-title: mustGAN: Multi-stream generative adversarial networks for MR image synthesis publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101944 – ident: ref_143 – ident: ref_25 – ident: ref_50 doi: 10.1007/978-3-030-32248-9_14 – ident: ref_33 – ident: ref_112 – ident: ref_65 doi: 10.1016/j.media.2022.102723 – volume: 65 start-page: 2720 year: 2018 ident: ref_76 article-title: Medical image synthesis with deep convolutional adversarial networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2814538 – volume: 65 start-page: 545 year: 2021 ident: ref_22 article-title: A review of medical image data augmentation techniques for deep learning applications publication-title: J. Med. Imaging Radiat. Oncol. doi: 10.1111/1754-9485.13261 – ident: ref_137 – volume: 37 start-page: 2514 year: 2018 ident: ref_126 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2837502 – volume: 79 start-page: 101684 year: 2020 ident: ref_77 article-title: MedGAN: Medical image translation using GANs publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.101684 – ident: ref_45 doi: 10.1109/CVPR.2019.00244 – ident: ref_99 doi: 10.1109/ICCV.2017.304 – volume: 9 start-page: 16884 year: 2019 ident: ref_12 article-title: Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks publication-title: Sci. Rep. doi: 10.1038/s41598-019-52737-x – ident: ref_96 doi: 10.7557/18.6803 – ident: ref_154 – ident: ref_36 – ident: ref_19 – ident: ref_109 – volume: 33 start-page: 6840 year: 2020 ident: ref_20 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_127 doi: 10.1109/CVPR.2017.369 – volume: 202 start-page: 106019 year: 2021 ident: ref_59 article-title: Mass image synthesis in mammogram with contextual information based on gans publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106019 – ident: ref_74 doi: 10.1007/978-3-319-68127-6_1 – volume: 7 start-page: 156966 year: 2019 ident: ref_49 article-title: Combining noise-to-image and image-to-image GANs: Brain MR image augmentation for tumor detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947606 – ident: ref_97 doi: 10.1007/978-3-031-18576-2_12 – ident: ref_142 – volume: 9 start-page: 81 year: 2002 ident: ref_152 article-title: A universal image quality index publication-title: IEEE Signal Process. Lett. doi: 10.1109/97.995823 – ident: ref_153 doi: 10.3390/fi14120351 – ident: ref_32 – ident: ref_56 doi: 10.1109/ITIA50152.2020.9312330 – ident: ref_113 – ident: ref_159 – ident: ref_84 – volume: 10 start-page: 19 year: 2006 ident: ref_129 article-title: Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database publication-title: Med. Image Anal. doi: 10.1016/j.media.2005.02.002 – volume: 12 start-page: 1232 year: 2005 ident: ref_124 article-title: Vessel tortuosity and brain tumor malignancy: A blinded study1 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2005.05.027 – ident: ref_16 doi: 10.1016/j.compbiomed.2022.105382 – volume: 29 start-page: 102 year: 2019 ident: ref_5 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Zeitschrift für Medizinische Physik doi: 10.1016/j.zemedi.2018.11.002 – ident: ref_75 doi: 10.1007/978-3-319-68127-6_2 – ident: ref_35 – ident: ref_94 doi: 10.1016/j.compbiomed.2022.105603 – ident: ref_104 – volume: 56 start-page: 5847 year: 2010 ident: ref_150 article-title: Estimating divergence functionals and the likelihood ratio by convex risk minimization publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2010.2068870 – volume: 71 start-page: 30 year: 2019 ident: ref_13 article-title: Image super-resolution using progressive generative adversarial networks for medical image analysis publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2018.10.005 – volume: 6 start-page: 1 year: 2019 ident: ref_23 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 13 start-page: 1188 year: 2022 ident: ref_90 article-title: Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder publication-title: Biomed. Opt. Express doi: 10.1364/BOE.449796 – ident: ref_118 – volume: 54 start-page: 176 year: 2019 ident: ref_161 article-title: Application of deep transfer learning for automated brain abnormality classification using MR images publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.12.007 – ident: ref_72 doi: 10.1109/CCDC49329.2020.9164303 – ident: ref_123 doi: 10.1145/3440067.3440073 – volume: 38 start-page: 2807 year: 2019 ident: ref_81 article-title: Adaptive augmentation of medical data using independently conditional variational auto-encoders publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2914656 – volume: 80 start-page: 62 year: 2013 ident: ref_130 article-title: The WU-Minn human connectome project: An overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – ident: ref_141 doi: 10.1109/CVPR.2018.00068 – volume: 145 start-page: 105444 year: 2022 ident: ref_63 article-title: Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105444 – volume: 23 start-page: 501 year: 2004 ident: ref_125 article-title: Ridge-based vessel segmentation in color images of the retina publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.825627 – ident: ref_2 doi: 10.3390/e24040436 – ident: ref_87 – volume: 45 start-page: 1295 year: 2018 ident: ref_105 article-title: MR and CT data with multiobserver delineations of organs in the pelvic area—Part of the Gold Atlas project publication-title: Med. Phys. doi: 10.1002/mp.12748 – ident: ref_55 doi: 10.1007/978-3-030-59725-2_57 – volume: 7 start-page: 2117 year: 2005 ident: ref_151 article-title: A visual information fidelity approach to video quality assessment publication-title: First Int. Workshop Video Process. Qual. Metrics Consum. Electron. – ident: ref_66 – volume: 49 start-page: 1441 year: 2020 ident: ref_136 article-title: Cohort Profile Update: Southall and Brent Revisited (SABRE) study: A UK population-based comparison of cardiovascular disease and diabetes in people of European, South Asian and African Caribbean heritage publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyaa135 – ident: ref_38 – ident: ref_107 – ident: ref_17 – volume: 18 start-page: 0460b6 year: 2021 ident: ref_86 article-title: Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac1179 – ident: ref_110 – ident: ref_98 doi: 10.1109/CVPR52688.2022.01042 – volume: 8 start-page: 91916 year: 2020 ident: ref_52 article-title: Covidgan: Data augmentation using auxiliary classifier gan for improved covid-19 detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994762 – ident: ref_144 – ident: ref_24 – ident: ref_34 – ident: ref_156 doi: 10.1109/CVPR52729.2023.00976 – volume: 46 start-page: 4392 year: 2019 ident: ref_69 article-title: Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets publication-title: Med. Phys. doi: 10.1002/mp.13695 – ident: ref_89 doi: 10.1109/IUS52206.2021.9593403 – ident: ref_138 – volume: 7 start-page: 1 year: 2020 ident: ref_7 article-title: GAN-based synthetic brain PET image generation publication-title: Brain Inform. doi: 10.1186/s40708-020-00104-2 – ident: ref_26 doi: 10.1109/CVPR.2017.632 – ident: ref_40 – ident: ref_67 doi: 10.1007/978-3-030-11723-8_7 – volume: 45 start-page: 2879 year: 2022 ident: ref_82 article-title: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3185773 – ident: ref_80 doi: 10.1007/978-3-031-16980-9_4 – ident: ref_30 doi: 10.1109/ICCV.2017.244 – ident: ref_18 – ident: ref_111 – ident: ref_21 – ident: ref_79 – ident: ref_60 doi: 10.1007/978-3-030-86340-1_47 – ident: ref_116 – volume: 13 start-page: 600 year: 2004 ident: ref_139 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 60 start-page: 84 year: 2017 ident: ref_8 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: ref_29 – ident: ref_122 – ident: ref_93 doi: 10.1007/978-3-030-59728-3_64 – volume: 58 start-page: 101552 year: 2019 ident: ref_14 article-title: Generative adversarial network in medical imaging: A review publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101552 – volume: 81 start-page: 60 year: 2021 ident: ref_61 article-title: Realistic generation of diffusion-weighted magnetic resonance brain images with deep generative models publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2021.06.001 – ident: ref_41 doi: 10.1109/ISBI.2018.8363678 – ident: ref_108 doi: 10.1109/WACV56688.2023.00204 – ident: ref_133 – ident: ref_43 – ident: ref_95 doi: 10.1109/ISBI52829.2022.9761590 – ident: ref_121 doi: 10.1007/978-3-030-42750-4_6 – ident: ref_147 |
| SSID | ssj0001920199 |
| Score | 2.613377 |
| SecondaryResourceType | review_article |
| Snippet | Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in... |
| SourceID | doaj pubmedcentral hal proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 81 |
| SubjectTerms | Algorithms Data acquisition Data augmentation Deep learning Diagnostic imaging diffusion models Electronic data processing Generative adversarial networks generative models Image analysis Image processing Image segmentation Life Sciences Machine learning Medical imaging Methods Review Technology application Tomography Training variational autoencoders |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lc9MwEN6hKQc48H4YAiMYZuDixrEUW-LCGEqnHaCTA8yUk0YPOw1DnZBHfz-7tpLWZeDE1VLsdfbT6pO1-hbglfKIDOOSOLE8iREUPDaydLFTo5E0xvJhVTXFJvLjY3lyosbhePQypFVuYmITqFu1Z8rbxiA88DNHX8wHzX6gQDhm7-a_YqohRXutoaDGDuyS8FbSg93x0Zfx94tvLgqnO6VahR-Oq_3Bj-lZUwxIEZblsDM5NRr-20i9c0qJkn-y0KvJlJdmp4Pb__e97sCtwFJZ0cLqLlwr63tw85J24X34tF-WcxbkWSesCNrk5ZIhDWb7ZmVYsZ6chaNNNZvWLGwKsaP233jLCtZuTTyAbwcfv344jENlhtiNpFrFw9ymVmYuT0XmTFahR5GpIRNKlMcFaWYFQsC43FfofS8st3lijK8s8s3M4fr9IfTqWV0-BuZ5Wckkt1IgdXPemsSqoUfegesgl6U2gr2NS7QLsuVUPeOnxuUL-VBf8WEEb7Y_mLeKHX_v-p58vO1GUtvNhdliosPI1SSRn1orSi64MF4p9LRNR4YbZGK5EBG8JoRoCghomDPhXAO-Hklr6QI5WSppPzWCfqcnDmTXaX6JGOsYc1h81nQNzVV0SvgcTe5vYKRDtFnqC9RE8GLbTLenDLq6nK3bPshFsV8Ej1rEbh_Fc5JV5GkEsoPlji3dlnp62miRU6lnkXP55N92PYUbKbLDNuWpD73VYl0-g-vufDVdLp6HcfobWTVNsQ priority: 102 providerName: ProQuest |
| Title | Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37103232 https://www.proquest.com/docview/2806541836 https://www.proquest.com/docview/2806993654 https://hal.science/hal-04090590 https://pubmed.ncbi.nlm.nih.gov/PMC10144738 https://doaj.org/article/06622bb4e3434ad99dceb25a3a554744 |
| Volume | 9 |
| WOSCitedRecordID | wos000977408400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: P5Z dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: PIMPY dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xwQM8THyOsFIZhAQvYWnsxDZvGdu0CagiBFLhJfJXtk4sm9Z2fz_nOIuaIcQLD82DfWmv57P9O_n8O4A30qJnKJPEiaZJjE5BYyWciY3MMqGUppO6botN8OlUzGayXCv15XPCAj1wMNyuZyhPtWaOMsqUldIaDAYzRRVuhJy1TKAJl2vB1FnALfiRgcuHYly_ezY_b8v-SO-1YjLYhlq2_n5N3jj1KZF_4s3baZNr-9DhQ9jqACQpguKP4I5rHsODNVrBJ_Bp37lL0jGnnpCiow13C4IIleyrpSLF6uS8u3XUkHlDuvMachzU_0AKEk4NnsL3w4NvH4_irmhCbDIhl_GE61SL3PCU5UblNRobQRSClERajBVzzXB0lOG2xoGxTFPNE6VsrREK5mha-gw2m4vGPQdiqatFwrVgiKqM1SrRcmIREmCIYvJUR_D-xoaV6RjFfWGLXxVGFt7o1S2jR_Cuf-EykGn8XXTPD0ov5lmw2wb0jarzjepfvhHBWz-klZ-rqJhR3ZUD_Hue9aoqEC6lwh91RjAaSOIcM4Pu1-gUA2WOis-Vb0N1pb_Ae40qj258puoWgkXVHlwzXDfzCF713f7rfXJb4y5WQQZhIspFsB1crP8pyj3jIU0jEAPnG-gy7Gnmpy1NuK_CzDgVL_6HKXfgforwLuQsjWBzebVyL-GeuV7OF1dj2OAzMYa7ewfT8uu4nYr4LLOf2FYefyl__AZJTTeM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aOiTggfslUMAgELyEpbGb2EgIBcrUql3VhyGNJ2M7TlfE0tLLEH-K38hxknbLELztgdfYSU6S7xx_jo-_A_BcpIgMZQI_0DTwERTUV9wa34h2myulaSvLimIT8XDIDw_FaAt-rffCuLTKdUwsAnU6Ne4f-W6xAsgQgNG72XffVY1yq6vrEholLPr25w-csi3e9jr4fV-E4d7Hgw9dv6oq4Js2F0u_FetQ88jEIYuMijK0BlkGjuKBSHEyFWmG5isTpxlanjJNdRwolWYauVJkcO6J192GHYatQQN2Rr390efTvzoCB1QhSg0hSkWw-3VyXJQbEs5beKs2_BVVAjZjwfaRS8X8k-eeT9c8M_7tXf_f3twNuFYxbZKUrnETtmx-C66e0V-8Df2OtTNSScyOSVLpq9sFQSpPOmqpSLIaH1fbs3IyyUm1sEV65ft-QxJSLq_cgU8X8jR3oZFPc3sfSEptxoNYc4b006RaBVq0UuROOJczUag9eL3-6NJU0uuuAsg3iVMwhxJ5DiUevNqcMCtVR_7e9b1D0aabkwsvDkznY1lFH-lk_kOtmaWMMpUKgVjSYVtRhWwyZsyDlw6D0gU1NMyoam8GPp6TB5MJ8sqQuzVhD5q1nhiMTK35GaK4Zkw3GUh3DM0VbqfzCZrcXANVVhFzIU9R6sHTTbO7vMsCzO10VfZBPo39PLhX-sTmVjR20pA09IDXvKVmS70lnxwVeuquXDWLKX_wb7uewOXuwf5ADnrD_kO4EiLbLVO4mtBYzlf2EVwyJ8vJYv64igoEvly0O_0GsZWfSA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9tHULwwPdHoIBBIHgJTeM0sZEQyuiqVZ2qCjFpb8Z2nK6IpaUfQ_xr_HWcE7dbhuBtD7zGTnpOf3f-Xe58B_CSZ4gMqQM_UDTwERTUl8xoX_NOh0mpaDvPy2YTyXDIjo74aAt-rc_C2LTKtU0sDXU21fYbeauMAEYIwLiVu7SIUbf3Yfbdtx2kbKR13U6jgsjA_PyB7tvifb-L__WrMOztff6477sOA77uML7024kKFYt1EkaxlnGOkiHjwB094Bk6VrGKcClSJ1mOq8giRVUSSJnlCnlTrNEPxeduw05C0elpwM7u3nD06ewLD8fNlfOqnhClPGh9nZyUrYe41RzWrm2FZceAzb6wfWzTMv_kvBdTN8_thb2b__NbvAU3HAMnaaUyt2HLFHfg-rm6jHdh0DVmRlzp2TFJXd11syBI8UlXLiVJV-MTd2yrIJOCuIAX6Vfv_h1JSRV2uQeHl7Ka-9AopoV5CCSjJmdBoliEtFRnSgaKtzPkVOjj6ThUHrxdA0BoV5Lddgb5JtA1s4gRFxDjwZvNDbOqGsnfp-5aRG2m2TLi5YXpfCycVRK2_H-oVGRoRCOZcY64UmFHUoksM4kiD15bPApr7FAwLd2ZDVyeLRsmUuSbIbOxYg-atZlopHRt-AUiuibMfnog7DUUl9sT0KcocnMNWuEs6UKcIdaD55th-3ibHViY6aqagzwb53nwoNKPzU_RxJaMpKEHrKY5NVnqI8XkuKyzbttYRwllj_4t1zO4ijokDvrDwWO4FiIJrjK7mtBYzlfmCVzRp8vJYv7UGQgCXy5bm34DSGWn4g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approaches+for+Data+Augmentation+in+Medical+Imaging%3A+A+Review&rft.jtitle=Journal+of+imaging&rft.au=Kebaili%2C+Aghiles&rft.au=Lapuyade-Lahorgue%2C+J%C3%A9r%C3%B4me&rft.au=Ruan%2C+Su&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2313-433X&rft.eissn=2313-433X&rft.volume=9&rft.issue=4&rft_id=info:doi/10.3390%2Fjimaging9040081&rft.externalDocID=A750285295 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |