Short-Term Global Cardiovascular Disease Risk Prediction in Older Adults

Current prevention guidelines recommend using the Pooled Cohort Equation (PCE) for 10-year atherosclerotic cardiovascular disease (CVD) risk assessment. However, the PCE has serious limitations in older adults: it excludes heart failure (HF) hospitalization, estimates 10-year risk, which may not be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American College of Cardiology Ročník 71; číslo 22; s. 2527
Hlavní autoři: Saeed, Anum, Nambi, Vijay, Sun, Wensheng, Virani, Salim S, Taffet, George E, Deswal, Anita, Selvin, Elizabeth, Matsushita, Kunihiro, Wagenknecht, Lynne E, Hoogeveen, Ron, Coresh, Josef, de Lemos, James A, Ballantyne, Christie M
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 05.06.2018
Témata:
ISSN:1558-3597, 1558-3597
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Current prevention guidelines recommend using the Pooled Cohort Equation (PCE) for 10-year atherosclerotic cardiovascular disease (CVD) risk assessment. However, the PCE has serious limitations in older adults: it excludes heart failure (HF) hospitalization, estimates 10-year risk, which may not be the most relevant time frame, and is not indicated for individuals age >79 years. This study sought to determine whether adding biomarkers to PCE variables improves global CVD (coronary heart disease, stroke, and HF) risk prediction in older adults over a shorter time period. Atherosclerosis Risk in Communities study participants without prevalent CVD including HF (n = 4,760; age 75.4 ± 5.1 years) were followed for incident global CVD events. Adding N-terminal pro-B-type natriuretic peptide, high-sensitivity cardiac troponin T, and high-sensitivity C-reactive protein to the PCE and a "lab model" with the biomarkers, age, race, and gender were assessed for prediction improvement. Area under the receiver operating characteristic curve (AUC) and net reclassification index (NRI) were calculated. Over median follow-up of ∼4 years, incident HF was the leading CVD event (n = 193 vs. 118 coronary heart disease and 81 stroke events). Compared to the PCE, each biomarker improved risk prediction. The largest improvement in risk prediction metrics was with the addition of all 3 biomarkers (ΔAUC 0.103; continuous NRI 0.484). The lab model also performed better than the PCE model (ΔAUC 0.091, continuous NRI 0.355). Adding biomarkers to the PCE or a simpler "lab model" improves short-term global CVD risk prediction and may be useful to inform short-term preventive strategies in older adults.
AbstractList Current prevention guidelines recommend using the Pooled Cohort Equation (PCE) for 10-year atherosclerotic cardiovascular disease (CVD) risk assessment. However, the PCE has serious limitations in older adults: it excludes heart failure (HF) hospitalization, estimates 10-year risk, which may not be the most relevant time frame, and is not indicated for individuals age >79 years.BACKGROUNDCurrent prevention guidelines recommend using the Pooled Cohort Equation (PCE) for 10-year atherosclerotic cardiovascular disease (CVD) risk assessment. However, the PCE has serious limitations in older adults: it excludes heart failure (HF) hospitalization, estimates 10-year risk, which may not be the most relevant time frame, and is not indicated for individuals age >79 years.This study sought to determine whether adding biomarkers to PCE variables improves global CVD (coronary heart disease, stroke, and HF) risk prediction in older adults over a shorter time period.OBJECTIVESThis study sought to determine whether adding biomarkers to PCE variables improves global CVD (coronary heart disease, stroke, and HF) risk prediction in older adults over a shorter time period.Atherosclerosis Risk in Communities study participants without prevalent CVD including HF (n = 4,760; age 75.4 ± 5.1 years) were followed for incident global CVD events. Adding N-terminal pro-B-type natriuretic peptide, high-sensitivity cardiac troponin T, and high-sensitivity C-reactive protein to the PCE and a "lab model" with the biomarkers, age, race, and gender were assessed for prediction improvement. Area under the receiver operating characteristic curve (AUC) and net reclassification index (NRI) were calculated.METHODSAtherosclerosis Risk in Communities study participants without prevalent CVD including HF (n = 4,760; age 75.4 ± 5.1 years) were followed for incident global CVD events. Adding N-terminal pro-B-type natriuretic peptide, high-sensitivity cardiac troponin T, and high-sensitivity C-reactive protein to the PCE and a "lab model" with the biomarkers, age, race, and gender were assessed for prediction improvement. Area under the receiver operating characteristic curve (AUC) and net reclassification index (NRI) were calculated.Over median follow-up of ∼4 years, incident HF was the leading CVD event (n = 193 vs. 118 coronary heart disease and 81 stroke events). Compared to the PCE, each biomarker improved risk prediction. The largest improvement in risk prediction metrics was with the addition of all 3 biomarkers (ΔAUC 0.103; continuous NRI 0.484). The lab model also performed better than the PCE model (ΔAUC 0.091, continuous NRI 0.355).RESULTSOver median follow-up of ∼4 years, incident HF was the leading CVD event (n = 193 vs. 118 coronary heart disease and 81 stroke events). Compared to the PCE, each biomarker improved risk prediction. The largest improvement in risk prediction metrics was with the addition of all 3 biomarkers (ΔAUC 0.103; continuous NRI 0.484). The lab model also performed better than the PCE model (ΔAUC 0.091, continuous NRI 0.355).Adding biomarkers to the PCE or a simpler "lab model" improves short-term global CVD risk prediction and may be useful to inform short-term preventive strategies in older adults.CONCLUSIONSAdding biomarkers to the PCE or a simpler "lab model" improves short-term global CVD risk prediction and may be useful to inform short-term preventive strategies in older adults.
Current prevention guidelines recommend using the Pooled Cohort Equation (PCE) for 10-year atherosclerotic cardiovascular disease (CVD) risk assessment. However, the PCE has serious limitations in older adults: it excludes heart failure (HF) hospitalization, estimates 10-year risk, which may not be the most relevant time frame, and is not indicated for individuals age >79 years. This study sought to determine whether adding biomarkers to PCE variables improves global CVD (coronary heart disease, stroke, and HF) risk prediction in older adults over a shorter time period. Atherosclerosis Risk in Communities study participants without prevalent CVD including HF (n = 4,760; age 75.4 ± 5.1 years) were followed for incident global CVD events. Adding N-terminal pro-B-type natriuretic peptide, high-sensitivity cardiac troponin T, and high-sensitivity C-reactive protein to the PCE and a "lab model" with the biomarkers, age, race, and gender were assessed for prediction improvement. Area under the receiver operating characteristic curve (AUC) and net reclassification index (NRI) were calculated. Over median follow-up of ∼4 years, incident HF was the leading CVD event (n = 193 vs. 118 coronary heart disease and 81 stroke events). Compared to the PCE, each biomarker improved risk prediction. The largest improvement in risk prediction metrics was with the addition of all 3 biomarkers (ΔAUC 0.103; continuous NRI 0.484). The lab model also performed better than the PCE model (ΔAUC 0.091, continuous NRI 0.355). Adding biomarkers to the PCE or a simpler "lab model" improves short-term global CVD risk prediction and may be useful to inform short-term preventive strategies in older adults.
Author Deswal, Anita
Hoogeveen, Ron
Selvin, Elizabeth
Coresh, Josef
de Lemos, James A
Nambi, Vijay
Wagenknecht, Lynne E
Ballantyne, Christie M
Virani, Salim S
Taffet, George E
Saeed, Anum
Sun, Wensheng
Matsushita, Kunihiro
Author_xml – sequence: 1
  givenname: Anum
  surname: Saeed
  fullname: Saeed, Anum
  organization: Baylor College of Medicine, Houston, Texas
– sequence: 2
  givenname: Vijay
  surname: Nambi
  fullname: Nambi, Vijay
  organization: Baylor College of Medicine, Houston, Texas; Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
– sequence: 3
  givenname: Wensheng
  surname: Sun
  fullname: Sun, Wensheng
  organization: Baylor College of Medicine, Houston, Texas
– sequence: 4
  givenname: Salim S
  surname: Virani
  fullname: Virani, Salim S
  organization: Baylor College of Medicine, Houston, Texas; Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
– sequence: 5
  givenname: George E
  surname: Taffet
  fullname: Taffet, George E
  organization: Baylor College of Medicine, Houston, Texas
– sequence: 6
  givenname: Anita
  surname: Deswal
  fullname: Deswal, Anita
  organization: Baylor College of Medicine, Houston, Texas
– sequence: 7
  givenname: Elizabeth
  surname: Selvin
  fullname: Selvin, Elizabeth
  organization: Johns Hopkins University, Baltimore, Maryland
– sequence: 8
  givenname: Kunihiro
  surname: Matsushita
  fullname: Matsushita, Kunihiro
  organization: Johns Hopkins University, Baltimore, Maryland
– sequence: 9
  givenname: Lynne E
  surname: Wagenknecht
  fullname: Wagenknecht, Lynne E
  organization: Wake Forest University, Winston-Salem, North Carolina
– sequence: 10
  givenname: Ron
  surname: Hoogeveen
  fullname: Hoogeveen, Ron
  organization: Baylor College of Medicine, Houston, Texas
– sequence: 11
  givenname: Josef
  surname: Coresh
  fullname: Coresh, Josef
  organization: Johns Hopkins University, Baltimore, Maryland
– sequence: 12
  givenname: James A
  surname: de Lemos
  fullname: de Lemos, James A
  organization: University of Texas-Southwestern Medical Center, Dallas, Texas
– sequence: 13
  givenname: Christie M
  surname: Ballantyne
  fullname: Ballantyne, Christie M
  email: cmb@bcm.edu
  organization: Baylor College of Medicine, Houston, Texas. Electronic address: cmb@bcm.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29535064$$D View this record in MEDLINE/PubMed
BookMark eNpNkN9KwzAYxYNM3B99AS-kl960fkmapr0cU-dgMNF5XdL0K2amzUxawbfxWXwyB07w6pyLHz84Z0pGneuQkEsKCQWa3eySndI6YUDzBFgCAk7IhAqRx1wUcvSvj8k0hB0AZDktzsiYFYILyNIJWT2_Ot_HW_RttLSuUjZaKF8b96GCHqzy0a0JqAJGTya8fX89eqyN7o3rItNFG1ujj-b1YPtwTk4bZQNeHHNGXu7vtouHeL1ZrhbzdaxFXvQxZYzqQqU8R1CSK6kp07KROqsESA2VRICCcy4UFSnXAAwZqxgoUTU152xGrn-9e-_eBwx92Zqg0VrVoRtCebiDyzxLWXpAr47oULVYl3tvWuU_y7_57Ae7ml6h
CitedBy_id crossref_primary_10_1016_j_jbi_2020_103543
crossref_primary_10_1007_s11357_021_00486_z
crossref_primary_10_1093_eurheartj_ehad115
crossref_primary_10_1177_1474515119856207
crossref_primary_10_3390_diagnostics11060943
crossref_primary_10_1093_eurjpc_zwad352
crossref_primary_10_1093_eurjpc_zwad197
crossref_primary_10_1016_j_jacc_2018_03_503
crossref_primary_10_1016_j_jchf_2022_12_005
crossref_primary_10_1016_j_jacadv_2025_101625
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1007_s11883_024_01257_9
crossref_primary_10_1126_scitranslmed_abj9625
crossref_primary_10_1016_j_jacc_2020_07_055
crossref_primary_10_1186_s12877_024_05214_8
crossref_primary_10_1016_j_atherosclerosis_2020_03_018
crossref_primary_10_1136_heartjnl_2019_315600
crossref_primary_10_1016_j_urology_2024_08_062
crossref_primary_10_1007_s11606_019_05361_4
crossref_primary_10_1007_s11883_025_01339_2
crossref_primary_10_1016_j_eswa_2023_119648
crossref_primary_10_1016_j_ebiom_2024_105551
crossref_primary_10_1016_j_ins_2024_120410
crossref_primary_10_1186_s12877_024_05660_4
crossref_primary_10_1093_eurjpc_zwac091
crossref_primary_10_1136_heartjnl_2025_325665
crossref_primary_10_1007_s11883_024_01224_4
crossref_primary_10_1016_j_jacc_2021_04_076
crossref_primary_10_1016_j_amjcard_2023_07_118
crossref_primary_10_1093_clinchem_hvad205
crossref_primary_10_1161_JAHA_121_025780
crossref_primary_10_1177_25424823241299297
crossref_primary_10_1161_JAHA_119_015405
crossref_primary_10_1016_j_diabres_2022_110164
crossref_primary_10_7326_M23_1345
crossref_primary_10_1161_JAHA_120_019589
crossref_primary_10_3390_geriatrics7020038
crossref_primary_10_1016_j_datak_2024_102278
crossref_primary_10_1161_JAHA_120_017790
crossref_primary_10_1016_S0992_5945_25_00022_4
crossref_primary_10_1177_10998004231225442
crossref_primary_10_1210_clinem_dgaa518
crossref_primary_10_1161_CIRCULATIONAHA_118_038772
crossref_primary_10_1161_CIRCULATIONAHA_119_043149
crossref_primary_10_1161_JAHA_119_015410
crossref_primary_10_1016_j_atherosclerosis_2022_04_028
crossref_primary_10_1177_2047487319846715
crossref_primary_10_1093_eurjpc_zwae251
crossref_primary_10_1016_j_amjcard_2019_04_030
crossref_primary_10_1161_JAHA_123_030780
crossref_primary_10_1016_j_nurpra_2018_09_010
crossref_primary_10_1111_jgs_16912
crossref_primary_10_7326_ANNALS_24_00775
crossref_primary_10_1016_j_mayocp_2021_01_025
crossref_primary_10_2196_47645
crossref_primary_10_1016_j_compmedimag_2021_101936
ContentType Journal Article
Copyright Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jacc.2018.02.050
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1558-3597
ExternalDocumentID 29535064
Genre Journal Article
Observational Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HHSN268201700005I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201700002I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201700004C
– fundername: NHLBI NIH HHS
  grantid: HHSN268201700002C
– fundername: NHLBI NIH HHS
  grantid: R01 HL134320
– fundername: NHLBI NIH HHS
  grantid: HHSN268201700004I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201700001C
– fundername: NHLBI NIH HHS
  grantid: HHSN268201700003I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201700001I
– fundername: NIDDK NIH HHS
  grantid: R01 DK089174
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
18M
1B1
1P~
1~.
1~5
2WC
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
AABNK
AABVL
AAEDT
AAEDW
AAIKJ
AAKUH
AALRI
AAOAW
AAQFI
AAQQT
AAXUO
ABBQC
ABFNM
ABFRF
ABLJU
ABMAC
ABMZM
ABOCM
ACGFO
ACGFS
ACIUM
ACJTP
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFCTW
AFETI
AFPUW
AFRAH
AFRHN
AFTJW
AGCQF
AGYEJ
AHMBA
AIGII
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BLXMC
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FNPLU
G-Q
GBLVA
GX1
H13
HVGLF
IHE
IXB
J1W
K-O
KQ8
L7B
MO0
N9A
NPM
O-L
O9-
OA.
OAUVE
OK1
OL~
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SSZ
TR2
UNMZH
UV1
W8F
WH7
WOQ
WOW
YYM
YZZ
Z5R
7X8
EFLBG
~HD
ID FETCH-LOGICAL-c589t-1221c9a438e0a73a7c12c7f7c6b507c0b7e0093335a1543c002e22b20a5bfd332
IEDL.DBID 7X8
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433412800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1558-3597
IngestDate Sun Sep 28 10:22:20 EDT 2025
Mon Jul 21 05:20:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords cardiovascular disease
heart failure
risk assessment
biomarkers
elderly
prevention
Language English
License Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-1221c9a438e0a73a7c12c7f7c6b507c0b7e0093335a1543c002e22b20a5bfd332
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0735109718334843
PMID 29535064
PQID 2013786424
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2013786424
pubmed_primary_29535064
PublicationCentury 2000
PublicationDate 2018-06-05
PublicationDateYYYYMMDD 2018-06-05
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American College of Cardiology
PublicationTitleAlternate J Am Coll Cardiol
PublicationYear 2018
References 29852977 - J Am Coll Cardiol. 2018 Jun 5;71(22):2537-2539
30613625 - Ann Transl Med. 2018 Nov;6(Suppl 1):S50
References_xml – reference: 29852977 - J Am Coll Cardiol. 2018 Jun 5;71(22):2537-2539
– reference: 30613625 - Ann Transl Med. 2018 Nov;6(Suppl 1):S50
SSID ssj0006819
Score 2.5137668
Snippet Current prevention guidelines recommend using the Pooled Cohort Equation (PCE) for 10-year atherosclerotic cardiovascular disease (CVD) risk assessment....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2527
SubjectTerms Age Factors
Aged
Aged, 80 and over
Biomarkers - blood
Cardiovascular Diseases - blood
Cardiovascular Diseases - diagnosis
Cardiovascular Diseases - epidemiology
Cohort Studies
Female
Global Health
Humans
Male
Predictive Value of Tests
Prospective Studies
Risk Factors
Time Factors
Title Short-Term Global Cardiovascular Disease Risk Prediction in Older Adults
URI https://www.ncbi.nlm.nih.gov/pubmed/29535064
https://www.proquest.com/docview/2013786424
Volume 71
WOSCitedRecordID wos000433412800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qRbz4ftQXEbwGssnuJnuSUi092Fq0Sm9LNpvQKmxrt_r7nWS3FA-C4GVvWcLMZObLzOQbhG5YrKwILSNaUkschxRRihqiWSJziM9Z6J9Hvz6Ifl-ORsmgTriVdVvl0id6R51PtcuRwyU94EICWg5vZx_ETY1y1dV6hMY6anCAMs7OxWjFFh5LP9gDQqYkHJBz_Wim6u96U9pRGAbSc3ZG9HeI6UNNZ_e_m9xDOzXIxK3KKvbRmikO0FavLqMfou7zGFA3GYJXxhXpP27_6EvFd1XdBj9Nync8mLuVToN4UuBHN9cbtxxvR3mEXjr3w3aX1CMViI5ksiABY4FOFOjEUCW4EjpgWlih4wyAoaaZMD7HwSMF2Ipr8JeGsYxRFWU255wdo41iWphThPNYCPiXsVkuwsiEACwspZkGVQdWG9lE10sZpWCyrg6hCjP9LNOVlJropBJ0Oqu4NVKWRNxx6J39YfU52nb6841b0QVqWDiw5hJt6q_FpJxfeVuAb3_Q-watG7y6
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Global+Cardiovascular+Disease+Risk%C2%A0Prediction+in+Older+Adults&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Saeed%2C+Anum&rft.au=Nambi%2C+Vijay&rft.au=Sun%2C+Wensheng&rft.au=Virani%2C+Salim+S&rft.date=2018-06-05&rft.eissn=1558-3597&rft.volume=71&rft.issue=22&rft.spage=2527&rft_id=info:doi/10.1016%2Fj.jacc.2018.02.050&rft_id=info%3Apmid%2F29535064&rft_id=info%3Apmid%2F29535064&rft.externalDocID=29535064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-3597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-3597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-3597&client=summon