Statistical mechanics for natural flocks of birds
Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minim...
Uloženo v:
| Vydáno v: | Proceedings of the National Academy of Sciences - PNAS Ročník 109; číslo 13; s. 4786 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
27.03.2012
|
| Témata: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction. |
|---|---|
| AbstractList | Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction.Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction. Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction. |
| Author | Silvestri, Edmondo Viale, Massimiliano Bialek, William Cavagna, Andrea Walczak, Aleksandra M Mora, Thierry Giardina, Irene |
| Author_xml | – sequence: 1 givenname: William surname: Bialek fullname: Bialek, William organization: Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA – sequence: 2 givenname: Andrea surname: Cavagna fullname: Cavagna, Andrea – sequence: 3 givenname: Irene surname: Giardina fullname: Giardina, Irene – sequence: 4 givenname: Thierry surname: Mora fullname: Mora, Thierry – sequence: 5 givenname: Edmondo surname: Silvestri fullname: Silvestri, Edmondo – sequence: 6 givenname: Massimiliano surname: Viale fullname: Viale, Massimiliano – sequence: 7 givenname: Aleksandra M surname: Walczak fullname: Walczak, Aleksandra M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22427355$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj01LxDAYhIOsuB969ia9eeqaN0nT5CiLq8KCB_Vc0uQNVvtlkh7891ZcwcvMMDwMzJos-qFHQi6BboGW_GbsTdwCgJKcA9UnZDUr5FJouviXl2Qd4zulVBeKnpElY4KVvChWBJ6TSU1MjTVt1qF9M31jY-aHkPUmTWFufTvYj5gNPqub4OI5OfWmjXhx9A153d-97B7yw9P94-72kNtCqZR7lMqg8FSgV6ysuUIsNHDhwVqt0bHaOi8dl06XXHl0IGitQaIw1riSbcj17-4Yhs8JY6q6JlpsW9PjMMVK_6ypUuqZvDqSU92hq8bQdCZ8VX8v2TdAOlaR |
| CitedBy_id | crossref_primary_10_1007_s11160_014_9367_5 crossref_primary_10_1073_pnas_2407810122 crossref_primary_10_3390_e21101009 crossref_primary_10_1016_j_ifacol_2017_08_1985 crossref_primary_10_1073_pnas_2122352120 crossref_primary_10_1209_0295_5075_128_28003 crossref_primary_10_1007_s11721_023_00233_4 crossref_primary_10_1016_j_commtr_2025_100163 crossref_primary_10_1038_s41467_022_29883_4 crossref_primary_10_1080_0022250X_2017_1323207 crossref_primary_10_1007_s10955_016_1456_5 crossref_primary_10_1140_epjp_s13360_024_05401_x crossref_primary_10_1016_j_biosystems_2016_02_001 crossref_primary_10_1038_ncomms3521 crossref_primary_10_1016_j_bbrc_2023_149198 crossref_primary_10_1088_1758_5090_ad0849 crossref_primary_10_1016_j_tins_2022_08_007 crossref_primary_10_1371_journal_pcbi_1013005 crossref_primary_10_1073_pnas_1324142111 crossref_primary_10_1007_s12064_021_00358_2 crossref_primary_10_1088_1361_648X_aac4f0 crossref_primary_10_1038_srep09904 crossref_primary_10_1098_rsos_240794 crossref_primary_10_1103_PhysRevResearch_2_023201 crossref_primary_10_1038_s41586_023_06478_7 crossref_primary_10_1088_1742_5468_ab96b0 crossref_primary_10_1038_s41598_019_48638_8 crossref_primary_10_1073_pnas_2312494121 crossref_primary_10_1088_1742_5468_ac06c2 crossref_primary_10_1103_PhysRevX_9_041024 crossref_primary_10_1093_jeb_voae153 crossref_primary_10_1103_PhysRevE_106_034102 crossref_primary_10_1103_PhysRevE_111_054411 crossref_primary_10_1088_1475_7516_2019_12_014 crossref_primary_10_7717_peerj_10210 crossref_primary_10_1088_1751_8121_acf101 crossref_primary_10_1371_journal_pone_0073937 crossref_primary_10_1038_s41598_024_55922_9 crossref_primary_10_1371_journal_pcbi_1009661 crossref_primary_10_1371_journal_pone_0125477 crossref_primary_10_1038_s41467_018_05417_9 crossref_primary_10_7554_eLife_00759 crossref_primary_10_1038_srep01073 crossref_primary_10_3389_fphy_2024_1394983 crossref_primary_10_3390_app132011513 crossref_primary_10_1016_j_physa_2018_06_045 crossref_primary_10_1209_0295_5075_110_10003 crossref_primary_10_1109_TNSE_2016_2586762 crossref_primary_10_3390_e17063738 crossref_primary_10_1098_rsos_200667 crossref_primary_10_1109_TAC_2016_2560144 crossref_primary_10_3390_e17117522 crossref_primary_10_3390_e26121094 crossref_primary_10_1103_PhysRevX_13_041053 crossref_primary_10_3390_sym12050805 crossref_primary_10_1016_j_conb_2019_07_008 crossref_primary_10_7554_eLife_94999_4 crossref_primary_10_1007_s12064_020_00331_5 crossref_primary_10_7554_eLife_96129 crossref_primary_10_1088_1367_2630_ac5da2 crossref_primary_10_1109_ACCESS_2023_3263237 crossref_primary_10_1371_journal_pone_0168995 crossref_primary_10_1073_pnas_2420697122 crossref_primary_10_1103_tjz9_btmj crossref_primary_10_1016_j_cjph_2019_06_003 crossref_primary_10_1038_s41598_024_71931_0 crossref_primary_10_1007_s12080_016_0301_4 crossref_primary_10_1038_s41598_017_03341_4 crossref_primary_10_1103_PhysRevResearch_7_013142 crossref_primary_10_1016_j_asoc_2015_06_052 crossref_primary_10_1039_D3NR00462G crossref_primary_10_1016_j_cub_2020_04_018 crossref_primary_10_1111_jcmm_12757 crossref_primary_10_1371_journal_pcbi_1003697 crossref_primary_10_1073_pnas_1514188112 crossref_primary_10_1038_s41598_022_22515_3 crossref_primary_10_1038_s41467_019_13281_4 crossref_primary_10_1140_epjb_s10051_021_00259_9 crossref_primary_10_3389_fcpxs_2024_1516812 crossref_primary_10_1103_wjcn_l4ms crossref_primary_10_1155_2024_5514002 crossref_primary_10_1007_s12551_019_00608_0 crossref_primary_10_1007_s11768_017_7097_7 crossref_primary_10_1007_s10021_017_0114_3 crossref_primary_10_1016_j_cognition_2022_105120 crossref_primary_10_1088_1674_1056_ac3c3f crossref_primary_10_1063_5_0225968 crossref_primary_10_1007_s11263_025_02538_9 crossref_primary_10_1088_1367_2630_aab1a3 crossref_primary_10_1371_journal_pcbi_1003408 crossref_primary_10_1038_s42005_024_01556_2 crossref_primary_10_1103_PhysRevResearch_2_023079 crossref_primary_10_7554_eLife_68192 crossref_primary_10_7566_JPSJ_91_064806 crossref_primary_10_1016_j_isci_2023_106112 crossref_primary_10_1016_j_chaos_2020_110543 crossref_primary_10_1088_2632_072X_ad269b crossref_primary_10_1038_srep27704 crossref_primary_10_1088_1478_3975_acd297 crossref_primary_10_1098_rsos_201536 crossref_primary_10_3390_info3040595 crossref_primary_10_1140_epjds_s13688_021_00301_x crossref_primary_10_1186_s40462_025_00573_2 crossref_primary_10_3390_e18020038 crossref_primary_10_1038_s41598_025_04436_z crossref_primary_10_3389_fpsyg_2017_00385 crossref_primary_10_1177_1059712320930418 crossref_primary_10_1016_j_conb_2020_08_012 crossref_primary_10_1073_pnas_1703817114 crossref_primary_10_1103_PhysRevLett_129_118101 crossref_primary_10_1371_journal_pone_0144643 crossref_primary_10_3389_fphys_2019_00869 crossref_primary_10_1371_journal_pcbi_1004182 crossref_primary_10_1016_j_ast_2025_110303 crossref_primary_10_3390_e19080427 crossref_primary_10_1177_0959354317750775 crossref_primary_10_1016_j_cub_2012_04_050 crossref_primary_10_1073_pnas_1822012116 crossref_primary_10_1371_journal_pone_0206817 crossref_primary_10_1126_science_aav9869 crossref_primary_10_1007_s10483_019_2525_8 crossref_primary_10_1162_ARTL_a_00221 crossref_primary_10_1088_1478_3975_12_1_016003 crossref_primary_10_1371_journal_pone_0254860 crossref_primary_10_1038_s41598_024_83703_x crossref_primary_10_1088_1478_3975_ac4bef crossref_primary_10_1093_comjnl_bxx048 crossref_primary_10_7554_eLife_94999 crossref_primary_10_1111_jfb_12520 crossref_primary_10_1016_j_chaos_2025_116532 crossref_primary_10_1007_s10955_014_1114_8 crossref_primary_10_1088_1367_2630_16_2_023016 crossref_primary_10_1098_rspa_2016_0571 crossref_primary_10_1016_j_neuron_2017_10_027 crossref_primary_10_1088_1742_5468_2016_03_033203 crossref_primary_10_1016_j_cobeha_2015_12_006 crossref_primary_10_1016_j_jtbi_2018_08_012 crossref_primary_10_1016_j_physa_2017_09_018 crossref_primary_10_1016_j_coisb_2018_03_002 crossref_primary_10_1098_rsos_241655 crossref_primary_10_3390_e25020264 crossref_primary_10_1103_2p2h_vz38 crossref_primary_10_1089_big_2017_0041 crossref_primary_10_1016_j_physrep_2014_10_001 crossref_primary_10_1098_rsos_161056 crossref_primary_10_3390_psych3040039 crossref_primary_10_1146_annurev_conmatphys_031214_014803 crossref_primary_10_3184_175815515X14234742246229 crossref_primary_10_1088_1361_6633_aa995b crossref_primary_10_1098_rsta_2020_0410 crossref_primary_10_1103_PhysRevX_12_010501 crossref_primary_10_1088_1367_2630_adc6ab crossref_primary_10_3389_fnsys_2020_591210 crossref_primary_10_1038_s41583_024_00817_x crossref_primary_10_1209_0295_5075_116_48001 crossref_primary_10_1088_1361_6633_aa9965 crossref_primary_10_3390_fractalfract8020076 crossref_primary_10_1016_j_cpc_2024_109483 crossref_primary_10_1016_j_physd_2024_134097 crossref_primary_10_1016_j_physrep_2017_11_003 crossref_primary_10_1093_molbev_msaf127 crossref_primary_10_1080_00018732_2017_1341604 crossref_primary_10_1103_PhysRevResearch_7_013188 crossref_primary_10_1371_journal_pcbi_1005718 crossref_primary_10_1109_ACCESS_2018_2840128 crossref_primary_10_1371_journal_pone_0135258 crossref_primary_10_1371_journal_pone_0265894 crossref_primary_10_1007_s00285_014_0754_2 crossref_primary_10_1103_PhysRevE_111_014132 crossref_primary_10_1016_j_biosystems_2014_03_001 crossref_primary_10_1016_j_physa_2022_127702 crossref_primary_10_1103_PhysRevResearch_6_033270 crossref_primary_10_1007_s12648_022_02371_7 crossref_primary_10_1007_s43670_023_00055_9 crossref_primary_10_1073_pnas_1324045111 crossref_primary_10_1073_pnas_2420078121 crossref_primary_10_7554_eLife_43318 crossref_primary_10_1016_j_physrep_2017_09_001 crossref_primary_10_1038_s41467_023_36563_4 crossref_primary_10_1140_epje_s10189_022_00230_1 crossref_primary_10_1038_s41598_017_09986_5 crossref_primary_10_1088_1674_1056_adbee6 crossref_primary_10_1534_genetics_115_184127 crossref_primary_10_1038_s41598_020_64183_1 crossref_primary_10_1016_j_ast_2016_04_028 crossref_primary_10_1016_j_biosystems_2024_105192 crossref_primary_10_1038_s41598_023_30134_9 crossref_primary_10_1038_s41598_019_45305_w crossref_primary_10_1088_1751_8121_ac864c crossref_primary_10_1103_PhysRevE_110_064404 crossref_primary_10_1103_PhysRevResearch_4_023037 crossref_primary_10_1242_jeb_247003 crossref_primary_10_1088_1748_3190_adaab9 crossref_primary_10_1371_journal_pbio_1002602 crossref_primary_10_1088_1742_5468_ac1661 crossref_primary_10_3390_e23060757 crossref_primary_10_1002_cplx_21711 crossref_primary_10_1098_rsos_231314 crossref_primary_10_3390_e23091138 crossref_primary_10_1088_1748_3190_aced76 crossref_primary_10_1098_rspa_2025_0315 crossref_primary_10_1016_j_chaos_2025_116440 crossref_primary_10_1088_1742_5468_ac1666 crossref_primary_10_1371_journal_pone_0195988 crossref_primary_10_1038_s41467_022_31340_1 crossref_primary_10_1371_journal_pcbi_1009394 crossref_primary_10_1016_j_jtbi_2017_04_024 crossref_primary_10_1088_1478_3975_12_4_046008 crossref_primary_10_1088_1367_2630_16_12_123017 crossref_primary_10_1109_TNSE_2021_3108075 crossref_primary_10_1137_19M1292412 crossref_primary_10_3390_e25071043 crossref_primary_10_1103_PhysRevX_10_031018 crossref_primary_10_1007_s10071_020_01374_3 crossref_primary_10_1126_science_aat5793 crossref_primary_10_1137_24M1708826 crossref_primary_10_3390_e25071029 crossref_primary_10_1209_0295_5075_acdff6 crossref_primary_10_1209_0295_5075_ac8445 crossref_primary_10_1038_nphys3846 crossref_primary_10_1371_journal_pcbi_1006545 crossref_primary_10_1038_nmat3891 crossref_primary_10_1088_1751_8121_acb7b4 crossref_primary_10_1007_s10955_015_1253_6 crossref_primary_10_1007_s10853_022_06882_w crossref_primary_10_1016_j_jmps_2023_105387 crossref_primary_10_1073_pnas_1402202111 crossref_primary_10_1088_1751_8113_49_38_384001 crossref_primary_10_1073_pnas_1319166111 crossref_primary_10_1088_2632_072X_abfa82 crossref_primary_10_1103_PhysRevResearch_7_L022039 crossref_primary_10_1007_s11721_018_0157_x crossref_primary_10_1038_srep04184 crossref_primary_10_1145_3687904 crossref_primary_10_1016_j_jfoodeng_2021_110888 crossref_primary_10_1016_j_physd_2020_132542 crossref_primary_10_1063_5_0243432 crossref_primary_10_1371_journal_pone_0086726 crossref_primary_10_1371_journal_pcbi_1002894 crossref_primary_10_1038_s41586_022_04889_6 crossref_primary_10_3390_biomimetics8020248 crossref_primary_10_1088_2632_072X_ac5b14 crossref_primary_10_3389_fphy_2020_00333 crossref_primary_10_1088_1751_8113_46_6_065001 crossref_primary_10_1103_PhysRevE_111_044102 crossref_primary_10_1209_0295_5075_ac0c68 crossref_primary_10_1016_j_jtbi_2022_111163 crossref_primary_10_1038_s41598_018_20123_8 crossref_primary_10_1016_j_mbs_2025_109418 crossref_primary_10_1088_1674_1056_ade06f crossref_primary_10_1007_s11721_015_0103_0 crossref_primary_10_1038_s42005_024_01864_7 crossref_primary_10_1103_snks_5fff crossref_primary_10_1146_annurev_conmatphys_031113_133834 crossref_primary_10_1038_s41598_021_91878_w crossref_primary_10_1007_s10955_014_1140_6 crossref_primary_10_1038_srep04174 crossref_primary_10_1016_j_cja_2024_03_019 crossref_primary_10_1016_j_ifacol_2023_12_031 crossref_primary_10_1371_journal_pone_0099015 crossref_primary_10_1002_adma_202304759 crossref_primary_10_1007_s10586_021_03331_2 crossref_primary_10_1016_j_swevo_2018_09_003 crossref_primary_10_1038_s41540_018_0069_9 crossref_primary_10_1103_PhysRevResearch_5_L032013 crossref_primary_10_1007_s10009_023_00734_x crossref_primary_10_1088_2632_072X_ad5822 crossref_primary_10_1242_dev_090381 crossref_primary_10_1088_1742_6596_638_1_012018 crossref_primary_10_1093_beheco_arab108 crossref_primary_10_1371_journal_pone_0144153 crossref_primary_10_1109_TITS_2020_2981118 crossref_primary_10_1038_s41598_020_72183_4 crossref_primary_10_1103_dvb3_b2v8 crossref_primary_10_1117_1_APN_2_6_066007 crossref_primary_10_1214_24_AAP2049 crossref_primary_10_1073_pnas_1918951117 crossref_primary_10_1103_PhysRevFluids_7_090501 crossref_primary_10_1038_s41565_020_00825_9 crossref_primary_10_1073_pnas_2420621122 crossref_primary_10_1088_1742_5468_ac12c6 crossref_primary_10_1126_scirobotics_abd8668 crossref_primary_10_1088_1367_2630_ad2132 crossref_primary_10_1209_0295_5075_104_48005 crossref_primary_10_1016_j_physa_2017_12_137 crossref_primary_10_1371_journal_pcbi_1005309 crossref_primary_10_1007_s00521_018_3905_3 crossref_primary_10_1007_s11721_021_00207_4 crossref_primary_10_1016_j_physa_2018_02_094 crossref_primary_10_1128_aac_01010_23 crossref_primary_10_1103_8xd4_6hsr crossref_primary_10_1016_j_neuroscience_2023_08_012 crossref_primary_10_1140_epje_i2018_11653_4 crossref_primary_10_1016_j_physa_2015_08_038 crossref_primary_10_1103_PhysRevResearch_2_032061 crossref_primary_10_1073_pnas_2119089119 crossref_primary_10_1371_journal_pcbi_1011540 crossref_primary_10_3390_e25060853 crossref_primary_10_1103_PhysRevX_9_011022 crossref_primary_10_1038_s41583_020_0350_y crossref_primary_10_1073_pnas_1706242114 crossref_primary_10_7554_eLife_96129_3 crossref_primary_10_1038_s41598_017_06208_w crossref_primary_10_1371_journal_pone_0054165 crossref_primary_10_1007_s12064_020_00311_9 crossref_primary_10_1038_s41467_023_38947_y crossref_primary_10_1088_1478_3975_acbad7 crossref_primary_10_1109_JIOT_2022_3165523 crossref_primary_10_1103_PhysRevResearch_4_023240 crossref_primary_10_1073_pnas_1516503113 crossref_primary_10_3390_e19080381 crossref_primary_10_1016_j_xcrp_2025_102464 crossref_primary_10_1093_pnasnexus_pgac002 crossref_primary_10_1016_j_cub_2012_05_013 crossref_primary_10_1103_PhysRevE_111_014313 crossref_primary_10_1016_j_physa_2021_126727 crossref_primary_10_1371_journal_pone_0126913 crossref_primary_10_1098_rsos_210649 crossref_primary_10_1088_1742_5468_acbc22 crossref_primary_10_1038_s41467_021_22189_x crossref_primary_10_1038_s41598_020_59080_6 crossref_primary_10_1088_1742_5468_2013_03_P03011 crossref_primary_10_1371_journal_pcbi_1006873 crossref_primary_10_1088_1751_8121_aaf479 crossref_primary_10_1140_epje_s10189_024_00423_w crossref_primary_10_1016_j_physd_2017_10_015 crossref_primary_10_1016_j_bbamcr_2015_05_022 crossref_primary_10_1038_s41567_020_0787_y crossref_primary_10_1073_pnas_1618887115 crossref_primary_10_1007_s10682_014_9743_6 crossref_primary_10_1073_pnas_1606762113 crossref_primary_10_1038_s41598_025_04953_x crossref_primary_10_1093_comnet_cnab022 crossref_primary_10_1016_j_biosystems_2021_104394 crossref_primary_10_1016_j_devcel_2017_06_020 crossref_primary_10_1073_pnas_1612365113 crossref_primary_10_1155_2018_4212509 crossref_primary_10_1016_j_chaos_2025_116585 crossref_primary_10_1088_1742_5468_2014_03_P03010 crossref_primary_10_3389_fphy_2021_687823 crossref_primary_10_1016_j_cell_2025_01_044 crossref_primary_10_1038_sdata_2019_36 crossref_primary_10_1016_j_amc_2013_12_036 crossref_primary_10_1103_9rdd_tbn7 crossref_primary_10_1002_aisy_202400572 crossref_primary_10_1038_s41567_018_0107_y crossref_primary_10_1088_1742_5468_acecfa crossref_primary_10_1007_s11721_021_00197_3 crossref_primary_10_1038_s42005_024_01866_5 crossref_primary_10_1038_s41467_017_01190_3 crossref_primary_10_1103_PhysRevResearch_4_L042041 crossref_primary_10_1073_pnas_1406608111 crossref_primary_10_1103_PhysRevResearch_3_033216 crossref_primary_10_1371_journal_pone_0267310 crossref_primary_10_1371_journal_pone_0132261 crossref_primary_10_1038_s41598_017_08028_4 crossref_primary_10_1007_s10009_023_00731_0 crossref_primary_10_1098_rsos_180863 crossref_primary_10_1103_PhysRevX_11_021057 crossref_primary_10_1038_srep37812 crossref_primary_10_1007_s40042_024_01102_x crossref_primary_10_1177_10738584251321438 crossref_primary_10_1088_1478_3975_10_6_066002 crossref_primary_10_1038_nphys3035 crossref_primary_10_1073_pnas_2021860119 crossref_primary_10_1002_pro_2758 crossref_primary_10_1007_s10955_014_1119_3 crossref_primary_10_1371_journal_pone_0260236 crossref_primary_10_1088_1751_8121_abe086 crossref_primary_10_1088_1742_5468_ab3af0 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1118633109 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 22427355 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c588t-fe68ae4f04ef827b38ee59134f1cc99ed2bcdf6d36d9738fed140b916e4acad72 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 552 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302164200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 08:19:09 EDT 2025 Mon Jul 21 06:01:08 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c588t-fe68ae4f04ef827b38ee59134f1cc99ed2bcdf6d36d9738fed140b916e4acad72 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/109/13/4786.full.pdf |
| PMID | 22427355 |
| PQID | 959138769 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_959138769 pubmed_primary_22427355 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-03-27 |
| PublicationDateYYYYMMDD | 2012-03-27 |
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2012 |
| References | 18184793 - J Neurosci. 2008 Jan 9;28(2):505-18 22065759 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18726-31 19703402 - Cell. 2009 Aug 21;138(4):774-86 21795604 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5 20866490 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066119 21728506 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051123 16625187 - Nature. 2006 Apr 20;440(7087):1007-12 16899720 - J Neurosci. 2006 Aug 9;26(32):8254-66 10059876 - Phys Rev Lett. 1995 Dec 4;75(23):4326-4329 14753946 - Phys Rev Lett. 2004 Jan 16;92(2):025702 17796623 - Science. 1972 Aug 4;177(4047):393-6 20212159 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10 17138668 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19033-8 19116270 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):67-72 18400792 - Cereb Cortex. 2008 Dec;18(12):2891-901 10060237 - Phys Rev Lett. 1995 Aug 7;75(6):1226-1229 20547832 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11865-70 20616032 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12576-80 21405611 - Phys Rev Lett. 2011 Mar 4;106(9):090601 18227508 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1232-7 |
| References_xml | – reference: 19116270 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):67-72 – reference: 21795604 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5 – reference: 17796623 - Science. 1972 Aug 4;177(4047):393-6 – reference: 10059876 - Phys Rev Lett. 1995 Dec 4;75(23):4326-4329 – reference: 10060237 - Phys Rev Lett. 1995 Aug 7;75(6):1226-1229 – reference: 21405611 - Phys Rev Lett. 2011 Mar 4;106(9):090601 – reference: 20547832 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11865-70 – reference: 21728506 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051123 – reference: 18184793 - J Neurosci. 2008 Jan 9;28(2):505-18 – reference: 16899720 - J Neurosci. 2006 Aug 9;26(32):8254-66 – reference: 18400792 - Cereb Cortex. 2008 Dec;18(12):2891-901 – reference: 16625187 - Nature. 2006 Apr 20;440(7087):1007-12 – reference: 17138668 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19033-8 – reference: 18227508 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1232-7 – reference: 20616032 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12576-80 – reference: 20212159 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10 – reference: 19703402 - Cell. 2009 Aug 21;138(4):774-86 – reference: 22065759 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18726-31 – reference: 14753946 - Phys Rev Lett. 2004 Jan 16;92(2):025702 – reference: 20866490 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066119 |
| SSID | ssj0009580 |
| Score | 2.5963905 |
| Snippet | Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4786 |
| SubjectTerms | Animals Biomechanical Phenomena Entropy Flight, Animal - physiology Models, Biological Models, Statistical Starlings - physiology |
| Title | Statistical mechanics for natural flocks of birds |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22427355 https://www.proquest.com/docview/959138769 |
| Volume | 109 |
| WOSCitedRecordID | wos000302164200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWAMrAA5bN8yQMDDFYT24ntCSFExULVAaRuUeyzpQqRlgb4_ZyTFLEgBpYM0UWyzr675_j5HSGXeW4Udy7BvQk4Jp0xzGZpYGiOBS1wCwqaZhNqPNbTqZl03Jy6o1WucmKTqGHu4j_yoclMKjB0zc3ijcWmUfFwteugsU56ApFMZHSpqf6huatbMQKTslyaZKXso8RwUZV1zBY6F6IhI_4GL5syM9r55wB3yXaHL-ltuyD6ZM1Xe6TfRXBNrzqZ6et9kkac2cg0o_2rjzeAZ66mCGJpo_aJbwNWupeazgO1syXUB-R5dP9098C6BgrMZVq_s-BzXXoZEumD5soK7X0cpQypw1nxwK2DkIPIwSihgwfcblkEjF6WrgTFD8lGNa_8MaEewKaQYfwDSDS1CVgNuUX8YWXg2YDQlVcKXKDx1KGs_PyjLr79MiBHrWeLRSukUSB8QPSUZSd_f3xKthCq8Mj-4uqM9AIGpz8nm-4TPbW8aCYen-PJ4xdLVrl9 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+mechanics+for+natural+flocks+of+birds&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bialek%2C+William&rft.au=Cavagna%2C+Andrea&rft.au=Giardina%2C+Irene&rft.au=Mora%2C+Thierry&rft.date=2012-03-27&rft.eissn=1091-6490&rft.volume=109&rft.issue=13&rft.spage=4786&rft_id=info:doi/10.1073%2Fpnas.1118633109&rft_id=info%3Apmid%2F22427355&rft_id=info%3Apmid%2F22427355&rft.externalDocID=22427355 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |