Statistical mechanics for natural flocks of birds

Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 109; číslo 13; s. 4786
Hlavní autoři: Bialek, William, Cavagna, Andrea, Giardina, Irene, Mora, Thierry, Silvestri, Edmondo, Viale, Massimiliano, Walczak, Aleksandra M
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 27.03.2012
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction.
AbstractList Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction.Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction.
Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction.
Author Silvestri, Edmondo
Viale, Massimiliano
Bialek, William
Cavagna, Andrea
Walczak, Aleksandra M
Mora, Thierry
Giardina, Irene
Author_xml – sequence: 1
  givenname: William
  surname: Bialek
  fullname: Bialek, William
  organization: Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
– sequence: 2
  givenname: Andrea
  surname: Cavagna
  fullname: Cavagna, Andrea
– sequence: 3
  givenname: Irene
  surname: Giardina
  fullname: Giardina, Irene
– sequence: 4
  givenname: Thierry
  surname: Mora
  fullname: Mora, Thierry
– sequence: 5
  givenname: Edmondo
  surname: Silvestri
  fullname: Silvestri, Edmondo
– sequence: 6
  givenname: Massimiliano
  surname: Viale
  fullname: Viale, Massimiliano
– sequence: 7
  givenname: Aleksandra M
  surname: Walczak
  fullname: Walczak, Aleksandra M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22427355$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LxDAYhIOsuB969ia9eeqaN0nT5CiLq8KCB_Vc0uQNVvtlkh7891ZcwcvMMDwMzJos-qFHQi6BboGW_GbsTdwCgJKcA9UnZDUr5FJouviXl2Qd4zulVBeKnpElY4KVvChWBJ6TSU1MjTVt1qF9M31jY-aHkPUmTWFufTvYj5gNPqub4OI5OfWmjXhx9A153d-97B7yw9P94-72kNtCqZR7lMqg8FSgV6ysuUIsNHDhwVqt0bHaOi8dl06XXHl0IGitQaIw1riSbcj17-4Yhs8JY6q6JlpsW9PjMMVK_6ypUuqZvDqSU92hq8bQdCZ8VX8v2TdAOlaR
CitedBy_id crossref_primary_10_1007_s11160_014_9367_5
crossref_primary_10_1073_pnas_2407810122
crossref_primary_10_3390_e21101009
crossref_primary_10_1016_j_ifacol_2017_08_1985
crossref_primary_10_1073_pnas_2122352120
crossref_primary_10_1209_0295_5075_128_28003
crossref_primary_10_1007_s11721_023_00233_4
crossref_primary_10_1016_j_commtr_2025_100163
crossref_primary_10_1038_s41467_022_29883_4
crossref_primary_10_1080_0022250X_2017_1323207
crossref_primary_10_1007_s10955_016_1456_5
crossref_primary_10_1140_epjp_s13360_024_05401_x
crossref_primary_10_1016_j_biosystems_2016_02_001
crossref_primary_10_1038_ncomms3521
crossref_primary_10_1016_j_bbrc_2023_149198
crossref_primary_10_1088_1758_5090_ad0849
crossref_primary_10_1016_j_tins_2022_08_007
crossref_primary_10_1371_journal_pcbi_1013005
crossref_primary_10_1073_pnas_1324142111
crossref_primary_10_1007_s12064_021_00358_2
crossref_primary_10_1088_1361_648X_aac4f0
crossref_primary_10_1038_srep09904
crossref_primary_10_1098_rsos_240794
crossref_primary_10_1103_PhysRevResearch_2_023201
crossref_primary_10_1038_s41586_023_06478_7
crossref_primary_10_1088_1742_5468_ab96b0
crossref_primary_10_1038_s41598_019_48638_8
crossref_primary_10_1073_pnas_2312494121
crossref_primary_10_1088_1742_5468_ac06c2
crossref_primary_10_1103_PhysRevX_9_041024
crossref_primary_10_1093_jeb_voae153
crossref_primary_10_1103_PhysRevE_106_034102
crossref_primary_10_1103_PhysRevE_111_054411
crossref_primary_10_1088_1475_7516_2019_12_014
crossref_primary_10_7717_peerj_10210
crossref_primary_10_1088_1751_8121_acf101
crossref_primary_10_1371_journal_pone_0073937
crossref_primary_10_1038_s41598_024_55922_9
crossref_primary_10_1371_journal_pcbi_1009661
crossref_primary_10_1371_journal_pone_0125477
crossref_primary_10_1038_s41467_018_05417_9
crossref_primary_10_7554_eLife_00759
crossref_primary_10_1038_srep01073
crossref_primary_10_3389_fphy_2024_1394983
crossref_primary_10_3390_app132011513
crossref_primary_10_1016_j_physa_2018_06_045
crossref_primary_10_1209_0295_5075_110_10003
crossref_primary_10_1109_TNSE_2016_2586762
crossref_primary_10_3390_e17063738
crossref_primary_10_1098_rsos_200667
crossref_primary_10_1109_TAC_2016_2560144
crossref_primary_10_3390_e17117522
crossref_primary_10_3390_e26121094
crossref_primary_10_1103_PhysRevX_13_041053
crossref_primary_10_3390_sym12050805
crossref_primary_10_1016_j_conb_2019_07_008
crossref_primary_10_7554_eLife_94999_4
crossref_primary_10_1007_s12064_020_00331_5
crossref_primary_10_7554_eLife_96129
crossref_primary_10_1088_1367_2630_ac5da2
crossref_primary_10_1109_ACCESS_2023_3263237
crossref_primary_10_1371_journal_pone_0168995
crossref_primary_10_1073_pnas_2420697122
crossref_primary_10_1103_tjz9_btmj
crossref_primary_10_1016_j_cjph_2019_06_003
crossref_primary_10_1038_s41598_024_71931_0
crossref_primary_10_1007_s12080_016_0301_4
crossref_primary_10_1038_s41598_017_03341_4
crossref_primary_10_1103_PhysRevResearch_7_013142
crossref_primary_10_1016_j_asoc_2015_06_052
crossref_primary_10_1039_D3NR00462G
crossref_primary_10_1016_j_cub_2020_04_018
crossref_primary_10_1111_jcmm_12757
crossref_primary_10_1371_journal_pcbi_1003697
crossref_primary_10_1073_pnas_1514188112
crossref_primary_10_1038_s41598_022_22515_3
crossref_primary_10_1038_s41467_019_13281_4
crossref_primary_10_1140_epjb_s10051_021_00259_9
crossref_primary_10_3389_fcpxs_2024_1516812
crossref_primary_10_1103_wjcn_l4ms
crossref_primary_10_1155_2024_5514002
crossref_primary_10_1007_s12551_019_00608_0
crossref_primary_10_1007_s11768_017_7097_7
crossref_primary_10_1007_s10021_017_0114_3
crossref_primary_10_1016_j_cognition_2022_105120
crossref_primary_10_1088_1674_1056_ac3c3f
crossref_primary_10_1063_5_0225968
crossref_primary_10_1007_s11263_025_02538_9
crossref_primary_10_1088_1367_2630_aab1a3
crossref_primary_10_1371_journal_pcbi_1003408
crossref_primary_10_1038_s42005_024_01556_2
crossref_primary_10_1103_PhysRevResearch_2_023079
crossref_primary_10_7554_eLife_68192
crossref_primary_10_7566_JPSJ_91_064806
crossref_primary_10_1016_j_isci_2023_106112
crossref_primary_10_1016_j_chaos_2020_110543
crossref_primary_10_1088_2632_072X_ad269b
crossref_primary_10_1038_srep27704
crossref_primary_10_1088_1478_3975_acd297
crossref_primary_10_1098_rsos_201536
crossref_primary_10_3390_info3040595
crossref_primary_10_1140_epjds_s13688_021_00301_x
crossref_primary_10_1186_s40462_025_00573_2
crossref_primary_10_3390_e18020038
crossref_primary_10_1038_s41598_025_04436_z
crossref_primary_10_3389_fpsyg_2017_00385
crossref_primary_10_1177_1059712320930418
crossref_primary_10_1016_j_conb_2020_08_012
crossref_primary_10_1073_pnas_1703817114
crossref_primary_10_1103_PhysRevLett_129_118101
crossref_primary_10_1371_journal_pone_0144643
crossref_primary_10_3389_fphys_2019_00869
crossref_primary_10_1371_journal_pcbi_1004182
crossref_primary_10_1016_j_ast_2025_110303
crossref_primary_10_3390_e19080427
crossref_primary_10_1177_0959354317750775
crossref_primary_10_1016_j_cub_2012_04_050
crossref_primary_10_1073_pnas_1822012116
crossref_primary_10_1371_journal_pone_0206817
crossref_primary_10_1126_science_aav9869
crossref_primary_10_1007_s10483_019_2525_8
crossref_primary_10_1162_ARTL_a_00221
crossref_primary_10_1088_1478_3975_12_1_016003
crossref_primary_10_1371_journal_pone_0254860
crossref_primary_10_1038_s41598_024_83703_x
crossref_primary_10_1088_1478_3975_ac4bef
crossref_primary_10_1093_comjnl_bxx048
crossref_primary_10_7554_eLife_94999
crossref_primary_10_1111_jfb_12520
crossref_primary_10_1016_j_chaos_2025_116532
crossref_primary_10_1007_s10955_014_1114_8
crossref_primary_10_1088_1367_2630_16_2_023016
crossref_primary_10_1098_rspa_2016_0571
crossref_primary_10_1016_j_neuron_2017_10_027
crossref_primary_10_1088_1742_5468_2016_03_033203
crossref_primary_10_1016_j_cobeha_2015_12_006
crossref_primary_10_1016_j_jtbi_2018_08_012
crossref_primary_10_1016_j_physa_2017_09_018
crossref_primary_10_1016_j_coisb_2018_03_002
crossref_primary_10_1098_rsos_241655
crossref_primary_10_3390_e25020264
crossref_primary_10_1103_2p2h_vz38
crossref_primary_10_1089_big_2017_0041
crossref_primary_10_1016_j_physrep_2014_10_001
crossref_primary_10_1098_rsos_161056
crossref_primary_10_3390_psych3040039
crossref_primary_10_1146_annurev_conmatphys_031214_014803
crossref_primary_10_3184_175815515X14234742246229
crossref_primary_10_1088_1361_6633_aa995b
crossref_primary_10_1098_rsta_2020_0410
crossref_primary_10_1103_PhysRevX_12_010501
crossref_primary_10_1088_1367_2630_adc6ab
crossref_primary_10_3389_fnsys_2020_591210
crossref_primary_10_1038_s41583_024_00817_x
crossref_primary_10_1209_0295_5075_116_48001
crossref_primary_10_1088_1361_6633_aa9965
crossref_primary_10_3390_fractalfract8020076
crossref_primary_10_1016_j_cpc_2024_109483
crossref_primary_10_1016_j_physd_2024_134097
crossref_primary_10_1016_j_physrep_2017_11_003
crossref_primary_10_1093_molbev_msaf127
crossref_primary_10_1080_00018732_2017_1341604
crossref_primary_10_1103_PhysRevResearch_7_013188
crossref_primary_10_1371_journal_pcbi_1005718
crossref_primary_10_1109_ACCESS_2018_2840128
crossref_primary_10_1371_journal_pone_0135258
crossref_primary_10_1371_journal_pone_0265894
crossref_primary_10_1007_s00285_014_0754_2
crossref_primary_10_1103_PhysRevE_111_014132
crossref_primary_10_1016_j_biosystems_2014_03_001
crossref_primary_10_1016_j_physa_2022_127702
crossref_primary_10_1103_PhysRevResearch_6_033270
crossref_primary_10_1007_s12648_022_02371_7
crossref_primary_10_1007_s43670_023_00055_9
crossref_primary_10_1073_pnas_1324045111
crossref_primary_10_1073_pnas_2420078121
crossref_primary_10_7554_eLife_43318
crossref_primary_10_1016_j_physrep_2017_09_001
crossref_primary_10_1038_s41467_023_36563_4
crossref_primary_10_1140_epje_s10189_022_00230_1
crossref_primary_10_1038_s41598_017_09986_5
crossref_primary_10_1088_1674_1056_adbee6
crossref_primary_10_1534_genetics_115_184127
crossref_primary_10_1038_s41598_020_64183_1
crossref_primary_10_1016_j_ast_2016_04_028
crossref_primary_10_1016_j_biosystems_2024_105192
crossref_primary_10_1038_s41598_023_30134_9
crossref_primary_10_1038_s41598_019_45305_w
crossref_primary_10_1088_1751_8121_ac864c
crossref_primary_10_1103_PhysRevE_110_064404
crossref_primary_10_1103_PhysRevResearch_4_023037
crossref_primary_10_1242_jeb_247003
crossref_primary_10_1088_1748_3190_adaab9
crossref_primary_10_1371_journal_pbio_1002602
crossref_primary_10_1088_1742_5468_ac1661
crossref_primary_10_3390_e23060757
crossref_primary_10_1002_cplx_21711
crossref_primary_10_1098_rsos_231314
crossref_primary_10_3390_e23091138
crossref_primary_10_1088_1748_3190_aced76
crossref_primary_10_1098_rspa_2025_0315
crossref_primary_10_1016_j_chaos_2025_116440
crossref_primary_10_1088_1742_5468_ac1666
crossref_primary_10_1371_journal_pone_0195988
crossref_primary_10_1038_s41467_022_31340_1
crossref_primary_10_1371_journal_pcbi_1009394
crossref_primary_10_1016_j_jtbi_2017_04_024
crossref_primary_10_1088_1478_3975_12_4_046008
crossref_primary_10_1088_1367_2630_16_12_123017
crossref_primary_10_1109_TNSE_2021_3108075
crossref_primary_10_1137_19M1292412
crossref_primary_10_3390_e25071043
crossref_primary_10_1103_PhysRevX_10_031018
crossref_primary_10_1007_s10071_020_01374_3
crossref_primary_10_1126_science_aat5793
crossref_primary_10_1137_24M1708826
crossref_primary_10_3390_e25071029
crossref_primary_10_1209_0295_5075_acdff6
crossref_primary_10_1209_0295_5075_ac8445
crossref_primary_10_1038_nphys3846
crossref_primary_10_1371_journal_pcbi_1006545
crossref_primary_10_1038_nmat3891
crossref_primary_10_1088_1751_8121_acb7b4
crossref_primary_10_1007_s10955_015_1253_6
crossref_primary_10_1007_s10853_022_06882_w
crossref_primary_10_1016_j_jmps_2023_105387
crossref_primary_10_1073_pnas_1402202111
crossref_primary_10_1088_1751_8113_49_38_384001
crossref_primary_10_1073_pnas_1319166111
crossref_primary_10_1088_2632_072X_abfa82
crossref_primary_10_1103_PhysRevResearch_7_L022039
crossref_primary_10_1007_s11721_018_0157_x
crossref_primary_10_1038_srep04184
crossref_primary_10_1145_3687904
crossref_primary_10_1016_j_jfoodeng_2021_110888
crossref_primary_10_1016_j_physd_2020_132542
crossref_primary_10_1063_5_0243432
crossref_primary_10_1371_journal_pone_0086726
crossref_primary_10_1371_journal_pcbi_1002894
crossref_primary_10_1038_s41586_022_04889_6
crossref_primary_10_3390_biomimetics8020248
crossref_primary_10_1088_2632_072X_ac5b14
crossref_primary_10_3389_fphy_2020_00333
crossref_primary_10_1088_1751_8113_46_6_065001
crossref_primary_10_1103_PhysRevE_111_044102
crossref_primary_10_1209_0295_5075_ac0c68
crossref_primary_10_1016_j_jtbi_2022_111163
crossref_primary_10_1038_s41598_018_20123_8
crossref_primary_10_1016_j_mbs_2025_109418
crossref_primary_10_1088_1674_1056_ade06f
crossref_primary_10_1007_s11721_015_0103_0
crossref_primary_10_1038_s42005_024_01864_7
crossref_primary_10_1103_snks_5fff
crossref_primary_10_1146_annurev_conmatphys_031113_133834
crossref_primary_10_1038_s41598_021_91878_w
crossref_primary_10_1007_s10955_014_1140_6
crossref_primary_10_1038_srep04174
crossref_primary_10_1016_j_cja_2024_03_019
crossref_primary_10_1016_j_ifacol_2023_12_031
crossref_primary_10_1371_journal_pone_0099015
crossref_primary_10_1002_adma_202304759
crossref_primary_10_1007_s10586_021_03331_2
crossref_primary_10_1016_j_swevo_2018_09_003
crossref_primary_10_1038_s41540_018_0069_9
crossref_primary_10_1103_PhysRevResearch_5_L032013
crossref_primary_10_1007_s10009_023_00734_x
crossref_primary_10_1088_2632_072X_ad5822
crossref_primary_10_1242_dev_090381
crossref_primary_10_1088_1742_6596_638_1_012018
crossref_primary_10_1093_beheco_arab108
crossref_primary_10_1371_journal_pone_0144153
crossref_primary_10_1109_TITS_2020_2981118
crossref_primary_10_1038_s41598_020_72183_4
crossref_primary_10_1103_dvb3_b2v8
crossref_primary_10_1117_1_APN_2_6_066007
crossref_primary_10_1214_24_AAP2049
crossref_primary_10_1073_pnas_1918951117
crossref_primary_10_1103_PhysRevFluids_7_090501
crossref_primary_10_1038_s41565_020_00825_9
crossref_primary_10_1073_pnas_2420621122
crossref_primary_10_1088_1742_5468_ac12c6
crossref_primary_10_1126_scirobotics_abd8668
crossref_primary_10_1088_1367_2630_ad2132
crossref_primary_10_1209_0295_5075_104_48005
crossref_primary_10_1016_j_physa_2017_12_137
crossref_primary_10_1371_journal_pcbi_1005309
crossref_primary_10_1007_s00521_018_3905_3
crossref_primary_10_1007_s11721_021_00207_4
crossref_primary_10_1016_j_physa_2018_02_094
crossref_primary_10_1128_aac_01010_23
crossref_primary_10_1103_8xd4_6hsr
crossref_primary_10_1016_j_neuroscience_2023_08_012
crossref_primary_10_1140_epje_i2018_11653_4
crossref_primary_10_1016_j_physa_2015_08_038
crossref_primary_10_1103_PhysRevResearch_2_032061
crossref_primary_10_1073_pnas_2119089119
crossref_primary_10_1371_journal_pcbi_1011540
crossref_primary_10_3390_e25060853
crossref_primary_10_1103_PhysRevX_9_011022
crossref_primary_10_1038_s41583_020_0350_y
crossref_primary_10_1073_pnas_1706242114
crossref_primary_10_7554_eLife_96129_3
crossref_primary_10_1038_s41598_017_06208_w
crossref_primary_10_1371_journal_pone_0054165
crossref_primary_10_1007_s12064_020_00311_9
crossref_primary_10_1038_s41467_023_38947_y
crossref_primary_10_1088_1478_3975_acbad7
crossref_primary_10_1109_JIOT_2022_3165523
crossref_primary_10_1103_PhysRevResearch_4_023240
crossref_primary_10_1073_pnas_1516503113
crossref_primary_10_3390_e19080381
crossref_primary_10_1016_j_xcrp_2025_102464
crossref_primary_10_1093_pnasnexus_pgac002
crossref_primary_10_1016_j_cub_2012_05_013
crossref_primary_10_1103_PhysRevE_111_014313
crossref_primary_10_1016_j_physa_2021_126727
crossref_primary_10_1371_journal_pone_0126913
crossref_primary_10_1098_rsos_210649
crossref_primary_10_1088_1742_5468_acbc22
crossref_primary_10_1038_s41467_021_22189_x
crossref_primary_10_1038_s41598_020_59080_6
crossref_primary_10_1088_1742_5468_2013_03_P03011
crossref_primary_10_1371_journal_pcbi_1006873
crossref_primary_10_1088_1751_8121_aaf479
crossref_primary_10_1140_epje_s10189_024_00423_w
crossref_primary_10_1016_j_physd_2017_10_015
crossref_primary_10_1016_j_bbamcr_2015_05_022
crossref_primary_10_1038_s41567_020_0787_y
crossref_primary_10_1073_pnas_1618887115
crossref_primary_10_1007_s10682_014_9743_6
crossref_primary_10_1073_pnas_1606762113
crossref_primary_10_1038_s41598_025_04953_x
crossref_primary_10_1093_comnet_cnab022
crossref_primary_10_1016_j_biosystems_2021_104394
crossref_primary_10_1016_j_devcel_2017_06_020
crossref_primary_10_1073_pnas_1612365113
crossref_primary_10_1155_2018_4212509
crossref_primary_10_1016_j_chaos_2025_116585
crossref_primary_10_1088_1742_5468_2014_03_P03010
crossref_primary_10_3389_fphy_2021_687823
crossref_primary_10_1016_j_cell_2025_01_044
crossref_primary_10_1038_sdata_2019_36
crossref_primary_10_1016_j_amc_2013_12_036
crossref_primary_10_1103_9rdd_tbn7
crossref_primary_10_1002_aisy_202400572
crossref_primary_10_1038_s41567_018_0107_y
crossref_primary_10_1088_1742_5468_acecfa
crossref_primary_10_1007_s11721_021_00197_3
crossref_primary_10_1038_s42005_024_01866_5
crossref_primary_10_1038_s41467_017_01190_3
crossref_primary_10_1103_PhysRevResearch_4_L042041
crossref_primary_10_1073_pnas_1406608111
crossref_primary_10_1103_PhysRevResearch_3_033216
crossref_primary_10_1371_journal_pone_0267310
crossref_primary_10_1371_journal_pone_0132261
crossref_primary_10_1038_s41598_017_08028_4
crossref_primary_10_1007_s10009_023_00731_0
crossref_primary_10_1098_rsos_180863
crossref_primary_10_1103_PhysRevX_11_021057
crossref_primary_10_1038_srep37812
crossref_primary_10_1007_s40042_024_01102_x
crossref_primary_10_1177_10738584251321438
crossref_primary_10_1088_1478_3975_10_6_066002
crossref_primary_10_1038_nphys3035
crossref_primary_10_1073_pnas_2021860119
crossref_primary_10_1002_pro_2758
crossref_primary_10_1007_s10955_014_1119_3
crossref_primary_10_1371_journal_pone_0260236
crossref_primary_10_1088_1751_8121_abe086
crossref_primary_10_1088_1742_5468_ab3af0
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1118633109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22427355
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c588t-fe68ae4f04ef827b38ee59134f1cc99ed2bcdf6d36d9738fed140b916e4acad72
IEDL.DBID 7X8
ISICitedReferencesCount 552
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302164200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 08:19:09 EDT 2025
Mon Jul 21 06:01:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-fe68ae4f04ef827b38ee59134f1cc99ed2bcdf6d36d9738fed140b916e4acad72
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/13/4786.full.pdf
PMID 22427355
PQID 959138769
PQPubID 23479
ParticipantIDs proquest_miscellaneous_959138769
pubmed_primary_22427355
PublicationCentury 2000
PublicationDate 2012-03-27
PublicationDateYYYYMMDD 2012-03-27
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
References 18184793 - J Neurosci. 2008 Jan 9;28(2):505-18
22065759 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18726-31
19703402 - Cell. 2009 Aug 21;138(4):774-86
21795604 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5
20866490 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066119
21728506 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051123
16625187 - Nature. 2006 Apr 20;440(7087):1007-12
16899720 - J Neurosci. 2006 Aug 9;26(32):8254-66
10059876 - Phys Rev Lett. 1995 Dec 4;75(23):4326-4329
14753946 - Phys Rev Lett. 2004 Jan 16;92(2):025702
17796623 - Science. 1972 Aug 4;177(4047):393-6
20212159 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10
17138668 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19033-8
19116270 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):67-72
18400792 - Cereb Cortex. 2008 Dec;18(12):2891-901
10060237 - Phys Rev Lett. 1995 Aug 7;75(6):1226-1229
20547832 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11865-70
20616032 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12576-80
21405611 - Phys Rev Lett. 2011 Mar 4;106(9):090601
18227508 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1232-7
References_xml – reference: 19116270 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):67-72
– reference: 21795604 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5
– reference: 17796623 - Science. 1972 Aug 4;177(4047):393-6
– reference: 10059876 - Phys Rev Lett. 1995 Dec 4;75(23):4326-4329
– reference: 10060237 - Phys Rev Lett. 1995 Aug 7;75(6):1226-1229
– reference: 21405611 - Phys Rev Lett. 2011 Mar 4;106(9):090601
– reference: 20547832 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11865-70
– reference: 21728506 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051123
– reference: 18184793 - J Neurosci. 2008 Jan 9;28(2):505-18
– reference: 16899720 - J Neurosci. 2006 Aug 9;26(32):8254-66
– reference: 18400792 - Cereb Cortex. 2008 Dec;18(12):2891-901
– reference: 16625187 - Nature. 2006 Apr 20;440(7087):1007-12
– reference: 17138668 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19033-8
– reference: 18227508 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1232-7
– reference: 20616032 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12576-80
– reference: 20212159 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10
– reference: 19703402 - Cell. 2009 Aug 21;138(4):774-86
– reference: 22065759 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18726-31
– reference: 14753946 - Phys Rev Lett. 2004 Jan 16;92(2):025702
– reference: 20866490 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066119
SSID ssj0009580
Score 2.5963905
Snippet Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4786
SubjectTerms Animals
Biomechanical Phenomena
Entropy
Flight, Animal - physiology
Models, Biological
Models, Statistical
Starlings - physiology
Title Statistical mechanics for natural flocks of birds
URI https://www.ncbi.nlm.nih.gov/pubmed/22427355
https://www.proquest.com/docview/959138769
Volume 109
WOSCitedRecordID wos000302164200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWAMrAA5bN8yQMDDFYT24ntCSFExULVAaRuUeyzpQqRlgb4_ZyTFLEgBpYM0UWyzr675_j5HSGXeW4Udy7BvQk4Jp0xzGZpYGiOBS1wCwqaZhNqPNbTqZl03Jy6o1WucmKTqGHu4j_yoclMKjB0zc3ijcWmUfFwteugsU56ApFMZHSpqf6huatbMQKTslyaZKXso8RwUZV1zBY6F6IhI_4GL5syM9r55wB3yXaHL-ltuyD6ZM1Xe6TfRXBNrzqZ6et9kkac2cg0o_2rjzeAZ66mCGJpo_aJbwNWupeazgO1syXUB-R5dP9098C6BgrMZVq_s-BzXXoZEumD5soK7X0cpQypw1nxwK2DkIPIwSihgwfcblkEjF6WrgTFD8lGNa_8MaEewKaQYfwDSDS1CVgNuUX8YWXg2YDQlVcKXKDx1KGs_PyjLr79MiBHrWeLRSukUSB8QPSUZSd_f3xKthCq8Mj-4uqM9AIGpz8nm-4TPbW8aCYen-PJ4xdLVrl9
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+mechanics+for+natural+flocks+of+birds&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bialek%2C+William&rft.au=Cavagna%2C+Andrea&rft.au=Giardina%2C+Irene&rft.au=Mora%2C+Thierry&rft.date=2012-03-27&rft.eissn=1091-6490&rft.volume=109&rft.issue=13&rft.spage=4786&rft_id=info:doi/10.1073%2Fpnas.1118633109&rft_id=info%3Apmid%2F22427355&rft_id=info%3Apmid%2F22427355&rft.externalDocID=22427355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon