A decade of transcription factor-mediated reprogramming to pluripotency

This year marks the tenth anniversary of the generation of induced pluripotent stem cells (iPSCs) by transcription factor-mediated somatic cell reprogramming. Takahashi and Yamanaka portray the path towards this ground-breaking discovery and discuss how, since then, research has focused on understan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Molecular cell biology Jg. 17; H. 3; S. 183 - 193
Hauptverfasser: Takahashi, Kazutoshi, Yamanaka, Shinya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.03.2016
Nature Publishing Group
Schlagworte:
ISSN:1471-0072, 1471-0080, 1471-0080
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This year marks the tenth anniversary of the generation of induced pluripotent stem cells (iPSCs) by transcription factor-mediated somatic cell reprogramming. Takahashi and Yamanaka portray the path towards this ground-breaking discovery and discuss how, since then, research has focused on understanding the mechanisms underlying iPSC generation and on translating such advances to the clinic. The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors — octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) — initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.
AbstractList The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.
This year marks the tenth anniversary of the generation of induced pluripotent stem cells (iPSCs) by transcription factor-mediated somatic cell reprogramming. Takahashi and Yamanaka portray the path towards this ground-breaking discovery and discuss how, since then, research has focused on understanding the mechanisms underlying iPSC generation and on translating such advances to the clinic. The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors — octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) — initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.
The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.
The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors--octamer-binding protein 3/4 (OCT3/4), SOX2, Kruppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) --initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.
Audience Academic
Author Yamanaka, Shinya
Takahashi, Kazutoshi
Author_xml – sequence: 1
  givenname: Kazutoshi
  surname: Takahashi
  fullname: Takahashi, Kazutoshi
  email: takahash@cira.kyoto-u.ac.jp
  organization: Kazutoshi Takahashi and Shinya Yamanaka are at the Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606–8507, Japan, and the Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158, USA
– sequence: 2
  givenname: Shinya
  surname: Yamanaka
  fullname: Yamanaka, Shinya
  email: yamanaka@cira.kyoto-u.ac.jp
  organization: Kazutoshi Takahashi and Shinya Yamanaka are at the Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606–8507, Japan, and the Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26883003$$D View this record in MEDLINE/PubMed
BookMark eNpt0ktr3DAQAGBRUppHe-kPKIZemhZvJXktycclNA8IBNL2LGRpZBRsaSvJ0Pz7ymzSdpPoYmG-GUYzc4wOfPCA0HuCVwQ34quP04piwlbiFToia05qjAU--Hvn9BAdp3SHiyG8fYMOKROiwbg5QhebyoBWBqpgqxyVTzq6bXbBV1bpHGI9gXEqg6kibGMYopom54cqh2o7zsWGDF7fv0WvrRoTvHv4nqCf599-nF3W1zcXV2eb61q3QuQa6LrlRvVW96btFDGkp8yCwaovB9Om7zvKus4IS4VlijaiEarXYDUnLaPNCfq0y1tq-TVDynJyScM4Kg9hTpJwJgjjHC_04xN6F-boS3WL4g1rcSf-qUGNIJ23oXRBL0nlZr1uiyAtL2r1glJL4yanyzisK__3Ak73AorJ8DsPak5JXn2_3bcfHgqd-9JtuY1uUvFePk6pALwDOoaUIlipXVbLkEoVbpQEy2URZFkEuSyCXJ71-UnIY9YX8ZcdTgX5AeJ_nXqu_wC6X8BJ
CitedBy_id crossref_primary_10_1038_s41467_017_01415_5
crossref_primary_10_1016_j_ijcard_2017_03_085
crossref_primary_10_1038_s41434_021_00247_9
crossref_primary_10_1016_j_compbiomed_2024_108661
crossref_primary_10_1093_stmcls_sxac012
crossref_primary_10_1093_biosci_biae058
crossref_primary_10_1007_s00424_024_02945_w
crossref_primary_10_3390_biomedicines12122714
crossref_primary_10_3389_fcell_2024_1535839
crossref_primary_10_3390_ijms21010362
crossref_primary_10_1016_j_canlet_2025_217980
crossref_primary_10_1016_j_ymeth_2017_09_001
crossref_primary_10_1101_gad_352316_124
crossref_primary_10_1016_j_gpb_2018_03_004
crossref_primary_10_1016_j_cell_2019_01_006
crossref_primary_10_1038_s41392_024_01809_0
crossref_primary_10_1096_fj_201902118R
crossref_primary_10_1074_jbc_RA119_010284
crossref_primary_10_1152_physrev_00015_2016
crossref_primary_10_1007_s00018_021_03883_x
crossref_primary_10_1177_2045125320968331
crossref_primary_10_1093_pcp_pcy139
crossref_primary_10_3390_biomedicines10081905
crossref_primary_10_1002_glia_23666
crossref_primary_10_1111_brv_12693
crossref_primary_10_1155_2018_5965727
crossref_primary_10_1371_journal_pone_0203869
crossref_primary_10_1158_0008_5472_CAN_19_1034
crossref_primary_10_1002_ctm2_95
crossref_primary_10_1093_bib_bbab002
crossref_primary_10_1016_j_lfs_2020_117461
crossref_primary_10_3389_fcell_2022_884004
crossref_primary_10_34067_KID_0006492020
crossref_primary_10_1038_s41597_019_0071_0
crossref_primary_10_1093_nargab_lqab100
crossref_primary_10_1038_s42003_024_06328_w
crossref_primary_10_1016_j_mehy_2020_110171
crossref_primary_10_1016_j_biomaterials_2023_122215
crossref_primary_10_3389_fcell_2018_00172
crossref_primary_10_1177_1759720X17704639
crossref_primary_10_1089_cmb_2019_0098
crossref_primary_10_1242_dmm_039321
crossref_primary_10_3390_biom14030315
crossref_primary_10_1038_s41419_018_0606_x
crossref_primary_10_1038_mp_2017_66
crossref_primary_10_1371_journal_pone_0176496
crossref_primary_10_1093_gastro_goaa023
crossref_primary_10_1186_s12859_024_05836_0
crossref_primary_10_3233_JCB_179007
crossref_primary_10_3390_ijms23147782
crossref_primary_10_3390_vetsci11120666
crossref_primary_10_1038_s41587_024_02196_1
crossref_primary_10_3389_fgene_2021_759366
crossref_primary_10_1038_s41421_025_00780_6
crossref_primary_10_3389_fonc_2022_826113
crossref_primary_10_12688_f1000research_15271_1
crossref_primary_10_1002_sctm_18_0265
crossref_primary_10_1186_s13567_021_00911_3
crossref_primary_10_1038_s41477_018_0213_y
crossref_primary_10_3389_fvets_2021_716570
crossref_primary_10_1038_s41575_025_01050_2
crossref_primary_10_1038_s41556_018_0067_6
crossref_primary_10_1084_jem_20232136
crossref_primary_10_1002_adbi_202000071
crossref_primary_10_1161_ATVBAHA_122_318723
crossref_primary_10_1016_j_saa_2023_122713
crossref_primary_10_3389_fnins_2020_558532
crossref_primary_10_1002_stem_2565
crossref_primary_10_1097_ALN_0000000000001882
crossref_primary_10_1038_s41592_018_0113_0
crossref_primary_10_1016_j_jconrel_2017_11_004
crossref_primary_10_3390_ijms22073399
crossref_primary_10_1016_j_tice_2018_09_004
crossref_primary_10_1242_dev_202796
crossref_primary_10_1016_j_gene_2018_09_013
crossref_primary_10_12688_f1000research_11669_1
crossref_primary_10_7554_eLife_89724
crossref_primary_10_4252_wjsc_v11_i7_421
crossref_primary_10_1038_s41388_022_02361_3
crossref_primary_10_1242_dev_193631
crossref_primary_10_1007_s11825_017_0140_8
crossref_primary_10_3389_fcell_2021_821839
crossref_primary_10_1186_s13287_019_1273_2
crossref_primary_10_1186_s41702_017_0004_5
crossref_primary_10_1038_s41467_022_35180_x
crossref_primary_10_3390_jpm10020050
crossref_primary_10_1016_j_scr_2017_02_011
crossref_primary_10_1016_j_molmed_2016_05_010
crossref_primary_10_1038_nm_4238
crossref_primary_10_3390_ijms17040594
crossref_primary_10_2478_aoas_2023_0061
crossref_primary_10_1038_s41540_023_00326_0
crossref_primary_10_1038_pr_2017_231
crossref_primary_10_3390_biomedicines11061737
crossref_primary_10_3389_fphys_2021_640061
crossref_primary_10_1186_s13046_022_02255_y
crossref_primary_10_1016_j_stem_2016_11_020
crossref_primary_10_1002_hep_32686
crossref_primary_10_1038_s41598_021_83603_4
crossref_primary_10_1155_2017_5091541
crossref_primary_10_1590_1806_9282_63_02_180
crossref_primary_10_1091_mbc_E24_02_0061
crossref_primary_10_3390_ph14040334
crossref_primary_10_1111_dom_12717
crossref_primary_10_1038_s42003_023_05561_z
crossref_primary_10_3390_ijms26115106
crossref_primary_10_3389_fcell_2024_1507388
crossref_primary_10_1002_stem_2899
crossref_primary_10_1089_biores_2018_0028
crossref_primary_10_3389_fnmol_2021_654031
crossref_primary_10_1111_cpr_13487
crossref_primary_10_1093_hropen_hoy024
crossref_primary_10_1038_s41563_022_01312_3
crossref_primary_10_1016_j_cell_2024_05_010
crossref_primary_10_1016_j_stem_2018_07_004
crossref_primary_10_1186_s12915_025_02264_1
crossref_primary_10_1016_j_semcdb_2017_10_021
crossref_primary_10_1038_s42003_023_05594_4
crossref_primary_10_1002_bdr2_2007
crossref_primary_10_1002_advs_202409642
crossref_primary_10_1016_j_tplants_2018_05_008
crossref_primary_10_3390_cells8070703
crossref_primary_10_1186_s12915_021_01217_8
crossref_primary_10_1007_s13238_016_0362_6
crossref_primary_10_1016_j_exger_2020_111005
crossref_primary_10_3389_fcell_2017_00007
crossref_primary_10_1186_s13046_021_01890_1
crossref_primary_10_1089_pho_2016_4216
crossref_primary_10_1038_s41467_021_26810_x
crossref_primary_10_1038_s41598_020_66845_6
crossref_primary_10_1007_s12015_024_10809_0
crossref_primary_10_1080_15384101_2016_1238119
crossref_primary_10_1002_jbm_a_37669
crossref_primary_10_1186_s13287_023_03267_x
crossref_primary_10_1002_ijc_30465
crossref_primary_10_3390_ijms241814375
crossref_primary_10_1016_j_ccell_2022_10_011
crossref_primary_10_1038_s41467_019_13411_y
crossref_primary_10_1007_s00412_017_0656_3
crossref_primary_10_1038_s41556_020_0490_3
crossref_primary_10_1007_s12035_023_03432_6
crossref_primary_10_1038_nrm_2015_27
crossref_primary_10_1016_j_envpol_2021_118483
crossref_primary_10_1016_j_bja_2022_09_009
crossref_primary_10_3390_cancers15174357
crossref_primary_10_1002_advs_202500221
crossref_primary_10_1016_j_biotechadv_2018_01_012
crossref_primary_10_3389_fbioe_2022_941623
crossref_primary_10_1051_e3sconf_202014501033
crossref_primary_10_1002_jbm_a_37315
crossref_primary_10_3390_life12081151
crossref_primary_10_1016_j_scr_2021_102334
crossref_primary_10_1038_s41388_025_03519_5
crossref_primary_10_1016_j_bpj_2021_04_002
crossref_primary_10_1111_jcmm_17912
crossref_primary_10_3389_fcell_2021_697578
crossref_primary_10_1016_j_tibs_2025_03_004
crossref_primary_10_1063_5_0004611
crossref_primary_10_1016_j_isci_2021_103537
crossref_primary_10_1016_j_omtm_2016_11_005
crossref_primary_10_1089_biores_2019_0046
crossref_primary_10_1186_s13148_021_01131_4
crossref_primary_10_3389_fphar_2022_1051103
crossref_primary_10_4103_1673_5374_390965
crossref_primary_10_1007_s11064_016_2086_7
crossref_primary_10_1093_ajcp_aqae067
crossref_primary_10_3389_fcell_2023_1164811
crossref_primary_10_1016_j_tcb_2025_01_008
crossref_primary_10_1073_pnas_2204716119
crossref_primary_10_1016_j_cell_2018_01_029
crossref_primary_10_1016_j_aej_2025_06_022
crossref_primary_10_1016_j_stem_2018_06_013
crossref_primary_10_1016_j_jbc_2023_102996
crossref_primary_10_4292_wjgpt_v8_i1_1
crossref_primary_10_1016_j_neuron_2023_04_021
crossref_primary_10_1093_nar_gkaf805
crossref_primary_10_1038_nrg_2017_28
crossref_primary_10_1186_s13287_021_02171_6
crossref_primary_10_1039_C9NR02375E
crossref_primary_10_1016_j_ejphar_2025_177853
crossref_primary_10_1089_pho_2016_4203
crossref_primary_10_1007_s00018_016_2284_0
crossref_primary_10_1002_smll_201700703
crossref_primary_10_1038_s41587_022_01587_6
crossref_primary_10_15252_embj_2019104324
crossref_primary_10_1016_j_gde_2025_102351
crossref_primary_10_1016_j_plasmid_2018_05_002
crossref_primary_10_1080_03081079_2018_1441681
crossref_primary_10_1186_s13287_019_1316_8
crossref_primary_10_3390_jcm13247635
crossref_primary_10_1038_nrm_2016_10
crossref_primary_10_1146_annurev_animal_111523_102158
crossref_primary_10_3390_ijms252313128
crossref_primary_10_1038_s41467_023_37256_8
crossref_primary_10_1038_s41580_021_00335_z
crossref_primary_10_1111_bju_14207
crossref_primary_10_1164_rccm_201701_0107CP
crossref_primary_10_1146_annurev_cellbio_120319_114716
crossref_primary_10_1186_s12967_019_02183_0
crossref_primary_10_3389_fnagi_2022_868770
crossref_primary_10_3390_data5040111
crossref_primary_10_3389_fcell_2020_561791
crossref_primary_10_3390_ijms241411603
crossref_primary_10_1038_s41598_020_80060_3
crossref_primary_10_1016_j_stem_2018_05_025
crossref_primary_10_3390_genes12040539
crossref_primary_10_1093_stcltm_szad019
crossref_primary_10_1007_s43032_021_00503_8
crossref_primary_10_1016_j_cels_2020_03_004
crossref_primary_10_1016_j_cels_2021_05_011
crossref_primary_10_1007_s00018_017_2703_x
crossref_primary_10_1073_pnas_2426145122
crossref_primary_10_1038_s41420_024_01834_6
crossref_primary_10_1134_S106236042470005X
crossref_primary_10_3389_fnins_2024_1210447
crossref_primary_10_3389_fonc_2022_1024600
crossref_primary_10_1002_pmic_201800416
crossref_primary_10_1093_bfgp_elac008
crossref_primary_10_1038_s41598_017_12847_w
crossref_primary_10_3390_pathophysiology30030027
crossref_primary_10_1186_s40880_019_0393_5
crossref_primary_10_1038_s41467_019_14219_6
crossref_primary_10_1146_annurev_bioeng_092021_042744
crossref_primary_10_3390_cells12111482
crossref_primary_10_1186_s13287_021_02285_x
crossref_primary_10_5194_pb_4_173_2017
crossref_primary_10_1007_s00204_016_1763_2
crossref_primary_10_1007_s40778_022_00212_1
crossref_primary_10_1038_nrd_2016_245
crossref_primary_10_1093_nargab_lqac023
crossref_primary_10_1194_jlr_M081323
crossref_primary_10_3390_cells13171502
crossref_primary_10_1016_j_critrevonc_2025_104860
crossref_primary_10_3748_wjg_v23_i30_5451
crossref_primary_10_3389_fbioe_2022_755983
crossref_primary_10_1016_j_ceca_2016_02_006
crossref_primary_10_1186_s12861_017_0150_4
crossref_primary_10_1016_j_semcdb_2022_04_008
crossref_primary_10_3390_bios13030404
crossref_primary_10_1016_j_ymeth_2017_05_009
crossref_primary_10_1016_j_cels_2016_12_001
crossref_primary_10_1111_bpa_12526
crossref_primary_10_1016_j_immuni_2018_04_024
crossref_primary_10_1016_j_jff_2024_106543
crossref_primary_10_3390_cells13121052
crossref_primary_10_1186_s12864_018_5326_1
crossref_primary_10_1016_j_jgg_2021_09_006
crossref_primary_10_1016_j_cell_2023_01_011
crossref_primary_10_1186_s12864_019_5821_z
crossref_primary_10_1016_j_jbc_2022_101576
crossref_primary_10_1186_s13072_020_00336_w
crossref_primary_10_1016_j_celrep_2019_04_088
crossref_primary_10_1093_cvr_cvab088
crossref_primary_10_1126_sciimmunol_abm1920
crossref_primary_10_1016_j_coi_2020_02_001
crossref_primary_10_1093_cvr_cvac058
crossref_primary_10_1155_2017_7215010
crossref_primary_10_1183_16000617_0112_2023
crossref_primary_10_3390_ijms22115874
crossref_primary_10_1016_j_bbamcr_2024_119893
crossref_primary_10_1016_j_preteyeres_2024_101286
crossref_primary_10_1002_mrd_22819
crossref_primary_10_3390_ijms21238952
crossref_primary_10_1016_j_molcel_2017_04_006
crossref_primary_10_3390_ijms20092254
crossref_primary_10_1371_journal_pone_0220742
crossref_primary_10_3389_fgene_2020_588602
crossref_primary_10_1016_j_molcel_2019_01_042
crossref_primary_10_1080_14712598_2018_1439013
crossref_primary_10_26508_lsa_202302337
crossref_primary_10_7554_eLife_83952
crossref_primary_10_1016_j_jmb_2020_01_024
crossref_primary_10_3389_fnmol_2016_00078
crossref_primary_10_1186_s13148_021_01158_7
crossref_primary_10_3390_cells10102558
crossref_primary_10_1177_2398212818818071
crossref_primary_10_1038_s41467_025_61742_w
crossref_primary_10_1111_acel_12877
crossref_primary_10_1016_j_molcel_2019_08_016
crossref_primary_10_3390_genes9120617
crossref_primary_10_1007_s00412_016_0621_6
crossref_primary_10_3389_frhem_2024_1373554
crossref_primary_10_3390_cells10123483
crossref_primary_10_1101_gr_279955_124
crossref_primary_10_3389_fcell_2024_1343106
crossref_primary_10_7554_eLife_89724_3
crossref_primary_10_1016_j_ymthe_2025_08_013
crossref_primary_10_1172_JCI175023
crossref_primary_10_1016_j_yexcr_2022_113339
crossref_primary_10_7717_peerj_4370
crossref_primary_10_1016_j_stem_2019_06_010
crossref_primary_10_1002_jcp_28953
crossref_primary_10_1080_14789450_2024_2334033
crossref_primary_10_3390_cells8010026
crossref_primary_10_1002_bies_202000345
crossref_primary_10_3390_ijms24076232
crossref_primary_10_1186_s13072_025_00601_w
crossref_primary_10_1038_s41388_021_01713_9
crossref_primary_10_1073_pnas_1703170114
crossref_primary_10_1134_S1062360422060091
crossref_primary_10_3390_jcm12051711
crossref_primary_10_1038_s41583_018_0001_8
crossref_primary_10_1016_j_bone_2017_07_003
crossref_primary_10_1103_PhysRevResearch_4_L022008
crossref_primary_10_3389_fphys_2023_1094249
crossref_primary_10_1007_s00018_018_2770_7
crossref_primary_10_1016_j_yexcr_2022_113109
crossref_primary_10_1016_j_memsci_2017_08_036
crossref_primary_10_1002_advs_202103619
crossref_primary_10_3390_ijms22083990
crossref_primary_10_1002_pmic_202100206
crossref_primary_10_1016_j_lfs_2018_09_057
crossref_primary_10_1016_j_tig_2016_10_007
crossref_primary_10_7554_eLife_55435
crossref_primary_10_3389_fcell_2025_1621380
crossref_primary_10_1038_s41556_018_0136_x
crossref_primary_10_1002_adma_202211609
crossref_primary_10_1002_der2_219
crossref_primary_10_1111_ejn_14345
crossref_primary_10_1007_s40263_020_00727_3
crossref_primary_10_1249_FIT_0000000000000360
crossref_primary_10_3390_cancers14163906
crossref_primary_10_1016_j_addr_2017_09_010
crossref_primary_10_1177_1535370220918329
crossref_primary_10_1016_j_mod_2018_05_003
crossref_primary_10_1016_j_bcp_2022_115259
crossref_primary_10_1038_nrgastro_2017_151
crossref_primary_10_1080_10985549_2023_2297997
crossref_primary_10_1080_15384101_2019_1672465
crossref_primary_10_3390_ijms21238910
crossref_primary_10_3390_genes13101783
crossref_primary_10_1016_j_neuron_2017_09_008
crossref_primary_10_1213_ANE_0000000000006018
crossref_primary_10_1016_j_bbamem_2019_183106
crossref_primary_10_1007_s00018_018_2871_3
crossref_primary_10_1038_s41598_022_06916_y
crossref_primary_10_1038_s41467_023_38543_0
crossref_primary_10_3390_s22072494
crossref_primary_10_1016_j_cell_2016_06_012
crossref_primary_10_1146_annurev_pathol_020117_043634
crossref_primary_10_1084_jem_20170697
crossref_primary_10_1172_JCI130767
crossref_primary_10_1093_stmcls_sxae080
crossref_primary_10_3390_polym15153202
crossref_primary_10_1016_j_jneuroim_2018_07_013
crossref_primary_10_1186_s12943_024_02066_z
crossref_primary_10_1016_j_stem_2016_08_014
crossref_primary_10_3390_ijms21020423
crossref_primary_10_1007_s00018_017_2586_x
crossref_primary_10_1002_inf2_12262
crossref_primary_10_1111_febs_14660
crossref_primary_10_1007_s00441_019_03061_3
crossref_primary_10_1016_j_ceb_2020_08_005
crossref_primary_10_1038_s41598_020_78167_8
crossref_primary_10_3390_genes12050712
crossref_primary_10_3390_ijms25042063
crossref_primary_10_1038_s41556_024_01411_0
crossref_primary_10_3390_ijms252011009
crossref_primary_10_1093_carcin_bgaa082
crossref_primary_10_7554_eLife_45973
crossref_primary_10_3390_ijms26020804
crossref_primary_10_1016_j_molmet_2019_06_003
crossref_primary_10_1002_jcb_28248
crossref_primary_10_1242_bio_052662
crossref_primary_10_3390_ijms251910361
crossref_primary_10_3390_ijms21176285
crossref_primary_10_3389_fcell_2023_1328522
crossref_primary_10_1038_s41575_020_00386_1
crossref_primary_10_1371_journal_pcbi_1009773
crossref_primary_10_1167_iovs_19_27361
crossref_primary_10_1007_s00424_017_2003_1
crossref_primary_10_1007_s12015_020_09965_w
crossref_primary_10_1002_advs_202511019
crossref_primary_10_1016_j_gde_2018_05_001
crossref_primary_10_1016_j_taap_2018_09_036
crossref_primary_10_1038_onc_2017_286
crossref_primary_10_1089_aid_2017_0161
crossref_primary_10_3390_ijms241411592
crossref_primary_10_1109_TCBB_2019_2914383
crossref_primary_10_3389_fcell_2017_00017
crossref_primary_10_3390_cells12020268
crossref_primary_10_3390_v11020124
crossref_primary_10_1016_j_biomaterials_2021_121274
crossref_primary_10_1177_0963689718780194
crossref_primary_10_1186_s12859_025_06224_y
crossref_primary_10_1002_cti2_70045
crossref_primary_10_1016_j_nrleng_2023_10_004
crossref_primary_10_1016_j_ymthe_2022_04_022
crossref_primary_10_3389_fphys_2022_1077069
crossref_primary_10_1007_s12035_016_0115_9
crossref_primary_10_1186_s13619_025_00229_x
crossref_primary_10_3390_ijms24054392
crossref_primary_10_1111_jcmm_14292
crossref_primary_10_1016_j_pharmthera_2023_108349
crossref_primary_10_3390_cells14080619
crossref_primary_10_1158_0008_5472_CAN_17_0570
crossref_primary_10_1007_s11899_019_00528_6
crossref_primary_10_3389_fimmu_2017_00847
crossref_primary_10_1080_2162402X_2022_2029298
crossref_primary_10_1016_j_jcyt_2018_01_002
crossref_primary_10_1073_pnas_1714770115
crossref_primary_10_1126_science_aah4307
crossref_primary_10_3390_jcm7120488
crossref_primary_10_1016_j_ajhg_2024_03_007
crossref_primary_10_1186_s13005_021_00258_2
crossref_primary_10_1016_j_diff_2021_11_001
crossref_primary_10_3390_biology14070817
crossref_primary_10_1186_s12860_025_00530_2
crossref_primary_10_3390_ijms21134581
crossref_primary_10_1016_j_aca_2021_338478
crossref_primary_10_1016_j_jbc_2023_105444
crossref_primary_10_1016_j_scr_2017_11_010
crossref_primary_10_1016_j_gene_2022_147000
crossref_primary_10_1093_brain_awae379
crossref_primary_10_3390_ijms24043719
crossref_primary_10_1002_adma_202108757
crossref_primary_10_1155_2020_8890917
crossref_primary_10_1134_S0006297918120064
crossref_primary_10_1016_j_preteyeres_2017_05_001
crossref_primary_10_1002_advs_202003535
crossref_primary_10_3389_fendo_2021_682625
crossref_primary_10_1242_dev_204265
crossref_primary_10_1016_j_stem_2023_09_013
crossref_primary_10_3389_fimmu_2021_798552
crossref_primary_10_3390_cells10102710
crossref_primary_10_3389_fcvm_2019_00030
crossref_primary_10_1016_j_biomaterials_2020_120016
crossref_primary_10_1126_science_aai7626
crossref_primary_10_1002_1873_3468_12285
crossref_primary_10_1002_sctm_20_0127
crossref_primary_10_3390_ijms22147761
crossref_primary_10_1002_wsbm_1464
crossref_primary_10_1016_j_semcancer_2018_02_004
crossref_primary_10_3389_fnmol_2020_608442
crossref_primary_10_1016_j_isci_2024_111218
crossref_primary_10_1016_j_ejmech_2023_115513
crossref_primary_10_3389_fcell_2022_1050856
crossref_primary_10_1096_fj_201801059
crossref_primary_10_1186_s13567_021_00904_2
crossref_primary_10_1016_j_semcdb_2020_06_001
crossref_primary_10_1038_s41467_018_03748_1
crossref_primary_10_1016_j_shpsa_2022_10_003
crossref_primary_10_1002_bdr2_1984
crossref_primary_10_1016_j_joen_2017_03_016
crossref_primary_10_1093_carcin_bgab097
crossref_primary_10_1016_j_chembiol_2019_05_007
crossref_primary_10_1016_j_scr_2019_101387
crossref_primary_10_3390_cells10092276
crossref_primary_10_1002_eji_202149550
crossref_primary_10_3390_ijms21176081
crossref_primary_10_1038_s41586_025_08916_0
crossref_primary_10_3390_cells11101604
crossref_primary_10_1007_s00439_016_1691_5
crossref_primary_10_1007_s40778_023_00227_2
crossref_primary_10_2174_1574893614666190919103752
crossref_primary_10_1016_j_ceb_2018_12_001
crossref_primary_10_31083_j_fbl2812359
crossref_primary_10_1074_jbc_RA119_009783
crossref_primary_10_1007_s12015_021_10294_9
crossref_primary_10_1016_j_dnarep_2020_102902
crossref_primary_10_1016_j_yexcr_2018_07_017
crossref_primary_10_1007_s10439_023_03321_y
crossref_primary_10_1007_s11427_016_0211_3
crossref_primary_10_1038_s41577_020_00426_6
crossref_primary_10_1038_s41401_022_00986_4
crossref_primary_10_1038_s41576_018_0087_x
crossref_primary_10_1016_j_trac_2020_116039
crossref_primary_10_1007_s11886_017_0828_z
crossref_primary_10_3389_fcell_2025_1593096
crossref_primary_10_1089_ten_teb_2017_0415
crossref_primary_10_1016_j_cell_2016_11_050
crossref_primary_10_1016_j_gde_2017_06_011
crossref_primary_10_1186_s13578_023_01150_z
crossref_primary_10_1016_j_stem_2017_08_002
crossref_primary_10_1073_pnas_2118763119
crossref_primary_10_3390_biom10010142
crossref_primary_10_1038_s41580_018_0002_5
crossref_primary_10_1016_j_exger_2020_110870
crossref_primary_10_7759_cureus_52265
crossref_primary_10_3389_fcell_2022_935224
crossref_primary_10_3390_cells14070529
crossref_primary_10_1016_j_gde_2017_06_003
crossref_primary_10_1016_j_ceb_2017_12_006
crossref_primary_10_3389_fnins_2021_781160
crossref_primary_10_1042_EBC20170097
crossref_primary_10_3390_ijms20184540
crossref_primary_10_1038_s41585_020_0298_8
crossref_primary_10_1002_tox_23819
crossref_primary_10_1016_j_pneurobio_2018_04_005
crossref_primary_10_3390_children12060669
crossref_primary_10_1016_j_ebiom_2018_11_039
crossref_primary_10_3389_fnins_2018_00005
crossref_primary_10_1002_advs_202401859
crossref_primary_10_1186_s12864_025_11612_y
crossref_primary_10_1186_s13287_020_02018_6
crossref_primary_10_1016_j_scr_2017_10_009
crossref_primary_10_1155_2022_4946020
crossref_primary_10_3390_ijms19113475
crossref_primary_10_3390_v12040359
crossref_primary_10_1038_s41467_024_50126_1
crossref_primary_10_1007_s12032_022_01758_0
crossref_primary_10_3389_fgene_2022_964458
crossref_primary_10_1038_cddis_2017_432
crossref_primary_10_1016_j_stem_2020_04_017
crossref_primary_10_3390_molecules25081902
crossref_primary_10_1093_nar_gky548
crossref_primary_10_3390_genes9050265
crossref_primary_10_1016_j_margen_2019_01_003
crossref_primary_10_3390_cells11213435
crossref_primary_10_1016_j_biomaterials_2017_11_034
crossref_primary_10_1016_j_nbt_2018_09_001
crossref_primary_10_1111_xen_12429
crossref_primary_10_1371_journal_pone_0203126
crossref_primary_10_1073_pnas_1901021116
crossref_primary_10_2217_rme_2018_0148
crossref_primary_10_1007_s12032_021_01573_z
crossref_primary_10_1074_jbc_RA119_010329
crossref_primary_10_1093_stmcls_sxac082
crossref_primary_10_1002_cmdc_201600262
crossref_primary_10_1111_nyas_70021
crossref_primary_10_1080_15384101_2022_2044136
crossref_primary_10_3389_fmed_2021_644594
crossref_primary_10_1016_j_bmc_2025_118340
crossref_primary_10_1007_s00109_017_1548_y
crossref_primary_10_1155_2019_7627148
Cites_doi 10.1016/j.cell.2012.08.023
10.1016/j.stem.2012.10.005
10.1016/j.cell.2012.11.039
10.1016/j.stem.2010.04.015
10.1073/pnas.0904825106
10.1038/nature08180
10.1038/nmeth.1591
10.1016/j.stem.2009.05.015
10.1016/j.cell.2009.01.001
10.1038/nature13551
10.1038/nature12243
10.1006/dbio.1999.9265
10.5962/bhl.title.168967
10.1038/nbt1374
10.1016/j.stem.2014.01.001
10.1126/science.282.5391.1145
10.1038/srep03594
10.1038/nature08235
10.1016/S0092-8674(03)00393-3
10.1038/nature08267
10.1038/ncomms4678
10.1038/nature07864
10.1172/JCI44635
10.1111/j.1365-2443.2009.01301.x
10.1038/nature10953
10.1093/emboj/18.15.4261
10.1016/0092-8674(86)90816-0
10.1016/j.stemcr.2015.02.004
10.1016/j.stemcr.2014.04.014
10.1038/ncomms2231
10.1016/j.stem.2014.07.002
10.1016/j.stem.2013.11.015
10.2183/pjab.85.348
10.1073/pnas.0910106107
10.1016/j.stem.2008.02.001
10.1073/pnas.1319738111
10.1038/292154a0
10.1073/pnas.1310291110
10.1016/j.stem.2013.11.001
10.1126/science.1152092
10.1126/science.1158799
10.1016/j.stem.2011.10.005
10.1038/nature06534
10.1002/stem.402
10.1016/j.stem.2013.12.015
10.1073/pnas.1009374107
10.1016/j.cell.2008.03.028
10.1016/j.stem.2007.12.001
10.1038/nmeth.1593
10.1038/ncb1698
10.1038/182064a0
10.1073/pnas.64.1.176
10.1038/nature14308
10.1126/science.1154884
10.1126/science.1116447
10.1038/nmeth.1426
10.1016/j.stem.2009.07.001
10.1016/S0092-8674(03)00392-1
10.1038/nrm.2015.28
10.1016/j.stem.2014.03.015
10.1038/28615
10.1073/pnas.78.12.7634
10.1016/j.stem.2014.10.002
10.1016/j.stem.2008.10.002
10.1016/j.cell.2014.08.029
10.1038/nbt1483
10.1016/j.stem.2012.05.005
10.1038/cr.2011.177
10.1016/j.cell.2013.04.022
10.1016/j.scr.2010.09.004
10.1371/journal.pone.0010246
10.1038/nrm.2016.6
10.1016/j.stem.2010.04.014
10.1089/scd.2009.0459
10.1038/nature08797
10.1073/pnas.1319061110
10.1016/S0960-9822(01)00459-6
10.1038/nature08311
10.1038/nbt1383
10.1016/j.cell.2006.07.024
10.1038/385810a0
10.1038/ncomms8095
10.1016/0092-8674(87)90585-X
10.1159/000016693
10.1016/j.cell.2011.03.003
10.1007/s13238-012-2002-0
10.1038/nature08287
10.1038/nrm.2015.27
10.1038/nrg3473
10.1074/jbc.M110.142059
10.1016/j.stem.2008.01.004
10.1242/dev.01670
10.1126/science.1162494
10.1007/978-1-61779-201-4_9
10.1038/nature08285
10.1038/nature05934
10.1126/science.1248882
10.1038/nature12745
10.1016/j.cell.2012.09.045
10.1016/S0140-6736(12)60028-2
10.1073/pnas.1413299111
10.1038/nbt.1535
10.1038/nbt.1530
10.1128/MCB.23.8.2699-2708.2003
10.1016/j.stem.2009.03.005
10.1016/j.cell.2013.05.001
10.1038/nbt.1562
10.1101/gad.1811609
10.1101/gad.9.10.1250
10.1101/gad.2039011
10.1038/nature07314
10.1038/nature13287
10.1093/nar/gkf435
10.1371/journal.pbio.0060253
10.1038/nrm.2016.10
10.1126/science.7892602
10.1126/science.1172482
10.1038/nature08592
10.1093/genetics/105.3.581
10.1038/nature08290
10.1038/ncb1827
10.1074/jbc.M110.183780
10.1016/j.stem.2011.11.003
10.1016/j.stem.2010.08.012
10.1016/0092-8674(83)90109-5
10.1016/j.cell.2013.05.006
10.1016/S0092-8674(00)81702-X
10.1038/nature08310
10.1038/nbt.3388
10.1016/j.stem.2009.12.009
10.1101/gad.1035902
10.1038/nature05944
10.1016/j.cell.2008.07.041
10.1038/nm979
10.1038/325816a0
10.1016/S0092-8674(04)00419-2
10.1089/scd.2013.0267
10.1038/nature06968
10.1016/j.cell.2015.06.016
10.1038/nbt.1580
10.1016/j.stem.2009.05.005
10.1038/nature08735
10.1371/journal.pone.0052787
10.1038/sj.gt.3301206
10.1016/j.stem.2007.05.014
10.1016/j.stem.2012.08.002
10.1038/nmeth.1323
10.1073/pnas.1004584107
10.1016/j.stem.2013.06.019
10.1016/j.cub.2008.05.010
10.1126/science.1164270
10.1038/nature07863
10.1038/nbt.1554
10.1038/nature08113
10.1002/j.1460-2075.1987.tb04739.x
10.1073/pnas.0801677105
10.1126/science.1151526
10.1038/nature01646
10.1038/336688a0
10.1016/j.stem.2010.06.022
10.1016/0092-8674(83)90300-8
10.1016/j.stem.2009.04.005
10.1101/gad.12.13.2048
10.1016/j.cell.2007.11.019
10.1101/gad.1876710
10.1126/science.1239278
10.1038/nrm3980
10.1016/0092-8674(83)90563-9
10.1074/jbc.M410015200
10.1038/nbt1418
10.1089/scd.2009.0424
10.1038/nature07196
ContentType Journal Article
Copyright Springer Nature Limited 2016
COPYRIGHT 2016 Nature Publishing Group
Copyright Nature Publishing Group Mar 2016
Copyright_xml – notice: Springer Nature Limited 2016
– notice: COPYRIGHT 2016 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7QP
7QR
7RV
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7N
M7P
NAPCQ
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/nrm.2016.8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Central Student

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-0080
EndPage 193
ExternalDocumentID 3960692681
A445983157
26883003
10_1038_nrm_2016_8
Genre Historical Article
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D0L
D1J
DB5
DU5
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c588t-e2457dabfcbd59a1d1b26fed0abbbb023bb92699d8f28f6a23838abcefc715623
IEDL.DBID M7P
ISICitedReferencesCount 629
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370879600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0072
1471-0080
IngestDate Sun Nov 09 09:23:35 EST 2025
Sun Nov 30 04:44:04 EST 2025
Tue Nov 11 10:55:30 EST 2025
Tue Nov 04 18:23:57 EST 2025
Thu Nov 13 16:11:00 EST 2025
Thu Apr 03 07:02:24 EDT 2025
Sat Nov 29 06:43:41 EST 2025
Tue Nov 18 21:21:15 EST 2025
Fri Feb 21 02:38:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-e2457dabfcbd59a1d1b26fed0abbbb023bb92699d8f28f6a23838abcefc715623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 26883003
PQID 1767365098
PQPubID 27585
PageCount 11
ParticipantIDs proquest_miscellaneous_1768167702
proquest_journals_1767365098
gale_infotracmisc_A445983157
gale_infotracacademiconefile_A445983157
gale_incontextgauss_ISR_A445983157
pubmed_primary_26883003
crossref_citationtrail_10_1038_nrm_2016_8
crossref_primary_10_1038_nrm_2016_8
springer_journals_10_1038_nrm_2016_8
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Molecular cell biology
PublicationTitleAbbrev Nat Rev Mol Cell Biol
PublicationTitleAlternate Nat Rev Mol Cell Biol
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References CowanCAAtienzaJMeltonDAEgganKNuclear reprogramming of somatic cells after fusion with human embryonic stem cellsScience2005309136913731:CAS:528:DC%2BD2MXovVOjtLw%3D1612329910.1126/science.1116447
WaddingtonCHThe Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology1957
UtikalJImmortalization eliminates a roadblock during cellular reprogramming into iPS cellsNature2009460114511481:CAS:528:DC%2BD1MXps1ags78%3D19668190398789210.1038/nature08285
WilmutISchniekeAEMcWhirJKindAJCampbellKHViable offspring derived from fetal and adult mammalian cellsNature19973858108131:CAS:528:DyaK2sXhsFamsLs%3D10.1038/385810a09039911
HengJCThe nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cellsCell Stem Cell201061671741:CAS:528:DC%2BC3cXlt1Knu7g%3D2009666110.1016/j.stem.2009.12.009
TsujiOTherapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injuryProc. Natl Acad. Sci. USA201010712704127091:CAS:528:DC%2BC3cXpt1Shurk%3D2061597410.1073/pnas.09101061072906548
ZhangJNuebelEDaleyGQKoehlerCMTeitellMAMetabolic regulation in pluripotent stem cells during reprogramming and self-renewalCell Stem Cell2012115895951:CAS:528:DC%2BC38Xhs1aqtr3P23122286349289010.1016/j.stem.2012.10.005
KulessaHFramptonJGrafTGATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblastsGenes Dev.19959125012621:CAS:528:DyaK2MXlvFShsLg%3D775894910.1101/gad.9.10.1250
ZhaoXYiPS cells produce viable mice through tetraploid complementationNature200946186901:CAS:528:DC%2BD1MXhtVygsLfF1967224110.1038/nature08267
MiuraKVariation in the safety of induced pluripotent stem cell linesNat. Biotechnol.2009277437451:CAS:528:DC%2BD1MXotlSntbg%3D1959050210.1038/nbt.1554
WernigMIn vitro reprogramming of fibroblasts into a pluripotent ES cell-like stateNature20074483183241:CAS:528:DC%2BD2sXnvVeqsLg%3D10.1038/nature0594417554336
BurdonTStraceyCChambersINicholsJSmithASuppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cellsDev. Biol.199921030431:CAS:528:DyaK1MXjs1Gntr4%3D1036442510.1006/dbio.1999.9265
TokuzawaYFbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse developmentMol. Cell. Biol.200323269927081:CAS:528:DC%2BD3sXktV2lsbg%3D1266557215254410.1128/MCB.23.8.2699-2708.2003
GoodellMANguyenHShroyerNSomatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartmentsNat. Rev. Mol. Cell Biol.2015162993091:CAS:528:DC%2BC2MXntFCitbY%3D25907613531720310.1038/nrm3980
DimosJTInduced pluripotent stem cells generated from patients with ALS can be differentiated into motor neuronsScience2008321121812211:CAS:528:DC%2BD1cXhtVGgt7zL1866982110.1126/science.1158799
NiwaHBurdonTChambersISmithASelf-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3Genes Dev.199812204820601:CAS:528:DyaK1cXksFygtbk%3D964950831695410.1101/gad.12.13.2048
KuzmichevANishiokaKErdjument-BromageHTempstPReinbergDHistone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste proteinGenes Dev.200216289329051:CAS:528:DC%2BD38XovVejsLY%3D1243563118747910.1101/gad.1035902
HannaJDirect cell reprogramming is a stochastic process amenable to accelerationNature20094625956011:CAS:528:DC%2BD1MXhtlOrurjN19898493278997210.1038/nature08592
TadaMTakahamaYAbeKNakatsujiNTadaTNuclear reprogramming of somatic cells by in vitro hybridization with ES cellsCurr. Biol.200111155315581:CAS:528:DC%2BD3MXnsF2ms7g%3D1159132610.1016/S0960-9822(01)00459-6
O'MalleyJHigh-resolution analysis with novel cell-surface markers identifies routes to iPS cellsNature201349988911:CAS:528:DC%2BC3sXosFWlsbs%3D23728301374302210.1038/nature12243
ParkIHReprogramming of human somatic cells to pluripotency with defined factorsNature20084511411461:CAS:528:DC%2BD1cXksVGhtQ%3D%3D1815711510.1038/nature06534
Smith, Z. D., Sindhu, C. & Meissner, A. Molecular features of cellular reprogramming and development. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2016.6 (2016).
HazelriggTKaufmanTCRevertants of dominant mutations associated with the Antennapedia gene complex of DROSOPHILA MELANOGASTER: cytology and geneticsGenetics19831055816001:STN:280:DC%2BC3crptFymuw%3D%3D172461681202175
ChanYSInduction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblastCell Stem Cell2013136636751:CAS:528:DC%2BC3sXhvFymu73J10.1016/j.stem.2013.11.01524315441
BlauHMChiuCPWebsterCCytoplasmic activation of human nuclear genes in stable heterocaryonsCell198332117111801:CAS:528:DyaL3sXhvFGls74%3D683935910.1016/0092-8674(83)90300-8
FusakiNBanHNishiyamaASaekiKHasegawaMEfficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genomeProc. Jpn Acad. Ser. B Phys. Biol. Sci.2009853483621:CAS:528:DC%2BD1MXhsFejsrbN19838014362157110.2183/pjab.85.348
GafniODerivation of novel human ground state naive pluripotent stem cellsNature20135042822861:CAS:528:DC%2BC3sXhslSnsLbM10.1038/nature1274524172903
ParkIHDisease-specific induced pluripotent stem cellsCell20081348778861:CAS:528:DC%2BD1cXhtFCqs7bK18691744263378110.1016/j.cell.2008.07.041
LiangGTaranovaOXiaKZhangYButyrate promotes induced pluripotent stem cell generationJ. Biol. Chem.201028525516255211:CAS:528:DC%2BC3cXpslKjtLg%3D20554530291911510.1074/jbc.M110.142059
TsubookaNRoles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblastsGenes Cells2009146836941:CAS:528:DC%2BD1MXnvVCjs74%3D1947650710.1111/j.1365-2443.2009.01301.x
MiyazakiTLaminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cellsNat. Commun.2012312362321236510.1038/ncomms22311:CAS:528:DC%2BC3sXhsVCisLo%3D
HannaJTreatment of sickle cell anemia mouse model with iPS cells generated from autologous skinScience2007318192019231:CAS:528:DC%2BD2sXhsVGjsLbP1806375610.1126/science.1152092
YusaKRadRTakedaJBradleyAGeneration of transgene-free induced pluripotent mouse stem cells by the piggyBac transposonNat. Methods200963633691:CAS:528:DC%2BD1MXjsl2gtbg%3D19337237267716510.1038/nmeth.1323
BergstromRStromSHolmFFekiAHovattaOXeno-free culture of human pluripotent stem cellsMethods Mol. Biol.20117671251362182287110.1007/978-1-61779-201-4_91:CAS:528:DC%2BC38XlslKgurw%3D
MaHAbnormalities in human pluripotent cells due to reprogramming mechanismsNature20145111771831:CAS:528:DC%2BC2cXhtFehsLvM25008523489806410.1038/nature13551
CacchiarelliDIntegrative analyses of human reprogramming reveal dynamic nature of induced pluripotencyCell20151624124241:CAS:528:DC%2BC2MXht1KgtL3K26186193451159710.1016/j.cell.2015.06.016
ChenGChemically defined conditions for human iPSC derivation and cultureNat. Methods201184244291:CAS:528:DC%2BC3MXksFWnt7o%3D21478862308490310.1038/nmeth.1593
BanitoASenescence impairs successful reprogramming to pluripotent stem cellsGenes Dev.200923213421391:CAS:528:DC%2BD1MXht1ersbrL19696146275198010.1101/gad.1811609
CareyBWReprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cellsCell Stem Cell201195885981:CAS:528:DC%2BC3MXhsFOns7jE2213693210.1016/j.stem.2011.11.003
TheunissenTWSystematic identification of culture conditions for induction and maintenance of naive human pluripotencyCell Stem Cell2014154714871:CAS:528:DC%2BC2cXht1agsL%2FN25090446418497710.1016/j.stem.2014.07.002
YuJHuman induced pluripotent stem cells free of vector and transgene sequencesScience20093247978011:CAS:528:DC%2BD1MXlsVeksrk%3D19325077275805310.1126/science.1172482
ChengAMMammalian Grb2 regulates multiple steps in embryonic development and malignant transformationCell1998957938031:CAS:528:DyaK1MXivVKi986569710.1016/S0092-8674(00)81702-X
TakahashiKInduction of pluripotent stem cells from adult human fibroblasts by defined factorsCell20071318618721:CAS:528:DC%2BD2sXhsVCntbbK10.1016/j.cell.2007.11.01918035408
AngYSWdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional networkCell20111451831971:CAS:528:DC%2BC3MXkvVGlsb8%3D21477851309746810.1016/j.cell.2011.03.003
HouPPluripotent stem cells induced from mouse somatic cells by small-molecule compoundsScience20133416516541:CAS:528:DC%2BC3sXht1WqtbvO2386892010.1126/science.1239278
YamaguchiSHiranoKNagataSTadaTSox2 expression effects on direct reprogramming efficiency as determined by alternative somatic cell fateStem Cell Res.201061771862113072210.1016/j.scr.2010.09.0041:CAS:528:DC%2BC3MXhvV2lsrg%3D
WorringerKAThe let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genesCell Stem Cell201314405224239284398231210.1016/j.stem.2013.11.0011:CAS:528:DC%2BC3sXhsl2jsrnF
NakagawaMGeneration of induced pluripotent stem cells without Myc from mouse and human fibroblastsNat. Biotechnol.2008261011061:CAS:528:DC%2BD1cXisFGmuw%3D%3D1805925910.1038/nbt1374
ZhaoYTwo supporting factors greatly improve the efficiency of human iPSC generationCell Stem Cell200834754791:CAS:528:DC%2BD1cXhsVaqs77K1898396210.1016/j.stem.2008.10.002
MarionRMA p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrityNature2009460114911531:CAS:528:DC%2BD1MXps1ahtrY%3D19668189362408910.1038/nature08287
XieWEpigenomic analysis of multilineage differentiation of human embryonic stem cellsCell2013153113411481:CAS:528:DC%2BC3sXnsVyrtLw%3D23664764378622010.1016/j.cell.2013.04.022
XieHYeMFengRGrafTStepwise reprogramming of B cells into macrophagesCell20041176636761:CAS:528:DC%2BD2cXkvVyhsrc%3D1516341310.1016/S0092-8674(04)00419-2
TakahashiKInduction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendodermNat. Commun.2014536781:CAS:528:DC%2BC2cXitVShsLrF2475983610.1038/ncomms4678
WangTThe histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitami
J Hanna (BFnrm20168_CR79) 2008; 133
Y Zhao (BFnrm20168_CR49) 2008; 3
JT Dimos (BFnrm20168_CR168) 2008; 321
N Sato (BFnrm20168_CR31) 2004; 10
M Koyanagi-Aoi (BFnrm20168_CR156) 2013; 110
K Nishimura (BFnrm20168_CR116) 2010; 286
L Kang (BFnrm20168_CR144) 2009; 5
BFnrm20168_CR158
T Shinagawa (BFnrm20168_CR74) 2014; 14
EJ Grow (BFnrm20168_CR100) 2015; 522
PJ Ross (BFnrm20168_CR123) 2009; 19
SJ Dunn (BFnrm20168_CR56) 2014; 344
GR Martin (BFnrm20168_CR6) 1981; 78
TS Mikkelsen (BFnrm20168_CR86) 2008; 454
K Takahashi (BFnrm20168_CR40) 2007; 131
N Fusaki (BFnrm20168_CR115) 2009; 85
JB Gurdon (BFnrm20168_CR4) 1962; 10
G Liang (BFnrm20168_CR67) 2010; 285
M Stadtfeld (BFnrm20168_CR81) 2008; 18
MJ Boland (BFnrm20168_CR145) 2009; 461
IH Park (BFnrm20168_CR161) 2008; 451
JB Gurdon (BFnrm20168_CR3) 1958; 182
T Burdon (BFnrm20168_CR32) 1999; 210
K Miura (BFnrm20168_CR155) 2009; 27
J Hanna (BFnrm20168_CR162) 2009; 462
R Sridharan (BFnrm20168_CR90) 2009; 136
N Festuccia (BFnrm20168_CR55) 2012; 11
I Wilmut (BFnrm20168_CR7) 1997; 385
K Takahashi (BFnrm20168_CR96) 2014; 5
TW Theunissen (BFnrm20168_CR136) 2014; 15
T Hazelrigg (BFnrm20168_CR21) 1983; 105
YG Chung (BFnrm20168_CR150) 2014; 14
XY Zhao (BFnrm20168_CR146) 2009; 461
M Tomioka (BFnrm20168_CR36) 2002; 30
V Picanco-Castro (BFnrm20168_CR51) 2010; 20
IH Park (BFnrm20168_CR169) 2008; 134
RL Judson (BFnrm20168_CR53) 2009; 27
N Maherali (BFnrm20168_CR160) 2007; 1
KA Worringer (BFnrm20168_CR54) 2013; 14
M Wernig (BFnrm20168_CR167) 2008; 2
KH Narsinh (BFnrm20168_CR142) 2011; 121
S Okumura-Nakanishi (BFnrm20168_CR37) 2005; 280
D Kim (BFnrm20168_CR118) 2009; 4
CH Waddington (BFnrm20168_CR2) 1957
LE Frischer (BFnrm20168_CR18) 1986; 47
BFnrm20168_CR174
J Deng (BFnrm20168_CR87) 2009; 27
M Ohnuki (BFnrm20168_CR98) 2014; 111
D Huangfu (BFnrm20168_CR66) 2008; 26
S Schneuwly (BFnrm20168_CR19) 1987; 6
H Niwa (BFnrm20168_CR29) 2009; 460
RM Marion (BFnrm20168_CR60) 2009; 460
J Han (BFnrm20168_CR47) 2010; 463
AG Smith (BFnrm20168_CR26) 1988; 336
T Matsuda (BFnrm20168_CR28) 1999; 18
Y Buganim (BFnrm20168_CR57) 2012; 150
Y Takashima (BFnrm20168_CR135) 2014; 158
M Pawlak (BFnrm20168_CR75) 2011; 25
F Jia (BFnrm20168_CR111) 2010; 7
D Hockemeyer (BFnrm20168_CR131) 2009; 27
H Ma (BFnrm20168_CR152) 2014; 511
K Takahashi (BFnrm20168_CR166) 2003; 423
K Okita (BFnrm20168_CR107) 2007; 448
M Wernig (BFnrm20168_CR128) 2008; 105
S Yamanaka (BFnrm20168_CR77) 2009; 460
B Johannesson (BFnrm20168_CR153) 2014; 15
P Cartwright (BFnrm20168_CR30) 2005; 132
M Stadtfeld (BFnrm20168_CR92) 2008; 2
J Yu (BFnrm20168_CR42) 2009; 324
H Zhou (BFnrm20168_CR170) 2009; 4
I Chambers (BFnrm20168_CR25) 2003; 113
J Shu (BFnrm20168_CR106) 2013; 153
SI Kim (BFnrm20168_CR105) 2015; 4
K Rajala (BFnrm20168_CR126) 2010; 5
MJ Evans (BFnrm20168_CR5) 1981; 292
T Kawamura (BFnrm20168_CR58) 2009; 460
N Montserrat (BFnrm20168_CR173) 2013; 13
S Schneuwly (BFnrm20168_CR17) 1987; 325
MA Goodell (BFnrm20168_CR78) 2015; 16
H Li (BFnrm20168_CR59) 2009; 460
R Li (BFnrm20168_CR83) 2010; 7
J Yang (BFnrm20168_CR163) 2010; 7
B Feng (BFnrm20168_CR50) 2009; 11
B Feng (BFnrm20168_CR91) 2009; 4
G Halder (BFnrm20168_CR22) 1995; 267
H Xie (BFnrm20168_CR15) 2004; 117
JC Heng (BFnrm20168_CR52) 2010; 6
Y Buganim (BFnrm20168_CR65) 2013; 14
TT Onder (BFnrm20168_CR73) 2012; 483
N Takagi (BFnrm20168_CR10) 1983; 34
M Stadtfeld (BFnrm20168_CR108) 2008; 322
A Kuzmichev (BFnrm20168_CR70) 2002; 16
SR Hough (BFnrm20168_CR143) 2014; 2
MJ Edel (BFnrm20168_CR64) 2010; 24
T Brambrink (BFnrm20168_CR93) 2008; 2
CB Ware (BFnrm20168_CR139) 2014; 111
P Samavarchi-Tehrani (BFnrm20168_CR82) 2010; 7
W Xie (BFnrm20168_CR99) 2013; 153
YS Chan (BFnrm20168_CR140) 2013; 13
H Hong (BFnrm20168_CR62) 2009; 460
AD Panopoulos (BFnrm20168_CR84) 2011; 22
H Niwa (BFnrm20168_CR27) 1998; 12
M Tachibana (BFnrm20168_CR149) 2013; 153
J Utikal (BFnrm20168_CR61) 2009; 460
J Hanna (BFnrm20168_CR137) 2010; 107
G Chen (BFnrm20168_CR120) 2011; 8
JH Postlethwait (BFnrm20168_CR16) 1969; 64
J Nichols (BFnrm20168_CR132) 2009; 4
Y Tokuzawa (BFnrm20168_CR35) 2003; 23
K Tanabe (BFnrm20168_CR43) 2013; 110
P Mali (BFnrm20168_CR68) 2010; 28
T Wakayama (BFnrm20168_CR8) 1998; 394
M Nakagawa (BFnrm20168_CR44) 2008; 26
BW Carey (BFnrm20168_CR103) 2011; 9
Q Wang (BFnrm20168_CR121) 2012; 3
M Yamada (BFnrm20168_CR151) 2014; 510
J Choi (BFnrm20168_CR154) 2015; 33
AM Cheng (BFnrm20168_CR34) 1998; 95
O Tsuji (BFnrm20168_CR129) 2010; 107
M Nakagawa (BFnrm20168_CR46) 2010; 107
J Yu (BFnrm20168_CR41) 2007; 318
HM Blau (BFnrm20168_CR9) 1983; 32
S Yamanaka (BFnrm20168_CR147) 2012; 10
K Okita (BFnrm20168_CR110) 2011; 8
T Vierbuchen (BFnrm20168_CR172) 2010; 463
BFnrm20168_CR133
L Warren (BFnrm20168_CR117) 2010; 7
A Weismann (BFnrm20168_CR1) 1893
T Miyazaki (BFnrm20168_CR124) 2012; 3
N Tsubooka (BFnrm20168_CR48) 2009; 14
Q Zhou (BFnrm20168_CR171) 2008; 455
MP Scott (BFnrm20168_CR20) 1983; 35
JA Thomson (BFnrm20168_CR165) 1998; 282
YS Ang (BFnrm20168_CR69) 2011; 145
T Burdon (BFnrm20168_CR33) 1999; 165
J Silva (BFnrm20168_CR164) 2008; 6
S Yamaguchi (BFnrm20168_CR102) 2010; 6
RL Davis (BFnrm20168_CR13) 1987; 51
T Aoi (BFnrm20168_CR80) 2008; 321
K Kaji (BFnrm20168_CR112) 2009; 458
H Chen (BFnrm20168_CR141) 2015; 6
BFnrm20168_CR23
M Nakagawa (BFnrm20168_CR125) 2014; 4
M Tada (BFnrm20168_CR11) 2001; 11
S Morita (BFnrm20168_CR38) 2000; 7
K Yusa (BFnrm20168_CR114) 2009; 6
JM Polo (BFnrm20168_CR88) 2012; 151
X Ding (BFnrm20168_CR71) 2014; 23
D Cacchiarelli (BFnrm20168_CR97) 2015; 162
P Hou (BFnrm20168_CR119) 2013; 341
M Wernig (BFnrm20168_CR159) 2007; 448
K Mitsui (BFnrm20168_CR24) 2003; 113
CA Cowan (BFnrm20168_CR12) 2005; 309
X Hu (BFnrm20168_CR76) 2014; 14
R Bergstrom (BFnrm20168_CR122) 2011; 767
SD Schwartz (BFnrm20168_CR157) 2012; 379
A Soufi (BFnrm20168_CR89) 2012; 151
QL Ying (BFnrm20168_CR134) 2008; 453
K Osafune (BFnrm20168_CR148) 2008; 26
K Woltjen (BFnrm20168_CR113) 2009; 458
K Takahashi (BFnrm20168_CR39) 2006; 126
H Kulessa (BFnrm20168_CR14) 1995; 9
J Zhang (BFnrm20168_CR85) 2012; 11
Y Kobayashi (BFnrm20168_CR130) 2012; 7
EM Chan (BFnrm20168_CR95) 2009; 27
J Hanna (BFnrm20168_CR127) 2007; 318
J O'Malley (BFnrm20168_CR94) 2013; 499
J Jiang (BFnrm20168_CR45) 2008; 10
A Banito (BFnrm20168_CR63) 2009; 23
EP Papapetrou (BFnrm20168_CR101) 2009; 106
K Okita (BFnrm20168_CR109) 2008; 322
M Wernig (BFnrm20168_CR104) 2008; 26
T Wang (BFnrm20168_CR72) 2011; 9
O Gafni (BFnrm20168_CR138) 2013; 504
16123299 - Science. 2005 Aug 26;309(5739):1369-73
19363475 - Nat Biotechnol. 2009 May;27(5):459-61
23871606 - Cell Stem Cell. 2013 Sep 5;13(3):341-50
19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7
7758949 - Genes Dev. 1995 May 15;9(10):1250-62
20660764 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14152-7
20139967 - Nat Methods. 2010 Mar;7(3):197-9
20554530 - J Biol Chem. 2010 Aug 13;285(33):25516-21
12136102 - Nucleic Acids Res. 2002 Jul 15;30(14):3202-13
3690668 - Cell. 1987 Dec 24;51(6):987-1000
15163413 - Cell. 2004 May 28;117(5):663-76
22281388 - Lancet. 2012 Feb 25;379(9817):713-20
19167336 - Cell. 2009 Jan 23;136(2):364-77
20107439 - Nature. 2010 Feb 25;463(7284):1035-41
6418389 - Cell. 1983 Dec;35(3 Pt 2):763-76
12787504 - Cell. 2003 May 30;113(5):631-42
24904165 - Science. 2014 Jun 6;344(6188):1156-60
26818440 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):170-82
23664764 - Cell. 2013 May 23;153(5):1134-48
21478862 - Nat Methods. 2011 May;8(5):424-9
26908143 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):194-200
18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9
22064701 - Cell Res. 2012 Jan;22(1):168-77
2430723 - Cell. 1986 Dec 26;47(6):1017-23
24325319 - Stem Cells Dev. 2014 May 1;23 (9):931-40
6627391 - Cell. 1983 Oct;34(3):1053-62
23812749 - Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12172-9
3143917 - Nature. 1988 Dec 15;336(6200):688-90
22259120 - Protein Cell. 2012 Jan;3(1):51-9
18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40
18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70
17554336 - Nature. 2007 Jul 19;448(7151):318-24
22388813 - Nature. 2012 Mar 04;483(7391):598-602
23159369 - Cell. 2012 Nov 21;151(5):994-1004
23122286 - Cell Stem Cell. 2012 Nov 2;11(5):589-95
6950406 - Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634-8
26501951 - Nat Biotechnol. 2015 Nov;33(11):1173-81
25772473 - Stem Cell Reports. 2015 Apr 14;4(4):727-43
18063756 - Science. 2007 Dec 21;318(5858):1920-3
18568017 - Nat Biotechnol. 2008 Jul;26(7):795-7
24239284 - Cell Stem Cell. 2014 Jan 2;14 (1):40-52
18276851 - Science. 2008 Aug 1;321(5889):699-702
25896322 - Nature. 2015 Jun 11;522(7555):221-5
20419109 - PLoS One. 2010 Apr 19;5(4):e10246
23212365 - Nat Commun. 2012;3:1236
20096661 - Cell Stem Cell. 2010 Feb 5;6(2):167-74
19668188 - Nature. 2009 Aug 27;460(7259):1136-9
20201064 - Stem Cells. 2010 Apr;28(4):713-20
18035408 - Cell. 2007 Nov 30;131(5):861-72
13566187 - Nature. 1958 Jul 5;182(4627):64-5
23040477 - Cell Stem Cell. 2012 Oct 5;11(4):477-90
20504151 - Stem Cells Dev. 2011 Jan;20(1):169-80
18391196 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5856-61
21460823 - Nat Methods. 2011 May;8(5):409-12
19668189 - Nature. 2009 Aug 27;460(7259):1149-53
19668191 - Nature. 2009 Aug 27;460(7259):1132-5
18278034 - Nat Biotechnol. 2008 Mar;26(3):313-5
9690471 - Nature. 1998 Jul 23;394(6691):369-74
12787505 - Cell. 2003 May 30;113(5):643-55
21138846 - J Biol Chem. 2011 Feb 11;286(6):4760-71
19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92
21477851 - Cell. 2011 Apr 15;145(2):183-97
22136932 - Cell Stem Cell. 2011 Dec 2;9(6):588-98
18501604 - Curr Biol. 2008 Jun 24;18(12):890-4
19631602 - Cell Stem Cell. 2009 Aug 7;5(2):135-8
10364425 - Dev Biol. 1999 Jun 1;210(1):30-43
18983962 - Cell Stem Cell. 2008 Nov 6;3(5):475-9
25517467 - Cell Stem Cell. 2014 Nov 6;15(5):634-42
25008523 - Nature. 2014 Jul 10;511(7508):177-83
15557334 - J Biol Chem. 2005 Feb 18;280(7):5307-17
20621050 - Cell Stem Cell. 2010 Jul 2;7(1):51-63
25097266 - Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12426-31
19590502 - Nat Biotechnol. 2009 Aug;27(8):743-5
14702635 - Nat Med. 2004 Jan;10(1):55-63
17246168 - Genetics. 1983 Nov;105(3):581-600
10871756 - Gene Ther. 2000 Jun;7(12):1063-6
18754011 - Nature. 2008 Oct 2;455(7213):627-32
26860365 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):155-69
24776804 - Nature. 2014 Jun 26;510(7506):533-6
19549847 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12759-64
18669821 - Science. 2008 Aug 29;321(5893):1218-21
20139965 - Nature. 2010 Feb 25;463(7284):1096-100
18497825 - Nature. 2008 May 22;453(7194):519-23
19668186 - Nature. 2009 Aug 27;460(7259):1140-4
19672241 - Nature. 2009 Sep 3;461(7260):86-90
18942890 - PLoS Biol. 2008 Oct 21;6(10):e253
24259714 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20569-74
9804556 - Science. 1998 Nov 6;282(5391):1145-7
24529596 - Cell Stem Cell. 2014 Apr 3;14(4):512-22
23300777 - PLoS One. 2012;7(12):e52787
22704507 - Cell Stem Cell. 2012 Jun 14;10(6):678-84
19252477 - Nature. 2009 Apr 9;458(7239):771-5
23260147 - Cell. 2012 Dec 21;151(7):1617-32
23706735 - Cell. 2013 May 23;153(5):963-75
15673569 - Development. 2005 Mar;132(5):885-96
23683578 - Cell. 2013 Jun 6;153(6):1228-38
19672243 - Nature. 2009 Sep 3;461(7260):91-4
19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62
21130722 - Stem Cell Res. 2011 Mar;6(2):177-86
3821869 - Nature. 1987 Feb 26-Mar 4;325(6107):816-8
11591326 - Curr Biol. 2001 Oct 2;11(19):1553-8
19341620 - Cell Stem Cell. 2009 Apr 3;4(4):301-12
18371415 - Cell Stem Cell. 2008 Jan 10;2(1):10-2
16904174 - Cell. 2006 Aug 25;126(4):663-76
12665572 - Mol Cell Biol. 2003 Apr;23(8):2699-708
21317531 - J Clin Invest. 2011 Mar;121(3):1217-21
25090446 - Cell Stem Cell. 2014 Oct 2;15(4):471-87
19696146 - Genes Dev. 2009 Sep 15;23(18):2134-9
25215486 - Cell. 2014 Sep 11;158(6):1254-69
19898493 - Nature. 2009 Dec 3;462(7273):595-601
23868920 - Science. 2013 Aug 9;341(6146):651-4
18691744 - Cell. 2008 Sep 5;134(5):877-86
19337237 - Nat Methods. 2009 May;6(5):363-9
24399248 - Sci Rep. 2014 Jan 08;4:3594
25968054 - Nat Commun. 2015 May 13;6:7095
12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905
19325077 - Science. 2009 May 8;324(5928):797-801
24936473 - Stem Cell Reports. 2014 May 22;2(6):881-95
18594521 - Nat Biotechnol. 2008 Aug;26(8):916-24
24172903 - Nature. 2013 Dec 12;504(7479):282-6
18157115 - Nature. 2008 Jan 10;451(7175):141-6
18509334 - Nature. 2008 Jul 3;454(7200):49-55
19571885 - Nature. 2009 Jul 2;460(7251):118-22
19826408 - Nat Biotechnol. 2009 Nov;27(11):1033-7
20804969 - Cell Stem Cell. 2010 Sep 3;7(3):319-28
10428964 - EMBO J. 1999 Aug 2;18(15):4261-9
26186193 - Cell. 2015 Jul 16;162(2):412-24
9865697 - Cell. 1998 Dec 11;95(6):793-803
21822871 - Methods Mol Biol. 2011;767:125-36
5263000 - Proc Natl Acad Sci U S A. 1969 Sep;64(1):176-83
19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4
18845712 - Science. 2008 Nov 7;322(5903):949-53
19476507 - Genes Cells. 2009 Jun;14(6):683-94
19330000 - Nat Biotechnol. 2009 Apr;27(4):353-60
19136965 - Nat Cell Biol. 2009 Feb;11(2):197-203
20442331 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9222-7
20621051 - Cell Stem Cell. 2010 Jul 2;7(1):64-77
19571877 - Nature. 2009 Jul 2;460(7251):49-52
22100412 - Cell Stem Cell. 2011 Dec 2;9(6):575-87
9039911 - Nature. 1997 Feb 27;385(6619):810-3
26883001 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):139-54
24506885 - Cell Stem Cell. 2014 Feb 6;14(2):217-27
21576263 - Genes Dev. 2011 May 15;25(10):1035-40
12774123 - Nature. 2003 May 29;423(6939):541-5
7242681 - Nature. 1981 Jul 9;292(5819):154-6
22980981 - Cell. 2012 Sep 14;150(6):1209-22
20030562 - Stem Cells Dev. 2010 Aug;19(8):1221-9
18059259 - Nat Biotechnol. 2008 Jan;26(1):101-6
24623855 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9
23681063 - Nat Rev Genet. 2013 Jun;14(6):427-39
20231315 - Genes Dev. 2010 Mar 15;24(6):561-73
24746675 - Cell Stem Cell. 2014 Jun 5;14(6):777-80
20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30
24759836 - Nat Commun. 2014 Apr 24;5:3678
10592385 - Cells Tissues Organs. 1999;165(3-4):131-43
19252478 - Nature. 2009 Apr 9;458(7239):766-70
16453748 - EMBO J. 1987 Jan;6(1):201-6
9649508 - Genes Dev. 1998 Jul 1;12(13):2048-60
18818365 - Science. 2008 Nov 7;322(5903):945-9
18423197 - Cell. 2008 Apr 18;133(2):250-64
13951335 - J Embryol Exp Morphol. 1962 Dec;10:622-40
23728301 - Nature. 2013 Jul 4;499(7456):88-91
19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6
6839359 - Cell. 1983 Apr;32(4):1171-80
17554338 - Nature. 2007 Jul 19;448(7151):313-7
19668190 - Nature. 2009 Aug 27;460(7259):1145-8
18264089 - Nat Cell Biol. 2008 Mar;10 (3):353-60
18029452 - Science. 2007 Dec 21;318(5858):1917-20
24315441 - Cell Stem Cell. 2013 Dec 5;13(6):663-75
20615974 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12704-9
7892602 - Science. 1995 Mar 24;267(5205):1788-92
25907613 - Nat Rev Mol Cell Biol. 2015 May;16(5):299-309
References_xml – reference: FestucciaNEsrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cellsCell Stem Cell2012114774901:CAS:528:DC%2BC38XhsVKqs7zM23040477347336110.1016/j.stem.2012.08.002
– reference: AoiTGeneration of pluripotent stem cells from adult mouse liver and stomach cellsScience20083216997021:CAS:528:DC%2BD1cXptVKnu78%3D1827685110.1126/science.1154884
– reference: PawlakMJaenischRDe novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent stateGenes Dev.201125103510401:CAS:528:DC%2BC3MXmslOgsb8%3D21576263309311910.1101/gad.2039011
– reference: FengBReprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor EsrrbNat. Cell Biol.2009111972031:CAS:528:DC%2BD1MXht1Oqt78%3D1913696510.1038/ncb1827
– reference: YamaguchiSHiranoKNagataSTadaTSox2 expression effects on direct reprogramming efficiency as determined by alternative somatic cell fateStem Cell Res.201061771862113072210.1016/j.scr.2010.09.0041:CAS:528:DC%2BC3MXhvV2lsrg%3D
– reference: TakahashiKMitsuiKYamanakaSRole of ERas in promoting tumour-like properties in mouse embryonic stem cellsNature20034235415451:CAS:528:DC%2BD3sXktVygtb8%3D1277412310.1038/nature01646
– reference: FrischerLEHagenFSGarberRLAn inversion that disrupts the Antennapedia gene causes abnormal structure and localization of RNAsCell198647101710231:CAS:528:DyaL2sXnvFGltQ%3D%3D243072310.1016/0092-8674(86)90816-0
– reference: ParkIHDisease-specific induced pluripotent stem cellsCell20081348778861:CAS:528:DC%2BD1cXhtFCqs7bK18691744263378110.1016/j.cell.2008.07.041
– reference: HongHSuppression of induced pluripotent stem cell generation by the p53–p21 pathwayNature2009460113211351:CAS:528:DC%2BD1MXps1ahsbc%3D19668191291723510.1038/nature08235
– reference: Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Naive and primed pluripotency. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2015.28 (2016).
– reference: MiyazakiTLaminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cellsNat. Commun.2012312362321236510.1038/ncomms22311:CAS:528:DC%2BC3sXhsVCisLo%3D
– reference: HockemeyerDEfficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleasesNat. Biotechnol.2009278518571:CAS:528:DC%2BD1MXpvFCrsL0%3D19680244414282410.1038/nbt.1562
– reference: PapapetrouEPStoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiationProc. Natl Acad. Sci. USA200910612759127641:CAS:528:DC%2BD1MXhtVKltrfF1954984710.1073/pnas.09048251062722286
– reference: DimosJTInduced pluripotent stem cells generated from patients with ALS can be differentiated into motor neuronsScience2008321121812211:CAS:528:DC%2BD1cXhtVGgt7zL1866982110.1126/science.1158799
– reference: MartinGRIsolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cellsProc. Natl Acad. Sci. USA198178763476381:STN:280:DyaL387ltV2htg%3D%3D695040634932310.1073/pnas.78.12.7634
– reference: NiwaHOgawaKShimosatoDAdachiKA parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cellsNature20094601181221:CAS:528:DC%2BD1MXotVSgu7Y%3D1957188510.1038/nature08113
– reference: BolandMJAdult mice generated from induced pluripotent stem cellsNature200946191941:CAS:528:DC%2BD1MXhtVygsbzE1967224310.1038/nature08310
– reference: Okumura-NakanishiSSaitoMNiwaHIshikawaFOct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cellsJ. Biol. Chem.2005280530753171:CAS:528:DC%2BD2MXhtlCmuro%3D1555733410.1074/jbc.M410015200
– reference: SoufiADonahueGZaretKSFacilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genomeCell201215199410041:CAS:528:DC%2BC38Xhs12gtbrL23159369350813410.1016/j.cell.2012.09.045
– reference: NicholsJSmithANaive and primed pluripotent statesCell Stem Cell200944874921:CAS:528:DC%2BD1MXnt1Ggt7c%3D10.1016/j.stem.2009.05.01519497275
– reference: WangQA novel xeno-free and feeder-cell-free system for human pluripotent stem cell cultureProtein Cell2012351591:CAS:528:DC%2BC3sXitVyht7g%3D22259120487521710.1007/s13238-012-2002-0
– reference: JudsonRLBabiarzJEVenereMBlellochREmbryonic stem cell-specific microRNAs promote induced pluripotencyNat. Biotechnol.2009274594611:CAS:528:DC%2BD1MXksVekt78%3D19363475274393010.1038/nbt.1535
– reference: StadtfeldMMaheraliNBreaultDTHochedlingerKDefining molecular cornerstones during fibroblast to iPS cell reprogramming in mouseCell Stem Cell200822302401:CAS:528:DC%2BD1cXjslegtrw%3D18371448353837910.1016/j.stem.2008.02.001
– reference: HouPPluripotent stem cells induced from mouse somatic cells by small-molecule compoundsScience20133416516541:CAS:528:DC%2BC3sXht1WqtbvO2386892010.1126/science.1239278
– reference: Avior, Y., Sagi, I. & Benvenisty, N. Pluripotent stem cells in disease modelling and drug testing. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2015.27 (2016).
– reference: MiuraKVariation in the safety of induced pluripotent stem cell linesNat. Biotechnol.2009277437451:CAS:528:DC%2BD1MXotlSntbg%3D1959050210.1038/nbt.1554
– reference: NakagawaMGeneration of induced pluripotent stem cells without Myc from mouse and human fibroblastsNat. Biotechnol.2008261011061:CAS:528:DC%2BD1cXisFGmuw%3D%3D1805925910.1038/nbt1374
– reference: TsubookaNRoles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblastsGenes Cells2009146836941:CAS:528:DC%2BD1MXnvVCjs74%3D1947650710.1111/j.1365-2443.2009.01301.x
– reference: KangLWangJZhangYKouZGaoSiPS cells can support full-term development of tetraploid blastocyst-complemented embryosCell Stem Cell200951351381:CAS:528:DC%2BD1MXhsVCiurfL1963160210.1016/j.stem.2009.07.001
– reference: WernigMMeissnerACassadyJPJaenischRc-Myc is dispensable for direct reprogramming of mouse fibroblastsCell Stem Cell2008210121:CAS:528:DC%2BD1cXhtFOltrc%3D10.1016/j.stem.2007.12.00118371415
– reference: XieWEpigenomic analysis of multilineage differentiation of human embryonic stem cellsCell2013153113411481:CAS:528:DC%2BC3sXnsVyrtLw%3D23664764378622010.1016/j.cell.2013.04.022
– reference: KobayashiYPre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicityPLoS ONE20127e527871:CAS:528:DC%2BC3sXnsVKmtw%3D%3D23300777353136910.1371/journal.pone.0052787
– reference: TanabeKNakamuraMNaritaMTakahashiKYamanakaSMaturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblastsProc. Natl Acad. Sci. USA201311012172121791:CAS:528:DC%2BC3sXht1emu73K2381274910.1073/pnas.13102911103725041
– reference: DunnSJMartelloGYordanovBEmmottSSmithAGDefining an essential transcription factor program for naive pluripotencyScience2014344115611601:CAS:528:DC%2BC2cXptVajtr8%3D24904165425706610.1126/science.1248882
– reference: SridharanRRole of the murine reprogramming factors in the induction of pluripotencyCell20091363643771:CAS:528:DC%2BD1MXhs1Kiu7s%3D19167336327349410.1016/j.cell.2009.01.001
– reference: AngYSWdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional networkCell20111451831971:CAS:528:DC%2BC3MXkvVGlsb8%3D21477851309746810.1016/j.cell.2011.03.003
– reference: KuzmichevANishiokaKErdjument-BromageHTempstPReinbergDHistone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste proteinGenes Dev.200216289329051:CAS:528:DC%2BD38XovVejsLY%3D1243563118747910.1101/gad.1035902
– reference: OkitaKNakagawaMHyenjongHIchisakaTYamanakaSGeneration of mouse induced pluripotent stem cells without viral vectorsScience20083229499531:CAS:528:DC%2BD1cXhtlaltLzO1884571210.1126/science.1164270
– reference: BrambrinkTSequential expression of pluripotency markers during direct reprogramming of mouse somatic cellsCell Stem Cell200821511591:CAS:528:DC%2BD1cXitlygtbw%3D18371436227662710.1016/j.stem.2008.01.004
– reference: MaHAbnormalities in human pluripotent cells due to reprogramming mechanismsNature20145111771831:CAS:528:DC%2BC2cXhtFehsLvM25008523489806410.1038/nature13551
– reference: YamanakaSElite and stochastic models for induced pluripotent stem cell generationNature200946049521:CAS:528:DC%2BD1MXotVSgu7c%3D1957187710.1038/nature08180
– reference: MikkelsenTSDissecting direct reprogramming through integrative genomic analysisNature20084547941:CAS:528:DC%2BD1cXps1Sms7k%3D10.1038/nature07196
– reference: ShuJInduction of pluripotency in mouse somatic cells with lineage specifiersCell20131539639751:CAS:528:DC%2BC3sXotlGjtrY%3D23706735464044510.1016/j.cell.2013.05.001
– reference: YamanakaSInduced pluripotent stem cells: past, present, and futureCell Stem Cell2012106786841:CAS:528:DC%2BC38XosFCiurc%3D10.1016/j.stem.2012.05.00522704507
– reference: PostlethwaitJHSchneidermanHAA clonal analysis of determination in Antennapedia, a homoeotic mutant of Drosophila melanogasterProc. Natl Acad. Sci. USA1969641761831:STN:280:DyaE3c7gtFCktw%3D%3D526300010.1073/pnas.64.1.176286144
– reference: ChengAMMammalian Grb2 regulates multiple steps in embryonic development and malignant transformationCell1998957938031:CAS:528:DyaK1MXivVKi986569710.1016/S0092-8674(00)81702-X
– reference: YuJHuman induced pluripotent stem cells free of vector and transgene sequencesScience20093247978011:CAS:528:DC%2BD1MXlsVeksrk%3D19325077275805310.1126/science.1172482
– reference: OnderTTChromatin-modifying enzymes as modulators of reprogrammingNature20124835986021:CAS:528:DC%2BC38XjtFOgsro%3D22388813350114510.1038/nature10953
– reference: WilmutISchniekeAEMcWhirJKindAJCampbellKHViable offspring derived from fetal and adult mammalian cellsNature19973858108131:CAS:528:DyaK2sXhsFamsLs%3D10.1038/385810a09039911
– reference: SchneuwlySKuroiwaAGehringWJMolecular analysis of the dominant homeotic Antennapedia phenotypeEMBO J.198762012061:CAS:528:DyaL2sXhtFCmt7Y%3D1645374855337710.1002/j.1460-2075.1987.tb04739.x
– reference: HengJCThe nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cellsCell Stem Cell201061671741:CAS:528:DC%2BC3cXlt1Knu7g%3D2009666110.1016/j.stem.2009.12.009
– reference: TakahashiKInduction of pluripotent stem cells from adult human fibroblasts by defined factorsCell20071318618721:CAS:528:DC%2BD2sXhsVCntbbK10.1016/j.cell.2007.11.01918035408
– reference: MoritaSKojimaTKitamuraTPlat-E: an efficient and stable system for transient packaging of retrovirusesGene Ther.20007106310661:CAS:528:DC%2BD3cXkt1amtr0%3D1087175610.1038/sj.gt.3301206
– reference: WeismannAThe Germ-Plasm: A Theory of Heredity1893
– reference: O'MalleyJHigh-resolution analysis with novel cell-surface markers identifies routes to iPS cellsNature201349988911:CAS:528:DC%2BC3sXosFWlsbs%3D23728301374302210.1038/nature12243
– reference: GoodellMANguyenHShroyerNSomatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartmentsNat. Rev. Mol. Cell Biol.2015162993091:CAS:528:DC%2BC2MXntFCitbY%3D25907613531720310.1038/nrm3980
– reference: HalderGCallaertsPGehringWJInduction of ectopic eyes by targeted expression of the eyeless gene in DrosophilaScience1995267178817921:CAS:528:DyaK2MXkslWgtL8%3D789260210.1126/science.7892602
– reference: OkitaKIchisakaTYamanakaSGeneration of germ-line competent induced pluripotent stem cellsNature20074483133171:CAS:528:DC%2BD2sXnvVeqsL0%3D10.1038/nature0593417554338
– reference: GafniODerivation of novel human ground state naive pluripotent stem cellsNature20135042822861:CAS:528:DC%2BC3sXhslSnsLbM10.1038/nature1274524172903
– reference: ChambersIFunctional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cellsCell20031136436551:CAS:528:DC%2BD3sXksFehur8%3D1278750510.1016/S0092-8674(03)00392-1
– reference: MatsudaTSTAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cellsEMBO J.199918426142691:CAS:528:DyaK1MXlt1GqsLg%3D10428964117150210.1093/emboj/18.15.4261
– reference: WangTThe histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent mannerCell Stem Cell201195755871:CAS:528:DC%2BC3MXhsFOns7jL2210041210.1016/j.stem.2011.10.005
– reference: LiRA mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblastsCell Stem Cell2010751631:CAS:528:DC%2BC3cXps12ktrk%3D2062105010.1016/j.stem.2010.04.014
– reference: WakayamaTPerryACZuccottiMJohnsonKRYanagimachiRFull-term development of mice from enucleated oocytes injected with cumulus cell nucleiNature19983943693741:CAS:528:DyaK1cXkvFKnsbs%3D969047110.1038/28615
– reference: HannaJDirect cell reprogramming is a stochastic process amenable to accelerationNature20094625956011:CAS:528:DC%2BD1MXhtlOrurjN19898493278997210.1038/nature08592
– reference: YamadaMHuman oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cellsNature20145105335361:CAS:528:DC%2BC2cXpslGitLs%3D2477680410.1038/nature13287
– reference: Trounson, A. & DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2016.10 (2016).
– reference: StadtfeldMNagayaMUtikalJWeirGHochedlingerKInduced pluripotent stem cells generated without viral integrationScience20083229459491:CAS:528:DC%2BD1cXhtlaltLzN18818365398790910.1126/science.1162494
– reference: ParkIHReprogramming of human somatic cells to pluripotency with defined factorsNature20084511411461:CAS:528:DC%2BD1cXksVGhtQ%3D%3D1815711510.1038/nature06534
– reference: HuangfuDInduction of pluripotent stem cells by defined factors is greatly improved by small-molecule compoundsNat. Biotechnol.2008267957971:CAS:528:DC%2BD1cXot1entL0%3D18568017633464710.1038/nbt1418
– reference: DengJTargeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogrammingNat. Biotechnol.2009273533601:CAS:528:DC%2BD1MXjslartrk%3D19330000271527210.1038/nbt.1530
– reference: CareyBWReprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cellsCell Stem Cell201195885981:CAS:528:DC%2BC3MXhsFOns7jE2213693210.1016/j.stem.2011.11.003
– reference: WaddingtonCHThe Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology1957
– reference: ZhangJNuebelEDaleyGQKoehlerCMTeitellMAMetabolic regulation in pluripotent stem cells during reprogramming and self-renewalCell Stem Cell2012115895951:CAS:528:DC%2BC38Xhs1aqtr3P23122286349289010.1016/j.stem.2012.10.005
– reference: EvansMJKaufmanMHEstablishment in culture of pluripotential cells from mouse embryosNature19812921541561:STN:280:DyaL3M3itV2qsg%3D%3D724268110.1038/292154a0
– reference: ChoiJA comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCsNat. Biotechnol.201533117311811:CAS:528:DC%2BC2MXhslantL%2FI26501951484794010.1038/nbt.3388
– reference: PanopoulosADThe metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogrammingCell Res.20112216817722064701325249410.1038/cr.2011.1771:CAS:528:DC%2BC38Xks1CisQ%3D%3D
– reference: SchneuwlySKlemenzRGehringWJRedesigning the body plan of Drosophila by ectopic expression of the homoeotic gene AntennapediaNature19873258168181:CAS:528:DyaL2sXhtlaqtro%3D382186910.1038/325816a0
– reference: FusakiNBanHNishiyamaASaekiKHasegawaMEfficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genomeProc. Jpn Acad. Ser. B Phys. Biol. Sci.2009853483621:CAS:528:DC%2BD1MXhsFejsrbN19838014362157110.2183/pjab.85.348
– reference: TakashimaYResetting transcription factor control circuitry toward ground-state pluripotency in humanCell2014158125412691:CAS:528:DC%2BC2cXhsFCgtLjN25215486416274510.1016/j.cell.2014.08.029
– reference: SchwartzSDEmbryonic stem cell trials for macular degeneration: a preliminary reportLancet20123797137201:CAS:528:DC%2BC38XivVels7s%3D2228138810.1016/S0140-6736(12)60028-2
– reference: YusaKRadRTakedaJBradleyAGeneration of transgene-free induced pluripotent mouse stem cells by the piggyBac transposonNat. Methods200963633691:CAS:528:DC%2BD1MXjsl2gtbg%3D19337237267716510.1038/nmeth.1323
– reference: TachibanaMHuman embryonic stem cells derived by somatic cell nuclear transferCell2013153122812381:CAS:528:DC%2BC3sXnsleqsro%3D23683578377278910.1016/j.cell.2013.05.006
– reference: ZhouQBrownJKanarekARajagopalJMeltonDAIn vivo reprogramming of adult pancreatic exocrine cells to β-cellsNature20084556276321:CAS:528:DC%2BD1cXhtF2hsbvI18754011901191810.1038/nature07314
– reference: LiangGTaranovaOXiaKZhangYButyrate promotes induced pluripotent stem cell generationJ. Biol. Chem.201028525516255211:CAS:528:DC%2BC3cXpslKjtLg%3D20554530291911510.1074/jbc.M110.142059
– reference: XieHYeMFengRGrafTStepwise reprogramming of B cells into macrophagesCell20041176636761:CAS:528:DC%2BD2cXkvVyhsrc%3D1516341310.1016/S0092-8674(04)00419-2
– reference: BergstromRStromSHolmFFekiAHovattaOXeno-free culture of human pluripotent stem cellsMethods Mol. Biol.20117671251362182287110.1007/978-1-61779-201-4_91:CAS:528:DC%2BC38XlslKgurw%3D
– reference: ZhaoYTwo supporting factors greatly improve the efficiency of human iPSC generationCell Stem Cell200834754791:CAS:528:DC%2BD1cXhsVaqs77K1898396210.1016/j.stem.2008.10.002
– reference: LiHThe Ink4/Arf locus is a barrier for iPS cell reprogrammingNature2009460113611391:CAS:528:DC%2BD1MXps1ahtLg%3D19668188357818410.1038/nature08290
– reference: ZhouHGeneration of induced pluripotent stem cells using recombinant proteinsCell Stem Cell200943813841:CAS:528:DC%2BD1MXlvVGjtLw%3D1939839910.1016/j.stem.2009.04.005
– reference: TheunissenTWSystematic identification of culture conditions for induction and maintenance of naive human pluripotencyCell Stem Cell2014154714871:CAS:528:DC%2BC2cXht1agsL%2FN25090446418497710.1016/j.stem.2014.07.002
– reference: MitsuiKThe homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cellsCell20031136316421:CAS:528:DC%2BD3sXksFehur4%3D1278750410.1016/S0092-8674(03)00393-3
– reference: KawamuraTLinking the p53 tumour suppressor pathway to somatic cell reprogrammingNature2009460114011441:CAS:528:DC%2BD1MXps1ahuro%3D19668186273588910.1038/nature08311
– reference: StadtfeldMBrennandKHochedlingerKReprogramming of pancreatic β cells into induced pluripotent stem cellsCurr. Biol.2008188908941:CAS:528:DC%2BD1cXns1agu7w%3D18501604281922210.1016/j.cub.2008.05.010
– reference: TakahashiKYamanakaSInduction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factorsCell20061266636761:CAS:528:DC%2BD28Xpt1aktbs%3D10.1016/j.cell.2006.07.02416904174
– reference: FengBNgJHHengJCNgHHMolecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cellsCell Stem Cell200943013121:CAS:528:DC%2BD1MXltVeqsr0%3D1934162010.1016/j.stem.2009.03.005
– reference: CowanCAAtienzaJMeltonDAEgganKNuclear reprogramming of somatic cells after fusion with human embryonic stem cellsScience2005309136913731:CAS:528:DC%2BD2MXovVOjtLw%3D1612329910.1126/science.1116447
– reference: ChanEMLive cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cellsNat. Biotechnol.200927103310371:CAS:528:DC%2BD1MXht1GlsrjE1982640810.1038/nbt.1580
– reference: ChenGChemically defined conditions for human iPSC derivation and cultureNat. Methods201184244291:CAS:528:DC%2BC3MXksFWnt7o%3D21478862308490310.1038/nmeth.1593
– reference: CartwrightPLIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanismDevelopment20051328858961:CAS:528:DC%2BD2MXjtFCht7k%3D1567356910.1242/dev.01670
– reference: SilvaJPromotion of reprogramming to ground state pluripotency by signal inhibitionPLoS Biol.20086e25318942890257042410.1371/journal.pbio.00602531:CAS:528:DC%2BD1cXhtlKhsL%2FK
– reference: ChungYGHuman somatic cell nuclear transfer using adult cellsCell Stem Cell2014147777801:CAS:528:DC%2BC2cXmsVCms78%3D2474667510.1016/j.stem.2014.03.015
– reference: ShinagawaTHistone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cellsCell Stem Cell2014142172271:CAS:528:DC%2BC2cXitV2ks78%3D2450688510.1016/j.stem.2013.12.015
– reference: YuJInduced pluripotent stem cell lines derived from human somatic cellsScience2007318191719201:CAS:528:DC%2BD2sXhsVGjsLbN1802945210.1126/science.1151526
– reference: DavisRLWeintraubHLassarABExpression of a single transfected cDNA converts fibroblasts to myoblastsCell19875198710001:CAS:528:DyaL1cXhvF2iurc%3D369066810.1016/0092-8674(87)90585-X
– reference: OhnukiMDynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potentialProc. Natl Acad. Sci. USA201411112426124311:CAS:528:DC%2BC2cXht1Kkt7zO2509726610.1073/pnas.14132991114151758
– reference: ScottMPThe molecular organization of the Antennapedia locus of DrosophilaCell1983357637761:CAS:528:DyaL2cXotVKisg%3D%3D641838910.1016/0092-8674(83)90109-5
– reference: ThomsonJAEmbryonic stem cell lines derived from human blastocystsScience1998282114511471:CAS:528:DyaK1cXntleisLg%3D10.1126/science.282.5391.11459804556
– reference: HazelriggTKaufmanTCRevertants of dominant mutations associated with the Antennapedia gene complex of DROSOPHILA MELANOGASTER: cytology and geneticsGenetics19831055816001:STN:280:DC%2BC3crptFymuw%3D%3D172461681202175
– reference: ZhaoXYiPS cells produce viable mice through tetraploid complementationNature200946186901:CAS:528:DC%2BD1MXhtVygsLfF1967224110.1038/nature08267
– reference: MarionRMA p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrityNature2009460114911531:CAS:528:DC%2BD1MXps1ahtrY%3D19668189362408910.1038/nature08287
– reference: HanJTbx3 improves the germ-line competency of induced pluripotent stem cellsNature2010463109611001:CAS:528:DC%2BC3cXhs1Omu7Y%3D20139965290179710.1038/nature08735
– reference: PoloJMA molecular roadmap of reprogramming somatic cells into iPS cellsCell2012151161716321:CAS:528:DC%2BC38XhvVylsrbK23260147360820310.1016/j.cell.2012.11.039
– reference: HannaJDirect reprogramming of terminally differentiated mature B lymphocytes to pluripotencyCell20081332502641:CAS:528:DC%2BD1cXltlWnu78%3D18423197261524910.1016/j.cell.2008.03.028
– reference: HannaJTreatment of sickle cell anemia mouse model with iPS cells generated from autologous skinScience2007318192019231:CAS:528:DC%2BD2sXhsVGjsLbP1806375610.1126/science.1152092
– reference: KimDGeneration of human induced pluripotent stem cells by direct delivery of reprogramming proteinsCell Stem Cell200944724761:CAS:528:DC%2BD1MXnt1Ggt7o%3D19481515270532710.1016/j.stem.2009.05.005
– reference: WernigMA drug-inducible transgenic system for direct reprogramming of multiple somatic cell typesNat. Biotechnol.2008269169241:CAS:528:DC%2BD1cXps1Wmtbc%3D18594521265426910.1038/nbt1483
– reference: MontserratNReprogramming of human fibroblasts to pluripotency with lineage specifiersCell Stem Cell2013133413501:CAS:528:DC%2BC3sXhtFChu7zK2387160610.1016/j.stem.2013.06.019
– reference: RajalaKA defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cellsPLoS ONE20105e1024620419109285668810.1371/journal.pone.00102461:CAS:528:DC%2BC3cXlt1yrt78%3D
– reference: OkitaKA more efficient method to generate integration-free human iPS cellsNat. Methods201184094121:CAS:528:DC%2BC3MXktFahtrc%3D2146082310.1038/nmeth.1591
– reference: MaliPButyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genesStem Cells2010287137201:CAS:528:DC%2BC3cXms1yisL8%3D20201064301521710.1002/stem.402
– reference: BuganimYFaddahDAJaenischRMechanisms and models of somatic cell reprogrammingNat. Rev. Genet.2013144274391:CAS:528:DC%2BC3sXnslahsbk%3D23681063406015010.1038/nrg3473
– reference: Koyanagi-AoiMDifferentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cellsProc. Natl Acad. Sci. USA201311020569205741:CAS:528:DC%2BC2cXnsVOmug%3D%3D2425971410.1073/pnas.13190611103870695
– reference: TakagiNYoshidaMASugawaraOSasakiMReversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitroCell198334105310621:STN:280:DyaL2c%2Fis1CksA%3D%3D662739110.1016/0092-8674(83)90563-9
– reference: ChenHReinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotencyNat. Commun.2015670951:CAS:528:DC%2BC2MXhtF2kt73F2596805410.1038/ncomms8095
– reference: BurdonTChambersIStraceyCNiwaHSmithASignaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cellsCells Tissues Organs19991651311431:CAS:528:DyaK1MXotVyrt70%3D1059238510.1159/000016693
– reference: HannaJHuman embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCsProc. Natl Acad. Sci. USA2010107922292271:CAS:528:DC%2BC3cXmslWru7k%3D10.1073/pnas.1004584107204423312889088
– reference: EdelMJRem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1Genes Dev.2010245615731:CAS:528:DC%2BC3cXktFOksrc%3D20231315284133410.1101/gad.1876710
– reference: UtikalJImmortalization eliminates a roadblock during cellular reprogramming into iPS cellsNature2009460114511481:CAS:528:DC%2BD1MXps1ags78%3D19668190398789210.1038/nature08285
– reference: TomiokaMIdentification of Sox-2 regulatory region which is under the control of Oct-3/4–Sox-2 complexNucleic Acids Res.200230320232131:CAS:528:DC%2BD38Xlslyjsrc%3D1213610213575510.1093/nar/gkf435
– reference: GrowEJIntrinsic retroviral reactivation in human preimplantation embryos and pluripotent cellsNature20155222212251:CAS:528:DC%2BC2MXnsVWrtLY%3D25896322450337910.1038/nature14308
– reference: VierbuchenTDirect conversion of fibroblasts to functional neurons by defined factorsNature2010463103510411:CAS:528:DC%2BC3cXhtFCgsr0%3D20107439282912110.1038/nature08797
– reference: GurdonJBThe developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpolesJ. Embryol. Exp. Morphol.1962106226401:STN:280:DyaF387ktlSmtQ%3D%3D13951335
– reference: WernigMNeurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's diseaseProc. Natl Acad. Sci. USA2008105585658611:CAS:528:DC%2BD1cXltVyis70%3D1839119610.1073/pnas.08016771052311361
– reference: NishimuraKDevelopment of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogrammingJ. Biol. Chem.20102864760477121138846303934610.1074/jbc.M110.1837801:CAS:528:DC%2BC3MXhsFGlu74%3D
– reference: HoughSRSingle-cell gene expression profiles define self-renewing, pluripotent, and lineage primed states of human pluripotent stem cellsStem Cell Rep.201428818951:CAS:528:DC%2BC2cXhtVWmt7vJ10.1016/j.stemcr.2014.04.014
– reference: SmithAGInhibition of pluripotential embryonic stem cell differentiation by purified polypeptidesNature19883366886901:CAS:528:DyaL1MXntlKitw%3D%3D314391710.1038/336688a0
– reference: DingXThe polycomb protein Ezh2 impacts on induced pluripotent stem cell generationStem Cells Dev.2014239319401:CAS:528:DC%2BC2cXntVemtL4%3D2432531910.1089/scd.2013.0267
– reference: TadaMTakahamaYAbeKNakatsujiNTadaTNuclear reprogramming of somatic cells by in vitro hybridization with ES cellsCurr. Biol.200111155315581:CAS:528:DC%2BD3MXnsF2ms7g%3D1159132610.1016/S0960-9822(01)00459-6
– reference: BlauHMChiuCPWebsterCCytoplasmic activation of human nuclear genes in stable heterocaryonsCell198332117111801:CAS:528:DyaL3sXhvFGls74%3D683935910.1016/0092-8674(83)90300-8
– reference: ChanYSInduction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblastCell Stem Cell2013136636751:CAS:528:DC%2BC3sXhvFymu73J10.1016/j.stem.2013.11.01524315441
– reference: JiangJA core Klf circuitry regulates self-renewal of embryonic stem cellsNat. Cell Biol.2008103533601826408910.1038/ncb16981:CAS:528:DC%2BD1cXislaks7k%3D
– reference: NiwaHBurdonTChambersISmithASelf-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3Genes Dev.199812204820601:CAS:528:DyaK1cXksFygtbk%3D964950831695410.1101/gad.12.13.2048
– reference: WorringerKAThe let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genesCell Stem Cell201314405224239284398231210.1016/j.stem.2013.11.0011:CAS:528:DC%2BC3sXhsl2jsrnF
– reference: JiaFA nonviral minicircle vector for deriving human iPS cellsNat. Methods201071971991:CAS:528:DC%2BC3cXhs1Omtb8%3D20139967289289710.1038/nmeth.1426
– reference: GurdonJBElsdaleTRFischbergMSexually mature individuals of Xenopus laevis from the transplantation of single somatic nucleiNature195818264651:STN:280:DyaG1c7gvFejsA%3D%3D10.1038/182064a013566187
– reference: Picanco-CastroVPluripotent reprogramming of fibroblasts by lentiviral-mediated insertion of SOX2, C-MYC and TCL-1AStem Cells Dev.2010201691802050415110.1089/scd.2009.04241:CAS:528:DC%2BC3MXhtVanuw%3D%3D
– reference: HuXTet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogrammingCell Stem Cell2014145125221:CAS:528:DC%2BC2cXisFChs74%3D10.1016/j.stem.2014.01.00124529596
– reference: RossPJHuman induced pluripotent stem cells produced under xeno-free conditionsStem Cells Dev.2009191221122910.1089/scd.2009.04591:CAS:528:DC%2BC3cXhtVejs77M
– reference: JohannessonBComparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factorsCell Stem Cell2014156346421:CAS:528:DC%2BC2cXhslGnsbvP2551746710.1016/j.stem.2014.10.002
– reference: TokuzawaYFbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse developmentMol. Cell. Biol.200323269927081:CAS:528:DC%2BD3sXktV2lsbg%3D1266557215254410.1128/MCB.23.8.2699-2708.2003
– reference: YingQLThe ground state of embryonic stem cell self-renewalNature20084535195231:CAS:528:DC%2BD1cXmt1Ortbg%3D18497825532867810.1038/nature06968
– reference: OsafuneKMarked differences in differentiation propensity among human embryonic stem cell linesNat. Biotechnol.2008263133151:CAS:528:DC%2BD1cXjsVGit78%3D1827803410.1038/nbt1383
– reference: KulessaHFramptonJGrafTGATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblastsGenes Dev.19959125012621:CAS:528:DyaK2MXlvFShsLg%3D775894910.1101/gad.9.10.1250
– reference: NakagawaMTakizawaNNaritaMIchisakaTYamanakaSPromotion of direct reprogramming by transformation-deficient MycProc. Natl Acad. Sci. USA201010714152141571:CAS:528:DC%2BC3cXhtVClsr3O2066076410.1073/pnas.10093741072922531
– reference: BurdonTStraceyCChambersINicholsJSmithASuppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cellsDev. Biol.199921030431:CAS:528:DyaK1MXjs1Gntr4%3D1036442510.1006/dbio.1999.9265
– reference: BanitoASenescence impairs successful reprogramming to pluripotent stem cellsGenes Dev.200923213421391:CAS:528:DC%2BD1MXht1ersbrL19696146275198010.1101/gad.1811609
– reference: WernigMIn vitro reprogramming of fibroblasts into a pluripotent ES cell-like stateNature20074483183241:CAS:528:DC%2BD2sXnvVeqsLg%3D10.1038/nature0594417554336
– reference: Samavarchi-TehraniPFunctional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogrammingCell Stem Cell2010764771:CAS:528:DC%2BC3cXps12ktrY%3D10.1016/j.stem.2010.04.01520621051
– reference: CacchiarelliDIntegrative analyses of human reprogramming reveal dynamic nature of induced pluripotencyCell20151624124241:CAS:528:DC%2BC2MXht1KgtL3K26186193451159710.1016/j.cell.2015.06.016
– reference: WarrenLHighly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNACell Stem Cell201076186301:CAS:528:DC%2BC3cXhtlKhtbrE20888316365682110.1016/j.stem.2010.08.012
– reference: YangJStat3 activation is limiting for reprogramming to ground state pluripotencyCell Stem Cell201073193281:CAS:528:DC%2BC3cXhtVyrurnF20804969345909810.1016/j.stem.2010.06.022
– reference: TsujiOTherapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injuryProc. Natl Acad. Sci. USA201010712704127091:CAS:528:DC%2BC3cXpt1Shurk%3D2061597410.1073/pnas.09101061072906548
– reference: BuganimYSingle-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phaseCell2012150120912221:CAS:528:DC%2BC38XhtlKrs7vM22980981345765610.1016/j.cell.2012.08.023
– reference: MaheraliNDirectly reprogrammed fibroblasts show global epigenetic remodelling and widespread tissue contributionCell Stem Cell2007155701:CAS:528:DC%2BD2sXptV2rs74%3D1837133610.1016/j.stem.2007.05.014
– reference: NarsinhKHSingle cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cellsJ. Clin. Invest.2011121121712211:CAS:528:DC%2BC3MXjtVWku7s%3D21317531304938910.1172/JCI44635
– reference: NakagawaMA novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cellsSci. Rep.20144359424399248388422810.1038/srep03594
– reference: Smith, Z. D., Sindhu, C. & Meissner, A. Molecular features of cellular reprogramming and development. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2016.6 (2016).
– reference: TakahashiKInduction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendodermNat. Commun.2014536781:CAS:528:DC%2BC2cXitVShsLrF2475983610.1038/ncomms4678
– reference: WoltjenKpiggyBac transposition reprograms fibroblasts to induced pluripotent stem cellsNature20094587667701:CAS:528:DC%2BD1MXisVOrtr0%3D19252478375899610.1038/nature07863
– reference: KajiKVirus-free induction of pluripotency and subsequent excision of reprogramming factorsNature20094587717751:CAS:528:DC%2BD1MXisVOrtbk%3D19252477266791010.1038/nature07864
– reference: WareCBDerivation of naive human embryonic stem cellsProc. Natl Acad. Sci. USA2014111448444891:CAS:528:DC%2BC2cXkt1Smsb4%3D2462385510.1073/pnas.13197381113970494
– reference: SatoNMeijerLSkaltsounisLGreengardPBrivanlouAHMaintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitorNat. Med.20041055631:CAS:528:DC%2BD2cXlsFGm1470263510.1038/nm979
– reference: KimSIKLF4 N-terminal variance modulates induced reprogramming to pluripotencyStem Cell Rep.201547277431:CAS:528:DC%2BC2MXktlyjt7c%3D10.1016/j.stemcr.2015.02.004
– volume: 150
  start-page: 1209
  year: 2012
  ident: BFnrm20168_CR57
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.023
– volume: 11
  start-page: 589
  year: 2012
  ident: BFnrm20168_CR85
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.10.005
– volume: 151
  start-page: 1617
  year: 2012
  ident: BFnrm20168_CR88
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.039
– volume: 7
  start-page: 64
  year: 2010
  ident: BFnrm20168_CR82
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.015
– volume: 106
  start-page: 12759
  year: 2009
  ident: BFnrm20168_CR101
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0904825106
– volume: 460
  start-page: 49
  year: 2009
  ident: BFnrm20168_CR77
  publication-title: Nature
  doi: 10.1038/nature08180
– volume: 8
  start-page: 409
  year: 2011
  ident: BFnrm20168_CR110
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1591
– volume: 4
  start-page: 487
  year: 2009
  ident: BFnrm20168_CR132
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.015
– volume: 136
  start-page: 364
  year: 2009
  ident: BFnrm20168_CR90
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.001
– volume: 511
  start-page: 177
  year: 2014
  ident: BFnrm20168_CR152
  publication-title: Nature
  doi: 10.1038/nature13551
– volume: 499
  start-page: 88
  year: 2013
  ident: BFnrm20168_CR94
  publication-title: Nature
  doi: 10.1038/nature12243
– volume: 210
  start-page: 30
  year: 1999
  ident: BFnrm20168_CR32
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1999.9265
– volume-title: The Germ-Plasm: A Theory of Heredity
  year: 1893
  ident: BFnrm20168_CR1
  doi: 10.5962/bhl.title.168967
– volume: 26
  start-page: 101
  year: 2008
  ident: BFnrm20168_CR44
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1374
– volume: 14
  start-page: 512
  year: 2014
  ident: BFnrm20168_CR76
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.01.001
– volume: 282
  start-page: 1145
  year: 1998
  ident: BFnrm20168_CR165
  publication-title: Science
  doi: 10.1126/science.282.5391.1145
– volume: 4
  start-page: 3594
  year: 2014
  ident: BFnrm20168_CR125
  publication-title: Sci. Rep.
  doi: 10.1038/srep03594
– volume: 460
  start-page: 1132
  year: 2009
  ident: BFnrm20168_CR62
  publication-title: Nature
  doi: 10.1038/nature08235
– volume: 113
  start-page: 631
  year: 2003
  ident: BFnrm20168_CR24
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00393-3
– volume: 461
  start-page: 86
  year: 2009
  ident: BFnrm20168_CR146
  publication-title: Nature
  doi: 10.1038/nature08267
– volume: 5
  start-page: 3678
  year: 2014
  ident: BFnrm20168_CR96
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4678
– volume: 458
  start-page: 771
  year: 2009
  ident: BFnrm20168_CR112
  publication-title: Nature
  doi: 10.1038/nature07864
– volume: 121
  start-page: 1217
  year: 2011
  ident: BFnrm20168_CR142
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI44635
– volume: 14
  start-page: 683
  year: 2009
  ident: BFnrm20168_CR48
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2009.01301.x
– volume: 483
  start-page: 598
  year: 2012
  ident: BFnrm20168_CR73
  publication-title: Nature
  doi: 10.1038/nature10953
– volume: 18
  start-page: 4261
  year: 1999
  ident: BFnrm20168_CR28
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.15.4261
– volume: 47
  start-page: 1017
  year: 1986
  ident: BFnrm20168_CR18
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90816-0
– volume: 4
  start-page: 727
  year: 2015
  ident: BFnrm20168_CR105
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2015.02.004
– volume: 2
  start-page: 881
  year: 2014
  ident: BFnrm20168_CR143
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2014.04.014
– volume: 3
  start-page: 1236
  year: 2012
  ident: BFnrm20168_CR124
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2231
– volume: 15
  start-page: 471
  year: 2014
  ident: BFnrm20168_CR136
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.07.002
– volume: 13
  start-page: 663
  year: 2013
  ident: BFnrm20168_CR140
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.11.015
– volume: 85
  start-page: 348
  year: 2009
  ident: BFnrm20168_CR115
  publication-title: Proc. Jpn Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.85.348
– volume: 107
  start-page: 12704
  year: 2010
  ident: BFnrm20168_CR129
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0910106107
– volume: 2
  start-page: 230
  year: 2008
  ident: BFnrm20168_CR92
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.02.001
– volume: 111
  start-page: 4484
  year: 2014
  ident: BFnrm20168_CR139
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1319738111
– volume: 292
  start-page: 154
  year: 1981
  ident: BFnrm20168_CR5
  publication-title: Nature
  doi: 10.1038/292154a0
– volume: 110
  start-page: 12172
  year: 2013
  ident: BFnrm20168_CR43
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1310291110
– volume: 14
  start-page: 40
  year: 2013
  ident: BFnrm20168_CR54
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.11.001
– volume: 318
  start-page: 1920
  year: 2007
  ident: BFnrm20168_CR127
  publication-title: Science
  doi: 10.1126/science.1152092
– volume: 321
  start-page: 1218
  year: 2008
  ident: BFnrm20168_CR168
  publication-title: Science
  doi: 10.1126/science.1158799
– volume: 9
  start-page: 575
  year: 2011
  ident: BFnrm20168_CR72
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.10.005
– volume: 451
  start-page: 141
  year: 2008
  ident: BFnrm20168_CR161
  publication-title: Nature
  doi: 10.1038/nature06534
– volume: 28
  start-page: 713
  year: 2010
  ident: BFnrm20168_CR68
  publication-title: Stem Cells
  doi: 10.1002/stem.402
– volume: 14
  start-page: 217
  year: 2014
  ident: BFnrm20168_CR74
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.12.015
– volume: 107
  start-page: 14152
  year: 2010
  ident: BFnrm20168_CR46
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1009374107
– volume: 133
  start-page: 250
  year: 2008
  ident: BFnrm20168_CR79
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.028
– volume: 2
  start-page: 10
  year: 2008
  ident: BFnrm20168_CR167
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.12.001
– volume-title: The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology
  year: 1957
  ident: BFnrm20168_CR2
– volume: 8
  start-page: 424
  year: 2011
  ident: BFnrm20168_CR120
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1593
– volume: 10
  start-page: 353
  year: 2008
  ident: BFnrm20168_CR45
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1698
– volume: 182
  start-page: 64
  year: 1958
  ident: BFnrm20168_CR3
  publication-title: Nature
  doi: 10.1038/182064a0
– volume: 64
  start-page: 176
  year: 1969
  ident: BFnrm20168_CR16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.64.1.176
– volume: 522
  start-page: 221
  year: 2015
  ident: BFnrm20168_CR100
  publication-title: Nature
  doi: 10.1038/nature14308
– volume: 321
  start-page: 699
  year: 2008
  ident: BFnrm20168_CR80
  publication-title: Science
  doi: 10.1126/science.1154884
– volume: 309
  start-page: 1369
  year: 2005
  ident: BFnrm20168_CR12
  publication-title: Science
  doi: 10.1126/science.1116447
– volume: 7
  start-page: 197
  year: 2010
  ident: BFnrm20168_CR111
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1426
– volume: 5
  start-page: 135
  year: 2009
  ident: BFnrm20168_CR144
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.07.001
– volume: 113
  start-page: 643
  year: 2003
  ident: BFnrm20168_CR25
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00392-1
– ident: BFnrm20168_CR133
  doi: 10.1038/nrm.2015.28
– volume: 14
  start-page: 777
  year: 2014
  ident: BFnrm20168_CR150
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.03.015
– volume: 394
  start-page: 369
  year: 1998
  ident: BFnrm20168_CR8
  publication-title: Nature
  doi: 10.1038/28615
– volume: 78
  start-page: 7634
  year: 1981
  ident: BFnrm20168_CR6
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.78.12.7634
– volume: 15
  start-page: 634
  year: 2014
  ident: BFnrm20168_CR153
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.10.002
– volume: 3
  start-page: 475
  year: 2008
  ident: BFnrm20168_CR49
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.10.002
– volume: 158
  start-page: 1254
  year: 2014
  ident: BFnrm20168_CR135
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.029
– volume: 26
  start-page: 916
  year: 2008
  ident: BFnrm20168_CR104
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1483
– volume: 10
  start-page: 678
  year: 2012
  ident: BFnrm20168_CR147
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.05.005
– volume: 22
  start-page: 168
  year: 2011
  ident: BFnrm20168_CR84
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.177
– volume: 153
  start-page: 1134
  year: 2013
  ident: BFnrm20168_CR99
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.022
– volume: 6
  start-page: 177
  year: 2010
  ident: BFnrm20168_CR102
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2010.09.004
– volume: 5
  start-page: e10246
  year: 2010
  ident: BFnrm20168_CR126
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010246
– ident: BFnrm20168_CR174
  doi: 10.1038/nrm.2016.6
– volume: 7
  start-page: 51
  year: 2010
  ident: BFnrm20168_CR83
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.014
– volume: 19
  start-page: 1221
  year: 2009
  ident: BFnrm20168_CR123
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2009.0459
– volume: 463
  start-page: 1035
  year: 2010
  ident: BFnrm20168_CR172
  publication-title: Nature
  doi: 10.1038/nature08797
– volume: 110
  start-page: 20569
  year: 2013
  ident: BFnrm20168_CR156
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1319061110
– volume: 11
  start-page: 1553
  year: 2001
  ident: BFnrm20168_CR11
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00459-6
– volume: 460
  start-page: 1140
  year: 2009
  ident: BFnrm20168_CR58
  publication-title: Nature
  doi: 10.1038/nature08311
– volume: 26
  start-page: 313
  year: 2008
  ident: BFnrm20168_CR148
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1383
– volume: 126
  start-page: 663
  year: 2006
  ident: BFnrm20168_CR39
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 385
  start-page: 810
  year: 1997
  ident: BFnrm20168_CR7
  publication-title: Nature
  doi: 10.1038/385810a0
– volume: 6
  start-page: 7095
  year: 2015
  ident: BFnrm20168_CR141
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8095
– volume: 51
  start-page: 987
  year: 1987
  ident: BFnrm20168_CR13
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90585-X
– volume: 165
  start-page: 131
  year: 1999
  ident: BFnrm20168_CR33
  publication-title: Cells Tissues Organs
  doi: 10.1159/000016693
– volume: 145
  start-page: 183
  year: 2011
  ident: BFnrm20168_CR69
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.003
– volume: 3
  start-page: 51
  year: 2012
  ident: BFnrm20168_CR121
  publication-title: Protein Cell
  doi: 10.1007/s13238-012-2002-0
– volume: 460
  start-page: 1149
  year: 2009
  ident: BFnrm20168_CR60
  publication-title: Nature
  doi: 10.1038/nature08287
– ident: BFnrm20168_CR23
  doi: 10.1038/nrm.2015.27
– volume: 14
  start-page: 427
  year: 2013
  ident: BFnrm20168_CR65
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3473
– volume: 285
  start-page: 25516
  year: 2010
  ident: BFnrm20168_CR67
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.142059
– volume: 2
  start-page: 151
  year: 2008
  ident: BFnrm20168_CR93
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.01.004
– volume: 132
  start-page: 885
  year: 2005
  ident: BFnrm20168_CR30
  publication-title: Development
  doi: 10.1242/dev.01670
– volume: 322
  start-page: 945
  year: 2008
  ident: BFnrm20168_CR108
  publication-title: Science
  doi: 10.1126/science.1162494
– volume: 767
  start-page: 125
  year: 2011
  ident: BFnrm20168_CR122
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-201-4_9
– volume: 460
  start-page: 1145
  year: 2009
  ident: BFnrm20168_CR61
  publication-title: Nature
  doi: 10.1038/nature08285
– volume: 448
  start-page: 313
  year: 2007
  ident: BFnrm20168_CR107
  publication-title: Nature
  doi: 10.1038/nature05934
– volume: 344
  start-page: 1156
  year: 2014
  ident: BFnrm20168_CR56
  publication-title: Science
  doi: 10.1126/science.1248882
– volume: 504
  start-page: 282
  year: 2013
  ident: BFnrm20168_CR138
  publication-title: Nature
  doi: 10.1038/nature12745
– volume: 151
  start-page: 994
  year: 2012
  ident: BFnrm20168_CR89
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.045
– volume: 379
  start-page: 713
  year: 2012
  ident: BFnrm20168_CR157
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60028-2
– volume: 111
  start-page: 12426
  year: 2014
  ident: BFnrm20168_CR98
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1413299111
– volume: 27
  start-page: 459
  year: 2009
  ident: BFnrm20168_CR53
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1535
– volume: 27
  start-page: 353
  year: 2009
  ident: BFnrm20168_CR87
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1530
– volume: 23
  start-page: 2699
  year: 2003
  ident: BFnrm20168_CR35
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.8.2699-2708.2003
– volume: 4
  start-page: 301
  year: 2009
  ident: BFnrm20168_CR91
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.03.005
– volume: 153
  start-page: 963
  year: 2013
  ident: BFnrm20168_CR106
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.001
– volume: 27
  start-page: 851
  year: 2009
  ident: BFnrm20168_CR131
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1562
– volume: 23
  start-page: 2134
  year: 2009
  ident: BFnrm20168_CR63
  publication-title: Genes Dev.
  doi: 10.1101/gad.1811609
– volume: 9
  start-page: 1250
  year: 1995
  ident: BFnrm20168_CR14
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.10.1250
– volume: 25
  start-page: 1035
  year: 2011
  ident: BFnrm20168_CR75
  publication-title: Genes Dev.
  doi: 10.1101/gad.2039011
– volume: 455
  start-page: 627
  year: 2008
  ident: BFnrm20168_CR171
  publication-title: Nature
  doi: 10.1038/nature07314
– volume: 510
  start-page: 533
  year: 2014
  ident: BFnrm20168_CR151
  publication-title: Nature
  doi: 10.1038/nature13287
– volume: 30
  start-page: 3202
  year: 2002
  ident: BFnrm20168_CR36
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf435
– volume: 6
  start-page: e253
  year: 2008
  ident: BFnrm20168_CR164
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060253
– ident: BFnrm20168_CR158
  doi: 10.1038/nrm.2016.10
– volume: 267
  start-page: 1788
  year: 1995
  ident: BFnrm20168_CR22
  publication-title: Science
  doi: 10.1126/science.7892602
– volume: 324
  start-page: 797
  year: 2009
  ident: BFnrm20168_CR42
  publication-title: Science
  doi: 10.1126/science.1172482
– volume: 462
  start-page: 595
  year: 2009
  ident: BFnrm20168_CR162
  publication-title: Nature
  doi: 10.1038/nature08592
– volume: 105
  start-page: 581
  year: 1983
  ident: BFnrm20168_CR21
  publication-title: Genetics
  doi: 10.1093/genetics/105.3.581
– volume: 460
  start-page: 1136
  year: 2009
  ident: BFnrm20168_CR59
  publication-title: Nature
  doi: 10.1038/nature08290
– volume: 11
  start-page: 197
  year: 2009
  ident: BFnrm20168_CR50
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1827
– volume: 286
  start-page: 4760
  year: 2010
  ident: BFnrm20168_CR116
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.183780
– volume: 9
  start-page: 588
  year: 2011
  ident: BFnrm20168_CR103
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.11.003
– volume: 7
  start-page: 618
  year: 2010
  ident: BFnrm20168_CR117
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.08.012
– volume: 10
  start-page: 622
  year: 1962
  ident: BFnrm20168_CR4
  publication-title: J. Embryol. Exp. Morphol.
– volume: 35
  start-page: 763
  year: 1983
  ident: BFnrm20168_CR20
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90109-5
– volume: 153
  start-page: 1228
  year: 2013
  ident: BFnrm20168_CR149
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.006
– volume: 95
  start-page: 793
  year: 1998
  ident: BFnrm20168_CR34
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81702-X
– volume: 461
  start-page: 91
  year: 2009
  ident: BFnrm20168_CR145
  publication-title: Nature
  doi: 10.1038/nature08310
– volume: 33
  start-page: 1173
  year: 2015
  ident: BFnrm20168_CR154
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3388
– volume: 6
  start-page: 167
  year: 2010
  ident: BFnrm20168_CR52
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.12.009
– volume: 16
  start-page: 2893
  year: 2002
  ident: BFnrm20168_CR70
  publication-title: Genes Dev.
  doi: 10.1101/gad.1035902
– volume: 448
  start-page: 318
  year: 2007
  ident: BFnrm20168_CR159
  publication-title: Nature
  doi: 10.1038/nature05944
– volume: 134
  start-page: 877
  year: 2008
  ident: BFnrm20168_CR169
  publication-title: Cell
  doi: 10.1016/j.cell.2008.07.041
– volume: 10
  start-page: 55
  year: 2004
  ident: BFnrm20168_CR31
  publication-title: Nat. Med.
  doi: 10.1038/nm979
– volume: 325
  start-page: 816
  year: 1987
  ident: BFnrm20168_CR17
  publication-title: Nature
  doi: 10.1038/325816a0
– volume: 117
  start-page: 663
  year: 2004
  ident: BFnrm20168_CR15
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00419-2
– volume: 23
  start-page: 931
  year: 2014
  ident: BFnrm20168_CR71
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2013.0267
– volume: 453
  start-page: 519
  year: 2008
  ident: BFnrm20168_CR134
  publication-title: Nature
  doi: 10.1038/nature06968
– volume: 162
  start-page: 412
  year: 2015
  ident: BFnrm20168_CR97
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.016
– volume: 27
  start-page: 1033
  year: 2009
  ident: BFnrm20168_CR95
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1580
– volume: 4
  start-page: 472
  year: 2009
  ident: BFnrm20168_CR118
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.005
– volume: 463
  start-page: 1096
  year: 2010
  ident: BFnrm20168_CR47
  publication-title: Nature
  doi: 10.1038/nature08735
– volume: 7
  start-page: e52787
  year: 2012
  ident: BFnrm20168_CR130
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0052787
– volume: 7
  start-page: 1063
  year: 2000
  ident: BFnrm20168_CR38
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3301206
– volume: 1
  start-page: 55
  year: 2007
  ident: BFnrm20168_CR160
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.05.014
– volume: 11
  start-page: 477
  year: 2012
  ident: BFnrm20168_CR55
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.08.002
– volume: 6
  start-page: 363
  year: 2009
  ident: BFnrm20168_CR114
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1323
– volume: 107
  start-page: 9222
  year: 2010
  ident: BFnrm20168_CR137
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1004584107
– volume: 13
  start-page: 341
  year: 2013
  ident: BFnrm20168_CR173
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.06.019
– volume: 18
  start-page: 890
  year: 2008
  ident: BFnrm20168_CR81
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.05.010
– volume: 322
  start-page: 949
  year: 2008
  ident: BFnrm20168_CR109
  publication-title: Science
  doi: 10.1126/science.1164270
– volume: 458
  start-page: 766
  year: 2009
  ident: BFnrm20168_CR113
  publication-title: Nature
  doi: 10.1038/nature07863
– volume: 27
  start-page: 743
  year: 2009
  ident: BFnrm20168_CR155
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1554
– volume: 460
  start-page: 118
  year: 2009
  ident: BFnrm20168_CR29
  publication-title: Nature
  doi: 10.1038/nature08113
– volume: 6
  start-page: 201
  year: 1987
  ident: BFnrm20168_CR19
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1987.tb04739.x
– volume: 105
  start-page: 5856
  year: 2008
  ident: BFnrm20168_CR128
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0801677105
– volume: 318
  start-page: 1917
  year: 2007
  ident: BFnrm20168_CR41
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 423
  start-page: 541
  year: 2003
  ident: BFnrm20168_CR166
  publication-title: Nature
  doi: 10.1038/nature01646
– volume: 336
  start-page: 688
  year: 1988
  ident: BFnrm20168_CR26
  publication-title: Nature
  doi: 10.1038/336688a0
– volume: 7
  start-page: 319
  year: 2010
  ident: BFnrm20168_CR163
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.06.022
– volume: 32
  start-page: 1171
  year: 1983
  ident: BFnrm20168_CR9
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90300-8
– volume: 4
  start-page: 381
  year: 2009
  ident: BFnrm20168_CR170
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.04.005
– volume: 12
  start-page: 2048
  year: 1998
  ident: BFnrm20168_CR27
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.13.2048
– volume: 131
  start-page: 861
  year: 2007
  ident: BFnrm20168_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 24
  start-page: 561
  year: 2010
  ident: BFnrm20168_CR64
  publication-title: Genes Dev.
  doi: 10.1101/gad.1876710
– volume: 341
  start-page: 651
  year: 2013
  ident: BFnrm20168_CR119
  publication-title: Science
  doi: 10.1126/science.1239278
– volume: 16
  start-page: 299
  year: 2015
  ident: BFnrm20168_CR78
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3980
– volume: 34
  start-page: 1053
  year: 1983
  ident: BFnrm20168_CR10
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90563-9
– volume: 280
  start-page: 5307
  year: 2005
  ident: BFnrm20168_CR37
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M410015200
– volume: 26
  start-page: 795
  year: 2008
  ident: BFnrm20168_CR66
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1418
– volume: 20
  start-page: 169
  year: 2010
  ident: BFnrm20168_CR51
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2009.0424
– volume: 454
  start-page: 794
  year: 2008
  ident: BFnrm20168_CR86
  publication-title: Nature
  doi: 10.1038/nature07196
– reference: 22388813 - Nature. 2012 Mar 04;483(7391):598-602
– reference: 21822871 - Methods Mol Biol. 2011;767:125-36
– reference: 19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62
– reference: 9804556 - Science. 1998 Nov 6;282(5391):1145-7
– reference: 23868920 - Science. 2013 Aug 9;341(6146):651-4
– reference: 20504151 - Stem Cells Dev. 2011 Jan;20(1):169-80
– reference: 18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40
– reference: 20107439 - Nature. 2010 Feb 25;463(7284):1035-41
– reference: 23260147 - Cell. 2012 Dec 21;151(7):1617-32
– reference: 7892602 - Science. 1995 Mar 24;267(5205):1788-92
– reference: 24239284 - Cell Stem Cell. 2014 Jan 2;14 (1):40-52
– reference: 23728301 - Nature. 2013 Jul 4;499(7456):88-91
– reference: 19571877 - Nature. 2009 Jul 2;460(7251):49-52
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 25215486 - Cell. 2014 Sep 11;158(6):1254-69
– reference: 19668188 - Nature. 2009 Aug 27;460(7259):1136-9
– reference: 12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905
– reference: 18845712 - Science. 2008 Nov 7;322(5903):949-53
– reference: 3143917 - Nature. 1988 Dec 15;336(6200):688-90
– reference: 18276851 - Science. 2008 Aug 1;321(5889):699-702
– reference: 25517467 - Cell Stem Cell. 2014 Nov 6;15(5):634-42
– reference: 16453748 - EMBO J. 1987 Jan;6(1):201-6
– reference: 19330000 - Nat Biotechnol. 2009 Apr;27(4):353-60
– reference: 26883001 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):139-54
– reference: 15163413 - Cell. 2004 May 28;117(5):663-76
– reference: 19136965 - Nat Cell Biol. 2009 Feb;11(2):197-203
– reference: 25968054 - Nat Commun. 2015 May 13;6:7095
– reference: 11591326 - Curr Biol. 2001 Oct 2;11(19):1553-8
– reference: 22980981 - Cell. 2012 Sep 14;150(6):1209-22
– reference: 19337237 - Nat Methods. 2009 May;6(5):363-9
– reference: 9649508 - Genes Dev. 1998 Jul 1;12(13):2048-60
– reference: 19672241 - Nature. 2009 Sep 3;461(7260):86-90
– reference: 19590502 - Nat Biotechnol. 2009 Aug;27(8):743-5
– reference: 20139965 - Nature. 2010 Feb 25;463(7284):1096-100
– reference: 12136102 - Nucleic Acids Res. 2002 Jul 15;30(14):3202-13
– reference: 6418389 - Cell. 1983 Dec;35(3 Pt 2):763-76
– reference: 25772473 - Stem Cell Reports. 2015 Apr 14;4(4):727-43
– reference: 2430723 - Cell. 1986 Dec 26;47(6):1017-23
– reference: 12787505 - Cell. 2003 May 30;113(5):643-55
– reference: 18371415 - Cell Stem Cell. 2008 Jan 10;2(1):10-2
– reference: 9039911 - Nature. 1997 Feb 27;385(6619):810-3
– reference: 12665572 - Mol Cell Biol. 2003 Apr;23(8):2699-708
– reference: 20554530 - J Biol Chem. 2010 Aug 13;285(33):25516-21
– reference: 7758949 - Genes Dev. 1995 May 15;9(10):1250-62
– reference: 18059259 - Nat Biotechnol. 2008 Jan;26(1):101-6
– reference: 18691744 - Cell. 2008 Sep 5;134(5):877-86
– reference: 21130722 - Stem Cell Res. 2011 Mar;6(2):177-86
– reference: 24172903 - Nature. 2013 Dec 12;504(7479):282-6
– reference: 20621051 - Cell Stem Cell. 2010 Jul 2;7(1):64-77
– reference: 6950406 - Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634-8
– reference: 17554336 - Nature. 2007 Jul 19;448(7151):318-24
– reference: 18568017 - Nat Biotechnol. 2008 Jul;26(7):795-7
– reference: 19571885 - Nature. 2009 Jul 2;460(7251):118-22
– reference: 12774123 - Nature. 2003 May 29;423(6939):541-5
– reference: 23812749 - Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12172-9
– reference: 20030562 - Stem Cells Dev. 2010 Aug;19(8):1221-9
– reference: 23300777 - PLoS One. 2012;7(12):e52787
– reference: 17246168 - Genetics. 1983 Nov;105(3):581-600
– reference: 13951335 - J Embryol Exp Morphol. 1962 Dec;10:622-40
– reference: 20419109 - PLoS One. 2010 Apr 19;5(4):e10246
– reference: 22136932 - Cell Stem Cell. 2011 Dec 2;9(6):588-98
– reference: 19696146 - Genes Dev. 2009 Sep 15;23(18):2134-9
– reference: 24623855 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9
– reference: 20201064 - Stem Cells. 2010 Apr;28(4):713-20
– reference: 13566187 - Nature. 1958 Jul 5;182(4627):64-5
– reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72
– reference: 25097266 - Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12426-31
– reference: 24904165 - Science. 2014 Jun 6;344(6188):1156-60
– reference: 18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9
– reference: 23683578 - Cell. 2013 Jun 6;153(6):1228-38
– reference: 26186193 - Cell. 2015 Jul 16;162(2):412-24
– reference: 24529596 - Cell Stem Cell. 2014 Apr 3;14(4):512-22
– reference: 18423197 - Cell. 2008 Apr 18;133(2):250-64
– reference: 19252478 - Nature. 2009 Apr 9;458(7239):766-70
– reference: 3690668 - Cell. 1987 Dec 24;51(6):987-1000
– reference: 25090446 - Cell Stem Cell. 2014 Oct 2;15(4):471-87
– reference: 23159369 - Cell. 2012 Nov 21;151(5):994-1004
– reference: 19672243 - Nature. 2009 Sep 3;461(7260):91-4
– reference: 18669821 - Science. 2008 Aug 29;321(5893):1218-21
– reference: 18497825 - Nature. 2008 May 22;453(7194):519-23
– reference: 24936473 - Stem Cell Reports. 2014 May 22;2(6):881-95
– reference: 10364425 - Dev Biol. 1999 Jun 1;210(1):30-43
– reference: 21317531 - J Clin Invest. 2011 Mar;121(3):1217-21
– reference: 18063756 - Science. 2007 Dec 21;318(5858):1920-3
– reference: 24776804 - Nature. 2014 Jun 26;510(7506):533-6
– reference: 19476507 - Genes Cells. 2009 Jun;14(6):683-94
– reference: 9690471 - Nature. 1998 Jul 23;394(6691):369-74
– reference: 18391196 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5856-61
– reference: 23871606 - Cell Stem Cell. 2013 Sep 5;13(3):341-50
– reference: 6839359 - Cell. 1983 Apr;32(4):1171-80
– reference: 23040477 - Cell Stem Cell. 2012 Oct 5;11(4):477-90
– reference: 20231315 - Genes Dev. 2010 Mar 15;24(6):561-73
– reference: 23122286 - Cell Stem Cell. 2012 Nov 2;11(5):589-95
– reference: 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6
– reference: 20139967 - Nat Methods. 2010 Mar;7(3):197-9
– reference: 19341620 - Cell Stem Cell. 2009 Apr 3;4(4):301-12
– reference: 17554338 - Nature. 2007 Jul 19;448(7151):313-7
– reference: 25907613 - Nat Rev Mol Cell Biol. 2015 May;16(5):299-309
– reference: 10592385 - Cells Tissues Organs. 1999;165(3-4):131-43
– reference: 24506885 - Cell Stem Cell. 2014 Feb 6;14(2):217-27
– reference: 24325319 - Stem Cells Dev. 2014 May 1;23 (9):931-40
– reference: 23706735 - Cell. 2013 May 23;153(5):963-75
– reference: 18942890 - PLoS Biol. 2008 Oct 21;6(10):e253
– reference: 20096661 - Cell Stem Cell. 2010 Feb 5;6(2):167-74
– reference: 24259714 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20569-74
– reference: 22704507 - Cell Stem Cell. 2012 Jun 14;10(6):678-84
– reference: 21138846 - J Biol Chem. 2011 Feb 11;286(6):4760-71
– reference: 24399248 - Sci Rep. 2014 Jan 08;4:3594
– reference: 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4
– reference: 6627391 - Cell. 1983 Oct;34(3):1053-62
– reference: 19898493 - Nature. 2009 Dec 3;462(7273):595-601
– reference: 16123299 - Science. 2005 Aug 26;309(5739):1369-73
– reference: 3821869 - Nature. 1987 Feb 26-Mar 4;325(6107):816-8
– reference: 26860365 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):155-69
– reference: 19549847 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12759-64
– reference: 10428964 - EMBO J. 1999 Aug 2;18(15):4261-9
– reference: 19325077 - Science. 2009 May 8;324(5928):797-801
– reference: 18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70
– reference: 21576263 - Genes Dev. 2011 May 15;25(10):1035-40
– reference: 24746675 - Cell Stem Cell. 2014 Jun 5;14(6):777-80
– reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20
– reference: 23212365 - Nat Commun. 2012;3:1236
– reference: 19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92
– reference: 18264089 - Nat Cell Biol. 2008 Mar;10 (3):353-60
– reference: 23664764 - Cell. 2013 May 23;153(5):1134-48
– reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6
– reference: 25008523 - Nature. 2014 Jul 10;511(7508):177-83
– reference: 19363475 - Nat Biotechnol. 2009 May;27(5):459-61
– reference: 15557334 - J Biol Chem. 2005 Feb 18;280(7):5307-17
– reference: 19668189 - Nature. 2009 Aug 27;460(7259):1149-53
– reference: 21478862 - Nat Methods. 2011 May;8(5):424-9
– reference: 12787504 - Cell. 2003 May 30;113(5):631-42
– reference: 19252477 - Nature. 2009 Apr 9;458(7239):771-5
– reference: 18754011 - Nature. 2008 Oct 2;455(7213):627-32
– reference: 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30
– reference: 20804969 - Cell Stem Cell. 2010 Sep 3;7(3):319-28
– reference: 26501951 - Nat Biotechnol. 2015 Nov;33(11):1173-81
– reference: 18983962 - Cell Stem Cell. 2008 Nov 6;3(5):475-9
– reference: 24759836 - Nat Commun. 2014 Apr 24;5:3678
– reference: 19167336 - Cell. 2009 Jan 23;136(2):364-77
– reference: 18509334 - Nature. 2008 Jul 3;454(7200):49-55
– reference: 18501604 - Curr Biol. 2008 Jun 24;18(12):890-4
– reference: 18818365 - Science. 2008 Nov 7;322(5903):945-9
– reference: 22281388 - Lancet. 2012 Feb 25;379(9817):713-20
– reference: 19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7
– reference: 9865697 - Cell. 1998 Dec 11;95(6):793-803
– reference: 7242681 - Nature. 1981 Jul 9;292(5819):154-6
– reference: 19826408 - Nat Biotechnol. 2009 Nov;27(11):1033-7
– reference: 20621050 - Cell Stem Cell. 2010 Jul 2;7(1):51-63
– reference: 25896322 - Nature. 2015 Jun 11;522(7555):221-5
– reference: 20442331 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9222-7
– reference: 19631602 - Cell Stem Cell. 2009 Aug 7;5(2):135-8
– reference: 26818440 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):170-82
– reference: 19668190 - Nature. 2009 Aug 27;460(7259):1145-8
– reference: 24315441 - Cell Stem Cell. 2013 Dec 5;13(6):663-75
– reference: 22100412 - Cell Stem Cell. 2011 Dec 2;9(6):575-87
– reference: 21460823 - Nat Methods. 2011 May;8(5):409-12
– reference: 22064701 - Cell Res. 2012 Jan;22(1):168-77
– reference: 20615974 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12704-9
– reference: 15673569 - Development. 2005 Mar;132(5):885-96
– reference: 23681063 - Nat Rev Genet. 2013 Jun;14(6):427-39
– reference: 18278034 - Nat Biotechnol. 2008 Mar;26(3):313-5
– reference: 14702635 - Nat Med. 2004 Jan;10(1):55-63
– reference: 19668186 - Nature. 2009 Aug 27;460(7259):1140-4
– reference: 18594521 - Nat Biotechnol. 2008 Aug;26(8):916-24
– reference: 19668191 - Nature. 2009 Aug 27;460(7259):1132-5
– reference: 21477851 - Cell. 2011 Apr 15;145(2):183-97
– reference: 20660764 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14152-7
– reference: 22259120 - Protein Cell. 2012 Jan;3(1):51-9
– reference: 26908143 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):194-200
– reference: 5263000 - Proc Natl Acad Sci U S A. 1969 Sep;64(1):176-83
– reference: 10871756 - Gene Ther. 2000 Jun;7(12):1063-6
SSID ssj0016175
Score 2.6638112
SecondaryResourceType review_article
Snippet This year marks the tenth anniversary of the generation of induced pluripotent stem cells (iPSCs) by transcription factor-mediated somatic cell reprogramming....
The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 183
SubjectTerms 631/136/2444
631/136/532/2435
631/532/2064/2158
Animals
Biochemistry
Cancer Research
Cell Biology
Cellular control mechanisms
Cellular Reprogramming
Cellular Reprogramming Techniques - history
Cellular Reprogramming Techniques - methods
Developmental Biology
Genetic aspects
Genetic research
Genetic transcription
History, 21st Century
Humans
Innovations
Life Sciences
Properties
Regenerative medicine
Stem Cells
timeline
Transcription factors
Transcription Factors - biosynthesis
Transcription Factors - genetics
Title A decade of transcription factor-mediated reprogramming to pluripotency
URI https://link.springer.com/article/10.1038/nrm.2016.8
https://www.ncbi.nlm.nih.gov/pubmed/26883003
https://www.proquest.com/docview/1767365098
https://www.proquest.com/docview/1768167702
Volume 17
WOSCitedRecordID wos000370879600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: M7P
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: PCBAR
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: 7X7
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: 7RV
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: BENPR
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: 8C1
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsgpQCXFIGzub2D6hpWoBCa1WC1R7s_yIEVJJlk0Wqf8ej5Ms3YK4kIMvniR2xjPfxJ4HwEGqCHGFMl6QHE08XttEeEM00bywNmVC21A_5ewjm075YiFm_YZb07tVDjoxKGpbG9wjPyIMPZA8vPE3yx8JVo3C09W-hMYO7GGWhCy47s02pwgenfMQXcT8L3PK6JCeNONH1QrD0ElxyLcA6apavoRLVw5KA_6c3v7fkd-BW73lGU-6pXIXrpXVPbjR1aK8uA_vJrEt0Vk-rl3cIoIN-iTuavIkIcjEG6gxJsIMXl3f_Ujjto6X52tPW6P5ffEAvpyefD5-n_RVFhKTc94mJR3nzCrtjLa5UMQSTQtX2lRpf3lI11rQQgjLHeWerR7jM660KZ1hBK2nh7Bb1VX5GGKRKiswf7vL3HisjNCm8AYZtZQaa3gawevhU0vTpyDHShjnMhyFZ1x6tkhki-QRvNzQLrvEG3-leoEck5jJokJXma9q3TTyw6e5nIzHueAZyVkEr3oiV_vXGdVHHvhBY_KrLcr9LUovama7e-Cw7EW9kb_ZG8HzTTfeie5rVVmvAw0nBWMpjeBRt6A2k6IF55nXrREcDCvs0sP_mPGTf4_hKdxEus5Lbh9229W6fAbXzc_2W7MawQ6bn2G7YKHlvuXHZAR7b0-ms_koiM8vcLkdRg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQIAixCE0cTaxfUBoBZSuuqxQKVVvJrZjhFSSZZMF7Z_iNzKTx9ItiFsP5JqxE8ef5xvH8wDYDLMocmlmcCE5FiBf20CiIRpokVobcqltUz_lYMwnE3F4KN-vwc8-FobcKnud2ChqWxr6R74VcfJAQnoTL6ffAqoaRaerfQmNFha7-eIHbtmqF6PXOL9PGNt-s_9qJ-iqCgQmEaIOcjZIuM20M9omMotspFnqchtmGi-kMK0lS6W0wjGBw0BOi0WmTe4Mj8hawH7PwFnU4xG5kPG9g-WpBVoDSRPNxHGLHnLWp0ONxVYxo7D3KH0uVgjwJA0c48ETB7MN321f_t--1BW41FnW_rBdCldhLS-uwfm21ubiOrwd-janYAC_dH5NDN3rS7-tORQ0QTRogPuU6LPxWvuKX8avS396NEfZkrYXixvw8VRGcRPWi7LIb4Mvw8xKyk_vYjcYZEZqk6LBySxjxhoRevCsn1pluhTrVOnjSDVH_bFQCANFMFDCg8dL2WmbWOSvUo8IIYoydRTkCvQ5m1eVGn3YU8PBIJEijhLuwdNOyJX4OJN1kRX40pTca0VyY0USVYlZvd0jSnWqrFK_4eTBw-VtaknueUVezhsZEaWch8yDWy2Al4NiqRAxcocHmz2ij3X-x4jv_PsdHsCFnf13YzUeTXbvwkVq03oEbsB6PZvn9-Cc-V5_qWb3m6Xpw6fTRvgvYmJ4tQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEAR4hAmcSaxfUBo1DIwajWq2NSbSewYIZVkmGRA89f4dbyXZegUxK0HcvVL4uXz-56TtwBsB2kYuiQ1uJEc95Gvra_QEPUzmVgbCJXZpn7Kx30xncrDQ3WwAT_7WBhyq-x1YqOobWnoG_kgFOSBhPQmB65zizjYHb-cffOpghT9ae3LabQQ2cuXP_D4Vr2Y7OJaP-F8_Or9zhu_qzDgm1jK2s_5MBY2zZzJbKzS0IYZT1xugzTDC-ksyxRPlLLScYlDQn6LZJqZ3BkRkuWAzz0DZ7FjEbmTyZ2VewkdG-ImskngcT0QvE-NGslBMacQ-DB5LtfI8CQlHOPEEz9pG-4bX_6fZ-0KXOosbjZqt8hV2MiLa3C-rcG5vA6vR8zmFCTASsdqYu5ej7K2FpHfBNegYc4oAWjjzfYVZ4nVJZsdLVC2pGPH8gZ8OJVR3ITNoizy28BUkFpFeetd5IbD1KjMJGiIcsu5sUYGHjzrl1mbLvU6VQA50o0LQCQ1QkITJLT04PFKdtYmHPmr1CNCi6YMHgWt6ud0UVV68u6tHg2HsZJRGAsPnnZCrsTXmbSLuMBOU9KvNcmtNUlUMWa9uUeX7lRcpX9Dy4OHq2a6k9z2irxcNDIyTIQIuAe3WjCvBsUTKSPkFA-2e3Qfe_gfI77z7z48gAsIbL0_me7dhYt0S-souAWb9XyR34Nz5nv9pZrfb3Ypg0-nDfBfHLmBEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decade+of+transcription+factor-mediated+reprogramming+to+pluripotency&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Takahashi%2C+Kazutoshi&rft.au=Yamanaka%2C+Shinya&rft.date=2016-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0072&rft.eissn=1471-0080&rft.volume=17&rft.issue=3&rft.spage=183&rft_id=info:doi/10.1038%2Fnrm.2016.8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3960692681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0072&client=summon