A decade of transcription factor-mediated reprogramming to pluripotency
This year marks the tenth anniversary of the generation of induced pluripotent stem cells (iPSCs) by transcription factor-mediated somatic cell reprogramming. Takahashi and Yamanaka portray the path towards this ground-breaking discovery and discuss how, since then, research has focused on understan...
Gespeichert in:
| Veröffentlicht in: | Nature reviews. Molecular cell biology Jg. 17; H. 3; S. 183 - 193 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.03.2016
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 1471-0072, 1471-0080, 1471-0080 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This year marks the tenth anniversary of the generation of induced pluripotent stem cells (iPSCs) by transcription factor-mediated somatic cell reprogramming. Takahashi and Yamanaka portray the path towards this ground-breaking discovery and discuss how, since then, research has focused on understanding the mechanisms underlying iPSC generation and on translating such advances to the clinic.
The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency
in vitro
to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors — octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) — initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery. |
|---|---|
| AbstractList | The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery. This year marks the tenth anniversary of the generation of induced pluripotent stem cells (iPSCs) by transcription factor-mediated somatic cell reprogramming. Takahashi and Yamanaka portray the path towards this ground-breaking discovery and discuss how, since then, research has focused on understanding the mechanisms underlying iPSC generation and on translating such advances to the clinic. The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors — octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) — initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery. The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery. The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors--octamer-binding protein 3/4 (OCT3/4), SOX2, Kruppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) --initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery. |
| Audience | Academic |
| Author | Yamanaka, Shinya Takahashi, Kazutoshi |
| Author_xml | – sequence: 1 givenname: Kazutoshi surname: Takahashi fullname: Takahashi, Kazutoshi email: takahash@cira.kyoto-u.ac.jp organization: Kazutoshi Takahashi and Shinya Yamanaka are at the Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606–8507, Japan, and the Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158, USA – sequence: 2 givenname: Shinya surname: Yamanaka fullname: Yamanaka, Shinya email: yamanaka@cira.kyoto-u.ac.jp organization: Kazutoshi Takahashi and Shinya Yamanaka are at the Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606–8507, Japan, and the Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26883003$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0ktr3DAQAGBRUppHe-kPKIZemhZvJXktycclNA8IBNL2LGRpZBRsaSvJ0Pz7ymzSdpPoYmG-GUYzc4wOfPCA0HuCVwQ34quP04piwlbiFToia05qjAU--Hvn9BAdp3SHiyG8fYMOKROiwbg5QhebyoBWBqpgqxyVTzq6bXbBV1bpHGI9gXEqg6kibGMYopom54cqh2o7zsWGDF7fv0WvrRoTvHv4nqCf599-nF3W1zcXV2eb61q3QuQa6LrlRvVW96btFDGkp8yCwaovB9Om7zvKus4IS4VlijaiEarXYDUnLaPNCfq0y1tq-TVDynJyScM4Kg9hTpJwJgjjHC_04xN6F-boS3WL4g1rcSf-qUGNIJ23oXRBL0nlZr1uiyAtL2r1glJL4yanyzisK__3Ak73AorJ8DsPak5JXn2_3bcfHgqd-9JtuY1uUvFePk6pALwDOoaUIlipXVbLkEoVbpQEy2URZFkEuSyCXJ71-UnIY9YX8ZcdTgX5AeJ_nXqu_wC6X8BJ |
| CitedBy_id | crossref_primary_10_1038_s41467_017_01415_5 crossref_primary_10_1016_j_ijcard_2017_03_085 crossref_primary_10_1038_s41434_021_00247_9 crossref_primary_10_1016_j_compbiomed_2024_108661 crossref_primary_10_1093_stmcls_sxac012 crossref_primary_10_1093_biosci_biae058 crossref_primary_10_1007_s00424_024_02945_w crossref_primary_10_3390_biomedicines12122714 crossref_primary_10_3389_fcell_2024_1535839 crossref_primary_10_3390_ijms21010362 crossref_primary_10_1016_j_canlet_2025_217980 crossref_primary_10_1016_j_ymeth_2017_09_001 crossref_primary_10_1101_gad_352316_124 crossref_primary_10_1016_j_gpb_2018_03_004 crossref_primary_10_1016_j_cell_2019_01_006 crossref_primary_10_1038_s41392_024_01809_0 crossref_primary_10_1096_fj_201902118R crossref_primary_10_1074_jbc_RA119_010284 crossref_primary_10_1152_physrev_00015_2016 crossref_primary_10_1007_s00018_021_03883_x crossref_primary_10_1177_2045125320968331 crossref_primary_10_1093_pcp_pcy139 crossref_primary_10_3390_biomedicines10081905 crossref_primary_10_1002_glia_23666 crossref_primary_10_1111_brv_12693 crossref_primary_10_1155_2018_5965727 crossref_primary_10_1371_journal_pone_0203869 crossref_primary_10_1158_0008_5472_CAN_19_1034 crossref_primary_10_1002_ctm2_95 crossref_primary_10_1093_bib_bbab002 crossref_primary_10_1016_j_lfs_2020_117461 crossref_primary_10_3389_fcell_2022_884004 crossref_primary_10_34067_KID_0006492020 crossref_primary_10_1038_s41597_019_0071_0 crossref_primary_10_1093_nargab_lqab100 crossref_primary_10_1038_s42003_024_06328_w crossref_primary_10_1016_j_mehy_2020_110171 crossref_primary_10_1016_j_biomaterials_2023_122215 crossref_primary_10_3389_fcell_2018_00172 crossref_primary_10_1177_1759720X17704639 crossref_primary_10_1089_cmb_2019_0098 crossref_primary_10_1242_dmm_039321 crossref_primary_10_3390_biom14030315 crossref_primary_10_1038_s41419_018_0606_x crossref_primary_10_1038_mp_2017_66 crossref_primary_10_1371_journal_pone_0176496 crossref_primary_10_1093_gastro_goaa023 crossref_primary_10_1186_s12859_024_05836_0 crossref_primary_10_3233_JCB_179007 crossref_primary_10_3390_ijms23147782 crossref_primary_10_3390_vetsci11120666 crossref_primary_10_1038_s41587_024_02196_1 crossref_primary_10_3389_fgene_2021_759366 crossref_primary_10_1038_s41421_025_00780_6 crossref_primary_10_3389_fonc_2022_826113 crossref_primary_10_12688_f1000research_15271_1 crossref_primary_10_1002_sctm_18_0265 crossref_primary_10_1186_s13567_021_00911_3 crossref_primary_10_1038_s41477_018_0213_y crossref_primary_10_3389_fvets_2021_716570 crossref_primary_10_1038_s41575_025_01050_2 crossref_primary_10_1038_s41556_018_0067_6 crossref_primary_10_1084_jem_20232136 crossref_primary_10_1002_adbi_202000071 crossref_primary_10_1161_ATVBAHA_122_318723 crossref_primary_10_1016_j_saa_2023_122713 crossref_primary_10_3389_fnins_2020_558532 crossref_primary_10_1002_stem_2565 crossref_primary_10_1097_ALN_0000000000001882 crossref_primary_10_1038_s41592_018_0113_0 crossref_primary_10_1016_j_jconrel_2017_11_004 crossref_primary_10_3390_ijms22073399 crossref_primary_10_1016_j_tice_2018_09_004 crossref_primary_10_1242_dev_202796 crossref_primary_10_1016_j_gene_2018_09_013 crossref_primary_10_12688_f1000research_11669_1 crossref_primary_10_7554_eLife_89724 crossref_primary_10_4252_wjsc_v11_i7_421 crossref_primary_10_1038_s41388_022_02361_3 crossref_primary_10_1242_dev_193631 crossref_primary_10_1007_s11825_017_0140_8 crossref_primary_10_3389_fcell_2021_821839 crossref_primary_10_1186_s13287_019_1273_2 crossref_primary_10_1186_s41702_017_0004_5 crossref_primary_10_1038_s41467_022_35180_x crossref_primary_10_3390_jpm10020050 crossref_primary_10_1016_j_scr_2017_02_011 crossref_primary_10_1016_j_molmed_2016_05_010 crossref_primary_10_1038_nm_4238 crossref_primary_10_3390_ijms17040594 crossref_primary_10_2478_aoas_2023_0061 crossref_primary_10_1038_s41540_023_00326_0 crossref_primary_10_1038_pr_2017_231 crossref_primary_10_3390_biomedicines11061737 crossref_primary_10_3389_fphys_2021_640061 crossref_primary_10_1186_s13046_022_02255_y crossref_primary_10_1016_j_stem_2016_11_020 crossref_primary_10_1002_hep_32686 crossref_primary_10_1038_s41598_021_83603_4 crossref_primary_10_1155_2017_5091541 crossref_primary_10_1590_1806_9282_63_02_180 crossref_primary_10_1091_mbc_E24_02_0061 crossref_primary_10_3390_ph14040334 crossref_primary_10_1111_dom_12717 crossref_primary_10_1038_s42003_023_05561_z crossref_primary_10_3390_ijms26115106 crossref_primary_10_3389_fcell_2024_1507388 crossref_primary_10_1002_stem_2899 crossref_primary_10_1089_biores_2018_0028 crossref_primary_10_3389_fnmol_2021_654031 crossref_primary_10_1111_cpr_13487 crossref_primary_10_1093_hropen_hoy024 crossref_primary_10_1038_s41563_022_01312_3 crossref_primary_10_1016_j_cell_2024_05_010 crossref_primary_10_1016_j_stem_2018_07_004 crossref_primary_10_1186_s12915_025_02264_1 crossref_primary_10_1016_j_semcdb_2017_10_021 crossref_primary_10_1038_s42003_023_05594_4 crossref_primary_10_1002_bdr2_2007 crossref_primary_10_1002_advs_202409642 crossref_primary_10_1016_j_tplants_2018_05_008 crossref_primary_10_3390_cells8070703 crossref_primary_10_1186_s12915_021_01217_8 crossref_primary_10_1007_s13238_016_0362_6 crossref_primary_10_1016_j_exger_2020_111005 crossref_primary_10_3389_fcell_2017_00007 crossref_primary_10_1186_s13046_021_01890_1 crossref_primary_10_1089_pho_2016_4216 crossref_primary_10_1038_s41467_021_26810_x crossref_primary_10_1038_s41598_020_66845_6 crossref_primary_10_1007_s12015_024_10809_0 crossref_primary_10_1080_15384101_2016_1238119 crossref_primary_10_1002_jbm_a_37669 crossref_primary_10_1186_s13287_023_03267_x crossref_primary_10_1002_ijc_30465 crossref_primary_10_3390_ijms241814375 crossref_primary_10_1016_j_ccell_2022_10_011 crossref_primary_10_1038_s41467_019_13411_y crossref_primary_10_1007_s00412_017_0656_3 crossref_primary_10_1038_s41556_020_0490_3 crossref_primary_10_1007_s12035_023_03432_6 crossref_primary_10_1038_nrm_2015_27 crossref_primary_10_1016_j_envpol_2021_118483 crossref_primary_10_1016_j_bja_2022_09_009 crossref_primary_10_3390_cancers15174357 crossref_primary_10_1002_advs_202500221 crossref_primary_10_1016_j_biotechadv_2018_01_012 crossref_primary_10_3389_fbioe_2022_941623 crossref_primary_10_1051_e3sconf_202014501033 crossref_primary_10_1002_jbm_a_37315 crossref_primary_10_3390_life12081151 crossref_primary_10_1016_j_scr_2021_102334 crossref_primary_10_1038_s41388_025_03519_5 crossref_primary_10_1016_j_bpj_2021_04_002 crossref_primary_10_1111_jcmm_17912 crossref_primary_10_3389_fcell_2021_697578 crossref_primary_10_1016_j_tibs_2025_03_004 crossref_primary_10_1063_5_0004611 crossref_primary_10_1016_j_isci_2021_103537 crossref_primary_10_1016_j_omtm_2016_11_005 crossref_primary_10_1089_biores_2019_0046 crossref_primary_10_1186_s13148_021_01131_4 crossref_primary_10_3389_fphar_2022_1051103 crossref_primary_10_4103_1673_5374_390965 crossref_primary_10_1007_s11064_016_2086_7 crossref_primary_10_1093_ajcp_aqae067 crossref_primary_10_3389_fcell_2023_1164811 crossref_primary_10_1016_j_tcb_2025_01_008 crossref_primary_10_1073_pnas_2204716119 crossref_primary_10_1016_j_cell_2018_01_029 crossref_primary_10_1016_j_aej_2025_06_022 crossref_primary_10_1016_j_stem_2018_06_013 crossref_primary_10_1016_j_jbc_2023_102996 crossref_primary_10_4292_wjgpt_v8_i1_1 crossref_primary_10_1016_j_neuron_2023_04_021 crossref_primary_10_1093_nar_gkaf805 crossref_primary_10_1038_nrg_2017_28 crossref_primary_10_1186_s13287_021_02171_6 crossref_primary_10_1039_C9NR02375E crossref_primary_10_1016_j_ejphar_2025_177853 crossref_primary_10_1089_pho_2016_4203 crossref_primary_10_1007_s00018_016_2284_0 crossref_primary_10_1002_smll_201700703 crossref_primary_10_1038_s41587_022_01587_6 crossref_primary_10_15252_embj_2019104324 crossref_primary_10_1016_j_gde_2025_102351 crossref_primary_10_1016_j_plasmid_2018_05_002 crossref_primary_10_1080_03081079_2018_1441681 crossref_primary_10_1186_s13287_019_1316_8 crossref_primary_10_3390_jcm13247635 crossref_primary_10_1038_nrm_2016_10 crossref_primary_10_1146_annurev_animal_111523_102158 crossref_primary_10_3390_ijms252313128 crossref_primary_10_1038_s41467_023_37256_8 crossref_primary_10_1038_s41580_021_00335_z crossref_primary_10_1111_bju_14207 crossref_primary_10_1164_rccm_201701_0107CP crossref_primary_10_1146_annurev_cellbio_120319_114716 crossref_primary_10_1186_s12967_019_02183_0 crossref_primary_10_3389_fnagi_2022_868770 crossref_primary_10_3390_data5040111 crossref_primary_10_3389_fcell_2020_561791 crossref_primary_10_3390_ijms241411603 crossref_primary_10_1038_s41598_020_80060_3 crossref_primary_10_1016_j_stem_2018_05_025 crossref_primary_10_3390_genes12040539 crossref_primary_10_1093_stcltm_szad019 crossref_primary_10_1007_s43032_021_00503_8 crossref_primary_10_1016_j_cels_2020_03_004 crossref_primary_10_1016_j_cels_2021_05_011 crossref_primary_10_1007_s00018_017_2703_x crossref_primary_10_1073_pnas_2426145122 crossref_primary_10_1038_s41420_024_01834_6 crossref_primary_10_1134_S106236042470005X crossref_primary_10_3389_fnins_2024_1210447 crossref_primary_10_3389_fonc_2022_1024600 crossref_primary_10_1002_pmic_201800416 crossref_primary_10_1093_bfgp_elac008 crossref_primary_10_1038_s41598_017_12847_w crossref_primary_10_3390_pathophysiology30030027 crossref_primary_10_1186_s40880_019_0393_5 crossref_primary_10_1038_s41467_019_14219_6 crossref_primary_10_1146_annurev_bioeng_092021_042744 crossref_primary_10_3390_cells12111482 crossref_primary_10_1186_s13287_021_02285_x crossref_primary_10_5194_pb_4_173_2017 crossref_primary_10_1007_s00204_016_1763_2 crossref_primary_10_1007_s40778_022_00212_1 crossref_primary_10_1038_nrd_2016_245 crossref_primary_10_1093_nargab_lqac023 crossref_primary_10_1194_jlr_M081323 crossref_primary_10_3390_cells13171502 crossref_primary_10_1016_j_critrevonc_2025_104860 crossref_primary_10_3748_wjg_v23_i30_5451 crossref_primary_10_3389_fbioe_2022_755983 crossref_primary_10_1016_j_ceca_2016_02_006 crossref_primary_10_1186_s12861_017_0150_4 crossref_primary_10_1016_j_semcdb_2022_04_008 crossref_primary_10_3390_bios13030404 crossref_primary_10_1016_j_ymeth_2017_05_009 crossref_primary_10_1016_j_cels_2016_12_001 crossref_primary_10_1111_bpa_12526 crossref_primary_10_1016_j_immuni_2018_04_024 crossref_primary_10_1016_j_jff_2024_106543 crossref_primary_10_3390_cells13121052 crossref_primary_10_1186_s12864_018_5326_1 crossref_primary_10_1016_j_jgg_2021_09_006 crossref_primary_10_1016_j_cell_2023_01_011 crossref_primary_10_1186_s12864_019_5821_z crossref_primary_10_1016_j_jbc_2022_101576 crossref_primary_10_1186_s13072_020_00336_w crossref_primary_10_1016_j_celrep_2019_04_088 crossref_primary_10_1093_cvr_cvab088 crossref_primary_10_1126_sciimmunol_abm1920 crossref_primary_10_1016_j_coi_2020_02_001 crossref_primary_10_1093_cvr_cvac058 crossref_primary_10_1155_2017_7215010 crossref_primary_10_1183_16000617_0112_2023 crossref_primary_10_3390_ijms22115874 crossref_primary_10_1016_j_bbamcr_2024_119893 crossref_primary_10_1016_j_preteyeres_2024_101286 crossref_primary_10_1002_mrd_22819 crossref_primary_10_3390_ijms21238952 crossref_primary_10_1016_j_molcel_2017_04_006 crossref_primary_10_3390_ijms20092254 crossref_primary_10_1371_journal_pone_0220742 crossref_primary_10_3389_fgene_2020_588602 crossref_primary_10_1016_j_molcel_2019_01_042 crossref_primary_10_1080_14712598_2018_1439013 crossref_primary_10_26508_lsa_202302337 crossref_primary_10_7554_eLife_83952 crossref_primary_10_1016_j_jmb_2020_01_024 crossref_primary_10_3389_fnmol_2016_00078 crossref_primary_10_1186_s13148_021_01158_7 crossref_primary_10_3390_cells10102558 crossref_primary_10_1177_2398212818818071 crossref_primary_10_1038_s41467_025_61742_w crossref_primary_10_1111_acel_12877 crossref_primary_10_1016_j_molcel_2019_08_016 crossref_primary_10_3390_genes9120617 crossref_primary_10_1007_s00412_016_0621_6 crossref_primary_10_3389_frhem_2024_1373554 crossref_primary_10_3390_cells10123483 crossref_primary_10_1101_gr_279955_124 crossref_primary_10_3389_fcell_2024_1343106 crossref_primary_10_7554_eLife_89724_3 crossref_primary_10_1016_j_ymthe_2025_08_013 crossref_primary_10_1172_JCI175023 crossref_primary_10_1016_j_yexcr_2022_113339 crossref_primary_10_7717_peerj_4370 crossref_primary_10_1016_j_stem_2019_06_010 crossref_primary_10_1002_jcp_28953 crossref_primary_10_1080_14789450_2024_2334033 crossref_primary_10_3390_cells8010026 crossref_primary_10_1002_bies_202000345 crossref_primary_10_3390_ijms24076232 crossref_primary_10_1186_s13072_025_00601_w crossref_primary_10_1038_s41388_021_01713_9 crossref_primary_10_1073_pnas_1703170114 crossref_primary_10_1134_S1062360422060091 crossref_primary_10_3390_jcm12051711 crossref_primary_10_1038_s41583_018_0001_8 crossref_primary_10_1016_j_bone_2017_07_003 crossref_primary_10_1103_PhysRevResearch_4_L022008 crossref_primary_10_3389_fphys_2023_1094249 crossref_primary_10_1007_s00018_018_2770_7 crossref_primary_10_1016_j_yexcr_2022_113109 crossref_primary_10_1016_j_memsci_2017_08_036 crossref_primary_10_1002_advs_202103619 crossref_primary_10_3390_ijms22083990 crossref_primary_10_1002_pmic_202100206 crossref_primary_10_1016_j_lfs_2018_09_057 crossref_primary_10_1016_j_tig_2016_10_007 crossref_primary_10_7554_eLife_55435 crossref_primary_10_3389_fcell_2025_1621380 crossref_primary_10_1038_s41556_018_0136_x crossref_primary_10_1002_adma_202211609 crossref_primary_10_1002_der2_219 crossref_primary_10_1111_ejn_14345 crossref_primary_10_1007_s40263_020_00727_3 crossref_primary_10_1249_FIT_0000000000000360 crossref_primary_10_3390_cancers14163906 crossref_primary_10_1016_j_addr_2017_09_010 crossref_primary_10_1177_1535370220918329 crossref_primary_10_1016_j_mod_2018_05_003 crossref_primary_10_1016_j_bcp_2022_115259 crossref_primary_10_1038_nrgastro_2017_151 crossref_primary_10_1080_10985549_2023_2297997 crossref_primary_10_1080_15384101_2019_1672465 crossref_primary_10_3390_ijms21238910 crossref_primary_10_3390_genes13101783 crossref_primary_10_1016_j_neuron_2017_09_008 crossref_primary_10_1213_ANE_0000000000006018 crossref_primary_10_1016_j_bbamem_2019_183106 crossref_primary_10_1007_s00018_018_2871_3 crossref_primary_10_1038_s41598_022_06916_y crossref_primary_10_1038_s41467_023_38543_0 crossref_primary_10_3390_s22072494 crossref_primary_10_1016_j_cell_2016_06_012 crossref_primary_10_1146_annurev_pathol_020117_043634 crossref_primary_10_1084_jem_20170697 crossref_primary_10_1172_JCI130767 crossref_primary_10_1093_stmcls_sxae080 crossref_primary_10_3390_polym15153202 crossref_primary_10_1016_j_jneuroim_2018_07_013 crossref_primary_10_1186_s12943_024_02066_z crossref_primary_10_1016_j_stem_2016_08_014 crossref_primary_10_3390_ijms21020423 crossref_primary_10_1007_s00018_017_2586_x crossref_primary_10_1002_inf2_12262 crossref_primary_10_1111_febs_14660 crossref_primary_10_1007_s00441_019_03061_3 crossref_primary_10_1016_j_ceb_2020_08_005 crossref_primary_10_1038_s41598_020_78167_8 crossref_primary_10_3390_genes12050712 crossref_primary_10_3390_ijms25042063 crossref_primary_10_1038_s41556_024_01411_0 crossref_primary_10_3390_ijms252011009 crossref_primary_10_1093_carcin_bgaa082 crossref_primary_10_7554_eLife_45973 crossref_primary_10_3390_ijms26020804 crossref_primary_10_1016_j_molmet_2019_06_003 crossref_primary_10_1002_jcb_28248 crossref_primary_10_1242_bio_052662 crossref_primary_10_3390_ijms251910361 crossref_primary_10_3390_ijms21176285 crossref_primary_10_3389_fcell_2023_1328522 crossref_primary_10_1038_s41575_020_00386_1 crossref_primary_10_1371_journal_pcbi_1009773 crossref_primary_10_1167_iovs_19_27361 crossref_primary_10_1007_s00424_017_2003_1 crossref_primary_10_1007_s12015_020_09965_w crossref_primary_10_1002_advs_202511019 crossref_primary_10_1016_j_gde_2018_05_001 crossref_primary_10_1016_j_taap_2018_09_036 crossref_primary_10_1038_onc_2017_286 crossref_primary_10_1089_aid_2017_0161 crossref_primary_10_3390_ijms241411592 crossref_primary_10_1109_TCBB_2019_2914383 crossref_primary_10_3389_fcell_2017_00017 crossref_primary_10_3390_cells12020268 crossref_primary_10_3390_v11020124 crossref_primary_10_1016_j_biomaterials_2021_121274 crossref_primary_10_1177_0963689718780194 crossref_primary_10_1186_s12859_025_06224_y crossref_primary_10_1002_cti2_70045 crossref_primary_10_1016_j_nrleng_2023_10_004 crossref_primary_10_1016_j_ymthe_2022_04_022 crossref_primary_10_3389_fphys_2022_1077069 crossref_primary_10_1007_s12035_016_0115_9 crossref_primary_10_1186_s13619_025_00229_x crossref_primary_10_3390_ijms24054392 crossref_primary_10_1111_jcmm_14292 crossref_primary_10_1016_j_pharmthera_2023_108349 crossref_primary_10_3390_cells14080619 crossref_primary_10_1158_0008_5472_CAN_17_0570 crossref_primary_10_1007_s11899_019_00528_6 crossref_primary_10_3389_fimmu_2017_00847 crossref_primary_10_1080_2162402X_2022_2029298 crossref_primary_10_1016_j_jcyt_2018_01_002 crossref_primary_10_1073_pnas_1714770115 crossref_primary_10_1126_science_aah4307 crossref_primary_10_3390_jcm7120488 crossref_primary_10_1016_j_ajhg_2024_03_007 crossref_primary_10_1186_s13005_021_00258_2 crossref_primary_10_1016_j_diff_2021_11_001 crossref_primary_10_3390_biology14070817 crossref_primary_10_1186_s12860_025_00530_2 crossref_primary_10_3390_ijms21134581 crossref_primary_10_1016_j_aca_2021_338478 crossref_primary_10_1016_j_jbc_2023_105444 crossref_primary_10_1016_j_scr_2017_11_010 crossref_primary_10_1016_j_gene_2022_147000 crossref_primary_10_1093_brain_awae379 crossref_primary_10_3390_ijms24043719 crossref_primary_10_1002_adma_202108757 crossref_primary_10_1155_2020_8890917 crossref_primary_10_1134_S0006297918120064 crossref_primary_10_1016_j_preteyeres_2017_05_001 crossref_primary_10_1002_advs_202003535 crossref_primary_10_3389_fendo_2021_682625 crossref_primary_10_1242_dev_204265 crossref_primary_10_1016_j_stem_2023_09_013 crossref_primary_10_3389_fimmu_2021_798552 crossref_primary_10_3390_cells10102710 crossref_primary_10_3389_fcvm_2019_00030 crossref_primary_10_1016_j_biomaterials_2020_120016 crossref_primary_10_1126_science_aai7626 crossref_primary_10_1002_1873_3468_12285 crossref_primary_10_1002_sctm_20_0127 crossref_primary_10_3390_ijms22147761 crossref_primary_10_1002_wsbm_1464 crossref_primary_10_1016_j_semcancer_2018_02_004 crossref_primary_10_3389_fnmol_2020_608442 crossref_primary_10_1016_j_isci_2024_111218 crossref_primary_10_1016_j_ejmech_2023_115513 crossref_primary_10_3389_fcell_2022_1050856 crossref_primary_10_1096_fj_201801059 crossref_primary_10_1186_s13567_021_00904_2 crossref_primary_10_1016_j_semcdb_2020_06_001 crossref_primary_10_1038_s41467_018_03748_1 crossref_primary_10_1016_j_shpsa_2022_10_003 crossref_primary_10_1002_bdr2_1984 crossref_primary_10_1016_j_joen_2017_03_016 crossref_primary_10_1093_carcin_bgab097 crossref_primary_10_1016_j_chembiol_2019_05_007 crossref_primary_10_1016_j_scr_2019_101387 crossref_primary_10_3390_cells10092276 crossref_primary_10_1002_eji_202149550 crossref_primary_10_3390_ijms21176081 crossref_primary_10_1038_s41586_025_08916_0 crossref_primary_10_3390_cells11101604 crossref_primary_10_1007_s00439_016_1691_5 crossref_primary_10_1007_s40778_023_00227_2 crossref_primary_10_2174_1574893614666190919103752 crossref_primary_10_1016_j_ceb_2018_12_001 crossref_primary_10_31083_j_fbl2812359 crossref_primary_10_1074_jbc_RA119_009783 crossref_primary_10_1007_s12015_021_10294_9 crossref_primary_10_1016_j_dnarep_2020_102902 crossref_primary_10_1016_j_yexcr_2018_07_017 crossref_primary_10_1007_s10439_023_03321_y crossref_primary_10_1007_s11427_016_0211_3 crossref_primary_10_1038_s41577_020_00426_6 crossref_primary_10_1038_s41401_022_00986_4 crossref_primary_10_1038_s41576_018_0087_x crossref_primary_10_1016_j_trac_2020_116039 crossref_primary_10_1007_s11886_017_0828_z crossref_primary_10_3389_fcell_2025_1593096 crossref_primary_10_1089_ten_teb_2017_0415 crossref_primary_10_1016_j_cell_2016_11_050 crossref_primary_10_1016_j_gde_2017_06_011 crossref_primary_10_1186_s13578_023_01150_z crossref_primary_10_1016_j_stem_2017_08_002 crossref_primary_10_1073_pnas_2118763119 crossref_primary_10_3390_biom10010142 crossref_primary_10_1038_s41580_018_0002_5 crossref_primary_10_1016_j_exger_2020_110870 crossref_primary_10_7759_cureus_52265 crossref_primary_10_3389_fcell_2022_935224 crossref_primary_10_3390_cells14070529 crossref_primary_10_1016_j_gde_2017_06_003 crossref_primary_10_1016_j_ceb_2017_12_006 crossref_primary_10_3389_fnins_2021_781160 crossref_primary_10_1042_EBC20170097 crossref_primary_10_3390_ijms20184540 crossref_primary_10_1038_s41585_020_0298_8 crossref_primary_10_1002_tox_23819 crossref_primary_10_1016_j_pneurobio_2018_04_005 crossref_primary_10_3390_children12060669 crossref_primary_10_1016_j_ebiom_2018_11_039 crossref_primary_10_3389_fnins_2018_00005 crossref_primary_10_1002_advs_202401859 crossref_primary_10_1186_s12864_025_11612_y crossref_primary_10_1186_s13287_020_02018_6 crossref_primary_10_1016_j_scr_2017_10_009 crossref_primary_10_1155_2022_4946020 crossref_primary_10_3390_ijms19113475 crossref_primary_10_3390_v12040359 crossref_primary_10_1038_s41467_024_50126_1 crossref_primary_10_1007_s12032_022_01758_0 crossref_primary_10_3389_fgene_2022_964458 crossref_primary_10_1038_cddis_2017_432 crossref_primary_10_1016_j_stem_2020_04_017 crossref_primary_10_3390_molecules25081902 crossref_primary_10_1093_nar_gky548 crossref_primary_10_3390_genes9050265 crossref_primary_10_1016_j_margen_2019_01_003 crossref_primary_10_3390_cells11213435 crossref_primary_10_1016_j_biomaterials_2017_11_034 crossref_primary_10_1016_j_nbt_2018_09_001 crossref_primary_10_1111_xen_12429 crossref_primary_10_1371_journal_pone_0203126 crossref_primary_10_1073_pnas_1901021116 crossref_primary_10_2217_rme_2018_0148 crossref_primary_10_1007_s12032_021_01573_z crossref_primary_10_1074_jbc_RA119_010329 crossref_primary_10_1093_stmcls_sxac082 crossref_primary_10_1002_cmdc_201600262 crossref_primary_10_1111_nyas_70021 crossref_primary_10_1080_15384101_2022_2044136 crossref_primary_10_3389_fmed_2021_644594 crossref_primary_10_1016_j_bmc_2025_118340 crossref_primary_10_1007_s00109_017_1548_y crossref_primary_10_1155_2019_7627148 |
| Cites_doi | 10.1016/j.cell.2012.08.023 10.1016/j.stem.2012.10.005 10.1016/j.cell.2012.11.039 10.1016/j.stem.2010.04.015 10.1073/pnas.0904825106 10.1038/nature08180 10.1038/nmeth.1591 10.1016/j.stem.2009.05.015 10.1016/j.cell.2009.01.001 10.1038/nature13551 10.1038/nature12243 10.1006/dbio.1999.9265 10.5962/bhl.title.168967 10.1038/nbt1374 10.1016/j.stem.2014.01.001 10.1126/science.282.5391.1145 10.1038/srep03594 10.1038/nature08235 10.1016/S0092-8674(03)00393-3 10.1038/nature08267 10.1038/ncomms4678 10.1038/nature07864 10.1172/JCI44635 10.1111/j.1365-2443.2009.01301.x 10.1038/nature10953 10.1093/emboj/18.15.4261 10.1016/0092-8674(86)90816-0 10.1016/j.stemcr.2015.02.004 10.1016/j.stemcr.2014.04.014 10.1038/ncomms2231 10.1016/j.stem.2014.07.002 10.1016/j.stem.2013.11.015 10.2183/pjab.85.348 10.1073/pnas.0910106107 10.1016/j.stem.2008.02.001 10.1073/pnas.1319738111 10.1038/292154a0 10.1073/pnas.1310291110 10.1016/j.stem.2013.11.001 10.1126/science.1152092 10.1126/science.1158799 10.1016/j.stem.2011.10.005 10.1038/nature06534 10.1002/stem.402 10.1016/j.stem.2013.12.015 10.1073/pnas.1009374107 10.1016/j.cell.2008.03.028 10.1016/j.stem.2007.12.001 10.1038/nmeth.1593 10.1038/ncb1698 10.1038/182064a0 10.1073/pnas.64.1.176 10.1038/nature14308 10.1126/science.1154884 10.1126/science.1116447 10.1038/nmeth.1426 10.1016/j.stem.2009.07.001 10.1016/S0092-8674(03)00392-1 10.1038/nrm.2015.28 10.1016/j.stem.2014.03.015 10.1038/28615 10.1073/pnas.78.12.7634 10.1016/j.stem.2014.10.002 10.1016/j.stem.2008.10.002 10.1016/j.cell.2014.08.029 10.1038/nbt1483 10.1016/j.stem.2012.05.005 10.1038/cr.2011.177 10.1016/j.cell.2013.04.022 10.1016/j.scr.2010.09.004 10.1371/journal.pone.0010246 10.1038/nrm.2016.6 10.1016/j.stem.2010.04.014 10.1089/scd.2009.0459 10.1038/nature08797 10.1073/pnas.1319061110 10.1016/S0960-9822(01)00459-6 10.1038/nature08311 10.1038/nbt1383 10.1016/j.cell.2006.07.024 10.1038/385810a0 10.1038/ncomms8095 10.1016/0092-8674(87)90585-X 10.1159/000016693 10.1016/j.cell.2011.03.003 10.1007/s13238-012-2002-0 10.1038/nature08287 10.1038/nrm.2015.27 10.1038/nrg3473 10.1074/jbc.M110.142059 10.1016/j.stem.2008.01.004 10.1242/dev.01670 10.1126/science.1162494 10.1007/978-1-61779-201-4_9 10.1038/nature08285 10.1038/nature05934 10.1126/science.1248882 10.1038/nature12745 10.1016/j.cell.2012.09.045 10.1016/S0140-6736(12)60028-2 10.1073/pnas.1413299111 10.1038/nbt.1535 10.1038/nbt.1530 10.1128/MCB.23.8.2699-2708.2003 10.1016/j.stem.2009.03.005 10.1016/j.cell.2013.05.001 10.1038/nbt.1562 10.1101/gad.1811609 10.1101/gad.9.10.1250 10.1101/gad.2039011 10.1038/nature07314 10.1038/nature13287 10.1093/nar/gkf435 10.1371/journal.pbio.0060253 10.1038/nrm.2016.10 10.1126/science.7892602 10.1126/science.1172482 10.1038/nature08592 10.1093/genetics/105.3.581 10.1038/nature08290 10.1038/ncb1827 10.1074/jbc.M110.183780 10.1016/j.stem.2011.11.003 10.1016/j.stem.2010.08.012 10.1016/0092-8674(83)90109-5 10.1016/j.cell.2013.05.006 10.1016/S0092-8674(00)81702-X 10.1038/nature08310 10.1038/nbt.3388 10.1016/j.stem.2009.12.009 10.1101/gad.1035902 10.1038/nature05944 10.1016/j.cell.2008.07.041 10.1038/nm979 10.1038/325816a0 10.1016/S0092-8674(04)00419-2 10.1089/scd.2013.0267 10.1038/nature06968 10.1016/j.cell.2015.06.016 10.1038/nbt.1580 10.1016/j.stem.2009.05.005 10.1038/nature08735 10.1371/journal.pone.0052787 10.1038/sj.gt.3301206 10.1016/j.stem.2007.05.014 10.1016/j.stem.2012.08.002 10.1038/nmeth.1323 10.1073/pnas.1004584107 10.1016/j.stem.2013.06.019 10.1016/j.cub.2008.05.010 10.1126/science.1164270 10.1038/nature07863 10.1038/nbt.1554 10.1038/nature08113 10.1002/j.1460-2075.1987.tb04739.x 10.1073/pnas.0801677105 10.1126/science.1151526 10.1038/nature01646 10.1038/336688a0 10.1016/j.stem.2010.06.022 10.1016/0092-8674(83)90300-8 10.1016/j.stem.2009.04.005 10.1101/gad.12.13.2048 10.1016/j.cell.2007.11.019 10.1101/gad.1876710 10.1126/science.1239278 10.1038/nrm3980 10.1016/0092-8674(83)90563-9 10.1074/jbc.M410015200 10.1038/nbt1418 10.1089/scd.2009.0424 10.1038/nature07196 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2016 COPYRIGHT 2016 Nature Publishing Group Copyright Nature Publishing Group Mar 2016 |
| Copyright_xml | – notice: Springer Nature Limited 2016 – notice: COPYRIGHT 2016 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7RV 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7N M7P NAPCQ P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
| DOI | 10.1038/nrm.2016.8 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-0080 |
| EndPage | 193 |
| ExternalDocumentID | 3960692681 A445983157 26883003 10_1038_nrm_2016_8 |
| Genre | Historical Article Review Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D0L D1J DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PCBAR PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AFANA AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 |
| ID | FETCH-LOGICAL-c588t-e2457dabfcbd59a1d1b26fed0abbbb023bb92699d8f28f6a23838abcefc715623 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 629 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370879600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0072 1471-0080 |
| IngestDate | Sun Nov 09 09:23:35 EST 2025 Sun Nov 30 04:44:04 EST 2025 Tue Nov 11 10:55:30 EST 2025 Tue Nov 04 18:23:57 EST 2025 Thu Nov 13 16:11:00 EST 2025 Thu Apr 03 07:02:24 EDT 2025 Sat Nov 29 06:43:41 EST 2025 Tue Nov 18 21:21:15 EST 2025 Fri Feb 21 02:38:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c588t-e2457dabfcbd59a1d1b26fed0abbbb023bb92699d8f28f6a23838abcefc715623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 26883003 |
| PQID | 1767365098 |
| PQPubID | 27585 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1768167702 proquest_journals_1767365098 gale_infotracmisc_A445983157 gale_infotracacademiconefile_A445983157 gale_incontextgauss_ISR_A445983157 pubmed_primary_26883003 crossref_citationtrail_10_1038_nrm_2016_8 crossref_primary_10_1038_nrm_2016_8 springer_journals_10_1038_nrm_2016_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-01 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Molecular cell biology |
| PublicationTitleAbbrev | Nat Rev Mol Cell Biol |
| PublicationTitleAlternate | Nat Rev Mol Cell Biol |
| PublicationYear | 2016 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | CowanCAAtienzaJMeltonDAEgganKNuclear reprogramming of somatic cells after fusion with human embryonic stem cellsScience2005309136913731:CAS:528:DC%2BD2MXovVOjtLw%3D1612329910.1126/science.1116447 WaddingtonCHThe Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology1957 UtikalJImmortalization eliminates a roadblock during cellular reprogramming into iPS cellsNature2009460114511481:CAS:528:DC%2BD1MXps1ags78%3D19668190398789210.1038/nature08285 WilmutISchniekeAEMcWhirJKindAJCampbellKHViable offspring derived from fetal and adult mammalian cellsNature19973858108131:CAS:528:DyaK2sXhsFamsLs%3D10.1038/385810a09039911 HengJCThe nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cellsCell Stem Cell201061671741:CAS:528:DC%2BC3cXlt1Knu7g%3D2009666110.1016/j.stem.2009.12.009 TsujiOTherapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injuryProc. Natl Acad. Sci. USA201010712704127091:CAS:528:DC%2BC3cXpt1Shurk%3D2061597410.1073/pnas.09101061072906548 ZhangJNuebelEDaleyGQKoehlerCMTeitellMAMetabolic regulation in pluripotent stem cells during reprogramming and self-renewalCell Stem Cell2012115895951:CAS:528:DC%2BC38Xhs1aqtr3P23122286349289010.1016/j.stem.2012.10.005 KulessaHFramptonJGrafTGATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblastsGenes Dev.19959125012621:CAS:528:DyaK2MXlvFShsLg%3D775894910.1101/gad.9.10.1250 ZhaoXYiPS cells produce viable mice through tetraploid complementationNature200946186901:CAS:528:DC%2BD1MXhtVygsLfF1967224110.1038/nature08267 MiuraKVariation in the safety of induced pluripotent stem cell linesNat. Biotechnol.2009277437451:CAS:528:DC%2BD1MXotlSntbg%3D1959050210.1038/nbt.1554 WernigMIn vitro reprogramming of fibroblasts into a pluripotent ES cell-like stateNature20074483183241:CAS:528:DC%2BD2sXnvVeqsLg%3D10.1038/nature0594417554336 BurdonTStraceyCChambersINicholsJSmithASuppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cellsDev. Biol.199921030431:CAS:528:DyaK1MXjs1Gntr4%3D1036442510.1006/dbio.1999.9265 TokuzawaYFbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse developmentMol. Cell. Biol.200323269927081:CAS:528:DC%2BD3sXktV2lsbg%3D1266557215254410.1128/MCB.23.8.2699-2708.2003 GoodellMANguyenHShroyerNSomatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartmentsNat. Rev. Mol. Cell Biol.2015162993091:CAS:528:DC%2BC2MXntFCitbY%3D25907613531720310.1038/nrm3980 DimosJTInduced pluripotent stem cells generated from patients with ALS can be differentiated into motor neuronsScience2008321121812211:CAS:528:DC%2BD1cXhtVGgt7zL1866982110.1126/science.1158799 NiwaHBurdonTChambersISmithASelf-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3Genes Dev.199812204820601:CAS:528:DyaK1cXksFygtbk%3D964950831695410.1101/gad.12.13.2048 KuzmichevANishiokaKErdjument-BromageHTempstPReinbergDHistone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste proteinGenes Dev.200216289329051:CAS:528:DC%2BD38XovVejsLY%3D1243563118747910.1101/gad.1035902 HannaJDirect cell reprogramming is a stochastic process amenable to accelerationNature20094625956011:CAS:528:DC%2BD1MXhtlOrurjN19898493278997210.1038/nature08592 TadaMTakahamaYAbeKNakatsujiNTadaTNuclear reprogramming of somatic cells by in vitro hybridization with ES cellsCurr. Biol.200111155315581:CAS:528:DC%2BD3MXnsF2ms7g%3D1159132610.1016/S0960-9822(01)00459-6 O'MalleyJHigh-resolution analysis with novel cell-surface markers identifies routes to iPS cellsNature201349988911:CAS:528:DC%2BC3sXosFWlsbs%3D23728301374302210.1038/nature12243 ParkIHReprogramming of human somatic cells to pluripotency with defined factorsNature20084511411461:CAS:528:DC%2BD1cXksVGhtQ%3D%3D1815711510.1038/nature06534 Smith, Z. D., Sindhu, C. & Meissner, A. Molecular features of cellular reprogramming and development. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2016.6 (2016). HazelriggTKaufmanTCRevertants of dominant mutations associated with the Antennapedia gene complex of DROSOPHILA MELANOGASTER: cytology and geneticsGenetics19831055816001:STN:280:DC%2BC3crptFymuw%3D%3D172461681202175 ChanYSInduction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblastCell Stem Cell2013136636751:CAS:528:DC%2BC3sXhvFymu73J10.1016/j.stem.2013.11.01524315441 BlauHMChiuCPWebsterCCytoplasmic activation of human nuclear genes in stable heterocaryonsCell198332117111801:CAS:528:DyaL3sXhvFGls74%3D683935910.1016/0092-8674(83)90300-8 FusakiNBanHNishiyamaASaekiKHasegawaMEfficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genomeProc. Jpn Acad. Ser. B Phys. Biol. Sci.2009853483621:CAS:528:DC%2BD1MXhsFejsrbN19838014362157110.2183/pjab.85.348 GafniODerivation of novel human ground state naive pluripotent stem cellsNature20135042822861:CAS:528:DC%2BC3sXhslSnsLbM10.1038/nature1274524172903 ParkIHDisease-specific induced pluripotent stem cellsCell20081348778861:CAS:528:DC%2BD1cXhtFCqs7bK18691744263378110.1016/j.cell.2008.07.041 LiangGTaranovaOXiaKZhangYButyrate promotes induced pluripotent stem cell generationJ. Biol. Chem.201028525516255211:CAS:528:DC%2BC3cXpslKjtLg%3D20554530291911510.1074/jbc.M110.142059 TsubookaNRoles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblastsGenes Cells2009146836941:CAS:528:DC%2BD1MXnvVCjs74%3D1947650710.1111/j.1365-2443.2009.01301.x MiyazakiTLaminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cellsNat. Commun.2012312362321236510.1038/ncomms22311:CAS:528:DC%2BC3sXhsVCisLo%3D HannaJTreatment of sickle cell anemia mouse model with iPS cells generated from autologous skinScience2007318192019231:CAS:528:DC%2BD2sXhsVGjsLbP1806375610.1126/science.1152092 YusaKRadRTakedaJBradleyAGeneration of transgene-free induced pluripotent mouse stem cells by the piggyBac transposonNat. Methods200963633691:CAS:528:DC%2BD1MXjsl2gtbg%3D19337237267716510.1038/nmeth.1323 BergstromRStromSHolmFFekiAHovattaOXeno-free culture of human pluripotent stem cellsMethods Mol. Biol.20117671251362182287110.1007/978-1-61779-201-4_91:CAS:528:DC%2BC38XlslKgurw%3D MaHAbnormalities in human pluripotent cells due to reprogramming mechanismsNature20145111771831:CAS:528:DC%2BC2cXhtFehsLvM25008523489806410.1038/nature13551 CacchiarelliDIntegrative analyses of human reprogramming reveal dynamic nature of induced pluripotencyCell20151624124241:CAS:528:DC%2BC2MXht1KgtL3K26186193451159710.1016/j.cell.2015.06.016 ChenGChemically defined conditions for human iPSC derivation and cultureNat. Methods201184244291:CAS:528:DC%2BC3MXksFWnt7o%3D21478862308490310.1038/nmeth.1593 BanitoASenescence impairs successful reprogramming to pluripotent stem cellsGenes Dev.200923213421391:CAS:528:DC%2BD1MXht1ersbrL19696146275198010.1101/gad.1811609 CareyBWReprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cellsCell Stem Cell201195885981:CAS:528:DC%2BC3MXhsFOns7jE2213693210.1016/j.stem.2011.11.003 TheunissenTWSystematic identification of culture conditions for induction and maintenance of naive human pluripotencyCell Stem Cell2014154714871:CAS:528:DC%2BC2cXht1agsL%2FN25090446418497710.1016/j.stem.2014.07.002 YuJHuman induced pluripotent stem cells free of vector and transgene sequencesScience20093247978011:CAS:528:DC%2BD1MXlsVeksrk%3D19325077275805310.1126/science.1172482 ChengAMMammalian Grb2 regulates multiple steps in embryonic development and malignant transformationCell1998957938031:CAS:528:DyaK1MXivVKi986569710.1016/S0092-8674(00)81702-X TakahashiKInduction of pluripotent stem cells from adult human fibroblasts by defined factorsCell20071318618721:CAS:528:DC%2BD2sXhsVCntbbK10.1016/j.cell.2007.11.01918035408 AngYSWdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional networkCell20111451831971:CAS:528:DC%2BC3MXkvVGlsb8%3D21477851309746810.1016/j.cell.2011.03.003 HouPPluripotent stem cells induced from mouse somatic cells by small-molecule compoundsScience20133416516541:CAS:528:DC%2BC3sXht1WqtbvO2386892010.1126/science.1239278 YamaguchiSHiranoKNagataSTadaTSox2 expression effects on direct reprogramming efficiency as determined by alternative somatic cell fateStem Cell Res.201061771862113072210.1016/j.scr.2010.09.0041:CAS:528:DC%2BC3MXhvV2lsrg%3D WorringerKAThe let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genesCell Stem Cell201314405224239284398231210.1016/j.stem.2013.11.0011:CAS:528:DC%2BC3sXhsl2jsrnF NakagawaMGeneration of induced pluripotent stem cells without Myc from mouse and human fibroblastsNat. Biotechnol.2008261011061:CAS:528:DC%2BD1cXisFGmuw%3D%3D1805925910.1038/nbt1374 ZhaoYTwo supporting factors greatly improve the efficiency of human iPSC generationCell Stem Cell200834754791:CAS:528:DC%2BD1cXhsVaqs77K1898396210.1016/j.stem.2008.10.002 MarionRMA p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrityNature2009460114911531:CAS:528:DC%2BD1MXps1ahtrY%3D19668189362408910.1038/nature08287 XieWEpigenomic analysis of multilineage differentiation of human embryonic stem cellsCell2013153113411481:CAS:528:DC%2BC3sXnsVyrtLw%3D23664764378622010.1016/j.cell.2013.04.022 XieHYeMFengRGrafTStepwise reprogramming of B cells into macrophagesCell20041176636761:CAS:528:DC%2BD2cXkvVyhsrc%3D1516341310.1016/S0092-8674(04)00419-2 TakahashiKInduction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendodermNat. Commun.2014536781:CAS:528:DC%2BC2cXitVShsLrF2475983610.1038/ncomms4678 WangTThe histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitami J Hanna (BFnrm20168_CR79) 2008; 133 Y Zhao (BFnrm20168_CR49) 2008; 3 JT Dimos (BFnrm20168_CR168) 2008; 321 N Sato (BFnrm20168_CR31) 2004; 10 M Koyanagi-Aoi (BFnrm20168_CR156) 2013; 110 K Nishimura (BFnrm20168_CR116) 2010; 286 L Kang (BFnrm20168_CR144) 2009; 5 BFnrm20168_CR158 T Shinagawa (BFnrm20168_CR74) 2014; 14 EJ Grow (BFnrm20168_CR100) 2015; 522 PJ Ross (BFnrm20168_CR123) 2009; 19 SJ Dunn (BFnrm20168_CR56) 2014; 344 GR Martin (BFnrm20168_CR6) 1981; 78 TS Mikkelsen (BFnrm20168_CR86) 2008; 454 K Takahashi (BFnrm20168_CR40) 2007; 131 N Fusaki (BFnrm20168_CR115) 2009; 85 JB Gurdon (BFnrm20168_CR4) 1962; 10 G Liang (BFnrm20168_CR67) 2010; 285 M Stadtfeld (BFnrm20168_CR81) 2008; 18 MJ Boland (BFnrm20168_CR145) 2009; 461 IH Park (BFnrm20168_CR161) 2008; 451 JB Gurdon (BFnrm20168_CR3) 1958; 182 T Burdon (BFnrm20168_CR32) 1999; 210 K Miura (BFnrm20168_CR155) 2009; 27 J Hanna (BFnrm20168_CR162) 2009; 462 R Sridharan (BFnrm20168_CR90) 2009; 136 N Festuccia (BFnrm20168_CR55) 2012; 11 I Wilmut (BFnrm20168_CR7) 1997; 385 K Takahashi (BFnrm20168_CR96) 2014; 5 TW Theunissen (BFnrm20168_CR136) 2014; 15 T Hazelrigg (BFnrm20168_CR21) 1983; 105 YG Chung (BFnrm20168_CR150) 2014; 14 XY Zhao (BFnrm20168_CR146) 2009; 461 M Tomioka (BFnrm20168_CR36) 2002; 30 V Picanco-Castro (BFnrm20168_CR51) 2010; 20 IH Park (BFnrm20168_CR169) 2008; 134 RL Judson (BFnrm20168_CR53) 2009; 27 N Maherali (BFnrm20168_CR160) 2007; 1 KA Worringer (BFnrm20168_CR54) 2013; 14 M Wernig (BFnrm20168_CR167) 2008; 2 KH Narsinh (BFnrm20168_CR142) 2011; 121 S Okumura-Nakanishi (BFnrm20168_CR37) 2005; 280 D Kim (BFnrm20168_CR118) 2009; 4 CH Waddington (BFnrm20168_CR2) 1957 LE Frischer (BFnrm20168_CR18) 1986; 47 BFnrm20168_CR174 J Deng (BFnrm20168_CR87) 2009; 27 M Ohnuki (BFnrm20168_CR98) 2014; 111 D Huangfu (BFnrm20168_CR66) 2008; 26 S Schneuwly (BFnrm20168_CR19) 1987; 6 H Niwa (BFnrm20168_CR29) 2009; 460 RM Marion (BFnrm20168_CR60) 2009; 460 J Han (BFnrm20168_CR47) 2010; 463 AG Smith (BFnrm20168_CR26) 1988; 336 T Matsuda (BFnrm20168_CR28) 1999; 18 Y Buganim (BFnrm20168_CR57) 2012; 150 Y Takashima (BFnrm20168_CR135) 2014; 158 M Pawlak (BFnrm20168_CR75) 2011; 25 F Jia (BFnrm20168_CR111) 2010; 7 D Hockemeyer (BFnrm20168_CR131) 2009; 27 H Ma (BFnrm20168_CR152) 2014; 511 K Takahashi (BFnrm20168_CR166) 2003; 423 K Okita (BFnrm20168_CR107) 2007; 448 M Wernig (BFnrm20168_CR128) 2008; 105 S Yamanaka (BFnrm20168_CR77) 2009; 460 B Johannesson (BFnrm20168_CR153) 2014; 15 P Cartwright (BFnrm20168_CR30) 2005; 132 M Stadtfeld (BFnrm20168_CR92) 2008; 2 J Yu (BFnrm20168_CR42) 2009; 324 H Zhou (BFnrm20168_CR170) 2009; 4 I Chambers (BFnrm20168_CR25) 2003; 113 J Shu (BFnrm20168_CR106) 2013; 153 SI Kim (BFnrm20168_CR105) 2015; 4 K Rajala (BFnrm20168_CR126) 2010; 5 MJ Evans (BFnrm20168_CR5) 1981; 292 T Kawamura (BFnrm20168_CR58) 2009; 460 N Montserrat (BFnrm20168_CR173) 2013; 13 S Schneuwly (BFnrm20168_CR17) 1987; 325 MA Goodell (BFnrm20168_CR78) 2015; 16 H Li (BFnrm20168_CR59) 2009; 460 R Li (BFnrm20168_CR83) 2010; 7 J Yang (BFnrm20168_CR163) 2010; 7 B Feng (BFnrm20168_CR50) 2009; 11 B Feng (BFnrm20168_CR91) 2009; 4 G Halder (BFnrm20168_CR22) 1995; 267 H Xie (BFnrm20168_CR15) 2004; 117 JC Heng (BFnrm20168_CR52) 2010; 6 Y Buganim (BFnrm20168_CR65) 2013; 14 TT Onder (BFnrm20168_CR73) 2012; 483 N Takagi (BFnrm20168_CR10) 1983; 34 M Stadtfeld (BFnrm20168_CR108) 2008; 322 A Kuzmichev (BFnrm20168_CR70) 2002; 16 SR Hough (BFnrm20168_CR143) 2014; 2 MJ Edel (BFnrm20168_CR64) 2010; 24 T Brambrink (BFnrm20168_CR93) 2008; 2 CB Ware (BFnrm20168_CR139) 2014; 111 P Samavarchi-Tehrani (BFnrm20168_CR82) 2010; 7 W Xie (BFnrm20168_CR99) 2013; 153 YS Chan (BFnrm20168_CR140) 2013; 13 H Hong (BFnrm20168_CR62) 2009; 460 AD Panopoulos (BFnrm20168_CR84) 2011; 22 H Niwa (BFnrm20168_CR27) 1998; 12 M Tachibana (BFnrm20168_CR149) 2013; 153 J Utikal (BFnrm20168_CR61) 2009; 460 J Hanna (BFnrm20168_CR137) 2010; 107 G Chen (BFnrm20168_CR120) 2011; 8 JH Postlethwait (BFnrm20168_CR16) 1969; 64 J Nichols (BFnrm20168_CR132) 2009; 4 Y Tokuzawa (BFnrm20168_CR35) 2003; 23 K Tanabe (BFnrm20168_CR43) 2013; 110 P Mali (BFnrm20168_CR68) 2010; 28 T Wakayama (BFnrm20168_CR8) 1998; 394 M Nakagawa (BFnrm20168_CR44) 2008; 26 BW Carey (BFnrm20168_CR103) 2011; 9 Q Wang (BFnrm20168_CR121) 2012; 3 M Yamada (BFnrm20168_CR151) 2014; 510 J Choi (BFnrm20168_CR154) 2015; 33 AM Cheng (BFnrm20168_CR34) 1998; 95 O Tsuji (BFnrm20168_CR129) 2010; 107 M Nakagawa (BFnrm20168_CR46) 2010; 107 J Yu (BFnrm20168_CR41) 2007; 318 HM Blau (BFnrm20168_CR9) 1983; 32 S Yamanaka (BFnrm20168_CR147) 2012; 10 K Okita (BFnrm20168_CR110) 2011; 8 T Vierbuchen (BFnrm20168_CR172) 2010; 463 BFnrm20168_CR133 L Warren (BFnrm20168_CR117) 2010; 7 A Weismann (BFnrm20168_CR1) 1893 T Miyazaki (BFnrm20168_CR124) 2012; 3 N Tsubooka (BFnrm20168_CR48) 2009; 14 Q Zhou (BFnrm20168_CR171) 2008; 455 MP Scott (BFnrm20168_CR20) 1983; 35 JA Thomson (BFnrm20168_CR165) 1998; 282 YS Ang (BFnrm20168_CR69) 2011; 145 T Burdon (BFnrm20168_CR33) 1999; 165 J Silva (BFnrm20168_CR164) 2008; 6 S Yamaguchi (BFnrm20168_CR102) 2010; 6 RL Davis (BFnrm20168_CR13) 1987; 51 T Aoi (BFnrm20168_CR80) 2008; 321 K Kaji (BFnrm20168_CR112) 2009; 458 H Chen (BFnrm20168_CR141) 2015; 6 BFnrm20168_CR23 M Nakagawa (BFnrm20168_CR125) 2014; 4 M Tada (BFnrm20168_CR11) 2001; 11 S Morita (BFnrm20168_CR38) 2000; 7 K Yusa (BFnrm20168_CR114) 2009; 6 JM Polo (BFnrm20168_CR88) 2012; 151 X Ding (BFnrm20168_CR71) 2014; 23 D Cacchiarelli (BFnrm20168_CR97) 2015; 162 P Hou (BFnrm20168_CR119) 2013; 341 M Wernig (BFnrm20168_CR159) 2007; 448 K Mitsui (BFnrm20168_CR24) 2003; 113 CA Cowan (BFnrm20168_CR12) 2005; 309 X Hu (BFnrm20168_CR76) 2014; 14 R Bergstrom (BFnrm20168_CR122) 2011; 767 SD Schwartz (BFnrm20168_CR157) 2012; 379 A Soufi (BFnrm20168_CR89) 2012; 151 QL Ying (BFnrm20168_CR134) 2008; 453 K Osafune (BFnrm20168_CR148) 2008; 26 K Woltjen (BFnrm20168_CR113) 2009; 458 K Takahashi (BFnrm20168_CR39) 2006; 126 H Kulessa (BFnrm20168_CR14) 1995; 9 J Zhang (BFnrm20168_CR85) 2012; 11 Y Kobayashi (BFnrm20168_CR130) 2012; 7 EM Chan (BFnrm20168_CR95) 2009; 27 J Hanna (BFnrm20168_CR127) 2007; 318 J O'Malley (BFnrm20168_CR94) 2013; 499 J Jiang (BFnrm20168_CR45) 2008; 10 A Banito (BFnrm20168_CR63) 2009; 23 EP Papapetrou (BFnrm20168_CR101) 2009; 106 K Okita (BFnrm20168_CR109) 2008; 322 M Wernig (BFnrm20168_CR104) 2008; 26 T Wang (BFnrm20168_CR72) 2011; 9 O Gafni (BFnrm20168_CR138) 2013; 504 16123299 - Science. 2005 Aug 26;309(5739):1369-73 19363475 - Nat Biotechnol. 2009 May;27(5):459-61 23871606 - Cell Stem Cell. 2013 Sep 5;13(3):341-50 19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7 7758949 - Genes Dev. 1995 May 15;9(10):1250-62 20660764 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14152-7 20139967 - Nat Methods. 2010 Mar;7(3):197-9 20554530 - J Biol Chem. 2010 Aug 13;285(33):25516-21 12136102 - Nucleic Acids Res. 2002 Jul 15;30(14):3202-13 3690668 - Cell. 1987 Dec 24;51(6):987-1000 15163413 - Cell. 2004 May 28;117(5):663-76 22281388 - Lancet. 2012 Feb 25;379(9817):713-20 19167336 - Cell. 2009 Jan 23;136(2):364-77 20107439 - Nature. 2010 Feb 25;463(7284):1035-41 6418389 - Cell. 1983 Dec;35(3 Pt 2):763-76 12787504 - Cell. 2003 May 30;113(5):631-42 24904165 - Science. 2014 Jun 6;344(6188):1156-60 26818440 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):170-82 23664764 - Cell. 2013 May 23;153(5):1134-48 21478862 - Nat Methods. 2011 May;8(5):424-9 26908143 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):194-200 18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9 22064701 - Cell Res. 2012 Jan;22(1):168-77 2430723 - Cell. 1986 Dec 26;47(6):1017-23 24325319 - Stem Cells Dev. 2014 May 1;23 (9):931-40 6627391 - Cell. 1983 Oct;34(3):1053-62 23812749 - Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12172-9 3143917 - Nature. 1988 Dec 15;336(6200):688-90 22259120 - Protein Cell. 2012 Jan;3(1):51-9 18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40 18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70 17554336 - Nature. 2007 Jul 19;448(7151):318-24 22388813 - Nature. 2012 Mar 04;483(7391):598-602 23159369 - Cell. 2012 Nov 21;151(5):994-1004 23122286 - Cell Stem Cell. 2012 Nov 2;11(5):589-95 6950406 - Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634-8 26501951 - Nat Biotechnol. 2015 Nov;33(11):1173-81 25772473 - Stem Cell Reports. 2015 Apr 14;4(4):727-43 18063756 - Science. 2007 Dec 21;318(5858):1920-3 18568017 - Nat Biotechnol. 2008 Jul;26(7):795-7 24239284 - Cell Stem Cell. 2014 Jan 2;14 (1):40-52 18276851 - Science. 2008 Aug 1;321(5889):699-702 25896322 - Nature. 2015 Jun 11;522(7555):221-5 20419109 - PLoS One. 2010 Apr 19;5(4):e10246 23212365 - Nat Commun. 2012;3:1236 20096661 - Cell Stem Cell. 2010 Feb 5;6(2):167-74 19668188 - Nature. 2009 Aug 27;460(7259):1136-9 20201064 - Stem Cells. 2010 Apr;28(4):713-20 18035408 - Cell. 2007 Nov 30;131(5):861-72 13566187 - Nature. 1958 Jul 5;182(4627):64-5 23040477 - Cell Stem Cell. 2012 Oct 5;11(4):477-90 20504151 - Stem Cells Dev. 2011 Jan;20(1):169-80 18391196 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5856-61 21460823 - Nat Methods. 2011 May;8(5):409-12 19668189 - Nature. 2009 Aug 27;460(7259):1149-53 19668191 - Nature. 2009 Aug 27;460(7259):1132-5 18278034 - Nat Biotechnol. 2008 Mar;26(3):313-5 9690471 - Nature. 1998 Jul 23;394(6691):369-74 12787505 - Cell. 2003 May 30;113(5):643-55 21138846 - J Biol Chem. 2011 Feb 11;286(6):4760-71 19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92 21477851 - Cell. 2011 Apr 15;145(2):183-97 22136932 - Cell Stem Cell. 2011 Dec 2;9(6):588-98 18501604 - Curr Biol. 2008 Jun 24;18(12):890-4 19631602 - Cell Stem Cell. 2009 Aug 7;5(2):135-8 10364425 - Dev Biol. 1999 Jun 1;210(1):30-43 18983962 - Cell Stem Cell. 2008 Nov 6;3(5):475-9 25517467 - Cell Stem Cell. 2014 Nov 6;15(5):634-42 25008523 - Nature. 2014 Jul 10;511(7508):177-83 15557334 - J Biol Chem. 2005 Feb 18;280(7):5307-17 20621050 - Cell Stem Cell. 2010 Jul 2;7(1):51-63 25097266 - Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12426-31 19590502 - Nat Biotechnol. 2009 Aug;27(8):743-5 14702635 - Nat Med. 2004 Jan;10(1):55-63 17246168 - Genetics. 1983 Nov;105(3):581-600 10871756 - Gene Ther. 2000 Jun;7(12):1063-6 18754011 - Nature. 2008 Oct 2;455(7213):627-32 26860365 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):155-69 24776804 - Nature. 2014 Jun 26;510(7506):533-6 19549847 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12759-64 18669821 - Science. 2008 Aug 29;321(5893):1218-21 20139965 - Nature. 2010 Feb 25;463(7284):1096-100 18497825 - Nature. 2008 May 22;453(7194):519-23 19668186 - Nature. 2009 Aug 27;460(7259):1140-4 19672241 - Nature. 2009 Sep 3;461(7260):86-90 18942890 - PLoS Biol. 2008 Oct 21;6(10):e253 24259714 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20569-74 9804556 - Science. 1998 Nov 6;282(5391):1145-7 24529596 - Cell Stem Cell. 2014 Apr 3;14(4):512-22 23300777 - PLoS One. 2012;7(12):e52787 22704507 - Cell Stem Cell. 2012 Jun 14;10(6):678-84 19252477 - Nature. 2009 Apr 9;458(7239):771-5 23260147 - Cell. 2012 Dec 21;151(7):1617-32 23706735 - Cell. 2013 May 23;153(5):963-75 15673569 - Development. 2005 Mar;132(5):885-96 23683578 - Cell. 2013 Jun 6;153(6):1228-38 19672243 - Nature. 2009 Sep 3;461(7260):91-4 19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62 21130722 - Stem Cell Res. 2011 Mar;6(2):177-86 3821869 - Nature. 1987 Feb 26-Mar 4;325(6107):816-8 11591326 - Curr Biol. 2001 Oct 2;11(19):1553-8 19341620 - Cell Stem Cell. 2009 Apr 3;4(4):301-12 18371415 - Cell Stem Cell. 2008 Jan 10;2(1):10-2 16904174 - Cell. 2006 Aug 25;126(4):663-76 12665572 - Mol Cell Biol. 2003 Apr;23(8):2699-708 21317531 - J Clin Invest. 2011 Mar;121(3):1217-21 25090446 - Cell Stem Cell. 2014 Oct 2;15(4):471-87 19696146 - Genes Dev. 2009 Sep 15;23(18):2134-9 25215486 - Cell. 2014 Sep 11;158(6):1254-69 19898493 - Nature. 2009 Dec 3;462(7273):595-601 23868920 - Science. 2013 Aug 9;341(6146):651-4 18691744 - Cell. 2008 Sep 5;134(5):877-86 19337237 - Nat Methods. 2009 May;6(5):363-9 24399248 - Sci Rep. 2014 Jan 08;4:3594 25968054 - Nat Commun. 2015 May 13;6:7095 12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905 19325077 - Science. 2009 May 8;324(5928):797-801 24936473 - Stem Cell Reports. 2014 May 22;2(6):881-95 18594521 - Nat Biotechnol. 2008 Aug;26(8):916-24 24172903 - Nature. 2013 Dec 12;504(7479):282-6 18157115 - Nature. 2008 Jan 10;451(7175):141-6 18509334 - Nature. 2008 Jul 3;454(7200):49-55 19571885 - Nature. 2009 Jul 2;460(7251):118-22 19826408 - Nat Biotechnol. 2009 Nov;27(11):1033-7 20804969 - Cell Stem Cell. 2010 Sep 3;7(3):319-28 10428964 - EMBO J. 1999 Aug 2;18(15):4261-9 26186193 - Cell. 2015 Jul 16;162(2):412-24 9865697 - Cell. 1998 Dec 11;95(6):793-803 21822871 - Methods Mol Biol. 2011;767:125-36 5263000 - Proc Natl Acad Sci U S A. 1969 Sep;64(1):176-83 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4 18845712 - Science. 2008 Nov 7;322(5903):949-53 19476507 - Genes Cells. 2009 Jun;14(6):683-94 19330000 - Nat Biotechnol. 2009 Apr;27(4):353-60 19136965 - Nat Cell Biol. 2009 Feb;11(2):197-203 20442331 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9222-7 20621051 - Cell Stem Cell. 2010 Jul 2;7(1):64-77 19571877 - Nature. 2009 Jul 2;460(7251):49-52 22100412 - Cell Stem Cell. 2011 Dec 2;9(6):575-87 9039911 - Nature. 1997 Feb 27;385(6619):810-3 26883001 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):139-54 24506885 - Cell Stem Cell. 2014 Feb 6;14(2):217-27 21576263 - Genes Dev. 2011 May 15;25(10):1035-40 12774123 - Nature. 2003 May 29;423(6939):541-5 7242681 - Nature. 1981 Jul 9;292(5819):154-6 22980981 - Cell. 2012 Sep 14;150(6):1209-22 20030562 - Stem Cells Dev. 2010 Aug;19(8):1221-9 18059259 - Nat Biotechnol. 2008 Jan;26(1):101-6 24623855 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9 23681063 - Nat Rev Genet. 2013 Jun;14(6):427-39 20231315 - Genes Dev. 2010 Mar 15;24(6):561-73 24746675 - Cell Stem Cell. 2014 Jun 5;14(6):777-80 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30 24759836 - Nat Commun. 2014 Apr 24;5:3678 10592385 - Cells Tissues Organs. 1999;165(3-4):131-43 19252478 - Nature. 2009 Apr 9;458(7239):766-70 16453748 - EMBO J. 1987 Jan;6(1):201-6 9649508 - Genes Dev. 1998 Jul 1;12(13):2048-60 18818365 - Science. 2008 Nov 7;322(5903):945-9 18423197 - Cell. 2008 Apr 18;133(2):250-64 13951335 - J Embryol Exp Morphol. 1962 Dec;10:622-40 23728301 - Nature. 2013 Jul 4;499(7456):88-91 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6 6839359 - Cell. 1983 Apr;32(4):1171-80 17554338 - Nature. 2007 Jul 19;448(7151):313-7 19668190 - Nature. 2009 Aug 27;460(7259):1145-8 18264089 - Nat Cell Biol. 2008 Mar;10 (3):353-60 18029452 - Science. 2007 Dec 21;318(5858):1917-20 24315441 - Cell Stem Cell. 2013 Dec 5;13(6):663-75 20615974 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12704-9 7892602 - Science. 1995 Mar 24;267(5205):1788-92 25907613 - Nat Rev Mol Cell Biol. 2015 May;16(5):299-309 |
| References_xml | – reference: FestucciaNEsrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cellsCell Stem Cell2012114774901:CAS:528:DC%2BC38XhsVKqs7zM23040477347336110.1016/j.stem.2012.08.002 – reference: AoiTGeneration of pluripotent stem cells from adult mouse liver and stomach cellsScience20083216997021:CAS:528:DC%2BD1cXptVKnu78%3D1827685110.1126/science.1154884 – reference: PawlakMJaenischRDe novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent stateGenes Dev.201125103510401:CAS:528:DC%2BC3MXmslOgsb8%3D21576263309311910.1101/gad.2039011 – reference: FengBReprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor EsrrbNat. Cell Biol.2009111972031:CAS:528:DC%2BD1MXht1Oqt78%3D1913696510.1038/ncb1827 – reference: YamaguchiSHiranoKNagataSTadaTSox2 expression effects on direct reprogramming efficiency as determined by alternative somatic cell fateStem Cell Res.201061771862113072210.1016/j.scr.2010.09.0041:CAS:528:DC%2BC3MXhvV2lsrg%3D – reference: TakahashiKMitsuiKYamanakaSRole of ERas in promoting tumour-like properties in mouse embryonic stem cellsNature20034235415451:CAS:528:DC%2BD3sXktVygtb8%3D1277412310.1038/nature01646 – reference: FrischerLEHagenFSGarberRLAn inversion that disrupts the Antennapedia gene causes abnormal structure and localization of RNAsCell198647101710231:CAS:528:DyaL2sXnvFGltQ%3D%3D243072310.1016/0092-8674(86)90816-0 – reference: ParkIHDisease-specific induced pluripotent stem cellsCell20081348778861:CAS:528:DC%2BD1cXhtFCqs7bK18691744263378110.1016/j.cell.2008.07.041 – reference: HongHSuppression of induced pluripotent stem cell generation by the p53–p21 pathwayNature2009460113211351:CAS:528:DC%2BD1MXps1ahsbc%3D19668191291723510.1038/nature08235 – reference: Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Naive and primed pluripotency. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2015.28 (2016). – reference: MiyazakiTLaminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cellsNat. Commun.2012312362321236510.1038/ncomms22311:CAS:528:DC%2BC3sXhsVCisLo%3D – reference: HockemeyerDEfficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleasesNat. Biotechnol.2009278518571:CAS:528:DC%2BD1MXpvFCrsL0%3D19680244414282410.1038/nbt.1562 – reference: PapapetrouEPStoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiationProc. Natl Acad. Sci. USA200910612759127641:CAS:528:DC%2BD1MXhtVKltrfF1954984710.1073/pnas.09048251062722286 – reference: DimosJTInduced pluripotent stem cells generated from patients with ALS can be differentiated into motor neuronsScience2008321121812211:CAS:528:DC%2BD1cXhtVGgt7zL1866982110.1126/science.1158799 – reference: MartinGRIsolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cellsProc. Natl Acad. Sci. USA198178763476381:STN:280:DyaL387ltV2htg%3D%3D695040634932310.1073/pnas.78.12.7634 – reference: NiwaHOgawaKShimosatoDAdachiKA parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cellsNature20094601181221:CAS:528:DC%2BD1MXotVSgu7Y%3D1957188510.1038/nature08113 – reference: BolandMJAdult mice generated from induced pluripotent stem cellsNature200946191941:CAS:528:DC%2BD1MXhtVygsbzE1967224310.1038/nature08310 – reference: Okumura-NakanishiSSaitoMNiwaHIshikawaFOct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cellsJ. Biol. Chem.2005280530753171:CAS:528:DC%2BD2MXhtlCmuro%3D1555733410.1074/jbc.M410015200 – reference: SoufiADonahueGZaretKSFacilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genomeCell201215199410041:CAS:528:DC%2BC38Xhs12gtbrL23159369350813410.1016/j.cell.2012.09.045 – reference: NicholsJSmithANaive and primed pluripotent statesCell Stem Cell200944874921:CAS:528:DC%2BD1MXnt1Ggt7c%3D10.1016/j.stem.2009.05.01519497275 – reference: WangQA novel xeno-free and feeder-cell-free system for human pluripotent stem cell cultureProtein Cell2012351591:CAS:528:DC%2BC3sXitVyht7g%3D22259120487521710.1007/s13238-012-2002-0 – reference: JudsonRLBabiarzJEVenereMBlellochREmbryonic stem cell-specific microRNAs promote induced pluripotencyNat. Biotechnol.2009274594611:CAS:528:DC%2BD1MXksVekt78%3D19363475274393010.1038/nbt.1535 – reference: StadtfeldMMaheraliNBreaultDTHochedlingerKDefining molecular cornerstones during fibroblast to iPS cell reprogramming in mouseCell Stem Cell200822302401:CAS:528:DC%2BD1cXjslegtrw%3D18371448353837910.1016/j.stem.2008.02.001 – reference: HouPPluripotent stem cells induced from mouse somatic cells by small-molecule compoundsScience20133416516541:CAS:528:DC%2BC3sXht1WqtbvO2386892010.1126/science.1239278 – reference: Avior, Y., Sagi, I. & Benvenisty, N. Pluripotent stem cells in disease modelling and drug testing. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2015.27 (2016). – reference: MiuraKVariation in the safety of induced pluripotent stem cell linesNat. Biotechnol.2009277437451:CAS:528:DC%2BD1MXotlSntbg%3D1959050210.1038/nbt.1554 – reference: NakagawaMGeneration of induced pluripotent stem cells without Myc from mouse and human fibroblastsNat. Biotechnol.2008261011061:CAS:528:DC%2BD1cXisFGmuw%3D%3D1805925910.1038/nbt1374 – reference: TsubookaNRoles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblastsGenes Cells2009146836941:CAS:528:DC%2BD1MXnvVCjs74%3D1947650710.1111/j.1365-2443.2009.01301.x – reference: KangLWangJZhangYKouZGaoSiPS cells can support full-term development of tetraploid blastocyst-complemented embryosCell Stem Cell200951351381:CAS:528:DC%2BD1MXhsVCiurfL1963160210.1016/j.stem.2009.07.001 – reference: WernigMMeissnerACassadyJPJaenischRc-Myc is dispensable for direct reprogramming of mouse fibroblastsCell Stem Cell2008210121:CAS:528:DC%2BD1cXhtFOltrc%3D10.1016/j.stem.2007.12.00118371415 – reference: XieWEpigenomic analysis of multilineage differentiation of human embryonic stem cellsCell2013153113411481:CAS:528:DC%2BC3sXnsVyrtLw%3D23664764378622010.1016/j.cell.2013.04.022 – reference: KobayashiYPre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicityPLoS ONE20127e527871:CAS:528:DC%2BC3sXnsVKmtw%3D%3D23300777353136910.1371/journal.pone.0052787 – reference: TanabeKNakamuraMNaritaMTakahashiKYamanakaSMaturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblastsProc. Natl Acad. Sci. USA201311012172121791:CAS:528:DC%2BC3sXht1emu73K2381274910.1073/pnas.13102911103725041 – reference: DunnSJMartelloGYordanovBEmmottSSmithAGDefining an essential transcription factor program for naive pluripotencyScience2014344115611601:CAS:528:DC%2BC2cXptVajtr8%3D24904165425706610.1126/science.1248882 – reference: SridharanRRole of the murine reprogramming factors in the induction of pluripotencyCell20091363643771:CAS:528:DC%2BD1MXhs1Kiu7s%3D19167336327349410.1016/j.cell.2009.01.001 – reference: AngYSWdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional networkCell20111451831971:CAS:528:DC%2BC3MXkvVGlsb8%3D21477851309746810.1016/j.cell.2011.03.003 – reference: KuzmichevANishiokaKErdjument-BromageHTempstPReinbergDHistone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste proteinGenes Dev.200216289329051:CAS:528:DC%2BD38XovVejsLY%3D1243563118747910.1101/gad.1035902 – reference: OkitaKNakagawaMHyenjongHIchisakaTYamanakaSGeneration of mouse induced pluripotent stem cells without viral vectorsScience20083229499531:CAS:528:DC%2BD1cXhtlaltLzO1884571210.1126/science.1164270 – reference: BrambrinkTSequential expression of pluripotency markers during direct reprogramming of mouse somatic cellsCell Stem Cell200821511591:CAS:528:DC%2BD1cXitlygtbw%3D18371436227662710.1016/j.stem.2008.01.004 – reference: MaHAbnormalities in human pluripotent cells due to reprogramming mechanismsNature20145111771831:CAS:528:DC%2BC2cXhtFehsLvM25008523489806410.1038/nature13551 – reference: YamanakaSElite and stochastic models for induced pluripotent stem cell generationNature200946049521:CAS:528:DC%2BD1MXotVSgu7c%3D1957187710.1038/nature08180 – reference: MikkelsenTSDissecting direct reprogramming through integrative genomic analysisNature20084547941:CAS:528:DC%2BD1cXps1Sms7k%3D10.1038/nature07196 – reference: ShuJInduction of pluripotency in mouse somatic cells with lineage specifiersCell20131539639751:CAS:528:DC%2BC3sXotlGjtrY%3D23706735464044510.1016/j.cell.2013.05.001 – reference: YamanakaSInduced pluripotent stem cells: past, present, and futureCell Stem Cell2012106786841:CAS:528:DC%2BC38XosFCiurc%3D10.1016/j.stem.2012.05.00522704507 – reference: PostlethwaitJHSchneidermanHAA clonal analysis of determination in Antennapedia, a homoeotic mutant of Drosophila melanogasterProc. Natl Acad. Sci. USA1969641761831:STN:280:DyaE3c7gtFCktw%3D%3D526300010.1073/pnas.64.1.176286144 – reference: ChengAMMammalian Grb2 regulates multiple steps in embryonic development and malignant transformationCell1998957938031:CAS:528:DyaK1MXivVKi986569710.1016/S0092-8674(00)81702-X – reference: YuJHuman induced pluripotent stem cells free of vector and transgene sequencesScience20093247978011:CAS:528:DC%2BD1MXlsVeksrk%3D19325077275805310.1126/science.1172482 – reference: OnderTTChromatin-modifying enzymes as modulators of reprogrammingNature20124835986021:CAS:528:DC%2BC38XjtFOgsro%3D22388813350114510.1038/nature10953 – reference: WilmutISchniekeAEMcWhirJKindAJCampbellKHViable offspring derived from fetal and adult mammalian cellsNature19973858108131:CAS:528:DyaK2sXhsFamsLs%3D10.1038/385810a09039911 – reference: SchneuwlySKuroiwaAGehringWJMolecular analysis of the dominant homeotic Antennapedia phenotypeEMBO J.198762012061:CAS:528:DyaL2sXhtFCmt7Y%3D1645374855337710.1002/j.1460-2075.1987.tb04739.x – reference: HengJCThe nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cellsCell Stem Cell201061671741:CAS:528:DC%2BC3cXlt1Knu7g%3D2009666110.1016/j.stem.2009.12.009 – reference: TakahashiKInduction of pluripotent stem cells from adult human fibroblasts by defined factorsCell20071318618721:CAS:528:DC%2BD2sXhsVCntbbK10.1016/j.cell.2007.11.01918035408 – reference: MoritaSKojimaTKitamuraTPlat-E: an efficient and stable system for transient packaging of retrovirusesGene Ther.20007106310661:CAS:528:DC%2BD3cXkt1amtr0%3D1087175610.1038/sj.gt.3301206 – reference: WeismannAThe Germ-Plasm: A Theory of Heredity1893 – reference: O'MalleyJHigh-resolution analysis with novel cell-surface markers identifies routes to iPS cellsNature201349988911:CAS:528:DC%2BC3sXosFWlsbs%3D23728301374302210.1038/nature12243 – reference: GoodellMANguyenHShroyerNSomatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartmentsNat. Rev. Mol. Cell Biol.2015162993091:CAS:528:DC%2BC2MXntFCitbY%3D25907613531720310.1038/nrm3980 – reference: HalderGCallaertsPGehringWJInduction of ectopic eyes by targeted expression of the eyeless gene in DrosophilaScience1995267178817921:CAS:528:DyaK2MXkslWgtL8%3D789260210.1126/science.7892602 – reference: OkitaKIchisakaTYamanakaSGeneration of germ-line competent induced pluripotent stem cellsNature20074483133171:CAS:528:DC%2BD2sXnvVeqsL0%3D10.1038/nature0593417554338 – reference: GafniODerivation of novel human ground state naive pluripotent stem cellsNature20135042822861:CAS:528:DC%2BC3sXhslSnsLbM10.1038/nature1274524172903 – reference: ChambersIFunctional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cellsCell20031136436551:CAS:528:DC%2BD3sXksFehur8%3D1278750510.1016/S0092-8674(03)00392-1 – reference: MatsudaTSTAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cellsEMBO J.199918426142691:CAS:528:DyaK1MXlt1GqsLg%3D10428964117150210.1093/emboj/18.15.4261 – reference: WangTThe histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent mannerCell Stem Cell201195755871:CAS:528:DC%2BC3MXhsFOns7jL2210041210.1016/j.stem.2011.10.005 – reference: LiRA mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblastsCell Stem Cell2010751631:CAS:528:DC%2BC3cXps12ktrk%3D2062105010.1016/j.stem.2010.04.014 – reference: WakayamaTPerryACZuccottiMJohnsonKRYanagimachiRFull-term development of mice from enucleated oocytes injected with cumulus cell nucleiNature19983943693741:CAS:528:DyaK1cXkvFKnsbs%3D969047110.1038/28615 – reference: HannaJDirect cell reprogramming is a stochastic process amenable to accelerationNature20094625956011:CAS:528:DC%2BD1MXhtlOrurjN19898493278997210.1038/nature08592 – reference: YamadaMHuman oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cellsNature20145105335361:CAS:528:DC%2BC2cXpslGitLs%3D2477680410.1038/nature13287 – reference: Trounson, A. & DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2016.10 (2016). – reference: StadtfeldMNagayaMUtikalJWeirGHochedlingerKInduced pluripotent stem cells generated without viral integrationScience20083229459491:CAS:528:DC%2BD1cXhtlaltLzN18818365398790910.1126/science.1162494 – reference: ParkIHReprogramming of human somatic cells to pluripotency with defined factorsNature20084511411461:CAS:528:DC%2BD1cXksVGhtQ%3D%3D1815711510.1038/nature06534 – reference: HuangfuDInduction of pluripotent stem cells by defined factors is greatly improved by small-molecule compoundsNat. Biotechnol.2008267957971:CAS:528:DC%2BD1cXot1entL0%3D18568017633464710.1038/nbt1418 – reference: DengJTargeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogrammingNat. Biotechnol.2009273533601:CAS:528:DC%2BD1MXjslartrk%3D19330000271527210.1038/nbt.1530 – reference: CareyBWReprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cellsCell Stem Cell201195885981:CAS:528:DC%2BC3MXhsFOns7jE2213693210.1016/j.stem.2011.11.003 – reference: WaddingtonCHThe Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology1957 – reference: ZhangJNuebelEDaleyGQKoehlerCMTeitellMAMetabolic regulation in pluripotent stem cells during reprogramming and self-renewalCell Stem Cell2012115895951:CAS:528:DC%2BC38Xhs1aqtr3P23122286349289010.1016/j.stem.2012.10.005 – reference: EvansMJKaufmanMHEstablishment in culture of pluripotential cells from mouse embryosNature19812921541561:STN:280:DyaL3M3itV2qsg%3D%3D724268110.1038/292154a0 – reference: ChoiJA comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCsNat. Biotechnol.201533117311811:CAS:528:DC%2BC2MXhslantL%2FI26501951484794010.1038/nbt.3388 – reference: PanopoulosADThe metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogrammingCell Res.20112216817722064701325249410.1038/cr.2011.1771:CAS:528:DC%2BC38Xks1CisQ%3D%3D – reference: SchneuwlySKlemenzRGehringWJRedesigning the body plan of Drosophila by ectopic expression of the homoeotic gene AntennapediaNature19873258168181:CAS:528:DyaL2sXhtlaqtro%3D382186910.1038/325816a0 – reference: FusakiNBanHNishiyamaASaekiKHasegawaMEfficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genomeProc. Jpn Acad. Ser. B Phys. Biol. Sci.2009853483621:CAS:528:DC%2BD1MXhsFejsrbN19838014362157110.2183/pjab.85.348 – reference: TakashimaYResetting transcription factor control circuitry toward ground-state pluripotency in humanCell2014158125412691:CAS:528:DC%2BC2cXhsFCgtLjN25215486416274510.1016/j.cell.2014.08.029 – reference: SchwartzSDEmbryonic stem cell trials for macular degeneration: a preliminary reportLancet20123797137201:CAS:528:DC%2BC38XivVels7s%3D2228138810.1016/S0140-6736(12)60028-2 – reference: YusaKRadRTakedaJBradleyAGeneration of transgene-free induced pluripotent mouse stem cells by the piggyBac transposonNat. Methods200963633691:CAS:528:DC%2BD1MXjsl2gtbg%3D19337237267716510.1038/nmeth.1323 – reference: TachibanaMHuman embryonic stem cells derived by somatic cell nuclear transferCell2013153122812381:CAS:528:DC%2BC3sXnsleqsro%3D23683578377278910.1016/j.cell.2013.05.006 – reference: ZhouQBrownJKanarekARajagopalJMeltonDAIn vivo reprogramming of adult pancreatic exocrine cells to β-cellsNature20084556276321:CAS:528:DC%2BD1cXhtF2hsbvI18754011901191810.1038/nature07314 – reference: LiangGTaranovaOXiaKZhangYButyrate promotes induced pluripotent stem cell generationJ. Biol. Chem.201028525516255211:CAS:528:DC%2BC3cXpslKjtLg%3D20554530291911510.1074/jbc.M110.142059 – reference: XieHYeMFengRGrafTStepwise reprogramming of B cells into macrophagesCell20041176636761:CAS:528:DC%2BD2cXkvVyhsrc%3D1516341310.1016/S0092-8674(04)00419-2 – reference: BergstromRStromSHolmFFekiAHovattaOXeno-free culture of human pluripotent stem cellsMethods Mol. Biol.20117671251362182287110.1007/978-1-61779-201-4_91:CAS:528:DC%2BC38XlslKgurw%3D – reference: ZhaoYTwo supporting factors greatly improve the efficiency of human iPSC generationCell Stem Cell200834754791:CAS:528:DC%2BD1cXhsVaqs77K1898396210.1016/j.stem.2008.10.002 – reference: LiHThe Ink4/Arf locus is a barrier for iPS cell reprogrammingNature2009460113611391:CAS:528:DC%2BD1MXps1ahtLg%3D19668188357818410.1038/nature08290 – reference: ZhouHGeneration of induced pluripotent stem cells using recombinant proteinsCell Stem Cell200943813841:CAS:528:DC%2BD1MXlvVGjtLw%3D1939839910.1016/j.stem.2009.04.005 – reference: TheunissenTWSystematic identification of culture conditions for induction and maintenance of naive human pluripotencyCell Stem Cell2014154714871:CAS:528:DC%2BC2cXht1agsL%2FN25090446418497710.1016/j.stem.2014.07.002 – reference: MitsuiKThe homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cellsCell20031136316421:CAS:528:DC%2BD3sXksFehur4%3D1278750410.1016/S0092-8674(03)00393-3 – reference: KawamuraTLinking the p53 tumour suppressor pathway to somatic cell reprogrammingNature2009460114011441:CAS:528:DC%2BD1MXps1ahuro%3D19668186273588910.1038/nature08311 – reference: StadtfeldMBrennandKHochedlingerKReprogramming of pancreatic β cells into induced pluripotent stem cellsCurr. Biol.2008188908941:CAS:528:DC%2BD1cXns1agu7w%3D18501604281922210.1016/j.cub.2008.05.010 – reference: TakahashiKYamanakaSInduction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factorsCell20061266636761:CAS:528:DC%2BD28Xpt1aktbs%3D10.1016/j.cell.2006.07.02416904174 – reference: FengBNgJHHengJCNgHHMolecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cellsCell Stem Cell200943013121:CAS:528:DC%2BD1MXltVeqsr0%3D1934162010.1016/j.stem.2009.03.005 – reference: CowanCAAtienzaJMeltonDAEgganKNuclear reprogramming of somatic cells after fusion with human embryonic stem cellsScience2005309136913731:CAS:528:DC%2BD2MXovVOjtLw%3D1612329910.1126/science.1116447 – reference: ChanEMLive cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cellsNat. Biotechnol.200927103310371:CAS:528:DC%2BD1MXht1GlsrjE1982640810.1038/nbt.1580 – reference: ChenGChemically defined conditions for human iPSC derivation and cultureNat. Methods201184244291:CAS:528:DC%2BC3MXksFWnt7o%3D21478862308490310.1038/nmeth.1593 – reference: CartwrightPLIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanismDevelopment20051328858961:CAS:528:DC%2BD2MXjtFCht7k%3D1567356910.1242/dev.01670 – reference: SilvaJPromotion of reprogramming to ground state pluripotency by signal inhibitionPLoS Biol.20086e25318942890257042410.1371/journal.pbio.00602531:CAS:528:DC%2BD1cXhtlKhsL%2FK – reference: ChungYGHuman somatic cell nuclear transfer using adult cellsCell Stem Cell2014147777801:CAS:528:DC%2BC2cXmsVCms78%3D2474667510.1016/j.stem.2014.03.015 – reference: ShinagawaTHistone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cellsCell Stem Cell2014142172271:CAS:528:DC%2BC2cXitV2ks78%3D2450688510.1016/j.stem.2013.12.015 – reference: YuJInduced pluripotent stem cell lines derived from human somatic cellsScience2007318191719201:CAS:528:DC%2BD2sXhsVGjsLbN1802945210.1126/science.1151526 – reference: DavisRLWeintraubHLassarABExpression of a single transfected cDNA converts fibroblasts to myoblastsCell19875198710001:CAS:528:DyaL1cXhvF2iurc%3D369066810.1016/0092-8674(87)90585-X – reference: OhnukiMDynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potentialProc. Natl Acad. Sci. USA201411112426124311:CAS:528:DC%2BC2cXht1Kkt7zO2509726610.1073/pnas.14132991114151758 – reference: ScottMPThe molecular organization of the Antennapedia locus of DrosophilaCell1983357637761:CAS:528:DyaL2cXotVKisg%3D%3D641838910.1016/0092-8674(83)90109-5 – reference: ThomsonJAEmbryonic stem cell lines derived from human blastocystsScience1998282114511471:CAS:528:DyaK1cXntleisLg%3D10.1126/science.282.5391.11459804556 – reference: HazelriggTKaufmanTCRevertants of dominant mutations associated with the Antennapedia gene complex of DROSOPHILA MELANOGASTER: cytology and geneticsGenetics19831055816001:STN:280:DC%2BC3crptFymuw%3D%3D172461681202175 – reference: ZhaoXYiPS cells produce viable mice through tetraploid complementationNature200946186901:CAS:528:DC%2BD1MXhtVygsLfF1967224110.1038/nature08267 – reference: MarionRMA p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrityNature2009460114911531:CAS:528:DC%2BD1MXps1ahtrY%3D19668189362408910.1038/nature08287 – reference: HanJTbx3 improves the germ-line competency of induced pluripotent stem cellsNature2010463109611001:CAS:528:DC%2BC3cXhs1Omu7Y%3D20139965290179710.1038/nature08735 – reference: PoloJMA molecular roadmap of reprogramming somatic cells into iPS cellsCell2012151161716321:CAS:528:DC%2BC38XhvVylsrbK23260147360820310.1016/j.cell.2012.11.039 – reference: HannaJDirect reprogramming of terminally differentiated mature B lymphocytes to pluripotencyCell20081332502641:CAS:528:DC%2BD1cXltlWnu78%3D18423197261524910.1016/j.cell.2008.03.028 – reference: HannaJTreatment of sickle cell anemia mouse model with iPS cells generated from autologous skinScience2007318192019231:CAS:528:DC%2BD2sXhsVGjsLbP1806375610.1126/science.1152092 – reference: KimDGeneration of human induced pluripotent stem cells by direct delivery of reprogramming proteinsCell Stem Cell200944724761:CAS:528:DC%2BD1MXnt1Ggt7o%3D19481515270532710.1016/j.stem.2009.05.005 – reference: WernigMA drug-inducible transgenic system for direct reprogramming of multiple somatic cell typesNat. Biotechnol.2008269169241:CAS:528:DC%2BD1cXps1Wmtbc%3D18594521265426910.1038/nbt1483 – reference: MontserratNReprogramming of human fibroblasts to pluripotency with lineage specifiersCell Stem Cell2013133413501:CAS:528:DC%2BC3sXhtFChu7zK2387160610.1016/j.stem.2013.06.019 – reference: RajalaKA defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cellsPLoS ONE20105e1024620419109285668810.1371/journal.pone.00102461:CAS:528:DC%2BC3cXlt1yrt78%3D – reference: OkitaKA more efficient method to generate integration-free human iPS cellsNat. Methods201184094121:CAS:528:DC%2BC3MXktFahtrc%3D2146082310.1038/nmeth.1591 – reference: MaliPButyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genesStem Cells2010287137201:CAS:528:DC%2BC3cXms1yisL8%3D20201064301521710.1002/stem.402 – reference: BuganimYFaddahDAJaenischRMechanisms and models of somatic cell reprogrammingNat. Rev. Genet.2013144274391:CAS:528:DC%2BC3sXnslahsbk%3D23681063406015010.1038/nrg3473 – reference: Koyanagi-AoiMDifferentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cellsProc. Natl Acad. Sci. USA201311020569205741:CAS:528:DC%2BC2cXnsVOmug%3D%3D2425971410.1073/pnas.13190611103870695 – reference: TakagiNYoshidaMASugawaraOSasakiMReversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitroCell198334105310621:STN:280:DyaL2c%2Fis1CksA%3D%3D662739110.1016/0092-8674(83)90563-9 – reference: ChenHReinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotencyNat. Commun.2015670951:CAS:528:DC%2BC2MXhtF2kt73F2596805410.1038/ncomms8095 – reference: BurdonTChambersIStraceyCNiwaHSmithASignaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cellsCells Tissues Organs19991651311431:CAS:528:DyaK1MXotVyrt70%3D1059238510.1159/000016693 – reference: HannaJHuman embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCsProc. Natl Acad. Sci. USA2010107922292271:CAS:528:DC%2BC3cXmslWru7k%3D10.1073/pnas.1004584107204423312889088 – reference: EdelMJRem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1Genes Dev.2010245615731:CAS:528:DC%2BC3cXktFOksrc%3D20231315284133410.1101/gad.1876710 – reference: UtikalJImmortalization eliminates a roadblock during cellular reprogramming into iPS cellsNature2009460114511481:CAS:528:DC%2BD1MXps1ags78%3D19668190398789210.1038/nature08285 – reference: TomiokaMIdentification of Sox-2 regulatory region which is under the control of Oct-3/4–Sox-2 complexNucleic Acids Res.200230320232131:CAS:528:DC%2BD38Xlslyjsrc%3D1213610213575510.1093/nar/gkf435 – reference: GrowEJIntrinsic retroviral reactivation in human preimplantation embryos and pluripotent cellsNature20155222212251:CAS:528:DC%2BC2MXnsVWrtLY%3D25896322450337910.1038/nature14308 – reference: VierbuchenTDirect conversion of fibroblasts to functional neurons by defined factorsNature2010463103510411:CAS:528:DC%2BC3cXhtFCgsr0%3D20107439282912110.1038/nature08797 – reference: GurdonJBThe developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpolesJ. Embryol. Exp. Morphol.1962106226401:STN:280:DyaF387ktlSmtQ%3D%3D13951335 – reference: WernigMNeurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's diseaseProc. Natl Acad. Sci. USA2008105585658611:CAS:528:DC%2BD1cXltVyis70%3D1839119610.1073/pnas.08016771052311361 – reference: NishimuraKDevelopment of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogrammingJ. Biol. Chem.20102864760477121138846303934610.1074/jbc.M110.1837801:CAS:528:DC%2BC3MXhsFGlu74%3D – reference: HoughSRSingle-cell gene expression profiles define self-renewing, pluripotent, and lineage primed states of human pluripotent stem cellsStem Cell Rep.201428818951:CAS:528:DC%2BC2cXhtVWmt7vJ10.1016/j.stemcr.2014.04.014 – reference: SmithAGInhibition of pluripotential embryonic stem cell differentiation by purified polypeptidesNature19883366886901:CAS:528:DyaL1MXntlKitw%3D%3D314391710.1038/336688a0 – reference: DingXThe polycomb protein Ezh2 impacts on induced pluripotent stem cell generationStem Cells Dev.2014239319401:CAS:528:DC%2BC2cXntVemtL4%3D2432531910.1089/scd.2013.0267 – reference: TadaMTakahamaYAbeKNakatsujiNTadaTNuclear reprogramming of somatic cells by in vitro hybridization with ES cellsCurr. Biol.200111155315581:CAS:528:DC%2BD3MXnsF2ms7g%3D1159132610.1016/S0960-9822(01)00459-6 – reference: BlauHMChiuCPWebsterCCytoplasmic activation of human nuclear genes in stable heterocaryonsCell198332117111801:CAS:528:DyaL3sXhvFGls74%3D683935910.1016/0092-8674(83)90300-8 – reference: ChanYSInduction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblastCell Stem Cell2013136636751:CAS:528:DC%2BC3sXhvFymu73J10.1016/j.stem.2013.11.01524315441 – reference: JiangJA core Klf circuitry regulates self-renewal of embryonic stem cellsNat. Cell Biol.2008103533601826408910.1038/ncb16981:CAS:528:DC%2BD1cXislaks7k%3D – reference: NiwaHBurdonTChambersISmithASelf-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3Genes Dev.199812204820601:CAS:528:DyaK1cXksFygtbk%3D964950831695410.1101/gad.12.13.2048 – reference: WorringerKAThe let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genesCell Stem Cell201314405224239284398231210.1016/j.stem.2013.11.0011:CAS:528:DC%2BC3sXhsl2jsrnF – reference: JiaFA nonviral minicircle vector for deriving human iPS cellsNat. Methods201071971991:CAS:528:DC%2BC3cXhs1Omtb8%3D20139967289289710.1038/nmeth.1426 – reference: GurdonJBElsdaleTRFischbergMSexually mature individuals of Xenopus laevis from the transplantation of single somatic nucleiNature195818264651:STN:280:DyaG1c7gvFejsA%3D%3D10.1038/182064a013566187 – reference: Picanco-CastroVPluripotent reprogramming of fibroblasts by lentiviral-mediated insertion of SOX2, C-MYC and TCL-1AStem Cells Dev.2010201691802050415110.1089/scd.2009.04241:CAS:528:DC%2BC3MXhtVanuw%3D%3D – reference: HuXTet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogrammingCell Stem Cell2014145125221:CAS:528:DC%2BC2cXisFChs74%3D10.1016/j.stem.2014.01.00124529596 – reference: RossPJHuman induced pluripotent stem cells produced under xeno-free conditionsStem Cells Dev.2009191221122910.1089/scd.2009.04591:CAS:528:DC%2BC3cXhtVejs77M – reference: JohannessonBComparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factorsCell Stem Cell2014156346421:CAS:528:DC%2BC2cXhslGnsbvP2551746710.1016/j.stem.2014.10.002 – reference: TokuzawaYFbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse developmentMol. Cell. Biol.200323269927081:CAS:528:DC%2BD3sXktV2lsbg%3D1266557215254410.1128/MCB.23.8.2699-2708.2003 – reference: YingQLThe ground state of embryonic stem cell self-renewalNature20084535195231:CAS:528:DC%2BD1cXmt1Ortbg%3D18497825532867810.1038/nature06968 – reference: OsafuneKMarked differences in differentiation propensity among human embryonic stem cell linesNat. Biotechnol.2008263133151:CAS:528:DC%2BD1cXjsVGit78%3D1827803410.1038/nbt1383 – reference: KulessaHFramptonJGrafTGATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblastsGenes Dev.19959125012621:CAS:528:DyaK2MXlvFShsLg%3D775894910.1101/gad.9.10.1250 – reference: NakagawaMTakizawaNNaritaMIchisakaTYamanakaSPromotion of direct reprogramming by transformation-deficient MycProc. Natl Acad. Sci. USA201010714152141571:CAS:528:DC%2BC3cXhtVClsr3O2066076410.1073/pnas.10093741072922531 – reference: BurdonTStraceyCChambersINicholsJSmithASuppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cellsDev. Biol.199921030431:CAS:528:DyaK1MXjs1Gntr4%3D1036442510.1006/dbio.1999.9265 – reference: BanitoASenescence impairs successful reprogramming to pluripotent stem cellsGenes Dev.200923213421391:CAS:528:DC%2BD1MXht1ersbrL19696146275198010.1101/gad.1811609 – reference: WernigMIn vitro reprogramming of fibroblasts into a pluripotent ES cell-like stateNature20074483183241:CAS:528:DC%2BD2sXnvVeqsLg%3D10.1038/nature0594417554336 – reference: Samavarchi-TehraniPFunctional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogrammingCell Stem Cell2010764771:CAS:528:DC%2BC3cXps12ktrY%3D10.1016/j.stem.2010.04.01520621051 – reference: CacchiarelliDIntegrative analyses of human reprogramming reveal dynamic nature of induced pluripotencyCell20151624124241:CAS:528:DC%2BC2MXht1KgtL3K26186193451159710.1016/j.cell.2015.06.016 – reference: WarrenLHighly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNACell Stem Cell201076186301:CAS:528:DC%2BC3cXhtlKhtbrE20888316365682110.1016/j.stem.2010.08.012 – reference: YangJStat3 activation is limiting for reprogramming to ground state pluripotencyCell Stem Cell201073193281:CAS:528:DC%2BC3cXhtVyrurnF20804969345909810.1016/j.stem.2010.06.022 – reference: TsujiOTherapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injuryProc. Natl Acad. Sci. USA201010712704127091:CAS:528:DC%2BC3cXpt1Shurk%3D2061597410.1073/pnas.09101061072906548 – reference: BuganimYSingle-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phaseCell2012150120912221:CAS:528:DC%2BC38XhtlKrs7vM22980981345765610.1016/j.cell.2012.08.023 – reference: MaheraliNDirectly reprogrammed fibroblasts show global epigenetic remodelling and widespread tissue contributionCell Stem Cell2007155701:CAS:528:DC%2BD2sXptV2rs74%3D1837133610.1016/j.stem.2007.05.014 – reference: NarsinhKHSingle cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cellsJ. Clin. Invest.2011121121712211:CAS:528:DC%2BC3MXjtVWku7s%3D21317531304938910.1172/JCI44635 – reference: NakagawaMA novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cellsSci. Rep.20144359424399248388422810.1038/srep03594 – reference: Smith, Z. D., Sindhu, C. & Meissner, A. Molecular features of cellular reprogramming and development. Nat. Rev. Mol. Cell Biol.http://dx.doi.org/10.1038/nrm.2016.6 (2016). – reference: TakahashiKInduction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendodermNat. Commun.2014536781:CAS:528:DC%2BC2cXitVShsLrF2475983610.1038/ncomms4678 – reference: WoltjenKpiggyBac transposition reprograms fibroblasts to induced pluripotent stem cellsNature20094587667701:CAS:528:DC%2BD1MXisVOrtr0%3D19252478375899610.1038/nature07863 – reference: KajiKVirus-free induction of pluripotency and subsequent excision of reprogramming factorsNature20094587717751:CAS:528:DC%2BD1MXisVOrtbk%3D19252477266791010.1038/nature07864 – reference: WareCBDerivation of naive human embryonic stem cellsProc. Natl Acad. Sci. USA2014111448444891:CAS:528:DC%2BC2cXkt1Smsb4%3D2462385510.1073/pnas.13197381113970494 – reference: SatoNMeijerLSkaltsounisLGreengardPBrivanlouAHMaintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitorNat. Med.20041055631:CAS:528:DC%2BD2cXlsFGm1470263510.1038/nm979 – reference: KimSIKLF4 N-terminal variance modulates induced reprogramming to pluripotencyStem Cell Rep.201547277431:CAS:528:DC%2BC2MXktlyjt7c%3D10.1016/j.stemcr.2015.02.004 – volume: 150 start-page: 1209 year: 2012 ident: BFnrm20168_CR57 publication-title: Cell doi: 10.1016/j.cell.2012.08.023 – volume: 11 start-page: 589 year: 2012 ident: BFnrm20168_CR85 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.10.005 – volume: 151 start-page: 1617 year: 2012 ident: BFnrm20168_CR88 publication-title: Cell doi: 10.1016/j.cell.2012.11.039 – volume: 7 start-page: 64 year: 2010 ident: BFnrm20168_CR82 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.015 – volume: 106 start-page: 12759 year: 2009 ident: BFnrm20168_CR101 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0904825106 – volume: 460 start-page: 49 year: 2009 ident: BFnrm20168_CR77 publication-title: Nature doi: 10.1038/nature08180 – volume: 8 start-page: 409 year: 2011 ident: BFnrm20168_CR110 publication-title: Nat. Methods doi: 10.1038/nmeth.1591 – volume: 4 start-page: 487 year: 2009 ident: BFnrm20168_CR132 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.015 – volume: 136 start-page: 364 year: 2009 ident: BFnrm20168_CR90 publication-title: Cell doi: 10.1016/j.cell.2009.01.001 – volume: 511 start-page: 177 year: 2014 ident: BFnrm20168_CR152 publication-title: Nature doi: 10.1038/nature13551 – volume: 499 start-page: 88 year: 2013 ident: BFnrm20168_CR94 publication-title: Nature doi: 10.1038/nature12243 – volume: 210 start-page: 30 year: 1999 ident: BFnrm20168_CR32 publication-title: Dev. Biol. doi: 10.1006/dbio.1999.9265 – volume-title: The Germ-Plasm: A Theory of Heredity year: 1893 ident: BFnrm20168_CR1 doi: 10.5962/bhl.title.168967 – volume: 26 start-page: 101 year: 2008 ident: BFnrm20168_CR44 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1374 – volume: 14 start-page: 512 year: 2014 ident: BFnrm20168_CR76 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.01.001 – volume: 282 start-page: 1145 year: 1998 ident: BFnrm20168_CR165 publication-title: Science doi: 10.1126/science.282.5391.1145 – volume: 4 start-page: 3594 year: 2014 ident: BFnrm20168_CR125 publication-title: Sci. Rep. doi: 10.1038/srep03594 – volume: 460 start-page: 1132 year: 2009 ident: BFnrm20168_CR62 publication-title: Nature doi: 10.1038/nature08235 – volume: 113 start-page: 631 year: 2003 ident: BFnrm20168_CR24 publication-title: Cell doi: 10.1016/S0092-8674(03)00393-3 – volume: 461 start-page: 86 year: 2009 ident: BFnrm20168_CR146 publication-title: Nature doi: 10.1038/nature08267 – volume: 5 start-page: 3678 year: 2014 ident: BFnrm20168_CR96 publication-title: Nat. Commun. doi: 10.1038/ncomms4678 – volume: 458 start-page: 771 year: 2009 ident: BFnrm20168_CR112 publication-title: Nature doi: 10.1038/nature07864 – volume: 121 start-page: 1217 year: 2011 ident: BFnrm20168_CR142 publication-title: J. Clin. Invest. doi: 10.1172/JCI44635 – volume: 14 start-page: 683 year: 2009 ident: BFnrm20168_CR48 publication-title: Genes Cells doi: 10.1111/j.1365-2443.2009.01301.x – volume: 483 start-page: 598 year: 2012 ident: BFnrm20168_CR73 publication-title: Nature doi: 10.1038/nature10953 – volume: 18 start-page: 4261 year: 1999 ident: BFnrm20168_CR28 publication-title: EMBO J. doi: 10.1093/emboj/18.15.4261 – volume: 47 start-page: 1017 year: 1986 ident: BFnrm20168_CR18 publication-title: Cell doi: 10.1016/0092-8674(86)90816-0 – volume: 4 start-page: 727 year: 2015 ident: BFnrm20168_CR105 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2015.02.004 – volume: 2 start-page: 881 year: 2014 ident: BFnrm20168_CR143 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2014.04.014 – volume: 3 start-page: 1236 year: 2012 ident: BFnrm20168_CR124 publication-title: Nat. Commun. doi: 10.1038/ncomms2231 – volume: 15 start-page: 471 year: 2014 ident: BFnrm20168_CR136 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.07.002 – volume: 13 start-page: 663 year: 2013 ident: BFnrm20168_CR140 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.11.015 – volume: 85 start-page: 348 year: 2009 ident: BFnrm20168_CR115 publication-title: Proc. Jpn Acad. Ser. B Phys. Biol. Sci. doi: 10.2183/pjab.85.348 – volume: 107 start-page: 12704 year: 2010 ident: BFnrm20168_CR129 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0910106107 – volume: 2 start-page: 230 year: 2008 ident: BFnrm20168_CR92 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.02.001 – volume: 111 start-page: 4484 year: 2014 ident: BFnrm20168_CR139 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1319738111 – volume: 292 start-page: 154 year: 1981 ident: BFnrm20168_CR5 publication-title: Nature doi: 10.1038/292154a0 – volume: 110 start-page: 12172 year: 2013 ident: BFnrm20168_CR43 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1310291110 – volume: 14 start-page: 40 year: 2013 ident: BFnrm20168_CR54 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.11.001 – volume: 318 start-page: 1920 year: 2007 ident: BFnrm20168_CR127 publication-title: Science doi: 10.1126/science.1152092 – volume: 321 start-page: 1218 year: 2008 ident: BFnrm20168_CR168 publication-title: Science doi: 10.1126/science.1158799 – volume: 9 start-page: 575 year: 2011 ident: BFnrm20168_CR72 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.10.005 – volume: 451 start-page: 141 year: 2008 ident: BFnrm20168_CR161 publication-title: Nature doi: 10.1038/nature06534 – volume: 28 start-page: 713 year: 2010 ident: BFnrm20168_CR68 publication-title: Stem Cells doi: 10.1002/stem.402 – volume: 14 start-page: 217 year: 2014 ident: BFnrm20168_CR74 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.12.015 – volume: 107 start-page: 14152 year: 2010 ident: BFnrm20168_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1009374107 – volume: 133 start-page: 250 year: 2008 ident: BFnrm20168_CR79 publication-title: Cell doi: 10.1016/j.cell.2008.03.028 – volume: 2 start-page: 10 year: 2008 ident: BFnrm20168_CR167 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.12.001 – volume-title: The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology year: 1957 ident: BFnrm20168_CR2 – volume: 8 start-page: 424 year: 2011 ident: BFnrm20168_CR120 publication-title: Nat. Methods doi: 10.1038/nmeth.1593 – volume: 10 start-page: 353 year: 2008 ident: BFnrm20168_CR45 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1698 – volume: 182 start-page: 64 year: 1958 ident: BFnrm20168_CR3 publication-title: Nature doi: 10.1038/182064a0 – volume: 64 start-page: 176 year: 1969 ident: BFnrm20168_CR16 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.64.1.176 – volume: 522 start-page: 221 year: 2015 ident: BFnrm20168_CR100 publication-title: Nature doi: 10.1038/nature14308 – volume: 321 start-page: 699 year: 2008 ident: BFnrm20168_CR80 publication-title: Science doi: 10.1126/science.1154884 – volume: 309 start-page: 1369 year: 2005 ident: BFnrm20168_CR12 publication-title: Science doi: 10.1126/science.1116447 – volume: 7 start-page: 197 year: 2010 ident: BFnrm20168_CR111 publication-title: Nat. Methods doi: 10.1038/nmeth.1426 – volume: 5 start-page: 135 year: 2009 ident: BFnrm20168_CR144 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.07.001 – volume: 113 start-page: 643 year: 2003 ident: BFnrm20168_CR25 publication-title: Cell doi: 10.1016/S0092-8674(03)00392-1 – ident: BFnrm20168_CR133 doi: 10.1038/nrm.2015.28 – volume: 14 start-page: 777 year: 2014 ident: BFnrm20168_CR150 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.03.015 – volume: 394 start-page: 369 year: 1998 ident: BFnrm20168_CR8 publication-title: Nature doi: 10.1038/28615 – volume: 78 start-page: 7634 year: 1981 ident: BFnrm20168_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.78.12.7634 – volume: 15 start-page: 634 year: 2014 ident: BFnrm20168_CR153 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.10.002 – volume: 3 start-page: 475 year: 2008 ident: BFnrm20168_CR49 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.10.002 – volume: 158 start-page: 1254 year: 2014 ident: BFnrm20168_CR135 publication-title: Cell doi: 10.1016/j.cell.2014.08.029 – volume: 26 start-page: 916 year: 2008 ident: BFnrm20168_CR104 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1483 – volume: 10 start-page: 678 year: 2012 ident: BFnrm20168_CR147 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.05.005 – volume: 22 start-page: 168 year: 2011 ident: BFnrm20168_CR84 publication-title: Cell Res. doi: 10.1038/cr.2011.177 – volume: 153 start-page: 1134 year: 2013 ident: BFnrm20168_CR99 publication-title: Cell doi: 10.1016/j.cell.2013.04.022 – volume: 6 start-page: 177 year: 2010 ident: BFnrm20168_CR102 publication-title: Stem Cell Res. doi: 10.1016/j.scr.2010.09.004 – volume: 5 start-page: e10246 year: 2010 ident: BFnrm20168_CR126 publication-title: PLoS ONE doi: 10.1371/journal.pone.0010246 – ident: BFnrm20168_CR174 doi: 10.1038/nrm.2016.6 – volume: 7 start-page: 51 year: 2010 ident: BFnrm20168_CR83 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.014 – volume: 19 start-page: 1221 year: 2009 ident: BFnrm20168_CR123 publication-title: Stem Cells Dev. doi: 10.1089/scd.2009.0459 – volume: 463 start-page: 1035 year: 2010 ident: BFnrm20168_CR172 publication-title: Nature doi: 10.1038/nature08797 – volume: 110 start-page: 20569 year: 2013 ident: BFnrm20168_CR156 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1319061110 – volume: 11 start-page: 1553 year: 2001 ident: BFnrm20168_CR11 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00459-6 – volume: 460 start-page: 1140 year: 2009 ident: BFnrm20168_CR58 publication-title: Nature doi: 10.1038/nature08311 – volume: 26 start-page: 313 year: 2008 ident: BFnrm20168_CR148 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1383 – volume: 126 start-page: 663 year: 2006 ident: BFnrm20168_CR39 publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 385 start-page: 810 year: 1997 ident: BFnrm20168_CR7 publication-title: Nature doi: 10.1038/385810a0 – volume: 6 start-page: 7095 year: 2015 ident: BFnrm20168_CR141 publication-title: Nat. Commun. doi: 10.1038/ncomms8095 – volume: 51 start-page: 987 year: 1987 ident: BFnrm20168_CR13 publication-title: Cell doi: 10.1016/0092-8674(87)90585-X – volume: 165 start-page: 131 year: 1999 ident: BFnrm20168_CR33 publication-title: Cells Tissues Organs doi: 10.1159/000016693 – volume: 145 start-page: 183 year: 2011 ident: BFnrm20168_CR69 publication-title: Cell doi: 10.1016/j.cell.2011.03.003 – volume: 3 start-page: 51 year: 2012 ident: BFnrm20168_CR121 publication-title: Protein Cell doi: 10.1007/s13238-012-2002-0 – volume: 460 start-page: 1149 year: 2009 ident: BFnrm20168_CR60 publication-title: Nature doi: 10.1038/nature08287 – ident: BFnrm20168_CR23 doi: 10.1038/nrm.2015.27 – volume: 14 start-page: 427 year: 2013 ident: BFnrm20168_CR65 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3473 – volume: 285 start-page: 25516 year: 2010 ident: BFnrm20168_CR67 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.142059 – volume: 2 start-page: 151 year: 2008 ident: BFnrm20168_CR93 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.01.004 – volume: 132 start-page: 885 year: 2005 ident: BFnrm20168_CR30 publication-title: Development doi: 10.1242/dev.01670 – volume: 322 start-page: 945 year: 2008 ident: BFnrm20168_CR108 publication-title: Science doi: 10.1126/science.1162494 – volume: 767 start-page: 125 year: 2011 ident: BFnrm20168_CR122 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-201-4_9 – volume: 460 start-page: 1145 year: 2009 ident: BFnrm20168_CR61 publication-title: Nature doi: 10.1038/nature08285 – volume: 448 start-page: 313 year: 2007 ident: BFnrm20168_CR107 publication-title: Nature doi: 10.1038/nature05934 – volume: 344 start-page: 1156 year: 2014 ident: BFnrm20168_CR56 publication-title: Science doi: 10.1126/science.1248882 – volume: 504 start-page: 282 year: 2013 ident: BFnrm20168_CR138 publication-title: Nature doi: 10.1038/nature12745 – volume: 151 start-page: 994 year: 2012 ident: BFnrm20168_CR89 publication-title: Cell doi: 10.1016/j.cell.2012.09.045 – volume: 379 start-page: 713 year: 2012 ident: BFnrm20168_CR157 publication-title: Lancet doi: 10.1016/S0140-6736(12)60028-2 – volume: 111 start-page: 12426 year: 2014 ident: BFnrm20168_CR98 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1413299111 – volume: 27 start-page: 459 year: 2009 ident: BFnrm20168_CR53 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1535 – volume: 27 start-page: 353 year: 2009 ident: BFnrm20168_CR87 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1530 – volume: 23 start-page: 2699 year: 2003 ident: BFnrm20168_CR35 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.8.2699-2708.2003 – volume: 4 start-page: 301 year: 2009 ident: BFnrm20168_CR91 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.03.005 – volume: 153 start-page: 963 year: 2013 ident: BFnrm20168_CR106 publication-title: Cell doi: 10.1016/j.cell.2013.05.001 – volume: 27 start-page: 851 year: 2009 ident: BFnrm20168_CR131 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1562 – volume: 23 start-page: 2134 year: 2009 ident: BFnrm20168_CR63 publication-title: Genes Dev. doi: 10.1101/gad.1811609 – volume: 9 start-page: 1250 year: 1995 ident: BFnrm20168_CR14 publication-title: Genes Dev. doi: 10.1101/gad.9.10.1250 – volume: 25 start-page: 1035 year: 2011 ident: BFnrm20168_CR75 publication-title: Genes Dev. doi: 10.1101/gad.2039011 – volume: 455 start-page: 627 year: 2008 ident: BFnrm20168_CR171 publication-title: Nature doi: 10.1038/nature07314 – volume: 510 start-page: 533 year: 2014 ident: BFnrm20168_CR151 publication-title: Nature doi: 10.1038/nature13287 – volume: 30 start-page: 3202 year: 2002 ident: BFnrm20168_CR36 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf435 – volume: 6 start-page: e253 year: 2008 ident: BFnrm20168_CR164 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060253 – ident: BFnrm20168_CR158 doi: 10.1038/nrm.2016.10 – volume: 267 start-page: 1788 year: 1995 ident: BFnrm20168_CR22 publication-title: Science doi: 10.1126/science.7892602 – volume: 324 start-page: 797 year: 2009 ident: BFnrm20168_CR42 publication-title: Science doi: 10.1126/science.1172482 – volume: 462 start-page: 595 year: 2009 ident: BFnrm20168_CR162 publication-title: Nature doi: 10.1038/nature08592 – volume: 105 start-page: 581 year: 1983 ident: BFnrm20168_CR21 publication-title: Genetics doi: 10.1093/genetics/105.3.581 – volume: 460 start-page: 1136 year: 2009 ident: BFnrm20168_CR59 publication-title: Nature doi: 10.1038/nature08290 – volume: 11 start-page: 197 year: 2009 ident: BFnrm20168_CR50 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1827 – volume: 286 start-page: 4760 year: 2010 ident: BFnrm20168_CR116 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.183780 – volume: 9 start-page: 588 year: 2011 ident: BFnrm20168_CR103 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.11.003 – volume: 7 start-page: 618 year: 2010 ident: BFnrm20168_CR117 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.08.012 – volume: 10 start-page: 622 year: 1962 ident: BFnrm20168_CR4 publication-title: J. Embryol. Exp. Morphol. – volume: 35 start-page: 763 year: 1983 ident: BFnrm20168_CR20 publication-title: Cell doi: 10.1016/0092-8674(83)90109-5 – volume: 153 start-page: 1228 year: 2013 ident: BFnrm20168_CR149 publication-title: Cell doi: 10.1016/j.cell.2013.05.006 – volume: 95 start-page: 793 year: 1998 ident: BFnrm20168_CR34 publication-title: Cell doi: 10.1016/S0092-8674(00)81702-X – volume: 461 start-page: 91 year: 2009 ident: BFnrm20168_CR145 publication-title: Nature doi: 10.1038/nature08310 – volume: 33 start-page: 1173 year: 2015 ident: BFnrm20168_CR154 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3388 – volume: 6 start-page: 167 year: 2010 ident: BFnrm20168_CR52 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.12.009 – volume: 16 start-page: 2893 year: 2002 ident: BFnrm20168_CR70 publication-title: Genes Dev. doi: 10.1101/gad.1035902 – volume: 448 start-page: 318 year: 2007 ident: BFnrm20168_CR159 publication-title: Nature doi: 10.1038/nature05944 – volume: 134 start-page: 877 year: 2008 ident: BFnrm20168_CR169 publication-title: Cell doi: 10.1016/j.cell.2008.07.041 – volume: 10 start-page: 55 year: 2004 ident: BFnrm20168_CR31 publication-title: Nat. Med. doi: 10.1038/nm979 – volume: 325 start-page: 816 year: 1987 ident: BFnrm20168_CR17 publication-title: Nature doi: 10.1038/325816a0 – volume: 117 start-page: 663 year: 2004 ident: BFnrm20168_CR15 publication-title: Cell doi: 10.1016/S0092-8674(04)00419-2 – volume: 23 start-page: 931 year: 2014 ident: BFnrm20168_CR71 publication-title: Stem Cells Dev. doi: 10.1089/scd.2013.0267 – volume: 453 start-page: 519 year: 2008 ident: BFnrm20168_CR134 publication-title: Nature doi: 10.1038/nature06968 – volume: 162 start-page: 412 year: 2015 ident: BFnrm20168_CR97 publication-title: Cell doi: 10.1016/j.cell.2015.06.016 – volume: 27 start-page: 1033 year: 2009 ident: BFnrm20168_CR95 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1580 – volume: 4 start-page: 472 year: 2009 ident: BFnrm20168_CR118 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.005 – volume: 463 start-page: 1096 year: 2010 ident: BFnrm20168_CR47 publication-title: Nature doi: 10.1038/nature08735 – volume: 7 start-page: e52787 year: 2012 ident: BFnrm20168_CR130 publication-title: PLoS ONE doi: 10.1371/journal.pone.0052787 – volume: 7 start-page: 1063 year: 2000 ident: BFnrm20168_CR38 publication-title: Gene Ther. doi: 10.1038/sj.gt.3301206 – volume: 1 start-page: 55 year: 2007 ident: BFnrm20168_CR160 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.05.014 – volume: 11 start-page: 477 year: 2012 ident: BFnrm20168_CR55 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.08.002 – volume: 6 start-page: 363 year: 2009 ident: BFnrm20168_CR114 publication-title: Nat. Methods doi: 10.1038/nmeth.1323 – volume: 107 start-page: 9222 year: 2010 ident: BFnrm20168_CR137 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1004584107 – volume: 13 start-page: 341 year: 2013 ident: BFnrm20168_CR173 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.06.019 – volume: 18 start-page: 890 year: 2008 ident: BFnrm20168_CR81 publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.05.010 – volume: 322 start-page: 949 year: 2008 ident: BFnrm20168_CR109 publication-title: Science doi: 10.1126/science.1164270 – volume: 458 start-page: 766 year: 2009 ident: BFnrm20168_CR113 publication-title: Nature doi: 10.1038/nature07863 – volume: 27 start-page: 743 year: 2009 ident: BFnrm20168_CR155 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1554 – volume: 460 start-page: 118 year: 2009 ident: BFnrm20168_CR29 publication-title: Nature doi: 10.1038/nature08113 – volume: 6 start-page: 201 year: 1987 ident: BFnrm20168_CR19 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1987.tb04739.x – volume: 105 start-page: 5856 year: 2008 ident: BFnrm20168_CR128 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0801677105 – volume: 318 start-page: 1917 year: 2007 ident: BFnrm20168_CR41 publication-title: Science doi: 10.1126/science.1151526 – volume: 423 start-page: 541 year: 2003 ident: BFnrm20168_CR166 publication-title: Nature doi: 10.1038/nature01646 – volume: 336 start-page: 688 year: 1988 ident: BFnrm20168_CR26 publication-title: Nature doi: 10.1038/336688a0 – volume: 7 start-page: 319 year: 2010 ident: BFnrm20168_CR163 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.06.022 – volume: 32 start-page: 1171 year: 1983 ident: BFnrm20168_CR9 publication-title: Cell doi: 10.1016/0092-8674(83)90300-8 – volume: 4 start-page: 381 year: 2009 ident: BFnrm20168_CR170 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.04.005 – volume: 12 start-page: 2048 year: 1998 ident: BFnrm20168_CR27 publication-title: Genes Dev. doi: 10.1101/gad.12.13.2048 – volume: 131 start-page: 861 year: 2007 ident: BFnrm20168_CR40 publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 24 start-page: 561 year: 2010 ident: BFnrm20168_CR64 publication-title: Genes Dev. doi: 10.1101/gad.1876710 – volume: 341 start-page: 651 year: 2013 ident: BFnrm20168_CR119 publication-title: Science doi: 10.1126/science.1239278 – volume: 16 start-page: 299 year: 2015 ident: BFnrm20168_CR78 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3980 – volume: 34 start-page: 1053 year: 1983 ident: BFnrm20168_CR10 publication-title: Cell doi: 10.1016/0092-8674(83)90563-9 – volume: 280 start-page: 5307 year: 2005 ident: BFnrm20168_CR37 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M410015200 – volume: 26 start-page: 795 year: 2008 ident: BFnrm20168_CR66 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1418 – volume: 20 start-page: 169 year: 2010 ident: BFnrm20168_CR51 publication-title: Stem Cells Dev. doi: 10.1089/scd.2009.0424 – volume: 454 start-page: 794 year: 2008 ident: BFnrm20168_CR86 publication-title: Nature doi: 10.1038/nature07196 – reference: 22388813 - Nature. 2012 Mar 04;483(7391):598-602 – reference: 21822871 - Methods Mol Biol. 2011;767:125-36 – reference: 19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62 – reference: 9804556 - Science. 1998 Nov 6;282(5391):1145-7 – reference: 23868920 - Science. 2013 Aug 9;341(6146):651-4 – reference: 20504151 - Stem Cells Dev. 2011 Jan;20(1):169-80 – reference: 18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40 – reference: 20107439 - Nature. 2010 Feb 25;463(7284):1035-41 – reference: 23260147 - Cell. 2012 Dec 21;151(7):1617-32 – reference: 7892602 - Science. 1995 Mar 24;267(5205):1788-92 – reference: 24239284 - Cell Stem Cell. 2014 Jan 2;14 (1):40-52 – reference: 23728301 - Nature. 2013 Jul 4;499(7456):88-91 – reference: 19571877 - Nature. 2009 Jul 2;460(7251):49-52 – reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76 – reference: 25215486 - Cell. 2014 Sep 11;158(6):1254-69 – reference: 19668188 - Nature. 2009 Aug 27;460(7259):1136-9 – reference: 12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905 – reference: 18845712 - Science. 2008 Nov 7;322(5903):949-53 – reference: 3143917 - Nature. 1988 Dec 15;336(6200):688-90 – reference: 18276851 - Science. 2008 Aug 1;321(5889):699-702 – reference: 25517467 - Cell Stem Cell. 2014 Nov 6;15(5):634-42 – reference: 16453748 - EMBO J. 1987 Jan;6(1):201-6 – reference: 19330000 - Nat Biotechnol. 2009 Apr;27(4):353-60 – reference: 26883001 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):139-54 – reference: 15163413 - Cell. 2004 May 28;117(5):663-76 – reference: 19136965 - Nat Cell Biol. 2009 Feb;11(2):197-203 – reference: 25968054 - Nat Commun. 2015 May 13;6:7095 – reference: 11591326 - Curr Biol. 2001 Oct 2;11(19):1553-8 – reference: 22980981 - Cell. 2012 Sep 14;150(6):1209-22 – reference: 19337237 - Nat Methods. 2009 May;6(5):363-9 – reference: 9649508 - Genes Dev. 1998 Jul 1;12(13):2048-60 – reference: 19672241 - Nature. 2009 Sep 3;461(7260):86-90 – reference: 19590502 - Nat Biotechnol. 2009 Aug;27(8):743-5 – reference: 20139965 - Nature. 2010 Feb 25;463(7284):1096-100 – reference: 12136102 - Nucleic Acids Res. 2002 Jul 15;30(14):3202-13 – reference: 6418389 - Cell. 1983 Dec;35(3 Pt 2):763-76 – reference: 25772473 - Stem Cell Reports. 2015 Apr 14;4(4):727-43 – reference: 2430723 - Cell. 1986 Dec 26;47(6):1017-23 – reference: 12787505 - Cell. 2003 May 30;113(5):643-55 – reference: 18371415 - Cell Stem Cell. 2008 Jan 10;2(1):10-2 – reference: 9039911 - Nature. 1997 Feb 27;385(6619):810-3 – reference: 12665572 - Mol Cell Biol. 2003 Apr;23(8):2699-708 – reference: 20554530 - J Biol Chem. 2010 Aug 13;285(33):25516-21 – reference: 7758949 - Genes Dev. 1995 May 15;9(10):1250-62 – reference: 18059259 - Nat Biotechnol. 2008 Jan;26(1):101-6 – reference: 18691744 - Cell. 2008 Sep 5;134(5):877-86 – reference: 21130722 - Stem Cell Res. 2011 Mar;6(2):177-86 – reference: 24172903 - Nature. 2013 Dec 12;504(7479):282-6 – reference: 20621051 - Cell Stem Cell. 2010 Jul 2;7(1):64-77 – reference: 6950406 - Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634-8 – reference: 17554336 - Nature. 2007 Jul 19;448(7151):318-24 – reference: 18568017 - Nat Biotechnol. 2008 Jul;26(7):795-7 – reference: 19571885 - Nature. 2009 Jul 2;460(7251):118-22 – reference: 12774123 - Nature. 2003 May 29;423(6939):541-5 – reference: 23812749 - Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12172-9 – reference: 20030562 - Stem Cells Dev. 2010 Aug;19(8):1221-9 – reference: 23300777 - PLoS One. 2012;7(12):e52787 – reference: 17246168 - Genetics. 1983 Nov;105(3):581-600 – reference: 13951335 - J Embryol Exp Morphol. 1962 Dec;10:622-40 – reference: 20419109 - PLoS One. 2010 Apr 19;5(4):e10246 – reference: 22136932 - Cell Stem Cell. 2011 Dec 2;9(6):588-98 – reference: 19696146 - Genes Dev. 2009 Sep 15;23(18):2134-9 – reference: 24623855 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9 – reference: 20201064 - Stem Cells. 2010 Apr;28(4):713-20 – reference: 13566187 - Nature. 1958 Jul 5;182(4627):64-5 – reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72 – reference: 25097266 - Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12426-31 – reference: 24904165 - Science. 2014 Jun 6;344(6188):1156-60 – reference: 18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9 – reference: 23683578 - Cell. 2013 Jun 6;153(6):1228-38 – reference: 26186193 - Cell. 2015 Jul 16;162(2):412-24 – reference: 24529596 - Cell Stem Cell. 2014 Apr 3;14(4):512-22 – reference: 18423197 - Cell. 2008 Apr 18;133(2):250-64 – reference: 19252478 - Nature. 2009 Apr 9;458(7239):766-70 – reference: 3690668 - Cell. 1987 Dec 24;51(6):987-1000 – reference: 25090446 - Cell Stem Cell. 2014 Oct 2;15(4):471-87 – reference: 23159369 - Cell. 2012 Nov 21;151(5):994-1004 – reference: 19672243 - Nature. 2009 Sep 3;461(7260):91-4 – reference: 18669821 - Science. 2008 Aug 29;321(5893):1218-21 – reference: 18497825 - Nature. 2008 May 22;453(7194):519-23 – reference: 24936473 - Stem Cell Reports. 2014 May 22;2(6):881-95 – reference: 10364425 - Dev Biol. 1999 Jun 1;210(1):30-43 – reference: 21317531 - J Clin Invest. 2011 Mar;121(3):1217-21 – reference: 18063756 - Science. 2007 Dec 21;318(5858):1920-3 – reference: 24776804 - Nature. 2014 Jun 26;510(7506):533-6 – reference: 19476507 - Genes Cells. 2009 Jun;14(6):683-94 – reference: 9690471 - Nature. 1998 Jul 23;394(6691):369-74 – reference: 18391196 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5856-61 – reference: 23871606 - Cell Stem Cell. 2013 Sep 5;13(3):341-50 – reference: 6839359 - Cell. 1983 Apr;32(4):1171-80 – reference: 23040477 - Cell Stem Cell. 2012 Oct 5;11(4):477-90 – reference: 20231315 - Genes Dev. 2010 Mar 15;24(6):561-73 – reference: 23122286 - Cell Stem Cell. 2012 Nov 2;11(5):589-95 – reference: 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6 – reference: 20139967 - Nat Methods. 2010 Mar;7(3):197-9 – reference: 19341620 - Cell Stem Cell. 2009 Apr 3;4(4):301-12 – reference: 17554338 - Nature. 2007 Jul 19;448(7151):313-7 – reference: 25907613 - Nat Rev Mol Cell Biol. 2015 May;16(5):299-309 – reference: 10592385 - Cells Tissues Organs. 1999;165(3-4):131-43 – reference: 24506885 - Cell Stem Cell. 2014 Feb 6;14(2):217-27 – reference: 24325319 - Stem Cells Dev. 2014 May 1;23 (9):931-40 – reference: 23706735 - Cell. 2013 May 23;153(5):963-75 – reference: 18942890 - PLoS Biol. 2008 Oct 21;6(10):e253 – reference: 20096661 - Cell Stem Cell. 2010 Feb 5;6(2):167-74 – reference: 24259714 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20569-74 – reference: 22704507 - Cell Stem Cell. 2012 Jun 14;10(6):678-84 – reference: 21138846 - J Biol Chem. 2011 Feb 11;286(6):4760-71 – reference: 24399248 - Sci Rep. 2014 Jan 08;4:3594 – reference: 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4 – reference: 6627391 - Cell. 1983 Oct;34(3):1053-62 – reference: 19898493 - Nature. 2009 Dec 3;462(7273):595-601 – reference: 16123299 - Science. 2005 Aug 26;309(5739):1369-73 – reference: 3821869 - Nature. 1987 Feb 26-Mar 4;325(6107):816-8 – reference: 26860365 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):155-69 – reference: 19549847 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12759-64 – reference: 10428964 - EMBO J. 1999 Aug 2;18(15):4261-9 – reference: 19325077 - Science. 2009 May 8;324(5928):797-801 – reference: 18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70 – reference: 21576263 - Genes Dev. 2011 May 15;25(10):1035-40 – reference: 24746675 - Cell Stem Cell. 2014 Jun 5;14(6):777-80 – reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20 – reference: 23212365 - Nat Commun. 2012;3:1236 – reference: 19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92 – reference: 18264089 - Nat Cell Biol. 2008 Mar;10 (3):353-60 – reference: 23664764 - Cell. 2013 May 23;153(5):1134-48 – reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6 – reference: 25008523 - Nature. 2014 Jul 10;511(7508):177-83 – reference: 19363475 - Nat Biotechnol. 2009 May;27(5):459-61 – reference: 15557334 - J Biol Chem. 2005 Feb 18;280(7):5307-17 – reference: 19668189 - Nature. 2009 Aug 27;460(7259):1149-53 – reference: 21478862 - Nat Methods. 2011 May;8(5):424-9 – reference: 12787504 - Cell. 2003 May 30;113(5):631-42 – reference: 19252477 - Nature. 2009 Apr 9;458(7239):771-5 – reference: 18754011 - Nature. 2008 Oct 2;455(7213):627-32 – reference: 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30 – reference: 20804969 - Cell Stem Cell. 2010 Sep 3;7(3):319-28 – reference: 26501951 - Nat Biotechnol. 2015 Nov;33(11):1173-81 – reference: 18983962 - Cell Stem Cell. 2008 Nov 6;3(5):475-9 – reference: 24759836 - Nat Commun. 2014 Apr 24;5:3678 – reference: 19167336 - Cell. 2009 Jan 23;136(2):364-77 – reference: 18509334 - Nature. 2008 Jul 3;454(7200):49-55 – reference: 18501604 - Curr Biol. 2008 Jun 24;18(12):890-4 – reference: 18818365 - Science. 2008 Nov 7;322(5903):945-9 – reference: 22281388 - Lancet. 2012 Feb 25;379(9817):713-20 – reference: 19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7 – reference: 9865697 - Cell. 1998 Dec 11;95(6):793-803 – reference: 7242681 - Nature. 1981 Jul 9;292(5819):154-6 – reference: 19826408 - Nat Biotechnol. 2009 Nov;27(11):1033-7 – reference: 20621050 - Cell Stem Cell. 2010 Jul 2;7(1):51-63 – reference: 25896322 - Nature. 2015 Jun 11;522(7555):221-5 – reference: 20442331 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9222-7 – reference: 19631602 - Cell Stem Cell. 2009 Aug 7;5(2):135-8 – reference: 26818440 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):170-82 – reference: 19668190 - Nature. 2009 Aug 27;460(7259):1145-8 – reference: 24315441 - Cell Stem Cell. 2013 Dec 5;13(6):663-75 – reference: 22100412 - Cell Stem Cell. 2011 Dec 2;9(6):575-87 – reference: 21460823 - Nat Methods. 2011 May;8(5):409-12 – reference: 22064701 - Cell Res. 2012 Jan;22(1):168-77 – reference: 20615974 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12704-9 – reference: 15673569 - Development. 2005 Mar;132(5):885-96 – reference: 23681063 - Nat Rev Genet. 2013 Jun;14(6):427-39 – reference: 18278034 - Nat Biotechnol. 2008 Mar;26(3):313-5 – reference: 14702635 - Nat Med. 2004 Jan;10(1):55-63 – reference: 19668186 - Nature. 2009 Aug 27;460(7259):1140-4 – reference: 18594521 - Nat Biotechnol. 2008 Aug;26(8):916-24 – reference: 19668191 - Nature. 2009 Aug 27;460(7259):1132-5 – reference: 21477851 - Cell. 2011 Apr 15;145(2):183-97 – reference: 20660764 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14152-7 – reference: 22259120 - Protein Cell. 2012 Jan;3(1):51-9 – reference: 26908143 - Nat Rev Mol Cell Biol. 2016 Mar;17(3):194-200 – reference: 5263000 - Proc Natl Acad Sci U S A. 1969 Sep;64(1):176-83 – reference: 10871756 - Gene Ther. 2000 Jun;7(12):1063-6 |
| SSID | ssj0016175 |
| Score | 2.6638112 |
| SecondaryResourceType | review_article |
| Snippet | This year marks the tenth anniversary of the generation of induced pluripotent stem cells (iPSCs) by transcription factor-mediated somatic cell reprogramming.... The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 183 |
| SubjectTerms | 631/136/2444 631/136/532/2435 631/532/2064/2158 Animals Biochemistry Cancer Research Cell Biology Cellular control mechanisms Cellular Reprogramming Cellular Reprogramming Techniques - history Cellular Reprogramming Techniques - methods Developmental Biology Genetic aspects Genetic research Genetic transcription History, 21st Century Humans Innovations Life Sciences Properties Regenerative medicine Stem Cells timeline Transcription factors Transcription Factors - biosynthesis Transcription Factors - genetics |
| Title | A decade of transcription factor-mediated reprogramming to pluripotency |
| URI | https://link.springer.com/article/10.1038/nrm.2016.8 https://www.ncbi.nlm.nih.gov/pubmed/26883003 https://www.proquest.com/docview/1767365098 https://www.proquest.com/docview/1768167702 |
| Volume | 17 |
| WOSCitedRecordID | wos000370879600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-0080 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016175 issn: 1471-0072 databaseCode: M7P dateStart: 20001001 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1471-0080 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016175 issn: 1471-0072 databaseCode: PCBAR dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-0080 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016175 issn: 1471-0072 databaseCode: 7X7 dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1471-0080 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016175 issn: 1471-0072 databaseCode: 7RV dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-0080 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016175 issn: 1471-0072 databaseCode: BENPR dateStart: 20001001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1471-0080 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016175 issn: 1471-0072 databaseCode: 8C1 dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsgpQCXFIGzub2D6hpWoBCa1WC1R7s_yIEVJJlk0Wqf8ej5Ms3YK4kIMvniR2xjPfxJ4HwEGqCHGFMl6QHE08XttEeEM00bywNmVC21A_5ewjm075YiFm_YZb07tVDjoxKGpbG9wjPyIMPZA8vPE3yx8JVo3C09W-hMYO7GGWhCy47s02pwgenfMQXcT8L3PK6JCeNONH1QrD0ElxyLcA6apavoRLVw5KA_6c3v7fkd-BW73lGU-6pXIXrpXVPbjR1aK8uA_vJrEt0Vk-rl3cIoIN-iTuavIkIcjEG6gxJsIMXl3f_Ujjto6X52tPW6P5ffEAvpyefD5-n_RVFhKTc94mJR3nzCrtjLa5UMQSTQtX2lRpf3lI11rQQgjLHeWerR7jM660KZ1hBK2nh7Bb1VX5GGKRKiswf7vL3HisjNCm8AYZtZQaa3gawevhU0vTpyDHShjnMhyFZ1x6tkhki-QRvNzQLrvEG3-leoEck5jJokJXma9q3TTyw6e5nIzHueAZyVkEr3oiV_vXGdVHHvhBY_KrLcr9LUovama7e-Cw7EW9kb_ZG8HzTTfeie5rVVmvAw0nBWMpjeBRt6A2k6IF55nXrREcDCvs0sP_mPGTf4_hKdxEus5Lbh9229W6fAbXzc_2W7MawQ6bn2G7YKHlvuXHZAR7b0-ms_koiM8vcLkdRg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQIAixCE0cTaxfUBoBZSuuqxQKVVvJrZjhFSSZZMF7Z_iNzKTx9ItiFsP5JqxE8ef5xvH8wDYDLMocmlmcCE5FiBf20CiIRpokVobcqltUz_lYMwnE3F4KN-vwc8-FobcKnud2ChqWxr6R74VcfJAQnoTL6ffAqoaRaerfQmNFha7-eIHbtmqF6PXOL9PGNt-s_9qJ-iqCgQmEaIOcjZIuM20M9omMotspFnqchtmGi-kMK0lS6W0wjGBw0BOi0WmTe4Mj8hawH7PwFnU4xG5kPG9g-WpBVoDSRPNxHGLHnLWp0ONxVYxo7D3KH0uVgjwJA0c48ETB7MN321f_t--1BW41FnW_rBdCldhLS-uwfm21ubiOrwd-janYAC_dH5NDN3rS7-tORQ0QTRogPuU6LPxWvuKX8avS396NEfZkrYXixvw8VRGcRPWi7LIb4Mvw8xKyk_vYjcYZEZqk6LBySxjxhoRevCsn1pluhTrVOnjSDVH_bFQCANFMFDCg8dL2WmbWOSvUo8IIYoydRTkCvQ5m1eVGn3YU8PBIJEijhLuwdNOyJX4OJN1kRX40pTca0VyY0USVYlZvd0jSnWqrFK_4eTBw-VtaknueUVezhsZEaWch8yDWy2Al4NiqRAxcocHmz2ij3X-x4jv_PsdHsCFnf13YzUeTXbvwkVq03oEbsB6PZvn9-Cc-V5_qWb3m6Xpw6fTRvgvYmJ4tQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEAR4hAmcSaxfUBo1DIwajWq2NSbSewYIZVkmGRA89f4dbyXZegUxK0HcvVL4uXz-56TtwBsB2kYuiQ1uJEc95Gvra_QEPUzmVgbCJXZpn7Kx30xncrDQ3WwAT_7WBhyq-x1YqOobWnoG_kgFOSBhPQmB65zizjYHb-cffOpghT9ae3LabQQ2cuXP_D4Vr2Y7OJaP-F8_Or9zhu_qzDgm1jK2s_5MBY2zZzJbKzS0IYZT1xugzTDC-ksyxRPlLLScYlDQn6LZJqZ3BkRkuWAzz0DZ7FjEbmTyZ2VewkdG-ImskngcT0QvE-NGslBMacQ-DB5LtfI8CQlHOPEEz9pG-4bX_6fZ-0KXOosbjZqt8hV2MiLa3C-rcG5vA6vR8zmFCTASsdqYu5ej7K2FpHfBNegYc4oAWjjzfYVZ4nVJZsdLVC2pGPH8gZ8OJVR3ITNoizy28BUkFpFeetd5IbD1KjMJGiIcsu5sUYGHjzrl1mbLvU6VQA50o0LQCQ1QkITJLT04PFKdtYmHPmr1CNCi6YMHgWt6ud0UVV68u6tHg2HsZJRGAsPnnZCrsTXmbSLuMBOU9KvNcmtNUlUMWa9uUeX7lRcpX9Dy4OHq2a6k9z2irxcNDIyTIQIuAe3WjCvBsUTKSPkFA-2e3Qfe_gfI77z7z48gAsIbL0_me7dhYt0S-souAWb9XyR34Nz5nv9pZrfb3Ypg0-nDfBfHLmBEA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decade+of+transcription+factor-mediated+reprogramming+to+pluripotency&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Takahashi%2C+Kazutoshi&rft.au=Yamanaka%2C+Shinya&rft.date=2016-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0072&rft.eissn=1471-0080&rft.volume=17&rft.issue=3&rft.spage=183&rft_id=info:doi/10.1038%2Fnrm.2016.8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3960692681 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0072&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0072&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0072&client=summon |