Ecosystem model optimization using in situ flux observations: benefit of Monte Carlo versus variational schemes and analyses of the year-to-year model performances

Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2. To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeosciences Jg. 11; H. 24; S. 7137 - 7158
Hauptverfasser: Santaren, D., Peylin, P., Bacour, C., Ciais, P., Longdoz, B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 16.12.2014
European Geosciences Union
Copernicus Publications
Schlagworte:
ISSN:1726-4189, 1726-4170, 1726-4189
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2. To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal to decadal timescales. However, the subsequent complexity of model equations is associated with unknown or poorly calibrated parameters that limit the accuracy of long-term simulations of carbon or water fluxes and their interannual variations. In this study, we develop a data assimilation framework to constrain the parameters of a mechanistic land surface model (ORCHIDEE) with eddy-covariance observations of CO2 and latent heat fluxes made during the years 2001–2004 at the temperate beech forest site of Hesse, in eastern France. As a first technical issue, we show that for a complex process-based model such as ORCHIDEE with many (28) parameters to be retrieved, a Monte Carlo approach (genetic algorithm, GA) provides more reliable optimal parameter values than a gradient-based minimization algorithm (variational scheme). The GA allows the global minimum to be found more efficiently, whilst the variational scheme often provides values relative to local minima. The ORCHIDEE model is then optimized for each year, and for the whole 2001–2004 period. We first find that a reduced (<10) set of parameters can be tightly constrained by the eddy-covariance observations, with a typical error reduction of 90%. We then show that including contrasted weather regimes (dry in 2003 and wet in 2002) is necessary to optimize a few specific parameters (like the temperature dependence of the photosynthetic activity). Furthermore, we find that parameters inverted from 4 years of flux measurements are successful at enhancing the model fit to the data on several timescales (from monthly to interannual), resulting in a typical modeling efficiency of 92% over the 2001–2004 period (Nash–Sutcliffe coefficient). This suggests that ORCHIDEE is able robustly to predict, after optimization, the fluxes of CO2 and the latent heat of a specific temperate beech forest (Hesse site). Finally, it is shown that using only 1 year of data does not produce robust enough optimized parameter sets in order to simulate properly the year-to-year flux variability. This emphasizes the need to assimilate data over several years, including contrasted weather regimes, to improve the simulated flux interannual variability.
AbstractList Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO.sub.2 . To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal to decadal timescales. However, the subsequent complexity of model equations is associated with unknown or poorly calibrated parameters that limit the accuracy of long-term simulations of carbon or water fluxes and their interannual variations. In this study, we develop a data assimilation framework to constrain the parameters of a mechanistic land surface model (ORCHIDEE) with eddy-covariance observations of CO.sub.2 and latent heat fluxes made during the years 2001-2004 at the temperate beech forest site of Hesse, in eastern France. As a first technical issue, we show that for a complex process-based model such as ORCHIDEE with many (28) parameters to be retrieved, a Monte Carlo approach (genetic algorithm, GA) provides more reliable optimal parameter values than a gradient-based minimization algorithm (variational scheme). The GA allows the global minimum to be found more efficiently, whilst the variational scheme often provides values relative to local minima. The ORCHIDEE model is then optimized for each year, and for the whole 2001-2004 period. We first find that a reduced (<10) set of parameters can be tightly constrained by the eddy-covariance observations, with a typical error reduction of 90%. We then show that including contrasted weather regimes (dry in 2003 and wet in 2002) is necessary to optimize a few specific parameters (like the temperature dependence of the photosynthetic activity). Furthermore, we find that parameters inverted from 4 years of flux measurements are successful at enhancing the model fit to the data on several timescales (from monthly to interannual), resulting in a typical modeling efficiency of 92% over the 2001-2004 period (Nash-Sutcliffe coefficient). This suggests that ORCHIDEE is able robustly to predict, after optimization, the fluxes of CO.sub.2 and the latent heat of a specific temperate beech forest (Hesse site). Finally, it is shown that using only 1 year of data does not produce robust enough optimized parameter sets in order to simulate properly the year-to-year flux variability. This emphasizes the need to assimilate data over several years, including contrasted weather regimes, to improve the simulated flux interannual variability.
Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2. To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal to decadal timescales. However, the subsequent complexity of model equations is associated with unknown or poorly calibrated parameters that limit the accuracy of long-term simulations of carbon or water fluxes and their interannual variations. In this study, we develop a data assimilation framework to constrain the parameters of a mechanistic land surface model (ORCHIDEE) with eddy-covariance observations of CO2 and latent heat fluxes made during the years 2001–2004 at the temperate beech forest site of Hesse, in eastern France. As a first technical issue, we show that for a complex process-based model such as ORCHIDEE with many (28) parameters to be retrieved, a Monte Carlo approach (genetic algorithm, GA) provides more reliable optimal parameter values than a gradient-based minimization algorithm (variational scheme). The GA allows the global minimum to be found more efficiently, whilst the variational scheme often provides values relative to local minima. The ORCHIDEE model is then optimized for each year, and for the whole 2001–2004 period. We first find that a reduced (<10) set of parameters can be tightly constrained by the eddy-covariance observations, with a typical error reduction of 90%. We then show that including contrasted weather regimes (dry in 2003 and wet in 2002) is necessary to optimize a few specific parameters (like the temperature dependence of the photosynthetic activity). Furthermore, we find that parameters inverted from 4 years of flux measurements are successful at enhancing the model fit to the data on several timescales (from monthly to interannual), resulting in a typical modeling efficiency of 92% over the 2001–2004 period (Nash–Sutcliffe coefficient). This suggests that ORCHIDEE is able robustly to predict, after optimization, the fluxes of CO2 and the latent heat of a specific temperate beech forest (Hesse site). Finally, it is shown that using only 1 year of data does not produce robust enough optimized parameter sets in order to simulate properly the year-to-year flux variability. This emphasizes the need to assimilate data over several years, including contrasted weather regimes, to improve the simulated flux interannual variability.
Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2. To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal to decadal timescales. However, the subsequent complexity of model equations is associated with unknown or poorly calibrated parameters that limit the accuracy of long-term simulations of carbon or water fluxes and their interannual variations. In this study, we develop a data assimilation framework to constrain the parameters of a mechanistic land surface model (ORCHIDEE) with eddy-covariance observations of CO2 and latent heat fluxes made during the years 2001-2004 at the temperate beech forest site of Hesse, in eastern France. As a first technical issue, we show that for a complex process-based model such as ORCHIDEE with many (28) parameters to be retrieved, a Monte Carlo approach (genetic algorithm, GA) provides more reliable optimal parameter values than a gradient-based minimization algorithm (variational scheme). The GA allows the global minimum to be found more efficiently, whilst the variational scheme often provides values relative to local minima. The ORCHIDEE model is then optimized for each year, and for the whole 2001-2004 period. We first find that a reduced (< 10) set of parameters can be tightly constrained by the eddy-covariance observations, with a typical error reduction of 90 %.We then show that including contrasted weather regimes (dry in 2003 and wet in 2002) is necessary to optimize a few specific parameters (like the temperature dependence of the photosynthetic activity). Furthermore, we find that parameters inverted from 4 years of flux measurements are successful at enhancing the model fit to the data on several timescales (from monthly to interannual), resulting in a typical modeling efficiency of 92% over the 2001-2004 period (Nash-Sutcliffe coefficient). This suggests that ORCHIDEE is able robustly to predict, after optimization, the fluxes of CO2 and the latent heat of a specific temperate beech forest (Hesse site). Finally, it is shown that using only 1 year of data does not produce robust enough optimized parameter sets in order to simulate properly the year-to-year flux variability. This emphasizes the need to assimilate data over several years, including contrasted weather regimes, to improve the simulated flux interannual variability. © Author(s) 2014.
Audience Academic
Author Bacour, C.
Ciais, P.
Longdoz, B.
Santaren, D.
Peylin, P.
Author_xml – sequence: 1
  givenname: D.
  surname: Santaren
  fullname: Santaren, D.
– sequence: 2
  givenname: P.
  surname: Peylin
  fullname: Peylin, P.
– sequence: 3
  givenname: C.
  surname: Bacour
  fullname: Bacour, C.
– sequence: 4
  givenname: P.
  surname: Ciais
  fullname: Ciais, P.
– sequence: 5
  givenname: B.
  surname: Longdoz
  fullname: Longdoz, B.
BackLink https://hal.science/hal-01268909$$DView record in HAL
BookMark eNp1kl9v1SAYxhszE7fptbck3riLblCgpd4ty3QnmTHxzzWh9KVjoeUI9GTHr-MXlZ4zo2fRkBZ4-3seKDwnxdHkJyiK1wSfc9Kyi24oCSkbQpuywoQ9K45JU9UlI6I9-mv8ojiJ8R5jKrDgx8XPa-3jNiYY0eh7cMivkx3tD5Wsn9Ac7TQgO6Fo04yMmx-Q7yKEze5zfIc6mMDYhLxBH_2UAF2p4DzaQIhzRBsV7I5UDkV9ByNEpKY-P8ptY55kWboDtAUVyuTLpX_cxhqC8WFUk4b4snhulIvw6rE_Lb69v_56dVPefvqwurq8LTUXIpVaUGANaziuKGBNqABueE9zI7hqTKVprcDQvm1w02LWCdoDJaYXWhtccXparPa-vVf3ch3sqMJWemXlruDDIFVIVjuQGosaczCcE860EZ0hmqquwrrrDFcme9G9l7MwQNZ2Vm6qndluPLtspmUHsqpqkV-tqNusOtur7pQ72MDN5a1caphkusXthmT27Z5dB_99hpjkaKMG59QEfo6S1JzVDRUVzuibJ-i9n0O-hIVilNGWkfoPNaj8h3YyPgWlF1N5yQRhFcmHm6nzf1C59TBa7Zc45PqB4OxAoJecPKRBzTHK1ZfPhyzfszr4GAMYqW3aJSgvYp0kWC5Zl90gCZFL1uWS9ay7eKL7fXj_U_wCGY8Cgg
CitedBy_id crossref_primary_10_1016_j_jag_2024_103666
crossref_primary_10_5194_bg_12_7185_2015
crossref_primary_10_5194_hess_29_261_2025
crossref_primary_10_5194_bg_21_1017_2024
crossref_primary_10_1002_2016JD025097
crossref_primary_10_5194_hess_22_3863_2018
crossref_primary_10_1093_nsr_nwz132
crossref_primary_10_5194_npg_23_447_2016
crossref_primary_10_1002_2017MS001134
crossref_primary_10_1016_j_agrformet_2016_12_004
crossref_primary_10_1111_geb_12937
crossref_primary_10_3390_rs11010027
crossref_primary_10_5194_gmd_9_3321_2016
crossref_primary_10_1029_2021GB007177
crossref_primary_10_1029_2021JG006400
crossref_primary_10_5194_bg_20_1089_2023
crossref_primary_10_1016_j_jhydrol_2016_11_051
crossref_primary_10_1016_j_ecolmodel_2023_110420
crossref_primary_10_1016_j_ecolmodel_2022_110212
crossref_primary_10_1029_2019JG005040
Cites_doi 10.1051/forest:2006042
10.1175/JCLI3800.1
10.1111/j.1365-2486.2005.001002.x
10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2
10.1007/BF02180320
10.1002/0471671746
10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
10.1111/j.1365-3040.1995.tb00620.x
10.1016/j.agrformet.2005.05.008
10.1007/BF00386231
10.1016/j.future.2004.11.003
10.1029/2003GB002199
10.1029/2009GB003556
10.1016/j.agrformet.2009.07.009
10.1111/j.1365-2486.2006.01158.x
10.1016/j.agrformet.2009.05.002
10.1029/2006JG000367
10.1111/j.1365-2486.2005.00897.x
10.5194/bgd-6-2863-2009
10.5194/bg-3-571-2006
10.1016/S0168-1923(02)00109-0
10.1016/S0065-2504(08)60018-5
10.1093/oxfordjournals.aob.a086868
10.1111/j.1365-2486.2007.01330.x
10.1051/forest:2008052
10.1111/j.1365-3040.1995.tb00630.x
10.1890/09-1183.1
10.5194/bg-6-1341-2009
10.1029/2007GB003033
10.1093/treephys/23.7.433
10.5194/bg-4-647-2007
10.1093/treephys/25.7.839
10.1111/j.1365-2486.1996.tb00080.x
10.1029/2010JG001385
10.1145/293686.293695
10.1029/2006GB002834
10.1137/0916069
10.1007/978-94-017-0519-6_48
10.1029/2011GB004185
10.5194/bg-5-1311-2008
10.1046/j.1365-2486.2000.00362.x
10.1071/PP9920519
10.1029/2003JD003430
10.1046/j.1365-2486.2001.00434.x
10.1111/j.1365-2486.2006.01225.x
10.5194/bg-9-3757-2012
ContentType Journal Article
Copyright COPYRIGHT 2014 Copernicus GmbH
Copyright Copernicus GmbH 2014
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2014 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ISR
7QO
7SN
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H95
H96
HCIFZ
KL.
L.G
L6V
LK8
M7N
M7P
M7S
P64
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
7ST
7U6
1XC
VOOES
JLOSS
Q33
DOA
DOI 10.5194/bg-11-7137-2014
DatabaseName CrossRef
Gale In Context: Science
Biotechnology Research Abstracts
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
Sustainability Science Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
Biological Science Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Biotechnology Research Abstracts
Oceanic Abstracts
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList

Publicly Available Content Database
Ecology Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1726-4189
EndPage 7158
ExternalDocumentID oai_doaj_org_article_c08605ef55154cf8bf1c3ab20cbbf5af
oai_orbi_ulg_ac_be_2268_229869
oai:HAL:hal-01268909v1
3552245291
A481421747
10_5194_bg_11_7137_2014
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID 23N
2WC
2XV
4P2
5GY
5VS
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BANNL
BBNVY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
E3Z
EBD
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
KQ8
L6V
L8X
LK5
LK8
M7P
M7R
M7S
MM-
M~E
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QO
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H95
H96
KL.
L.G
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
7ST
7U6
1XC
C1A
VOOES
JLOSS
Q33
ID FETCH-LOGICAL-c588t-c83e47475023e0c138e5f5d3d3d1027f2c36aef3d9707904b83de31fd8ccf0253
IEDL.DBID M7P
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346357800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1726-4189
1726-4170
IngestDate Tue Oct 14 19:04:38 EDT 2025
Sat Nov 29 01:27:07 EST 2025
Tue Oct 14 20:34:15 EDT 2025
Tue Oct 07 10:04:45 EDT 2025
Fri Jul 25 10:27:05 EDT 2025
Sat Nov 29 13:13:51 EST 2025
Sat Nov 29 09:56:52 EST 2025
Wed Nov 26 10:11:52 EST 2025
Sat Nov 29 04:07:10 EST 2025
Tue Nov 18 22:18:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://creativecommons.org/licenses/by/3.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-c83e47475023e0c138e5f5d3d3d1027f2c36aef3d9707904b83de31fd8ccf0253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-84918561737
ORCID 0000-0001-9335-6994
0000-0001-8560-4943
0000-0002-1913-3722
0000-0002-7737-8226
OpenAccessLink https://www.proquest.com/docview/1643439416?pq-origsite=%requestingapplication%
PQID 1643439416
PQPubID 105740
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_c08605ef55154cf8bf1c3ab20cbbf5af
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_229869
hal_primary_oai_HAL_hal_01268909v1
proquest_miscellaneous_1654673820
proquest_journals_1643439416
gale_infotracmisc_A481421747
gale_infotracacademiconefile_A481421747
gale_incontextgauss_ISR_A481421747
crossref_citationtrail_10_5194_bg_11_7137_2014
crossref_primary_10_5194_bg_11_7137_2014
PublicationCentury 2000
PublicationDate 2014-12-16
PublicationDateYYYYMMDD 2014-12-16
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-16
  day: 16
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Biogeosciences
PublicationYear 2014
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref6
  doi: 10.1051/forest:2006042
– ident: ref18
  doi: 10.1175/JCLI3800.1
– ident: ref38
  doi: 10.1111/j.1365-2486.2005.001002.x
– ident: ref13
  doi: 10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2
– ident: ref34
  doi: 10.1007/BF02180320
– ident: ref24
  doi: 10.1002/0471671746
– ident: ref2
  doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
– ident: ref26
  doi: 10.1111/j.1365-3040.1995.tb00620.x
– ident: ref39
  doi: 10.1016/j.agrformet.2005.05.008
– ident: ref14
  doi: 10.1007/BF00386231
– ident: ref20
  doi: 10.1016/j.future.2004.11.003
– ident: ref29
  doi: 10.1029/2003GB002199
– ident: ref8
  doi: 10.1029/2009GB003556
– ident: ref49
  doi: 10.1016/j.agrformet.2009.07.009
– ident: ref36
– ident: ref43
  doi: 10.1111/j.1365-2486.2006.01158.x
– ident: ref17
  doi: 10.1016/j.agrformet.2009.05.002
– ident: ref46
  doi: 10.1029/2006JG000367
– ident: ref5
  doi: 10.1111/j.1365-2486.2005.00897.x
– ident: ref23
  doi: 10.5194/bgd-6-2863-2009
– ident: ref33
  doi: 10.5194/bg-3-571-2006
– ident: ref52
  doi: 10.1016/S0168-1923(02)00109-0
– ident: ref1
  doi: 10.1016/S0065-2504(08)60018-5
– ident: ref16
– ident: ref12
– ident: ref27
  doi: 10.1093/oxfordjournals.aob.a086868
– ident: ref40
  doi: 10.1111/j.1365-2486.2007.01330.x
– ident: ref22
  doi: 10.1051/forest:2008052
– ident: ref15
  doi: 10.1111/j.1365-3040.1995.tb00630.x
– ident: ref44
  doi: 10.1890/09-1183.1
– ident: ref51
  doi: 10.5194/bg-6-1341-2009
– ident: ref9
  doi: 10.1029/2007GB003033
– ident: ref45
– ident: ref25
  doi: 10.1093/treephys/23.7.433
– ident: ref28
  doi: 10.5194/bg-4-647-2007
– ident: ref32
  doi: 10.1093/treephys/25.7.839
– ident: ref41
  doi: 10.1111/j.1365-2486.1996.tb00080.x
– ident: ref50
  doi: 10.1029/2010JG001385
– ident: ref19
  doi: 10.1145/293686.293695
– ident: ref42
  doi: 10.1029/2006GB002834
– ident: ref7
  doi: 10.1137/0916069
– ident: ref3
  doi: 10.1007/978-94-017-0519-6_48
– ident: ref53
  doi: 10.1029/2011GB004185
– ident: ref31
  doi: 10.5194/bg-5-1311-2008
– ident: ref4
  doi: 10.1046/j.1365-2486.2000.00362.x
– ident: ref11
  doi: 10.1071/PP9920519
– ident: ref21
– ident: ref37
  doi: 10.1029/2003JD003430
– ident: ref47
  doi: 10.1046/j.1365-2486.2001.00434.x
– ident: ref48
  doi: 10.1111/j.1365-2486.2006.01225.x
– ident: ref10
– ident: ref30
  doi: 10.5194/bg-9-3757-2012
– ident: ref35
SSID ssj0038085
Score 2.2624607
Snippet Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2....
Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric...
SourceID doaj
liege
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7137
SubjectTerms Algorithms
Analysis
Biosphere
Carbon dioxide
Data collection
Earth sciences & physical geography
Ecological function
Ecosystem models
Ecosystems
Environmental changes
Fagus
Fluctuations
Latent heat
Life Sciences
Monte Carlo analysis
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
Sciences de la terre & géographie physique
Terrestrial ecosystems
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggMSFNyJQkKmQ4EDaOHYSh9tStSoSVIiH1JsVO_YSKU2qTbKiv4c_ykzihq4Q4gBa7SsZayf5nPFMduYbQl4wKwtrshQQyF0oUpmH4OWXoYuzpMwyJpzRY7OJ7PhYnpzkHy-1-sKcsIkeeDpxewZ87iixDlb2RBgntWOGFzqOjNYuKRzWrYOpxTgde7hNNpjLaGzGCatzGgqWRROpD3grYk8vsZQMYrMM9GNiYz0aaftn43z1G-ZGXqvx3-vfTPW4_hze_gfN75Bb3umki2nIXXLFNvfIjakN5fl98uPAtBOjMx0b49AW7MipL9CkmBm_pFVDu6ofqKuH77TV873c7g3VYC5d1dPW0Q_IdUX3i1XdUsz3GDq6hmDc33CkEEnbU9vRoinhiWwo8AWGgRNKz-GSC_s2xHevxtmvoobuAfl6ePBl_yj0zRtCk0jZh0ZyKyBWScApsJFhXNrEJSWHB_g0mYsNTwvreJkjR18ktOSl5cyV0hgHjhh_SLaatrGPCM1dpLGCVmrAr8hhmDWlSKwQzhqYTAHZvYBQGc9sjg02agURDmKu9BIiHYWYK8Q8IK_mAWcTqcefRd8isLMYsnGPGwBp5ZFWf0M6IDs4oxTybTSY0LMshq5T7z5_UgshmcCwMAvISy_kWtDeFL4-okUMYftlye0NSTAIZmP3DkzcDY2PFu8VbgNvBK7GKF-zgLwe5zUch67UOh7Fxs9DDQdmlLYKPHMJL7lMc_jJi-mvvJHrFETaHAurWRqQ5_Nu1AYT9xrbDiiTCGwsG0eP_8eZfEJuIiqYT8TSbbLVrwb7lFw3677qVs9GG_ATQTJf9w
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96KvgifnLVU-Ih6IP1miZtU9_W444T9BA_4N5CkyZrodce23bx_h7_UWfabL1FxBdZ9iudsNPOZDLTnfkNIS-YlYU1WQoSyF0oUpmH4OWXoYuzpMwyJpzRY7OJ7PRUnp3ln660-sKcsAkeeLpwBwZ87iixDnb2RBgntWOGFzqOjNYuKRxa3yjLN8HUZIO5jMZmnLA7p6FgWTSB-oC3Ig70EkvJIDbLgD8mtvajEbZ_Ns7Xv2Nu5I0a_73-w1SP-8_xXXLHO450MTF8j1yzzX1ya2olefmA_Dwy7YTKTMfmNrQFW3DuiywpZrcvadXQruoH6urhB231fD-2e0s1mDxX9bR19CPiVdHDYlW3FHM2ho6uIaD2Nw0pRMP23Ha0aEp4IqIJfIFp4EjSS1g2Yd-G-O7ZuPhdmNA9JN-Oj74enoS-AUNoEin70EhuBcQbCWzsNjKMS5u4pOTwAL8kc7HhaWEdL3PE2YuElry0nLlSGuPAmeKPyE7TNnaX0NxFGqtgpQYZFDlMs6YUiRXCWQMKEZA3GzEo49HJsUlGrSBKQbkpvYRoRaHcFMotIK_mCRcTMMffSd-hXGcyRNQeB0DPlNcz9S89C8g-aoVCzIwGk3KWxdB16v2Xz2ohJBMY2mUBeemJXAvcm8LXOLQoQxi_Srm3RQmL2mwd3gfl2-L4ZPFB4Rh4FLCionzNAvJ61E04D12pdTySjZ-HGk7MKG0VeNcSXnKZ5vCTGxVW3lB1CqJljsXRLA3I8_kwcoPJd41tB6RJBDaHjaPH_-NKPiG3USqYE8TSPbLTrwb7lNw0677qVs_GdfwLohZNEQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Ecosystem model optimization using in situ flux observations: benefit of Monte Carlo versus variational schemes and analyses of the year-to-year model performances
URI https://www.proquest.com/docview/1643439416
https://www.proquest.com/docview/1654673820
https://hal.science/hal-01268909
https://orbi.uliege.be/handle/2268/229869
https://doaj.org/article/c08605ef55154cf8bf1c3ab20cbbf5af
Volume 11
WOSCitedRecordID wos000346357800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: RKB
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: M7P
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: BFMQW
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: PCBAR
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: M7S
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: PATMY
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: BENPR
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1726-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038085
  issn: 1726-4170
  databaseCode: PIMPY
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIrSLzwjQiMykxI8EBYPpzE4QW1U6dNsKraQBpPVuzYpVKXlKap2At_hj_Knet2VAheUFW3ic_ppXc-3zn3QcjLUPNCqywFCuTGZynPfdDyS99EWVJmWciMkrbYRDYc8ouLfOQ23BrnVrmWiVZQl7XCPfIDUOtjjOIM0_ezbz5WjcKnq66Exg7pYJaEyLrujdaSOOaBLckJa3TqszALVql9QGdhB3KMAWVgoWWAZci2ViWbvH8jone-oodkZ4rPsP8Q2HYVOrr7v_jfI3ec_kl7K4a5T27o6gG5tapIefWQ_ByoepXcmdoaObQGkXLpYjUpOsmP6aSicNGWmmn7ndZys63bvKMSJKeZLGht6CmmvaKHxXxaU3T9aBu6BLvc7T1SMKr1pW5oUZXwxsQocADDQB-lVzD7_EXt46dDY3Yd39A8Ip-PBp8Oj31Xx8FXCecLX_FYMzBbEtAPdKDCmOvEJGUML1BvMhOpOC20icsc0_UFTPK41HFoSq6UAZ0sfkx2q7rSTwjNTSAxmJZLIGKRwzCtSpZoxoxWwFceebumo1AuyTnW2pgKMHaQ8EKOwegRSHiBhPfI682A2Sq_x99B-8gYGzBMzG1P1POxcPNcKDARg0QbUEQTpgyXJlRxIaNASWmSwnhkH9lKYOqNCn17xkXbNOLk_Ez0GA8ZWoiZR145IFMD9qpwoRI10hDO_w65twUJskFtde8D925hfNz7KPAcKCYwMYN8GXrkjWVuuA85EcvIgtnv7RRuTAmpBSjpHJqcpzn85JrBhZN3jbjmbo-82HQjNujDV-m6RZiEYY3ZKHj670s8I7fx_0anoTDdI7uLeaufk5tquZg08y7p9AfD0VnX7p507YS37Tm2PwbQPzo5HX2Bo7MP_V8DBGEO
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3bbtMw1NpaELxwRxQGmAkED4Tl4iQOEkJlbGq1tqrYkMaTiR27VOqS0jSFfg_vfCPnJGlHheBtD6hq0ybHqS_n6pwLIU8dzWOtwgBWIDIWC3hkgZafWMYN_SQMHWaULItNhIMBPz2Nhlvk5yoWBt0qVzyxZNRJpnCPfA_Ueg-jOJ3g7fSrhVWj8OnqqoRGhRZHevkNTLb8Tfc9rO8z1z08ONnvWHVVAUv5nM8txT3NQIn2QVppWzke177xEw9eIGxD4yoviLXxkgiTx9lMci_RnmMSrpQBDcGD-26TJkNkb5DmsNsfflrxfo_bZRFQ0AoCizmhXSUTAi2J7ckRhrCBTRjCvDhsQw6W5QLWQmH7C_pkNif41PwPEVHKvcPr_9uM3SDXag2btiuSuEm2dHqLXK5qbi5vkx8HKqvSV9OyChDNgGme1dGoFMMARnScUhhEQc2k-E4zud64zl9TCbLBjOc0M7SPib3ofjybZBSdW4qcLuLZuN5dpTmQw5nOaZwm8MbUL_ADmoHGTZcwLdY8s_BYd2N6HsGR3yEfL2SG7pJGmqX6HqGRsSWGC3MJSBNH0EyrhPmaMaMVUE6LvFrhjVB1GnesJjIRYM4hogk5ArNOIKIJRLQWebFuMK0ymPwd9B0i4hoMU4-XJ7LZSNScTCgwgm1fG1C1faYMl8ZRXixdW0lp_Ni0yC6iscDkIil6L43iIs9F9_iDaDPuMLSBwxZ5XgOZDHqv4joYJMM1hPO_Q-5sQAL3UxuXd4FaNnrcafcEngPVC1iPHS2cFnlZEhOMQ47Fwi3Byu_FBAamhNQCzBAOHxEPIvjLFUGJmqPn4pyaWuTJ-jL2Br0UU50VCOMzrKLr2vf_fYvH5ErnpN8Tve7g6AG5inOPLlJOsEMa81mhH5JLajEf57NHNYOh5PNFU-gvL9C3RA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbtNAdNQmgLiwIwwFhgoEB0y8jO0xEkLpEjXqolJA9DZ4xjMhUmqHOA7ke_gLvo73bCclQnDrAUWJE_uNM8tbx28h5KmreaJVFMIKxMZmIY9t0PJT23hRkEaRy4ySVbGJ6OiIn57Gx2vk5yIWBt0qFzyxYtRprnCPvANqvY9RnG7YMY1bxPFO7-34q40VpPBJ66KcRo0i-3r-Dcy34k1_B9b6mef1dj9s79lNhQFbBZxPbcV9zUChDkByaUe5PteBCVIfXiB4I-MpP0y08dMYE8k5THI_1b5rUq6UAW3Bh_uukzYPQ-60SHurd_ju00IO-NypCoKChhDazI2cOrEQaEysIwcYzgb2YQRz5LIVmViVDlgKiPUv6J_ZHuET9D_ERSUDe9f_59m7Qa41mjft1qRyk6zp7Ba5XNfinN8mP3ZVXqe1plV1IJoDMz1rolQphgcM6DCjMIiSmlH5neZyuaFdvKYSZIYZTmlu6CEm_KLbyWSUU3R6KQs6SybDZteVFkAmZ7qgSZbCG1PCwA9oBpo4ncO02NPcxmPTjfF5ZEdxh3y8kBm6S1pZnul7hMbGkRhGzCUgUBJDM61SFmjGjFZAURZ5tcAhoZr07lhlZCTAzEOkE3IA5p5ApBOIdBZ5sWwwrjOb_B10C5FyCYYpyasT-WQgGg4nFBjHTqANqOABU4ZL4yo_kZ6jpDRBYiyyiSgtMOlIhgg4SMqiEP33J6LLuMvQNo4s8rwBMjn0XiVNkEiOawjnf4fcWIEErqhWLm8C5az0eK97IPAcqGTAkpx45lrkZUVYMA45FDOvAqu-lyMYmBJSCzBPOHzEPIzhLxfEJRpOX4hzyrLIk-Vl7A16L2Y6LxEmYFhd13Pu__sWj8kVIEtx0D_af0Cu4tSj55QbbpDWdFLqh-SSmk2HxeRRw2so-XzRBPoLKu2_5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecosystem+model+optimization+using+in+situ+flux+observations%3A+benefit+of+Monte+Carlo+versus+variational+schemes+and+analyses+of+the+year-to-year+model+performances&rft.jtitle=Biogeosciences&rft.au=Santaren%2C+D&rft.au=Peylin%2C+P&rft.au=Bacour%2C+C&rft.au=Ciais%2C+P&rft.date=2014-12-16&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.volume=11&rft.issue=24&rft.spage=7137&rft_id=info:doi/10.5194%2Fbg-11-7137-2014&rft.externalDocID=A481421747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4189&client=summon