Ecosystem model optimization using in situ flux observations: benefit of Monte Carlo versus variational schemes and analyses of the year-to-year model performances
Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2. To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal...
Gespeichert in:
| Veröffentlicht in: | Biogeosciences Jg. 11; H. 24; S. 7137 - 7158 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Katlenburg-Lindau
Copernicus GmbH
16.12.2014
European Geosciences Union Copernicus Publications |
| Schlagworte: | |
| ISSN: | 1726-4189, 1726-4170, 1726-4189 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2. To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal to decadal timescales. However, the subsequent complexity of model equations is associated with unknown or poorly calibrated parameters that limit the accuracy of long-term simulations of carbon or water fluxes and their interannual variations. In this study, we develop a data assimilation framework to constrain the parameters of a mechanistic land surface model (ORCHIDEE) with eddy-covariance observations of CO2 and latent heat fluxes made during the years 2001–2004 at the temperate beech forest site of Hesse, in eastern France. As a first technical issue, we show that for a complex process-based model such as ORCHIDEE with many (28) parameters to be retrieved, a Monte Carlo approach (genetic algorithm, GA) provides more reliable optimal parameter values than a gradient-based minimization algorithm (variational scheme). The GA allows the global minimum to be found more efficiently, whilst the variational scheme often provides values relative to local minima. The ORCHIDEE model is then optimized for each year, and for the whole 2001–2004 period. We first find that a reduced (<10) set of parameters can be tightly constrained by the eddy-covariance observations, with a typical error reduction of 90%. We then show that including contrasted weather regimes (dry in 2003 and wet in 2002) is necessary to optimize a few specific parameters (like the temperature dependence of the photosynthetic activity). Furthermore, we find that parameters inverted from 4 years of flux measurements are successful at enhancing the model fit to the data on several timescales (from monthly to interannual), resulting in a typical modeling efficiency of 92% over the 2001–2004 period (Nash–Sutcliffe coefficient). This suggests that ORCHIDEE is able robustly to predict, after optimization, the fluxes of CO2 and the latent heat of a specific temperate beech forest (Hesse site). Finally, it is shown that using only 1 year of data does not produce robust enough optimized parameter sets in order to simulate properly the year-to-year flux variability. This emphasizes the need to assimilate data over several years, including contrasted weather regimes, to improve the simulated flux interannual variability. |
|---|---|
| AbstractList | Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO.sub.2 . To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal to decadal timescales. However, the subsequent complexity of model equations is associated with unknown or poorly calibrated parameters that limit the accuracy of long-term simulations of carbon or water fluxes and their interannual variations. In this study, we develop a data assimilation framework to constrain the parameters of a mechanistic land surface model (ORCHIDEE) with eddy-covariance observations of CO.sub.2 and latent heat fluxes made during the years 2001-2004 at the temperate beech forest site of Hesse, in eastern France. As a first technical issue, we show that for a complex process-based model such as ORCHIDEE with many (28) parameters to be retrieved, a Monte Carlo approach (genetic algorithm, GA) provides more reliable optimal parameter values than a gradient-based minimization algorithm (variational scheme). The GA allows the global minimum to be found more efficiently, whilst the variational scheme often provides values relative to local minima. The ORCHIDEE model is then optimized for each year, and for the whole 2001-2004 period. We first find that a reduced (<10) set of parameters can be tightly constrained by the eddy-covariance observations, with a typical error reduction of 90%. We then show that including contrasted weather regimes (dry in 2003 and wet in 2002) is necessary to optimize a few specific parameters (like the temperature dependence of the photosynthetic activity). Furthermore, we find that parameters inverted from 4 years of flux measurements are successful at enhancing the model fit to the data on several timescales (from monthly to interannual), resulting in a typical modeling efficiency of 92% over the 2001-2004 period (Nash-Sutcliffe coefficient). This suggests that ORCHIDEE is able robustly to predict, after optimization, the fluxes of CO.sub.2 and the latent heat of a specific temperate beech forest (Hesse site). Finally, it is shown that using only 1 year of data does not produce robust enough optimized parameter sets in order to simulate properly the year-to-year flux variability. This emphasizes the need to assimilate data over several years, including contrasted weather regimes, to improve the simulated flux interannual variability. Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2. To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal to decadal timescales. However, the subsequent complexity of model equations is associated with unknown or poorly calibrated parameters that limit the accuracy of long-term simulations of carbon or water fluxes and their interannual variations. In this study, we develop a data assimilation framework to constrain the parameters of a mechanistic land surface model (ORCHIDEE) with eddy-covariance observations of CO2 and latent heat fluxes made during the years 2001–2004 at the temperate beech forest site of Hesse, in eastern France. As a first technical issue, we show that for a complex process-based model such as ORCHIDEE with many (28) parameters to be retrieved, a Monte Carlo approach (genetic algorithm, GA) provides more reliable optimal parameter values than a gradient-based minimization algorithm (variational scheme). The GA allows the global minimum to be found more efficiently, whilst the variational scheme often provides values relative to local minima. The ORCHIDEE model is then optimized for each year, and for the whole 2001–2004 period. We first find that a reduced (<10) set of parameters can be tightly constrained by the eddy-covariance observations, with a typical error reduction of 90%. We then show that including contrasted weather regimes (dry in 2003 and wet in 2002) is necessary to optimize a few specific parameters (like the temperature dependence of the photosynthetic activity). Furthermore, we find that parameters inverted from 4 years of flux measurements are successful at enhancing the model fit to the data on several timescales (from monthly to interannual), resulting in a typical modeling efficiency of 92% over the 2001–2004 period (Nash–Sutcliffe coefficient). This suggests that ORCHIDEE is able robustly to predict, after optimization, the fluxes of CO2 and the latent heat of a specific temperate beech forest (Hesse site). Finally, it is shown that using only 1 year of data does not produce robust enough optimized parameter sets in order to simulate properly the year-to-year flux variability. This emphasizes the need to assimilate data over several years, including contrasted weather regimes, to improve the simulated flux interannual variability. Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2. To achieve this goal, biosphere models need mechanistic formulations of the processes that drive the ecosystem functioning from diurnal to decadal timescales. However, the subsequent complexity of model equations is associated with unknown or poorly calibrated parameters that limit the accuracy of long-term simulations of carbon or water fluxes and their interannual variations. In this study, we develop a data assimilation framework to constrain the parameters of a mechanistic land surface model (ORCHIDEE) with eddy-covariance observations of CO2 and latent heat fluxes made during the years 2001-2004 at the temperate beech forest site of Hesse, in eastern France. As a first technical issue, we show that for a complex process-based model such as ORCHIDEE with many (28) parameters to be retrieved, a Monte Carlo approach (genetic algorithm, GA) provides more reliable optimal parameter values than a gradient-based minimization algorithm (variational scheme). The GA allows the global minimum to be found more efficiently, whilst the variational scheme often provides values relative to local minima. The ORCHIDEE model is then optimized for each year, and for the whole 2001-2004 period. We first find that a reduced (< 10) set of parameters can be tightly constrained by the eddy-covariance observations, with a typical error reduction of 90 %.We then show that including contrasted weather regimes (dry in 2003 and wet in 2002) is necessary to optimize a few specific parameters (like the temperature dependence of the photosynthetic activity). Furthermore, we find that parameters inverted from 4 years of flux measurements are successful at enhancing the model fit to the data on several timescales (from monthly to interannual), resulting in a typical modeling efficiency of 92% over the 2001-2004 period (Nash-Sutcliffe coefficient). This suggests that ORCHIDEE is able robustly to predict, after optimization, the fluxes of CO2 and the latent heat of a specific temperate beech forest (Hesse site). Finally, it is shown that using only 1 year of data does not produce robust enough optimized parameter sets in order to simulate properly the year-to-year flux variability. This emphasizes the need to assimilate data over several years, including contrasted weather regimes, to improve the simulated flux interannual variability. © Author(s) 2014. |
| Audience | Academic |
| Author | Bacour, C. Ciais, P. Longdoz, B. Santaren, D. Peylin, P. |
| Author_xml | – sequence: 1 givenname: D. surname: Santaren fullname: Santaren, D. – sequence: 2 givenname: P. surname: Peylin fullname: Peylin, P. – sequence: 3 givenname: C. surname: Bacour fullname: Bacour, C. – sequence: 4 givenname: P. surname: Ciais fullname: Ciais, P. – sequence: 5 givenname: B. surname: Longdoz fullname: Longdoz, B. |
| BackLink | https://hal.science/hal-01268909$$DView record in HAL |
| BookMark | eNp1kl9v1SAYxhszE7fptbck3riLblCgpd4ty3QnmTHxzzWh9KVjoeUI9GTHr-MXlZ4zo2fRkBZ4-3seKDwnxdHkJyiK1wSfc9Kyi24oCSkbQpuywoQ9K45JU9UlI6I9-mv8ojiJ8R5jKrDgx8XPa-3jNiYY0eh7cMivkx3tD5Wsn9Ac7TQgO6Fo04yMmx-Q7yKEze5zfIc6mMDYhLxBH_2UAF2p4DzaQIhzRBsV7I5UDkV9ByNEpKY-P8ptY55kWboDtAUVyuTLpX_cxhqC8WFUk4b4snhulIvw6rE_Lb69v_56dVPefvqwurq8LTUXIpVaUGANaziuKGBNqABueE9zI7hqTKVprcDQvm1w02LWCdoDJaYXWhtccXparPa-vVf3ch3sqMJWemXlruDDIFVIVjuQGosaczCcE860EZ0hmqquwrrrDFcme9G9l7MwQNZ2Vm6qndluPLtspmUHsqpqkV-tqNusOtur7pQ72MDN5a1caphkusXthmT27Z5dB_99hpjkaKMG59QEfo6S1JzVDRUVzuibJ-i9n0O-hIVilNGWkfoPNaj8h3YyPgWlF1N5yQRhFcmHm6nzf1C59TBa7Zc45PqB4OxAoJecPKRBzTHK1ZfPhyzfszr4GAMYqW3aJSgvYp0kWC5Zl90gCZFL1uWS9ay7eKL7fXj_U_wCGY8Cgg |
| CitedBy_id | crossref_primary_10_1016_j_jag_2024_103666 crossref_primary_10_5194_bg_12_7185_2015 crossref_primary_10_5194_hess_29_261_2025 crossref_primary_10_5194_bg_21_1017_2024 crossref_primary_10_1002_2016JD025097 crossref_primary_10_5194_hess_22_3863_2018 crossref_primary_10_1093_nsr_nwz132 crossref_primary_10_5194_npg_23_447_2016 crossref_primary_10_1002_2017MS001134 crossref_primary_10_1016_j_agrformet_2016_12_004 crossref_primary_10_1111_geb_12937 crossref_primary_10_3390_rs11010027 crossref_primary_10_5194_gmd_9_3321_2016 crossref_primary_10_1029_2021GB007177 crossref_primary_10_1029_2021JG006400 crossref_primary_10_5194_bg_20_1089_2023 crossref_primary_10_1016_j_jhydrol_2016_11_051 crossref_primary_10_1016_j_ecolmodel_2023_110420 crossref_primary_10_1016_j_ecolmodel_2022_110212 crossref_primary_10_1029_2019JG005040 |
| Cites_doi | 10.1051/forest:2006042 10.1175/JCLI3800.1 10.1111/j.1365-2486.2005.001002.x 10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2 10.1007/BF02180320 10.1002/0471671746 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 10.1111/j.1365-3040.1995.tb00620.x 10.1016/j.agrformet.2005.05.008 10.1007/BF00386231 10.1016/j.future.2004.11.003 10.1029/2003GB002199 10.1029/2009GB003556 10.1016/j.agrformet.2009.07.009 10.1111/j.1365-2486.2006.01158.x 10.1016/j.agrformet.2009.05.002 10.1029/2006JG000367 10.1111/j.1365-2486.2005.00897.x 10.5194/bgd-6-2863-2009 10.5194/bg-3-571-2006 10.1016/S0168-1923(02)00109-0 10.1016/S0065-2504(08)60018-5 10.1093/oxfordjournals.aob.a086868 10.1111/j.1365-2486.2007.01330.x 10.1051/forest:2008052 10.1111/j.1365-3040.1995.tb00630.x 10.1890/09-1183.1 10.5194/bg-6-1341-2009 10.1029/2007GB003033 10.1093/treephys/23.7.433 10.5194/bg-4-647-2007 10.1093/treephys/25.7.839 10.1111/j.1365-2486.1996.tb00080.x 10.1029/2010JG001385 10.1145/293686.293695 10.1029/2006GB002834 10.1137/0916069 10.1007/978-94-017-0519-6_48 10.1029/2011GB004185 10.5194/bg-5-1311-2008 10.1046/j.1365-2486.2000.00362.x 10.1071/PP9920519 10.1029/2003JD003430 10.1046/j.1365-2486.2001.00434.x 10.1111/j.1365-2486.2006.01225.x 10.5194/bg-9-3757-2012 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2014 Copernicus GmbH Copyright Copernicus GmbH 2014 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: COPYRIGHT 2014 Copernicus GmbH – notice: Copyright Copernicus GmbH 2014 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION ISR 7QO 7SN 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H95 H96 HCIFZ KL. L.G L6V LK8 M7N M7P M7S P64 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 7ST 7U6 1XC VOOES JLOSS Q33 DOA |
| DOI | 10.5194/bg-11-7137-2014 |
| DatabaseName | CrossRef Gale In Context: Science Biotechnology Research Abstracts Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Continental Europe Database ProQuest Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts Sustainability Science Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database Biological Science Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Biotechnology Research Abstracts Oceanic Abstracts ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts Sustainability Science Abstracts |
| DatabaseTitleList | Publicly Available Content Database Ecology Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1726-4189 |
| EndPage | 7158 |
| ExternalDocumentID | oai_doaj_org_article_c08605ef55154cf8bf1c3ab20cbbf5af oai_orbi_ulg_ac_be_2268_229869 oai:HAL:hal-01268909v1 3552245291 A481421747 10_5194_bg_11_7137_2014 |
| GeographicLocations | France |
| GeographicLocations_xml | – name: France |
| GroupedDBID | 23N 2WC 2XV 4P2 5GY 5VS 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BANNL BBNVY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBD EBS EDH EJD GROUPED_DOAJ H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC KQ8 L6V L8X LK5 LK8 M7P M7R M7S MM- M~E OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 7QO 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H95 H96 KL. L.G M7N P64 PKEHL PQEST PQUKI PRINS 7ST 7U6 1XC C1A VOOES JLOSS Q33 |
| ID | FETCH-LOGICAL-c588t-c83e47475023e0c138e5f5d3d3d1027f2c36aef3d9707904b83de31fd8ccf0253 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346357800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1726-4189 1726-4170 |
| IngestDate | Tue Oct 14 19:04:38 EDT 2025 Sat Nov 29 01:27:07 EST 2025 Tue Oct 14 20:34:15 EDT 2025 Tue Oct 07 10:04:45 EDT 2025 Fri Jul 25 10:27:05 EDT 2025 Sat Nov 29 13:13:51 EST 2025 Sat Nov 29 09:56:52 EST 2025 Wed Nov 26 10:11:52 EST 2025 Sat Nov 29 04:07:10 EST 2025 Tue Nov 18 22:18:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | https://creativecommons.org/licenses/by/3.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c588t-c83e47475023e0c138e5f5d3d3d1027f2c36aef3d9707904b83de31fd8ccf0253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-84918561737 |
| ORCID | 0000-0001-9335-6994 0000-0001-8560-4943 0000-0002-1913-3722 0000-0002-7737-8226 |
| OpenAccessLink | https://www.proquest.com/docview/1643439416?pq-origsite=%requestingapplication% |
| PQID | 1643439416 |
| PQPubID | 105740 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c08605ef55154cf8bf1c3ab20cbbf5af liege_orbi_v2_oai_orbi_ulg_ac_be_2268_229869 hal_primary_oai_HAL_hal_01268909v1 proquest_miscellaneous_1654673820 proquest_journals_1643439416 gale_infotracmisc_A481421747 gale_infotracacademiconefile_A481421747 gale_incontextgauss_ISR_A481421747 crossref_citationtrail_10_5194_bg_11_7137_2014 crossref_primary_10_5194_bg_11_7137_2014 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-16 |
| PublicationDateYYYYMMDD | 2014-12-16 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Biogeosciences |
| PublicationYear | 2014 |
| Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref6 doi: 10.1051/forest:2006042 – ident: ref18 doi: 10.1175/JCLI3800.1 – ident: ref38 doi: 10.1111/j.1365-2486.2005.001002.x – ident: ref13 doi: 10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2 – ident: ref34 doi: 10.1007/BF02180320 – ident: ref24 doi: 10.1002/0471671746 – ident: ref2 doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 – ident: ref26 doi: 10.1111/j.1365-3040.1995.tb00620.x – ident: ref39 doi: 10.1016/j.agrformet.2005.05.008 – ident: ref14 doi: 10.1007/BF00386231 – ident: ref20 doi: 10.1016/j.future.2004.11.003 – ident: ref29 doi: 10.1029/2003GB002199 – ident: ref8 doi: 10.1029/2009GB003556 – ident: ref49 doi: 10.1016/j.agrformet.2009.07.009 – ident: ref36 – ident: ref43 doi: 10.1111/j.1365-2486.2006.01158.x – ident: ref17 doi: 10.1016/j.agrformet.2009.05.002 – ident: ref46 doi: 10.1029/2006JG000367 – ident: ref5 doi: 10.1111/j.1365-2486.2005.00897.x – ident: ref23 doi: 10.5194/bgd-6-2863-2009 – ident: ref33 doi: 10.5194/bg-3-571-2006 – ident: ref52 doi: 10.1016/S0168-1923(02)00109-0 – ident: ref1 doi: 10.1016/S0065-2504(08)60018-5 – ident: ref16 – ident: ref12 – ident: ref27 doi: 10.1093/oxfordjournals.aob.a086868 – ident: ref40 doi: 10.1111/j.1365-2486.2007.01330.x – ident: ref22 doi: 10.1051/forest:2008052 – ident: ref15 doi: 10.1111/j.1365-3040.1995.tb00630.x – ident: ref44 doi: 10.1890/09-1183.1 – ident: ref51 doi: 10.5194/bg-6-1341-2009 – ident: ref9 doi: 10.1029/2007GB003033 – ident: ref45 – ident: ref25 doi: 10.1093/treephys/23.7.433 – ident: ref28 doi: 10.5194/bg-4-647-2007 – ident: ref32 doi: 10.1093/treephys/25.7.839 – ident: ref41 doi: 10.1111/j.1365-2486.1996.tb00080.x – ident: ref50 doi: 10.1029/2010JG001385 – ident: ref19 doi: 10.1145/293686.293695 – ident: ref42 doi: 10.1029/2006GB002834 – ident: ref7 doi: 10.1137/0916069 – ident: ref3 doi: 10.1007/978-94-017-0519-6_48 – ident: ref53 doi: 10.1029/2011GB004185 – ident: ref31 doi: 10.5194/bg-5-1311-2008 – ident: ref4 doi: 10.1046/j.1365-2486.2000.00362.x – ident: ref11 doi: 10.1071/PP9920519 – ident: ref21 – ident: ref37 doi: 10.1029/2003JD003430 – ident: ref47 doi: 10.1046/j.1365-2486.2001.00434.x – ident: ref48 doi: 10.1111/j.1365-2486.2006.01225.x – ident: ref10 – ident: ref30 doi: 10.5194/bg-9-3757-2012 – ident: ref35 |
| SSID | ssj0038085 |
| Score | 2.2624607 |
| Snippet | Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric CO2.... Terrestrial ecosystem models can provide major insights into the responses of Earth's ecosystems to environmental changes and rising levels of atmospheric... |
| SourceID | doaj liege hal proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7137 |
| SubjectTerms | Algorithms Analysis Biosphere Carbon dioxide Data collection Earth sciences & physical geography Ecological function Ecosystem models Ecosystems Environmental changes Fagus Fluctuations Latent heat Life Sciences Monte Carlo analysis Physical, chemical, mathematical & earth Sciences Physique, chimie, mathématiques & sciences de la terre Sciences de la terre & géographie physique Terrestrial ecosystems |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggMSFNyJQkKmQ4EDaOHYSh9tStSoSVIiH1JsVO_YSKU2qTbKiv4c_ykzihq4Q4gBa7SsZayf5nPFMduYbQl4wKwtrshQQyF0oUpmH4OWXoYuzpMwyJpzRY7OJ7PhYnpzkHy-1-sKcsIkeeDpxewZ87iixDlb2RBgntWOGFzqOjNYuKRzWrYOpxTgde7hNNpjLaGzGCatzGgqWRROpD3grYk8vsZQMYrMM9GNiYz0aaftn43z1G-ZGXqvx3-vfTPW4_hze_gfN75Bb3umki2nIXXLFNvfIjakN5fl98uPAtBOjMx0b49AW7MipL9CkmBm_pFVDu6ofqKuH77TV873c7g3VYC5d1dPW0Q_IdUX3i1XdUsz3GDq6hmDc33CkEEnbU9vRoinhiWwo8AWGgRNKz-GSC_s2xHevxtmvoobuAfl6ePBl_yj0zRtCk0jZh0ZyKyBWScApsJFhXNrEJSWHB_g0mYsNTwvreJkjR18ktOSl5cyV0hgHjhh_SLaatrGPCM1dpLGCVmrAr8hhmDWlSKwQzhqYTAHZvYBQGc9sjg02agURDmKu9BIiHYWYK8Q8IK_mAWcTqcefRd8isLMYsnGPGwBp5ZFWf0M6IDs4oxTybTSY0LMshq5T7z5_UgshmcCwMAvISy_kWtDeFL4-okUMYftlye0NSTAIZmP3DkzcDY2PFu8VbgNvBK7GKF-zgLwe5zUch67UOh7Fxs9DDQdmlLYKPHMJL7lMc_jJi-mvvJHrFETaHAurWRqQ5_Nu1AYT9xrbDiiTCGwsG0eP_8eZfEJuIiqYT8TSbbLVrwb7lFw3677qVs9GG_ATQTJf9w priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96KvgifnLVU-Ih6IP1miZtU9_W444T9BA_4N5CkyZrodce23bx_h7_UWfabL1FxBdZ9iudsNPOZDLTnfkNIS-YlYU1WQoSyF0oUpmH4OWXoYuzpMwyJpzRY7OJ7PRUnp3ln660-sKcsAkeeLpwBwZ87iixDnb2RBgntWOGFzqOjNYuKRxa3yjLN8HUZIO5jMZmnLA7p6FgWTSB-oC3Ig70EkvJIDbLgD8mtvajEbZ_Ns7Xv2Nu5I0a_73-w1SP-8_xXXLHO450MTF8j1yzzX1ya2olefmA_Dwy7YTKTMfmNrQFW3DuiywpZrcvadXQruoH6urhB231fD-2e0s1mDxX9bR19CPiVdHDYlW3FHM2ho6uIaD2Nw0pRMP23Ha0aEp4IqIJfIFp4EjSS1g2Yd-G-O7ZuPhdmNA9JN-Oj74enoS-AUNoEin70EhuBcQbCWzsNjKMS5u4pOTwAL8kc7HhaWEdL3PE2YuElry0nLlSGuPAmeKPyE7TNnaX0NxFGqtgpQYZFDlMs6YUiRXCWQMKEZA3GzEo49HJsUlGrSBKQbkpvYRoRaHcFMotIK_mCRcTMMffSd-hXGcyRNQeB0DPlNcz9S89C8g-aoVCzIwGk3KWxdB16v2Xz2ohJBMY2mUBeemJXAvcm8LXOLQoQxi_Srm3RQmL2mwd3gfl2-L4ZPFB4Rh4FLCionzNAvJ61E04D12pdTySjZ-HGk7MKG0VeNcSXnKZ5vCTGxVW3lB1CqJljsXRLA3I8_kwcoPJd41tB6RJBDaHjaPH_-NKPiG3USqYE8TSPbLTrwb7lNw0677qVs_GdfwLohZNEQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Ecosystem model optimization using in situ flux observations: benefit of Monte Carlo versus variational schemes and analyses of the year-to-year model performances |
| URI | https://www.proquest.com/docview/1643439416 https://www.proquest.com/docview/1654673820 https://hal.science/hal-01268909 https://orbi.uliege.be/handle/2268/229869 https://doaj.org/article/c08605ef55154cf8bf1c3ab20cbbf5af |
| Volume | 11 |
| WOSCitedRecordID | wos000346357800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: RKB dateStart: 20040101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: M7P dateStart: 20100601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: BFMQW dateStart: 20100601 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: PCBAR dateStart: 20100601 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: M7S dateStart: 20100601 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: PATMY dateStart: 20100601 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: BENPR dateStart: 20100601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1726-4189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038085 issn: 1726-4170 databaseCode: PIMPY dateStart: 20100601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIrSLzwjQiMykxI8EBYPpzE4QW1U6dNsKraQBpPVuzYpVKXlKap2At_hj_Knet2VAheUFW3ic_ppXc-3zn3QcjLUPNCqywFCuTGZynPfdDyS99EWVJmWciMkrbYRDYc8ouLfOQ23BrnVrmWiVZQl7XCPfIDUOtjjOIM0_ezbz5WjcKnq66Exg7pYJaEyLrujdaSOOaBLckJa3TqszALVql9QGdhB3KMAWVgoWWAZci2ViWbvH8jone-oodkZ4rPsP8Q2HYVOrr7v_jfI3ec_kl7K4a5T27o6gG5tapIefWQ_ByoepXcmdoaObQGkXLpYjUpOsmP6aSicNGWmmn7ndZys63bvKMSJKeZLGht6CmmvaKHxXxaU3T9aBu6BLvc7T1SMKr1pW5oUZXwxsQocADDQB-lVzD7_EXt46dDY3Yd39A8Ip-PBp8Oj31Xx8FXCecLX_FYMzBbEtAPdKDCmOvEJGUML1BvMhOpOC20icsc0_UFTPK41HFoSq6UAZ0sfkx2q7rSTwjNTSAxmJZLIGKRwzCtSpZoxoxWwFceebumo1AuyTnW2pgKMHaQ8EKOwegRSHiBhPfI682A2Sq_x99B-8gYGzBMzG1P1POxcPNcKDARg0QbUEQTpgyXJlRxIaNASWmSwnhkH9lKYOqNCn17xkXbNOLk_Ez0GA8ZWoiZR145IFMD9qpwoRI10hDO_w65twUJskFtde8D925hfNz7KPAcKCYwMYN8GXrkjWVuuA85EcvIgtnv7RRuTAmpBSjpHJqcpzn85JrBhZN3jbjmbo-82HQjNujDV-m6RZiEYY3ZKHj670s8I7fx_0anoTDdI7uLeaufk5tquZg08y7p9AfD0VnX7p507YS37Tm2PwbQPzo5HX2Bo7MP_V8DBGEO |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3bbtMw1NpaELxwRxQGmAkED4Tl4iQOEkJlbGq1tqrYkMaTiR27VOqS0jSFfg_vfCPnJGlHheBtD6hq0ybHqS_n6pwLIU8dzWOtwgBWIDIWC3hkgZafWMYN_SQMHWaULItNhIMBPz2Nhlvk5yoWBt0qVzyxZNRJpnCPfA_Ueg-jOJ3g7fSrhVWj8OnqqoRGhRZHevkNTLb8Tfc9rO8z1z08ONnvWHVVAUv5nM8txT3NQIn2QVppWzke177xEw9eIGxD4yoviLXxkgiTx9lMci_RnmMSrpQBDcGD-26TJkNkb5DmsNsfflrxfo_bZRFQ0AoCizmhXSUTAi2J7ckRhrCBTRjCvDhsQw6W5QLWQmH7C_pkNif41PwPEVHKvcPr_9uM3SDXag2btiuSuEm2dHqLXK5qbi5vkx8HKqvSV9OyChDNgGme1dGoFMMARnScUhhEQc2k-E4zud64zl9TCbLBjOc0M7SPib3ofjybZBSdW4qcLuLZuN5dpTmQw5nOaZwm8MbUL_ADmoHGTZcwLdY8s_BYd2N6HsGR3yEfL2SG7pJGmqX6HqGRsSWGC3MJSBNH0EyrhPmaMaMVUE6LvFrhjVB1GnesJjIRYM4hogk5ArNOIKIJRLQWebFuMK0ymPwd9B0i4hoMU4-XJ7LZSNScTCgwgm1fG1C1faYMl8ZRXixdW0lp_Ni0yC6iscDkIil6L43iIs9F9_iDaDPuMLSBwxZ5XgOZDHqv4joYJMM1hPO_Q-5sQAL3UxuXd4FaNnrcafcEngPVC1iPHS2cFnlZEhOMQ47Fwi3Byu_FBAamhNQCzBAOHxEPIvjLFUGJmqPn4pyaWuTJ-jL2Br0UU50VCOMzrKLr2vf_fYvH5ErnpN8Tve7g6AG5inOPLlJOsEMa81mhH5JLajEf57NHNYOh5PNFU-gvL9C3RA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbtNAdNQmgLiwIwwFhgoEB0y8jO0xEkLpEjXqolJA9DZ4xjMhUmqHOA7ke_gLvo73bCclQnDrAUWJE_uNM8tbx28h5KmreaJVFMIKxMZmIY9t0PJT23hRkEaRy4ySVbGJ6OiIn57Gx2vk5yIWBt0qFzyxYtRprnCPvANqvY9RnG7YMY1bxPFO7-34q40VpPBJ66KcRo0i-3r-Dcy34k1_B9b6mef1dj9s79lNhQFbBZxPbcV9zUChDkByaUe5PteBCVIfXiB4I-MpP0y08dMYE8k5THI_1b5rUq6UAW3Bh_uukzYPQ-60SHurd_ju00IO-NypCoKChhDazI2cOrEQaEysIwcYzgb2YQRz5LIVmViVDlgKiPUv6J_ZHuET9D_ERSUDe9f_59m7Qa41mjft1qRyk6zp7Ba5XNfinN8mP3ZVXqe1plV1IJoDMz1rolQphgcM6DCjMIiSmlH5neZyuaFdvKYSZIYZTmlu6CEm_KLbyWSUU3R6KQs6SybDZteVFkAmZ7qgSZbCG1PCwA9oBpo4ncO02NPcxmPTjfF5ZEdxh3y8kBm6S1pZnul7hMbGkRhGzCUgUBJDM61SFmjGjFZAURZ5tcAhoZr07lhlZCTAzEOkE3IA5p5ApBOIdBZ5sWwwrjOb_B10C5FyCYYpyasT-WQgGg4nFBjHTqANqOABU4ZL4yo_kZ6jpDRBYiyyiSgtMOlIhgg4SMqiEP33J6LLuMvQNo4s8rwBMjn0XiVNkEiOawjnf4fcWIEErqhWLm8C5az0eK97IPAcqGTAkpx45lrkZUVYMA45FDOvAqu-lyMYmBJSCzBPOHzEPIzhLxfEJRpOX4hzyrLIk-Vl7A16L2Y6LxEmYFhd13Pu__sWj8kVIEtx0D_af0Cu4tSj55QbbpDWdFLqh-SSmk2HxeRRw2so-XzRBPoLKu2_5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecosystem+model+optimization+using+in+situ+flux+observations%3A+benefit+of+Monte+Carlo+versus+variational+schemes+and+analyses+of+the+year-to-year+model+performances&rft.jtitle=Biogeosciences&rft.au=Santaren%2C+D&rft.au=Peylin%2C+P&rft.au=Bacour%2C+C&rft.au=Ciais%2C+P&rft.date=2014-12-16&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.volume=11&rft.issue=24&rft.spage=7137&rft_id=info:doi/10.5194%2Fbg-11-7137-2014&rft.externalDocID=A481421747 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4189&client=summon |