An improved FOX optimization algorithm using adaptive exploration and exploitation for global optimization

Optimization algorithms are essential for solving many real-world problems. However, challenges such as getting trapped in local minima and effectively balancing exploration and exploitation often limit their performance. This paper introduces an improved variation of the FOX optimization algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 20; číslo 9; s. e0331965
Hlavní autoři: Jumaah, Mahmood A., Ali, Yossra H., Rashid, Tarik A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 18.09.2025
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optimization algorithms are essential for solving many real-world problems. However, challenges such as getting trapped in local minima and effectively balancing exploration and exploitation often limit their performance. This paper introduces an improved variation of the FOX optimization algorithm (FOX), termed Improved FOX (IFOX), incorporating a new adaptive method using a dynamically scaled step-size parameter to balance exploration and exploitation based on the current solution’s fitness value. The proposed IFOX also reduces the number of hyperparameters by removing four parameters (C1, C2, a, Mint) and refines the primary equations of FOX. To evaluate its performance, IFOX was tested on 20 classical benchmark functions, 61 benchmark test functions from the congress on evolutionary computation (CEC), and ten real-world problems. The experimental results showed that IFOX achieved a 40% improvement in overall performance metrics over the original FOX. Additionally, it achieved 880 wins, 228 ties, and 348 losses against 16 optimization algorithms across all involved functions and problems. Furthermore, non-parametric statistical tests, including the Friedman and Wilcoxon signed-rank tests, confirmed its competitiveness against recent and state-of-the-art optimization algorithms, such as LSHADE and NRO, with an average rank of 5.92 among 17 algorithms. These findings highlight the significant potential of IFOX for solving diverse optimization problems, establishing it as a competitive and effective optimization algorithm.
AbstractList Optimization algorithms are essential for solving many real-world problems. However, challenges such as getting trapped in local minima and effectively balancing exploration and exploitation often limit their performance. This paper introduces an improved variation of the FOX optimization algorithm (FOX), termed Improved FOX (IFOX), incorporating a new adaptive method using a dynamically scaled step-size parameter to balance exploration and exploitation based on the current solution's fitness value. The proposed IFOX also reduces the number of hyperparameters by removing four parameters (C1, C2, a, Mint) and refines the primary equations of FOX. To evaluate its performance, IFOX was tested on 20 classical benchmark functions, 61 benchmark test functions from the congress on evolutionary computation (CEC), and ten real-world problems. The experimental results showed that IFOX achieved a 40% improvement in overall performance metrics over the original FOX. Additionally, it achieved 880 wins, 228 ties, and 348 losses against 16 optimization algorithms across all involved functions and problems. Furthermore, non-parametric statistical tests, including the Friedman and Wilcoxon signed-rank tests, confirmed its competitiveness against recent and state-of-the-art optimization algorithms, such as LSHADE and NRO, with an average rank of 5.92 among 17 algorithms. These findings highlight the significant potential of IFOX for solving diverse optimization problems, establishing it as a competitive and effective optimization algorithm.Optimization algorithms are essential for solving many real-world problems. However, challenges such as getting trapped in local minima and effectively balancing exploration and exploitation often limit their performance. This paper introduces an improved variation of the FOX optimization algorithm (FOX), termed Improved FOX (IFOX), incorporating a new adaptive method using a dynamically scaled step-size parameter to balance exploration and exploitation based on the current solution's fitness value. The proposed IFOX also reduces the number of hyperparameters by removing four parameters (C1, C2, a, Mint) and refines the primary equations of FOX. To evaluate its performance, IFOX was tested on 20 classical benchmark functions, 61 benchmark test functions from the congress on evolutionary computation (CEC), and ten real-world problems. The experimental results showed that IFOX achieved a 40% improvement in overall performance metrics over the original FOX. Additionally, it achieved 880 wins, 228 ties, and 348 losses against 16 optimization algorithms across all involved functions and problems. Furthermore, non-parametric statistical tests, including the Friedman and Wilcoxon signed-rank tests, confirmed its competitiveness against recent and state-of-the-art optimization algorithms, such as LSHADE and NRO, with an average rank of 5.92 among 17 algorithms. These findings highlight the significant potential of IFOX for solving diverse optimization problems, establishing it as a competitive and effective optimization algorithm.
Optimization algorithms are essential for solving many real-world problems. However, challenges such as getting trapped in local minima and effectively balancing exploration and exploitation often limit their performance. This paper introduces an improved variation of the FOX optimization algorithm (FOX), termed Improved FOX (IFOX), incorporating a new adaptive method using a dynamically scaled step-size parameter to balance exploration and exploitation based on the current solution's fitness value. The proposed IFOX also reduces the number of hyperparameters by removing four parameters (C1, C2, a, Mint) and refines the primary equations of FOX. To evaluate its performance, IFOX was tested on 20 classical benchmark functions, 61 benchmark test functions from the congress on evolutionary computation (CEC), and ten real-world problems. The experimental results showed that IFOX achieved a 40% improvement in overall performance metrics over the original FOX. Additionally, it achieved 880 wins, 228 ties, and 348 losses against 16 optimization algorithms across all involved functions and problems. Furthermore, non-parametric statistical tests, including the Friedman and Wilcoxon signed-rank tests, confirmed its competitiveness against recent and state-of-the-art optimization algorithms, such as LSHADE and NRO, with an average rank of 5.92 among 17 algorithms. These findings highlight the significant potential of IFOX for solving diverse optimization problems, establishing it as a competitive and effective optimization algorithm.
Audience Academic
Author Rashid, Tarik A.
Jumaah, Mahmood A.
Ali, Yossra H.
Author_xml – sequence: 1
  givenname: Mahmood A.
  orcidid: 0000-0002-6232-3900
  surname: Jumaah
  fullname: Jumaah, Mahmood A.
– sequence: 2
  givenname: Yossra H.
  surname: Ali
  fullname: Ali, Yossra H.
– sequence: 3
  givenname: Tarik A.
  surname: Rashid
  fullname: Rashid, Tarik A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40966273$$D View this record in MEDLINE/PubMed
BookMark eNqNkstq3DAUhkVJaZJp36C0hkJpFzPVxbbs5RCadiAw0BvdiWNZ9miQrakkh7RPX03shLhkUbSQdPydi37_5-ikt71C6CXBK8I4-bC3g-vBrA4xvMKMkTLPnqAzUjK6zClmJw_Op-jc-z3GGSvy_Bk6TXGZ55SzM7Rf94nuDs5eqzq53P5M7CHoTv-BoG2fgGmt02HXJYPXfZtADfHztUrUzcFYN0F9Pd51GAONdUlrbAVmVu05etqA8erFtC_Q98uP3y4-L6-2nzYX66ulzIoiLCXlMpWklGWTKS5xRilWJZZVQ2tQDaGSEVZzgIo0ivIMM0wLzvNUSkpiBlug12PdOJIXk0xeMJpRgjnL0khsRqK2sBcHpztwv4UFLW4D1rUCXNDSKMF4JVOVFVISSAlERVNcN0VVpFVZMlXFWu-mbs7-GpQPotNeKmOgV3YY21Kaktu2b_5BHx9uolqI_XXf2OBAHouKdZHlhBZlnGKBVo9QcdWq0zJaotExPkt4P0uITFA3oYXBe7H5-uX_2e2POfv2AbtTYMLOWzMc_7ifg6-m1w9Vp-p72e-8GIF0BKSz3jvV3CMEi6Pl7-QSR8uLyfLsL1sc8q4
Cites_doi 10.3934/mbe.2022512
10.1016/j.matpr.2023.06.393
10.1016/j.ins.2018.08.030
10.3390/bioengineering10030320
10.1038/d41586-022-01332-8
10.1109/CEC.2019.8790158
10.1002/int.22535
10.1109/ACCESS.2024.3427632
10.1016/j.knosys.2023.111257
10.1016/j.energy.2024.131259
10.1016/j.ejor.2024.03.020
10.1016/j.asoc.2023.110031
10.1007/s00521-015-1920-1
10.1007/s10462-022-10281-7
10.3390/app11073235
10.1038/s41598-024-54910-3
10.1016/j.eswa.2021.116158
10.1109/CEC45853.2021.9504795
10.1016/j.arcontrol.2024.100941
10.1007/s00607-025-01429-8
10.1016/j.engappai.2022.105622
10.1016/j.ins.2022.05.058
10.1016/j.cja.2020.09.020
10.1109/ACCESS.2019.2907012
10.1007/s00521-025-11225-2
10.1016/j.eswa.2020.113377
10.1016/j.knosys.2022.110011
10.70403/3008-1084.1001
10.1109/CEC.2019.8789904
10.1007/s00500-023-09276-5
10.1016/j.engappai.2019.103330
10.1109/JAS.2021.1004129
10.1016/j.swevo.2021.100888
10.1201/9781003337003
10.1016/j.cie.2020.106559
10.1016/j.knosys.2021.107486
10.1504/IJMMNO.2013.055204
10.1080/08839514.2023.2166232
10.1109/CEC55065.2022.9870433
10.1016/S0377-0427(00)00425-8
10.1109/ACCESS.2019.2918406
10.1007/s10489-022-03533-0
10.1016/j.jcde.2019.02.002
10.1016/j.dcan.2022.03.003
10.1162/106365603321828970
10.33103/uot.ijccce.23.2.2
10.1109/MCI.2006.329691
10.1007/s00500-020-04721-1
10.1016/j.engappai.2019.103249
10.1016/j.engappai.2019.103300
10.1016/j.knosys.2020.106131
10.1016/j.future.2020.03.055
10.1016/j.apm.2019.09.029
10.3390/en15062205
10.1051/shsconf/202214001044
10.1016/j.asoc.2023.110908
10.1016/j.eswa.2022.119495
10.33103/uot.ijccce.23.4.5
10.1109/ACCESS.2021.3061288
10.3390/math10030351
10.1007/s10462-023-10542-z
10.1016/j.eswa.2023.121219
10.1016/j.ress.2023.109204
10.1016/j.cie.2021.107250
10.1007/s00521-022-07530-9
10.1016/j.knosys.2021.107625
10.1108/02644401211235834
10.1007/s10462-023-10568-3
10.1007/s11831-022-09859-9
10.1016/j.asej.2024.103185
ContentType Journal Article
Copyright Copyright: © 2025 Jumaah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Jumaah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Jumaah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Jumaah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Jumaah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Jumaah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0331965
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

MEDLINE
Agricultural Science Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 1932-6203
ExternalDocumentID 3252107354
oai_doaj_org_article_37bc4e58cc1a41a19340df8b84b993eb
A856128919
40966273
10_1371_journal_pone_0331965
Genre Journal Article
GeographicLocations Iraq
GeographicLocations_xml – name: Iraq
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
ESTFP
IPNFZ
NPM
PUEGO
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c588t-c27c4c19c9f5e7c05220e90cbf2daef12c313d7aab1fe275030287764cc215e73
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001575287600047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Tue Dec 02 00:10:50 EST 2025
Tue Oct 14 18:29:59 EDT 2025
Fri Sep 19 21:03:26 EDT 2025
Sat Nov 29 14:50:14 EST 2025
Sat Nov 29 13:45:41 EST 2025
Sat Nov 29 10:28:40 EST 2025
Wed Nov 26 10:45:44 EST 2025
Wed Nov 26 10:45:46 EST 2025
Tue Nov 04 03:30:21 EST 2025
Mon Sep 22 02:44:45 EDT 2025
Sat Nov 29 07:27:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright: © 2025 Jumaah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-c27c4c19c9f5e7c05220e90cbf2daef12c313d7aab1fe275030287764cc215e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6232-3900
OpenAccessLink https://www.proquest.com/docview/3252107354?pq-origsite=%requestingapplication%
PMID 40966273
PQID 3252107354
PQPubID 1436336
PageCount e0331965
ParticipantIDs plos_journals_3252107354
doaj_primary_oai_doaj_org_article_37bc4e58cc1a41a19340df8b84b993eb
proquest_miscellaneous_3252224154
proquest_journals_3252107354
gale_infotracmisc_A856128919
gale_infotracacademiconefile_A856128919
gale_incontextgauss_ISR_A856128919
gale_incontextgauss_IOV_A856128919
gale_healthsolutions_A856128919
pubmed_primary_40966273
crossref_primary_10_1371_journal_pone_0331965
PublicationCentury 2000
PublicationDate 2025-09-18
PublicationDateYYYYMMDD 2025-09-18
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Faramarzi (pone.0331965.ref050) 2020; 152
K Zervoudakis (pone.0331965.ref051) 2020; 145
AK Feda (pone.0331965.ref073) 2024; 10
Y Li (pone.0331965.ref035) 2022; 606
L Abualigah (pone.0331965.ref043) 2022; 191
Q Luo (pone.0331965.ref066) 2023; 66
H Mohammed (pone.0331965.ref010) 2022; 53
AP Piotrowski (pone.0331965.ref034) 2018; 468
F Rezaei (pone.0331965.ref021) 2022; 10
A Ghasemi-Marzbali (pone.0331965.ref047) 2020; 24
Y Xiao (pone.0331965.ref065) 2022; 19
MH Amiri (pone.0331965.ref039) 2024; 14
S Han (pone.0331965.ref032) 2022; 140
SA Aula (pone.0331965.ref070) 2025; 16
V Hayyolalam (pone.0331965.ref048) 2020; 87
G Shial (pone.0331965.ref022) 2023; 37
S Mostafa Bozorgi (pone.0331965.ref033) 2019; 6
I Rahimi (pone.0331965.ref001) 2022; 30
E Osaba (pone.0331965.ref056) 2021; 64
(pone.0331965.ref017) 2023
AI Hammouri (pone.0331965.ref028) 2020; 203
U Sadana (pone.0331965.ref054) 2025; 320
L Abualigah (pone.0331965.ref042) 2021; 157
M Garzón (pone.0331965.ref057) 2025; 107
AM Aladdin (pone.0331965.ref041) 2025; 37
H ALRahhal (pone.0331965.ref071) 2023; 56
J Tang (pone.0331965.ref019) 2022; 56
C He (pone.0331965.ref002) 2023; 217
AT Salawudeen (pone.0331965.ref013) 2021; 232
J Tang (pone.0331965.ref015) 2021; 8
S Mirjalili (pone.0331965.ref027) 2015; 27
A Alorf (pone.0331965.ref052) 2023; 117
AE Ezugwu (pone.0331965.ref064) 2022; 34
MH Sulaiman (pone.0331965.ref046) 2020; 87
H Pan (pone.0331965.ref023) 2023; 135
Z Wei (pone.0331965.ref040) 2019; 7
L Pinciroli (pone.0331965.ref004) 2023; 234
(pone.0331965.ref005) 2023
B Toaza (pone.0331965.ref053) 2023; 148
N Hansen (pone.0331965.ref036) 2003; 11
H Choi (pone.0331965.ref012) 2021; 11
Y Hussain Ali (pone.0331965.ref075) 2023; 10
W Kaidi (pone.0331965.ref076) 2022; 235
M Jamil (pone.0331965.ref058) 2013; 4
J Zhu (pone.0331965.ref003) 2021; 34
T Qiuyun (pone.0331965.ref031) 2021; 9
P Sharma (pone.0331965.ref059) 2023; 28
R Sauerheber (pone.0331965.ref074) 2024
X Yang (pone.0331965.ref029) 2012; 29
MA Jumaah (pone.0331965.ref069) 2024; 1
J Liu (pone.0331965.ref078) 2022; 15
M Dorigo (pone.0331965.ref055) 2006; 1
X Li (pone.0331965.ref025) 2024; 296
A Vagaská (pone.0331965.ref014) 2022; 15
A Hauswirth (pone.0331965.ref008) 2024; 57
M Abdel-Basset (pone.0331965.ref037) 2024; 284
pone.0331965.ref062
pone.0331965.ref063
pone.0331965.ref068
E-J Wagenmakers (pone.0331965.ref079) 2022; 605
pone.0331965.ref067
K Sadatdiynov (pone.0331965.ref006) 2023; 9
PM Pardalos (pone.0331965.ref016) 2000; 124
pone.0331965.ref060
pone.0331965.ref061
HK AbdulKarim (pone.0331965.ref020) 2024; 12
L Schönenberger (pone.0331965.ref011) 2023; 2023
H Yu (pone.0331965.ref030) 2020; 77
W Zhao (pone.0331965.ref049) 2020; 87
JM Abdullah (pone.0331965.ref077) 2019; 7
F Zhu (pone.0331965.ref009) 2024; 236
E Osaba (pone.0331965.ref007) 2021; 64
Z-M Gao (pone.0331965.ref024) 2019; 2019
H ALRahhal (pone.0331965.ref072) 2023; 56
pone.0331965.ref026
B Abdollahzadeh (pone.0331965.ref044) 2021; 36
S Li (pone.0331965.ref045) 2020; 111
J Tang (pone.0331965.ref018) 2021; 8
M Dehghani (pone.0331965.ref038) 2023; 259
References_xml – volume: 19
  start-page: 10963
  issue: 11
  year: 2022
  ident: pone.0331965.ref065
  article-title: IHAOAVOA: an improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems
  publication-title: Math Biosci Eng.
  doi: 10.3934/mbe.2022512
– ident: pone.0331965.ref068
  doi: 10.1016/j.matpr.2023.06.393
– volume: 468
  start-page: 117
  year: 2018
  ident: pone.0331965.ref034
  article-title: L-SHADE optimization algorithms with population-wide inertia
  publication-title: Information Sciences.
  doi: 10.1016/j.ins.2018.08.030
– volume: 10
  start-page: 320
  issue: 3
  year: 2023
  ident: pone.0331965.ref075
  article-title: Optimization system based on convolutional neural network and internet of medical things for early diagnosis of lung cancer
  publication-title: Bioengineering (Basel).
  doi: 10.3390/bioengineering10030320
– volume: 605
  start-page: 423
  issue: 7910
  year: 2022
  ident: pone.0331965.ref079
  article-title: One statistical analysis must not rule them all
  publication-title: Nature.
  doi: 10.1038/d41586-022-01332-8
– ident: pone.0331965.ref060
  doi: 10.1109/CEC.2019.8790158
– volume: 36
  start-page: 5887
  issue: 10
  year: 2021
  ident: pone.0331965.ref044
  article-title: Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Int J Intell Syst.
  doi: 10.1002/int.22535
– volume: 12
  start-page: 98407
  year: 2024
  ident: pone.0331965.ref020
  article-title: In search of excellence: SHOA as a competitive shrike optimization algorithm for multimodal problems
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3427632
– volume: 2023
  start-page: 848
  year: 2023
  ident: pone.0331965.ref011
  article-title: On a population sizing model for evolution strategies optimizing the highly multimodal rastrigin function
  publication-title: Genet Evol Comput Conf.
– volume: 284
  start-page: 111257
  year: 2024
  ident: pone.0331965.ref037
  article-title: Crested porcupine optimizer: a new nature-inspired metaheuristic
  publication-title: Knowledge-Based Systems.
  doi: 10.1016/j.knosys.2023.111257
– volume: 15
  issue: 1
  year: 2022
  ident: pone.0331965.ref078
  article-title: T-Friedman test: a new statistical test for multiple comparison with an adjustable conservativeness measure
  publication-title: Int J Comput Intell Syst.
– volume: 2019
  start-page: 2981282
  year: 2019
  ident: pone.0331965.ref024
  article-title: An improved grey wolf optimization algorithm with variable weights
  publication-title: Comput Intell Neurosci.
– volume: 296
  start-page: 131259
  year: 2024
  ident: pone.0331965.ref025
  article-title: An advanced framework for net electricity consumption prediction: incorporating novel machine learning models and optimization algorithms
  publication-title: Energy.
  doi: 10.1016/j.energy.2024.131259
– volume: 320
  start-page: 271
  issue: 2
  year: 2025
  ident: pone.0331965.ref054
  article-title: A survey of contextual optimization methods for decision-making under uncertainty
  publication-title: European Journal of Operational Research.
  doi: 10.1016/j.ejor.2024.03.020
– volume: 135
  start-page: 110031
  year: 2023
  ident: pone.0331965.ref023
  article-title: A high-dimensional feature selection method based on modified Gray Wolf Optimization
  publication-title: Applied Soft Computing.
  doi: 10.1016/j.asoc.2023.110031
– volume: 27
  start-page: 1053
  issue: 4
  year: 2015
  ident: pone.0331965.ref027
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput & Applic.
  doi: 10.1007/s00521-015-1920-1
– volume: 56
  start-page: 4295
  issue: 5
  year: 2022
  ident: pone.0331965.ref019
  article-title: Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: a comprehensive review
  publication-title: Artif Intell Rev.
  doi: 10.1007/s10462-022-10281-7
– volume: 11
  start-page: 3235
  issue: 7
  year: 2021
  ident: pone.0331965.ref012
  article-title: A survey of machine learning-based system performance optimization techniques
  publication-title: Applied Sciences.
  doi: 10.3390/app11073235
– volume: 14
  start-page: 5032
  issue: 1
  year: 2024
  ident: pone.0331965.ref039
  article-title: Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm
  publication-title: Sci Rep.
  doi: 10.1038/s41598-024-54910-3
– volume: 191
  start-page: 116158
  year: 2022
  ident: pone.0331965.ref043
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2021.116158
– ident: pone.0331965.ref062
  doi: 10.1109/CEC45853.2021.9504795
– volume: 57
  start-page: 100941
  year: 2024
  ident: pone.0331965.ref008
  article-title: Optimization algorithms as robust feedback controllers
  publication-title: Annual Reviews in Control.
  doi: 10.1016/j.arcontrol.2024.100941
– volume: 107
  issue: 3
  year: 2025
  ident: pone.0331965.ref057
  article-title: From collective intelligence to global optimisation: an agent-based model approach
  publication-title: Computing.
  doi: 10.1007/s00607-025-01429-8
– volume: 117
  start-page: 105622
  year: 2023
  ident: pone.0331965.ref052
  article-title: A survey of recently developed metaheuristics and their comparative analysis
  publication-title: Engineering Applications of Artificial Intelligence.
  doi: 10.1016/j.engappai.2022.105622
– volume: 606
  start-page: 350
  year: 2022
  ident: pone.0331965.ref035
  article-title: A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem
  publication-title: Information Sciences.
  doi: 10.1016/j.ins.2022.05.058
– volume: 34
  start-page: 91
  issue: 1
  year: 2021
  ident: pone.0331965.ref003
  article-title: A review of topology optimization for additive manufacturing: Status and challenges
  publication-title: Chinese Journal of Aeronautics.
  doi: 10.1016/j.cja.2020.09.020
– volume: 7
  start-page: 43473
  year: 2019
  ident: pone.0331965.ref077
  article-title: Fitness dependent optimizer: inspired by the bee swarming reproductive process
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2907012
– volume: 37
  start-page: 14365
  issue: 19
  year: 2025
  ident: pone.0331965.ref041
  article-title: LEO: lagrange elementary optimization
  publication-title: Neural Comput & Applic.
  doi: 10.1007/s00521-025-11225-2
– volume: 152
  start-page: 113377
  year: 2020
  ident: pone.0331965.ref050
  article-title: Marine predators algorithm: a nature-inspired metaheuristic
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2020.113377
– volume: 259
  start-page: 110011
  year: 2023
  ident: pone.0331965.ref038
  article-title: Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems.
  doi: 10.1016/j.knosys.2022.110011
– volume: 1
  issue: 1
  year: 2024
  ident: pone.0331965.ref069
  article-title: FOXANN: a method for boosting neural network performance
  publication-title: Journal of Soft Computing and Computer Applications.
  doi: 10.70403/3008-1084.1001
– ident: pone.0331965.ref061
  doi: 10.1109/CEC.2019.8789904
– volume: 28
  start-page: 3123
  issue: 4
  year: 2023
  ident: pone.0331965.ref059
  article-title: Metaheuristic optimization algorithms: a comprehensive overview and classification of benchmark test functions
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-09276-5
– volume: 87
  start-page: 103330
  year: 2020
  ident: pone.0331965.ref046
  article-title: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence.
  doi: 10.1016/j.engappai.2019.103330
– volume: 8
  start-page: 1627
  issue: 10
  year: 2021
  ident: pone.0331965.ref015
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends
  publication-title: IEEE/CAA J Autom Sinica.
  doi: 10.1109/JAS.2021.1004129
– volume: 64
  start-page: 100888
  year: 2021
  ident: pone.0331965.ref056
  article-title: A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems
  publication-title: Swarm and Evolutionary Computation.
  doi: 10.1016/j.swevo.2021.100888
– ident: pone.0331965.ref026
  doi: 10.1201/9781003337003
– volume: 145
  start-page: 106559
  year: 2020
  ident: pone.0331965.ref051
  article-title: A mayfly optimization algorithm
  publication-title: Computers & Industrial Engineering.
  doi: 10.1016/j.cie.2020.106559
– volume: 232
  start-page: 107486
  year: 2021
  ident: pone.0331965.ref013
  article-title: A Novel Smell Agent Optimization (SAO): An extensive CEC study and engineering application
  publication-title: Knowledge-Based Systems.
  doi: 10.1016/j.knosys.2021.107486
– volume: 4
  start-page: 150
  issue: 2
  year: 2013
  ident: pone.0331965.ref058
  article-title: A literature survey of benchmark functions for global optimisation problems
  publication-title: IJMMNO.
  doi: 10.1504/IJMMNO.2013.055204
– volume: 37
  issue: 1
  year: 2023
  ident: pone.0331965.ref022
  article-title: An enhanced GWO algorithm with improved explorative search capability for global optimization and data clustering
  publication-title: Applied Artificial Intelligence.
  doi: 10.1080/08839514.2023.2166232
– ident: pone.0331965.ref063
  doi: 10.1109/CEC55065.2022.9870433
– volume: 64
  start-page: 100888
  year: 2021
  ident: pone.0331965.ref007
  article-title: A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems
  publication-title: Swarm and Evolutionary Computation.
  doi: 10.1016/j.swevo.2021.100888
– ident: pone.0331965.ref067
  doi: 10.1016/j.matpr.2023.06.393
– volume: 124
  start-page: 209
  year: 2000
  ident: pone.0331965.ref016
  article-title: Recent developments and trends in global optimization
  publication-title: Journal of Computational and Applied Mathematics.
  doi: 10.1016/S0377-0427(00)00425-8
– volume: 7
  start-page: 66084
  year: 2019
  ident: pone.0331965.ref040
  article-title: Nuclear reaction optimization: a novel and powerful physics-based algorithm for global optimization
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2918406
– volume: 53
  start-page: 1030
  issue: 1
  year: 2022
  ident: pone.0331965.ref010
  article-title: FOX: a FOX-inspired optimization algorithm
  publication-title: Appl Intell.
  doi: 10.1007/s10489-022-03533-0
– volume: 6
  start-page: 243
  issue: 3
  year: 2019
  ident: pone.0331965.ref033
  article-title: IWOA: An improved whale optimization algorithm for optimization problems
  publication-title: Journal of Computational Design and Engineering.
  doi: 10.1016/j.jcde.2019.02.002
– volume: 9
  start-page: 450
  issue: 2
  year: 2023
  ident: pone.0331965.ref006
  article-title: A review of optimization methods for computation offloading in edge computing networks
  publication-title: Digital Communications and Networks.
  doi: 10.1016/j.dcan.2022.03.003
– volume: 11
  start-page: 1
  issue: 1
  year: 2003
  ident: pone.0331965.ref036
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
  publication-title: Evol Comput.
  doi: 10.1162/106365603321828970
– start-page: 13
  year: 2023
  ident: pone.0331965.ref005
  article-title: Analytical Study for Optimization Techniques to Prolong WSNs Life
  publication-title: IJCCCE.
  doi: 10.33103/uot.ijccce.23.2.2
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: pone.0331965.ref055
  article-title: Ant colony optimization
  publication-title: IEEE Comput Intell Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 24
  start-page: 13003
  issue: 17
  year: 2020
  ident: pone.0331965.ref047
  article-title: A novel nature-inspired meta-heuristic algorithm for optimization: bear smell search algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-04721-1
– volume: 87
  start-page: 103249
  year: 2020
  ident: pone.0331965.ref048
  article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence.
  doi: 10.1016/j.engappai.2019.103249
– volume: 87
  start-page: 103300
  year: 2020
  ident: pone.0331965.ref049
  article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
  publication-title: Engineering Applications of Artificial Intelligence.
  doi: 10.1016/j.engappai.2019.103300
– volume: 203
  start-page: 106131
  year: 2020
  ident: pone.0331965.ref028
  article-title: An improved Dragonfly Algorithm for feature selection
  publication-title: Knowledge-Based Systems.
  doi: 10.1016/j.knosys.2020.106131
– volume: 111
  start-page: 300
  year: 2020
  ident: pone.0331965.ref045
  article-title: Slime mould algorithm: a new method for stochastic optimization
  publication-title: Future Generation Computer Systems.
  doi: 10.1016/j.future.2020.03.055
– volume: 77
  start-page: 1201
  year: 2020
  ident: pone.0331965.ref030
  article-title: Chaos-enhanced synchronized bat optimizer
  publication-title: Applied Mathematical Modelling.
  doi: 10.1016/j.apm.2019.09.029
– volume: 15
  start-page: 2205
  issue: 6
  year: 2022
  ident: pone.0331965.ref014
  article-title: Selected mathematical optimization methods for solving problems of engineering practice
  publication-title: Energies.
  doi: 10.3390/en15062205
– volume: 10
  issue: 2
  year: 2024
  ident: pone.0331965.ref073
  article-title: S-shaped grey wolf optimizer-based FOX algorithm for feature selection
  publication-title: Heliyon.
– volume: 140
  start-page: 01044
  year: 2022
  ident: pone.0331965.ref032
  article-title: An improved adaptive genetic algorithm
  publication-title: SHS Web Conf.
  doi: 10.1051/shsconf/202214001044
– volume: 148
  start-page: 110908
  year: 2023
  ident: pone.0331965.ref053
  article-title: A review of metaheuristic algorithms for solving TSP-based scheduling optimization problems
  publication-title: Applied Soft Computing.
  doi: 10.1016/j.asoc.2023.110908
– year: 2024
  ident: pone.0331965.ref074
  article-title: Light and sound speed mechanisms, relative velocities, simultaneity, and special relativity
  publication-title: SSRN Journal.
– volume: 217
  start-page: 119495
  year: 2023
  ident: pone.0331965.ref002
  article-title: A review of surrogate-assisted evolutionary algorithms for expensive optimization problems
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2022.119495
– start-page: 46
  year: 2023
  ident: pone.0331965.ref017
  article-title: Analytical and Comparative Study for Optimization Problems
  publication-title: IJCCCE.
  doi: 10.33103/uot.ijccce.23.4.5
– volume: 9
  start-page: 33522
  year: 2021
  ident: pone.0331965.ref031
  article-title: Improved particle swarm optimization algorithm for AGV path planning
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3061288
– volume: 10
  start-page: 351
  issue: 3
  year: 2022
  ident: pone.0331965.ref021
  article-title: An enhanced grey wolf optimizer with a velocity-aided global search mechanism
  publication-title: Mathematics.
  doi: 10.3390/math10030351
– volume: 56
  start-page: 15523
  issue: 12
  year: 2023
  ident: pone.0331965.ref071
  article-title: AFOX: a new adaptive nature-inspired optimization algorithm
  publication-title: Artif Intell Rev.
  doi: 10.1007/s10462-023-10542-z
– volume: 236
  start-page: 121219
  year: 2024
  ident: pone.0331965.ref009
  article-title: Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2023.121219
– volume: 234
  start-page: 109204
  year: 2023
  ident: pone.0331965.ref004
  article-title: Maintenance optimization in industry 4.0
  publication-title: Reliability Engineering & System Safety.
  doi: 10.1016/j.ress.2023.109204
– volume: 157
  start-page: 107250
  year: 2021
  ident: pone.0331965.ref042
  article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering.
  doi: 10.1016/j.cie.2021.107250
– volume: 8
  start-page: 1627
  issue: 10
  year: 2021
  ident: pone.0331965.ref018
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends
  publication-title: IEEE/CAA J Autom Sinica.
  doi: 10.1109/JAS.2021.1004129
– volume: 34
  start-page: 20017
  issue: 22
  year: 2022
  ident: pone.0331965.ref064
  article-title: Prairie dog optimization algorithm
  publication-title: Neural Comput & Applic.
  doi: 10.1007/s00521-022-07530-9
– volume: 66
  issue: 5
  year: 2023
  ident: pone.0331965.ref066
  article-title: Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems
  publication-title: Struct Multidisc Optim.
– volume: 235
  start-page: 107625
  year: 2022
  ident: pone.0331965.ref076
  article-title: Dynamic levy flight chimp optimization
  publication-title: Knowledge-Based Systems.
  doi: 10.1016/j.knosys.2021.107625
– volume: 29
  start-page: 464
  issue: 5
  year: 2012
  ident: pone.0331965.ref029
  article-title: Bat algorithm: a novel approach for global engineering optimization
  publication-title: Engineering Computations.
  doi: 10.1108/02644401211235834
– volume: 56
  start-page: 1981
  year: 2023
  ident: pone.0331965.ref072
  article-title: RNN-AFOX: adaptive FOX-inspired-based technique for automated tuning of recurrent neural network hyper-parameters
  publication-title: Artif Intell Rev.
  doi: 10.1007/s10462-023-10568-3
– volume: 30
  start-page: 2181
  issue: 3
  year: 2022
  ident: pone.0331965.ref001
  article-title: A Review on Constraint Handling Techniques for Population-based Algorithms: from single-objective to multi-objective optimization
  publication-title: Arch Computat Methods Eng.
  doi: 10.1007/s11831-022-09859-9
– volume: 16
  start-page: 103185
  issue: 1
  year: 2025
  ident: pone.0331965.ref070
  article-title: FOX-TSA: navigating complex search spaces and superior performance in benchmark and real-world optimization problems
  publication-title: Ain Shams Engineering Journal.
  doi: 10.1016/j.asej.2024.103185
SSID ssj0053866
Score 2.4875708
Snippet Optimization algorithms are essential for solving many real-world problems. However, challenges such as getting trapped in local minima and effectively...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0331965
SubjectTerms Adaptive algorithms
Algorithms
Analysis
Benchmarks
Birds
Competitiveness
Computer science
Design engineering
Evolution
Evolutionary computation
Exploitation
Feature selection
Foraging behavior
Genetic algorithms
Global optimization
Literature reviews
Mathematical optimization
Models, Theoretical
Optimization algorithms
Parameters
Performance evaluation
Performance measurement
Problem solving
Rank tests
Statistical analysis
Statistical tests
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQxYELYnltYRcMQgIO2c3DqZ1jQVQgoV3EY9WbZU-cUrSbVE26v5-Z2I2IBIIDx8Rfo3Q8M_7cjr9h7EUsjaRO2lEuII6EyW1kC7B0WRDfr2zftO_iozw7U8tl8emXVl9UE-blgb3hTjNpQbhcASRGJAb5hojLSlklLC6tzlL2Rdaz30z5HIxRPJuFg3KZTE7DvJxsmtqdxBm5XT5aiHq9_iErTzaXTftnytkvPYs77HbgjHzu3_WA3XD1XXYQorLlr4J09Ot77Me85uv-ZwJX8sX5kjeYEa7CUUtuLlfNdt19v-JU7b7ipjQbynbc9YV4AVSX_jqId3NktdzLhoyedp99W7z7-vZ9FLopRJAr1UWQShCQFFBUuZMQI_GKXRGDrdLSuCpJIUuyUhpjk8qR6nuG1EPKmQBAWuBk9oBNarTfIeOk6G0UJK4sU4H50aTIBDIAmeQGgzyZsmhvWr3xohm6_-dM4mbD20zTVOgwFVP2huw_YEnyur-BjqCDI-i_OcKUPaXZ0_786BC4eq6oAahCz5uy5z2CZC9qqqtZmV3b6g_nF_8A-vJ5BHoZQFXTbQ2YcJYBvxPJaY2QRyMkBi-Mhg_J1_ZWaXWWIp_CtJsL_OTe_34__GwYpodSrVztmp3H9MQMMQ-93w6Wxd08Kf5nj_6HxR-zWyl1Q6aGGuqITbrtzh2zm3Ddrdvtkz4gfwKq_Dst
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access (WRLC)
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELag8MALYwO2wgCDkICHjDh24uSxICqQpm3ix9S3yLk4pWhLqibl7-cucYKCqARvTf0lbc93l8_N-TvGXvraaOqk7YUKfE-ZMPOyBDI6TIjvF1nbtO_yVJ-dxYtFcvF7ofjHE3ypxVtn05N1VdoTX5LLhDfZrUBGEZVwzS9O-8yLsRtFbnvcrjNHt59WpX_IxZP1VVXvJprtDWe-979f9R6766gln3W-sM9u2PKA7fVtG7iL4gO2717V_LUTnX5zn_2YlXzV_sFgcz4_X_AKc8m126TJzdWy2qya79ec6uSX3ORmTXmS27aEz4HKvDt2st8c-TDvBEdGV3vAvs0_fH3_0XN9GDwI47jxINCgQCSQFKHV4CNl823iQ1YEubGFCEAKmWtjMlFY0ouXSFq0jhQAEgqr5UM2KdEkR4yTFriJQdg8DxRmVhMgh5AAWoQG04OYMq-fnnTdyW2k7TM3jcuUzowpWTd11p2ydzSHA5bEsts3cFpSF3up1BkoG8YAwihhkLIqPy_iLFYZsjObTdkz8oC023k6hHw6i6l1aIw-O2UvWgQJZpRUkbM027pOP51f_gPoy-cR6JUDFVWzMWDcLgj8TSTENUIej5AY9jAaPiJ_7a1SpzJAJoYJO1R4Zu_Dfx9-PgzTRanKrrTVtsO0lA4xh53vD5ZVuNaNkOs-2v25j9mdgLojU4ON-JhNms3WPmG34WezqjdP21D9BcxtPWY
  priority: 102
  providerName: Public Library of Science
Title An improved FOX optimization algorithm using adaptive exploration and exploitation for global optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/40966273
https://www.proquest.com/docview/3252107354
https://www.proquest.com/docview/3252224154
https://doaj.org/article/37bc4e58cc1a41a19340df8b84b993eb
http://dx.doi.org/10.1371/journal.pone.0331965
Volume 20
WOSCitedRecordID wos001575287600047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYxwMvjI2PFUYxCAl4SBfno3aeUDutYtrWRR1MhZfIcZwytCWlafn7uXOcokiAkHg5NfXFaXPn8y_O-XeEvHa55FhJ2wkD5TqBDFMnjVSKhxHi_Tw1RfuuzvhkImazKLYLbpVNq2xiognUWalwjfzQ92CiAX8Mg_eL7w5WjcK3q7aExhbZRpYE36TuxU0khrE8GNjtcj5nh9Y6_UVZ6L7ro_OFrenIsPZvYnNncVNWfwaeZgIa7_zvT39A7lvoSYe1r-ySO7rYIztNWQdqR_ke2bWfKvrWklK_e0i-DQt6bRYgdEbHFzNaQqy5tZs4qbyZwwVXX28p5tHPqczkAuMo1SbFzyoVWX1sacEp4GVaE5K0entEPo2PPx59cGydBkeFQqwc5XEVKBapKA81Vy5AOldHrkpzL5M6Z57ymZ9xKVOWa-ST9wHUcD4IlAKjae4_Jp0CbLJPKHKFS6GYzjIvgMgrPcAYvlKchRLCB-sSpzFXsqjpOBLzTo7DY0x9GxM0b2LN2yUjtOlGF8m0zRflcp7YsZn4PFWBDoVSTAZMAqQN3CwXqQhSQG867ZIX6BFJvTN1ExKSocDSogJ8ukteGQ0k1CgwY2cu11WVnFxc_YPS5bSl9MYq5eVqKZW0uyTgPyFRV0vzoKUJYUG1mvfRf5u7UiW_vBDObPz0980vN83YKWbhFbpc1zoG8oHOk3osbO5sAM_CA8DCT__e-TNyz8MKyliEQxyQzmq51s_JXfVjdV0te2SLT69QzriRAqQ4Yj2yPTqexNOeWTEBOY7PQJ6O-iDP3dOeGfZGXoKMwy9wRnxyHn_-CaPjW5k
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQXSsujgUIXBAIObv1YZ-0DQuERNWpIUVui3Jb1eh2KWtvECYg_xW9kZr0OsgSISw_c4uxkJU---WbWngchj10uOU7SdkKmXIfJMHGSWCV4GWO8nyVmaN9kxMfjaDqN36-RH00tDKZVNpxoiDotFD4j3wt8cDSAx5C9LL84ODUK3642IzRqWBzo79_gyFa9GL6B__eJ7w_enrzed-xUAUeFUbRwlM8VU16s4izUXLkQgLg6dlWS-anUmeerwAtSLmXiZRq7nwfggjnvMaXAPWoewL6XyGXgcQ9TyPjRpGF-4I5ez5bnBdzbs2jYLYtc77oBgj1suT8zJWDlCzrlWVH9OdA1Dm-w_r-p6ga5bkNr2q9tYYOs6XyTrDdjK6hlsU2yYT9V9Jltuv38Jvncz-mpecCiUzo4nNICuPTcFqlSeTaDG1x8OqdYJzCjMpUl-gmqTQqjFcrT-tq2PadwHqB1w5XWbrfIhwtRw23SyQEDW4RiL3QZKU-nqc_As0gfYqhAKe6FEujR6xKngYco63Yjwrxz5HBMq9UoEE7CwqlLXiGGVrLYLNx8UcxnwnKPCHiimA4jpTzJPAkhO3PTLEoilkB0qpMu2UEEirrydkV5oh_h6NQIbLZLHhkJbBiSY0bSTC6rSgwPJ_8gdHzUEnpqhbJiMZdK2ioQuCdsRNaS3G5JAu2p1vIW2kujlUr8Qj38srGL3y8_XC3jpphlmOtiWcuYkBZk7tS2t9Isg7N-D2L9u3_ffIdc3T95NxKj4fjgHrnm47RoHDgSbZPOYr7U98kV9XVxWs0fGOqg5ONFG-BPfOmsIA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgBAXSsujgUIXBAIObmzvOmsfEAotEVGrtOJR5bas1-tQ1NohdkD8NX4dM_bayBIgLj1wi7OTlTz55rH2zHyEPHaFEsik7QRcuw5XQezEkY7xMsJ8P40r0r6TQzGdhrNZdLxGfjS9MFhW2fjEylEnucZn5APmQ6ABPAZ8kNqyiOP98cvFFwcZpPBNa0OnUUPkwHz_Bse34sVkH_7rJ74_fv1-741jGQYcHYRh6WhfaK69SEdpYIR2IRlxTeTqOPUTZVLP18xjiVAq9lKDk9AZhGMhhlxrCJVGMNj3ErksGKAYu9T32vIS8CPDoW3VY8IbWGTsLvLM7LoMgR90QmHFGNDGhd7iLC_-nPRWwW-8_j-r7Qa5blNuOqptZIOsmWyTrDd0FtR6t02yYT8V9Jkdxv38Jvk8yuhp9eDFJHR8NKM5-Nhz27xK1dkcbrD8dE6xf2BOVaIWGD-oqUobrVCW1Nd2HDqFcwKtB7F0drtFPlyIGm6TXgZ42CIUZ6SrUHsmSXwOEUf5kFsxrYUXKHCbXp84DVTkoh5DIqt3kQKOb7UaJUJLWmj1ySvEUyuLQ8SrL_LlXFqfJJmINTdBqLWnuKcgledukoZxyGPIWk3cJzuIRll35LauUI5CpFQNwZb75FElgYNEMsTWXK2KQk6OTv5B6N3bjtBTK5Tm5VJpZbtD4J5wQFlHcrsjCe5Qd5a30HYarRTylwXALxsb-f3yw3YZN8Xqw8zkq1qmSnVB5k5th61muRshhwK7-_fNd8hVsDt5OJke3CPXfCSRRh6ScJv0yuXK3CdX9NfytFg-qLwIJR8v2v5-ApNWtHs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+FOX+optimization+algorithm+using+adaptive+exploration+and+exploitation+for+global+optimization&rft.jtitle=PloS+one&rft.au=Jumaah%2C+Mahmood+A&rft.au=Ali%2C+Yossra+H&rft.au=Rashid%2C+Tarik+A&rft.date=2025-09-18&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=9&rft.spage=e0331965&rft_id=info:doi/10.1371%2Fjournal.pone.0331965&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon