Effective image compression using transformer and residual network for balanced handling of high and low-frequency information

Image compression has made significant progress through end-to-end deep-learning approaches in recent years. The Transformer network, coupled with self-attention mechanisms, efficiently captures high-frequency features during image compression. However, the low-frequency information in the image can...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 20; no. 10; p. e0333376
Main Authors: Hu, Jianhua, Luo, Guixiang, Feng, Xiangfei, Yuan, Zhanjiang, Yang, Jiahui, Nie, Wei
Format: Journal Article
Language:English
Published: United States Public Library of Science 03.10.2025
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image compression has made significant progress through end-to-end deep-learning approaches in recent years. The Transformer network, coupled with self-attention mechanisms, efficiently captures high-frequency features during image compression. However, the low-frequency information in the image cannot be obtained well through the Transformer network. To address this issue, the paper introduces a novel end-to-end autoencoder architecture for image compression based on the transformer and residual network. This method, called Transformer and Residual Network (TRN), offers a comprehensive solution for efficient image compression, capturing essential image content while effectively reducing data size. The TRN employs a dual network, comprising a self-attention pathway and a residual network, intricately designed as a high-low-frequency mixer. This dual-network can preserve both high and low-frequency features during image compression. The end-to-end training of this model employs rate-distortion optimization (RDO methods). Experimental results demonstrate that the proposed TRN method outperforms the latest deep learning-based image compression methods, achieving an impressive 8.32% BD-rate (bit-rate distortion performance) improvement on the CLIC dataset. In comparison to traditional methods like JPEG, the proposed achieves a remarkable BD-rate improvement of 70.35% on the CLIC dataset.
AbstractList Image compression has made significant progress through end-to-end deep-learning approaches in recent years. The Transformer network, coupled with self-attention mechanisms, efficiently captures high-frequency features during image compression. However, the low-frequency information in the image cannot be obtained well through the Transformer network. To address this issue, the paper introduces a novel end-to-end autoencoder architecture for image compression based on the transformer and residual network. This method, called Transformer and Residual Network (TRN), offers a comprehensive solution for efficient image compression, capturing essential image content while effectively reducing data size. The TRN employs a dual network, comprising a self-attention pathway and a residual network, intricately designed as a high-low-frequency mixer. This dual-network can preserve both high and low-frequency features during image compression. The end-to-end training of this model employs rate-distortion optimization (RDO methods). Experimental results demonstrate that the proposed TRN method outperforms the latest deep learning-based image compression methods, achieving an impressive 8.32% BD-rate (bit-rate distortion performance) improvement on the CLIC dataset. In comparison to traditional methods like JPEG, the proposed achieves a remarkable BD-rate improvement of 70.35% on the CLIC dataset.
Image compression has made significant progress through end-to-end deep-learning approaches in recent years. The Transformer network, coupled with self-attention mechanisms, efficiently captures high-frequency features during image compression. However, the low-frequency information in the image cannot be obtained well through the Transformer network. To address this issue, the paper introduces a novel end-to-end autoencoder architecture for image compression based on the transformer and residual network. This method, called Transformer and Residual Network (TRN), offers a comprehensive solution for efficient image compression, capturing essential image content while effectively reducing data size. The TRN employs a dual network, comprising a self-attention pathway and a residual network, intricately designed as a high-low-frequency mixer. This dual-network can preserve both high and low-frequency features during image compression. The end-to-end training of this model employs rate-distortion optimization (RDO methods). Experimental results demonstrate that the proposed TRN method outperforms the latest deep learning-based image compression methods, achieving an impressive 8.32% BD-rate (bit-rate distortion performance) improvement on the CLIC dataset. In comparison to traditional methods like JPEG, the proposed achieves a remarkable BD-rate improvement of 70.35% on the CLIC dataset.Image compression has made significant progress through end-to-end deep-learning approaches in recent years. The Transformer network, coupled with self-attention mechanisms, efficiently captures high-frequency features during image compression. However, the low-frequency information in the image cannot be obtained well through the Transformer network. To address this issue, the paper introduces a novel end-to-end autoencoder architecture for image compression based on the transformer and residual network. This method, called Transformer and Residual Network (TRN), offers a comprehensive solution for efficient image compression, capturing essential image content while effectively reducing data size. The TRN employs a dual network, comprising a self-attention pathway and a residual network, intricately designed as a high-low-frequency mixer. This dual-network can preserve both high and low-frequency features during image compression. The end-to-end training of this model employs rate-distortion optimization (RDO methods). Experimental results demonstrate that the proposed TRN method outperforms the latest deep learning-based image compression methods, achieving an impressive 8.32% BD-rate (bit-rate distortion performance) improvement on the CLIC dataset. In comparison to traditional methods like JPEG, the proposed achieves a remarkable BD-rate improvement of 70.35% on the CLIC dataset.
Audience Academic
Author Nie, Wei
Luo, Guixiang
Feng, Xiangfei
Yuan, Zhanjiang
Hu, Jianhua
Yang, Jiahui
Author_xml – sequence: 1
  givenname: Jianhua
  surname: Hu
  fullname: Hu, Jianhua
– sequence: 2
  givenname: Guixiang
  orcidid: 0009-0008-9979-3069
  surname: Luo
  fullname: Luo, Guixiang
– sequence: 3
  givenname: Xiangfei
  surname: Feng
  fullname: Feng, Xiangfei
– sequence: 4
  givenname: Zhanjiang
  surname: Yuan
  fullname: Yuan, Zhanjiang
– sequence: 5
  givenname: Jiahui
  surname: Yang
  fullname: Yang, Jiahui
– sequence: 6
  givenname: Wei
  orcidid: 0000-0003-0060-9863
  surname: Nie
  fullname: Nie, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41042778$$D View this record in MEDLINE/PubMed
BookMark eNqNk0tv1DAQxyNURB_wDRBYQkJw2MWO83COVVVgpUqVeF2tiTPOenHirZ1QeuGz43TTqot6wD7YGv9mxvO35zg56F2PSfKS0SXjJfuwcaPvwS630bykPI6yeJIcsYqniyKl_ODB_jA5DmFDac5FUTxLDjNGs7QsxVHy51xrVIP5hcR00CJRrtt6DMG4nozB9C0ZPPRBO9-hJ9A3JJ6aZgRLehyunf9J4hmpwUKvsCHriNjJzWmyNu361sW664X2eDVir26I6adoMMQUz5OnGmzAF_N6knz_eP7t7PPi4vLT6uz0YqFyIYZFrVRRCVZqRpsKNE85x7wssqLMFfCG6TpFASk0NUXKQAnIVAU51oxioTHlJ8nrXdytdUHO0gXJ07ykGc-rKhKrHdE42Mitj2r4G-nAyFuD860EPxhlUSrQumJK1RnjGadpJZQGKnRd6prVmY6x3s3ZvIs1h0F2Jii0USJ04y4toykTWUTf_IM-frmZaiHmn_SLj6KmoPJU5CKCvOKRWj5CxdlgZ1T8JtpE-57D-z2HyAz4e2hhDEGuvn75f_byxz779gG7RrDDOjg7Ti8e9sFXc_Vj3WFzL_vd_4xAtgOUdyF41PcIo3Jqgzu55NQGcm4D_hea9ftE
Cites_doi 10.1109/TPAMI.2023.3322904
10.1109/TPAMI.2025.3560090
10.1109/ICCV48922.2021.00986
10.1109/TCSVT.2025.3548308
10.1109/VCIP63160.2024.10849935
10.1109/CVPR.2017.577
10.1109/CVPR46437.2021.01270
10.1109/CVPRW.2017.150
10.1109/CVPR52729.2023.01383
10.1109/CVPR42600.2020.00796
10.1109/DCC58796.2024.00077
10.1016/j.optlastec.2025.112616
ContentType Journal Article
Copyright Copyright: © 2025 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0333376
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE

MEDLINE - Academic

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3257043599
oai_doaj_org_article_caff91ccb413430298cfa08fb7fb1b4f
A858257393
41042778
10_1371_journal_pone_0333376
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
ESTFP
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ADCSY
AGGLG
ID FETCH-LOGICAL-c588t-bcc69817f10d9af3233e5764675ca3d1fb2e8a2adb0e01ac8a4c9a5eb10e6fe23
IEDL.DBID FPL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001587422400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Wed Dec 10 15:00:22 EST 2025
Mon Oct 13 19:20:57 EDT 2025
Tue Oct 07 05:49:17 EDT 2025
Fri Oct 10 10:40:35 EDT 2025
Sat Nov 29 13:45:42 EST 2025
Sat Nov 29 10:28:40 EST 2025
Wed Nov 26 10:45:45 EST 2025
Wed Nov 26 10:45:47 EST 2025
Tue Nov 04 03:30:22 EST 2025
Wed Oct 08 04:16:14 EDT 2025
Sat Nov 29 07:20:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Copyright: © 2025 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-bcc69817f10d9af3233e5764675ca3d1fb2e8a2adb0e01ac8a4c9a5eb10e6fe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0008-9979-3069
0000-0003-0060-9863
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0333376
PMID 41042778
PQID 3257043599
PQPubID 1436336
PageCount e0333376(null)
ParticipantIDs plos_journals_3257043599
doaj_primary_oai_doaj_org_article_caff91ccb413430298cfa08fb7fb1b4f
proquest_miscellaneous_3257102184
proquest_journals_3257043599
gale_infotracmisc_A858257393
gale_infotracacademiconefile_A858257393
gale_incontextgauss_ISR_A858257393
gale_incontextgauss_IOV_A858257393
gale_healthsolutions_A858257393
pubmed_primary_41042778
crossref_primary_10_1371_journal_pone_0333376
PublicationCentury 2000
PublicationDate 2025-10-03
PublicationDateYYYYMMDD 2025-10-03
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Feng (pone.0333376.ref016) 2025; 35
Z Duan (pone.0333376.ref005) 2024; 46
A Dosovitskiy (pone.0333376.ref012) 2020
M Feng (pone.0333376.ref015) 2025; 47
D Minnen (pone.0333376.ref025) 2018; 31
J Ballé (pone.0333376.ref006) 2018
pone.0333376.ref020
S Singh (pone.0333376.ref003) 2020
pone.0333376.ref022
C Si (pone.0333376.ref018) 2022; 35
pone.0333376.ref023
pone.0333376.ref002
pone.0333376.ref024
J Liang (pone.0333376.ref019) 2021
pone.0333376.ref007
pone.0333376.ref008
pone.0333376.ref009
J Bégaint (pone.0333376.ref021) 2020
D Xiang (pone.0333376.ref017) 2025; 186
GAS Martinez (pone.0333376.ref001) 2023
G Ma (pone.0333376.ref014) 2024
pone.0333376.ref010
pone.0333376.ref011
pone.0333376.ref013
T Liu (pone.0333376.ref004) 2024; 62
References_xml – start-page: 3349
  volume-title: End-to-end learning of compressible features
  year: 2020
  ident: pone.0333376.ref003
– ident: pone.0333376.ref013
– year: 2024
  ident: pone.0333376.ref014
– start-page: 811
  year: 2023
  ident: pone.0333376.ref001
  article-title: A comparative analysis between the performance of the extracted features of JPEG and PNG on a Raspberry Pi iris recognition system.
– volume: 62
  start-page: 1
  year: 2024
  ident: pone.0333376.ref004
  article-title: Hyperspectral image super-resolution via dual-domain network based on hybrid convolution
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 46
  start-page: 436
  issue: 1
  year: 2024
  ident: pone.0333376.ref005
  article-title: QARV: Quantization-aware ResNet VAE for lossy image compression
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2023.3322904
– volume: 47
  start-page: 6410
  issue: 8
  year: 2025
  ident: pone.0333376.ref015
  article-title: Hyperrectangle embedding for debiased 3D scene graph prediction from RGB sequences
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2025.3560090
– ident: pone.0333376.ref020
  doi: 10.1109/ICCV48922.2021.00986
– ident: pone.0333376.ref024
– volume: 35
  start-page: 7667
  issue: 8
  year: 2025
  ident: pone.0333376.ref016
  article-title: History-enhanced 3D scene graph reasoning from RGB-D sequences
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2025.3548308
– year: 2020
  ident: pone.0333376.ref021
– ident: pone.0333376.ref009
  doi: 10.1109/VCIP63160.2024.10849935
– ident: pone.0333376.ref002
  doi: 10.1109/CVPR.2017.577
– ident: pone.0333376.ref011
  doi: 10.1109/CVPR46437.2021.01270
– ident: pone.0333376.ref022
  doi: 10.1109/CVPRW.2017.150
– ident: pone.0333376.ref007
  doi: 10.1109/CVPR52729.2023.01383
– ident: pone.0333376.ref010
  doi: 10.1109/CVPR42600.2020.00796
– year: 2018
  ident: pone.0333376.ref006
– ident: pone.0333376.ref008
  doi: 10.1109/DCC58796.2024.00077
– volume: 31
  year: 2018
  ident: pone.0333376.ref025
  article-title: Joint autoregressive and hierarchical priors for learned image compression
  publication-title: Adv Neural Inform Process Syst
– start-page: 1833
  year: 2021
  ident: pone.0333376.ref019
  article-title: SwinIR: image restoration using swin transformer.
– year: 2020
  ident: pone.0333376.ref012
– volume: 35
  start-page: 23495
  year: 2022
  ident: pone.0333376.ref018
  article-title: Inception transformer
  publication-title: Adv Neural Inform Process Syst
– ident: pone.0333376.ref023
  doi: 10.1109/CVPRW.2017.150
– volume: 186
  start-page: 112616
  year: 2025
  ident: pone.0333376.ref017
  article-title: HCMPE-Net: An unsupervised network for underwater image restoration with multi-parameter estimation based on homology constraint
  publication-title: Optics Laser Technol
  doi: 10.1016/j.optlastec.2025.112616
SSID ssj0053866
Score 2.4889398
Snippet Image compression has made significant progress through end-to-end deep-learning approaches in recent years. The Transformer network, coupled with...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0333376
SubjectTerms Algorithms
Analysis
Compression
Data compression
Data Compression - methods
Data reduction
Datasets
Deep Learning
Design
Distortion
Entropy
Humans
Image compression
Image processing
Image Processing, Computer-Assisted - methods
Methods
Neural networks
Neural Networks, Computer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHk1UMAgJOCQNo6T2D4WRAWXgnipN8tx7KpSSVabXSou_e3M2E7UlUBwYI-ZcbQ7L89oZ74h5Lks4NY3rsqbplU53NA8N4y73CnMT0uchTRh2YQ4PpYnJ-rjlVVf2BMW4YGj4A6s8V4xa1uIthVHwHDrTSF9K3zL2spj9C2EmoqpGIPBi5smDcpxwQ6SXvaXQ-_2Cw4fxBi5chEFvP45Ki-W58P455QzXD1Ht8jNlDPSw_hdd8g1198mO8krR_oyQUe_ukMuIxgxRDB69h0iBcWO8djp2lNscT-l6ylTdStq-o4CNcxj0T42hFOg0RYbHq3raABhwGODp4hsHI6cDxe5X8Ue7J80Qa-igu-Sr0dvv7x5l6cNC7mtpVznrbWNkkx4VnTKeF5y7qAAgeBZW8M75tvSSVOari1cwYyVprLK1BDfC9d4V_J7ZNGDTHcJlaLrpHXMV5BhtYU1jUXsOcFsLXjdyYzkk7j1MgJp6PBvmoACJMpRo3p0Uk9GXqNOZl6EwQ4PwDh0Mg79N-PIyBPUqI4zpbMz60NZQ2WMYIAZeRY4EAqjx16bU7MZR_3-w7d_YPr8aYvpRWLyA6jSmjTfAL8JIba2OPe2OMGh7RZ5F-1vksqoOW4ahLRWKTg52eTvyU9nMr4U--d6N2wiDwvlfEbuR1ueJVsx3Lci5IP_IfGH5EaJG5KxxYLvkcV6tXGPyHX7Y302rh4HJ_0Ft59Duw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKI82UMAgJODgNo7zcE6oICq4FFSg6i2yHXtVqSRLsgviwm9nxnYWVgKExB53xtGu52ln5htCHssUor6yOStLXTOI0IIpLiyzNeanGfZCKj9sojo6kqen9bt44TbGssrJJ3pH3fYG78j3BY5bg9he188XnxlOjcK3q3GExkVyiWNuDPpcHZ9MnhhsuSxju5yo-H6Uzt6i7-xeKuCDSCO_hCOP2r_2zbPFeT_-OfH0Aejw2v_-9Ovkakw96UHQlS1ywXY3yFY07pE-jQjUz26S7wHTGBwhPfsEDodi4XkomO0oVsrP6XJKeO1AVddSoPq2LtqFunIKNKqxbtLYlnosB1zWO4oAyX7Jef-VuSGUcn-jEcEV9eQW-Xj46sPL1ywOamCmkHLJtDFlLXnleNrWyolMCAvnGPDBhVGi5U5nVqpMtTq1KVdGqtzUqoAwkdrS2UzcJrMOhLJDqKzaVhrLXQ6Jmk6NKg1C2FXcFJUoWpkQNsmrWQQ8jsa_lKvgHBP2sUH5NlG-CXmBQl3zIpq2_6If5k00zsYo52pujIaIngsEpTdOpdLpymmuc5eQB6gSTWhNXfuE5kAWcMBGTMGEPPIciKjRYcnOXK3GsXnz9uQfmN4fbzA9iUyuB1EaFdsk4D8hUtcG5-4GJ_gFs0HeQQWedmVsfqohrJwU9ffkh2syPhTL8DrbrwIP97cCCdkOxrDe2Zzj2JZK3vn7w--SKxmOUMYaDLFLZsthZe-Ry-bL8mwc7nv7_QFqk1Bz
  priority: 102
  providerName: ProQuest
Title Effective image compression using transformer and residual network for balanced handling of high and low-frequency information
URI https://www.ncbi.nlm.nih.gov/pubmed/41042778
https://www.proquest.com/docview/3257043599
https://www.proquest.com/docview/3257102184
https://doaj.org/article/caff91ccb413430298cfa08fb7fb1b4f
http://dx.doi.org/10.1371/journal.pone.0333376
Volume 20
WOSCitedRecordID wos001587422400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYxwMvwPhaYBSDkICHlDhOYudxnVYxjZWog6nwEjmOPU0aSdW0IF7427lz0qIiKkEf7qF3Tprzne-uOf9MyEsZQNRXJvKTpEh9iNDcV4wb36SYn4a4F1K5wybEeCyn0zT7XSj-8QafC_a20-lgVldmEHD4iGSH7IY8SbDYGmXvVysv-G6SdNvjto3cCD8OpX-9Fvdm13WzPdF0AWd0539_6l1yu0st6WFrC3vkhqnukb3OeRv6ukOYfnOf_Gwxi2Gho1dfYUGh2FjeNsRWFDvhL-lildCaOVVVSYHrtm3Rqu0bp8CjBfZFalNSh9WAw2pLEQDZDbmuv_t23rZq_6AdQivawQPyaXT88eid3x3E4OtYyoVfaJ2kkgnLgjJVloecG6hTYI2NteIls0VopApVWQQmYEpLFelUxRAGApNYE_KHpFeBTvYJlaIspTbMRpCIFYFWiUaIOsF0LHhcSo_4q_nJZy3eRu5eugmoU1o95qjevFOvR4Y4iWtZRMt2X8C85J3z5VpZmzKtC4jYEUfQeW1VIG0hbMGKyHrkGZpA3m49Xft8fihjKKARM9AjL5wEImZU2JJzqZZNk598uPgHofPJhtCrTsjWMJVaddsg4JkQiWtD8mBDEvxeb7D30WBXWmlyjgcSQvabpjByZcR_Zz9fs_Gi2GZXmXrZyjBX9XvkUWv8a81GDI9lEfLx9vs-IbdCPB4Z-yv4Aekt5kvzlNzU3xZXzbxPdsTkAulUOCqByiPWJ7vD43E26bu_Q_rOo4GeDgdAz4JTpCJz9BxoFn-BEdnJWfb5F198Syk
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqBQkuhfLqlkINAgGHtHGch3NAqDyqrlqWCgqquBjHsVeVSrJsdql64SfxG5lxnIWVAHHpgRzjcaRMZr6ZJDPfEPJAhBD1lYmDNC3yACI0DxTjJjA55qcR9kIqN2wiGw7F0VF-sES-d70wWFbZYaID6rLW-I18i-O4NYjtef5s_CXAqVH4d7UbodGaxZ45O4VXtubp4CU834dRtPPq8MVu4KcKBDoRYhoUWqe5YJllYZkryyPODSTdABiJVrxktoiMUJEqi9CETGmhYp2rBDAtNKk1SHQAkH8hjqMQvegg-dghP2BHmvr2PJ6xLW8Nm-O6MpshhwOZTX4Jf25KwDwW9MYndfPnRNcFvJ0r_5uqrpJln1rT7dYXVsiSqa6RFQ9eDX3sGbafXCffWs5mAHp6_BkAlWJhfVsQXFHsBBjRaZfQmwlVVUlh1bWt0aqtm6ewRgusC9WmpI6rArfVliIBtNtyUp8GdtKWqp9Rz1CLfnCDvD8XPdwkvQqMYJVQkZWl0IbZGBLRItQq1UjRlzGdZDwpRZ8EnX3Iccs3It1Pxwze01o9SrQn6e2pT56jEc1lkS3cnagnI-nBR2plbc60LiBjiTmS7murQmGLzBasiG2fbKAJyrb1do55clskAmyJ57xP7jsJZAypsCRppGZNIwdvPvyD0Lu3C0KPvJCt4VFq5dtA4J6QiWxBcn1BEnBPLyyvosN0WmnkT7OHnZ1j_H753nwZL4plhpWpZ60Mc189-uRW63xzzcYMx9JkYu3vF98gl3YPX-_L_cFw7za5HOG4aKw34eukN53MzB1yUX-dHjeTuw47KPl03h74A7wCr7U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELemgRAvwPhaYTCDQMBD1jjOh_OA0GBUVEOlAoYmXozj2NWkkZSmZdoLfxh_HXeOU6gEiJc90Mf4HKmXu9-dk7vfEfJAhBD1lYmDNC3yACI0DxTjJjA55qcR9kIqN2wiG43E4WE-XiPfu14YLKvsMNEBdVlrfEfe5zhuDWJ7nvetL4sY7w2eTb8EOEEKv7R24zRaE9k3pydwfGueDvfgWT-MosHL9y9eBX7CQKATIeZBoXWaC5ZZFpa5sjzi3EACDuCRaMVLZovICBWpsghNyJQWKta5SgDfQpNag6QHAP_nMjhjYjnhOPnYRQHAkTT1rXo8Y31vGTvTujI7IYcfspz8EgrdxIBlXFifHtfNn5NeF_wGl_9ntV0hl3zKTXdbH9kga6a6SjY8qDX0sWfefnKNfGu5nCEA0KPPALQUC-7bQuGKYofAhM67RN_MqKpKCquunY1WbT09hTVaYL2oNiV1HBa4rbYUiaHdluP6JLCztoT9lHrmWvSP6-TgTPRwg6xXYBCbhIqsLIU2zMaQoBahVqlG6r6M6STjSSl6JOhsRU5bHhLpPkZmcH5r9SjRtqS3rR55jga1lEUWcXehnk2kByWplbU507qATCbmSMavrQqFLTJbsCK2PbKN5ijbltwlFspdkQiwK57zHrnvJJBJpELjmqhF08jhmw__IPTu7YrQIy9ka3iUWvn2EPhPyFC2Irm1Igl4qFeWN9F5Oq008qcLwM7OSX6_fG-5jDfF8sPK1ItWhrm3IT1ys3XEpWZjhuNqMnHr7zffJhfA8eTr4Wj_NrkY4RRpLEPhW2R9PluYO-S8_jo_amZ3HYxQ8umsHfAHA1O4fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+image+compression+using+transformer+and+residual+network+for+balanced+handling+of+high+and+low-frequency+information&rft.jtitle=PloS+one&rft.au=Hu%2C+Jianhua&rft.au=Luo%2C+Guixiang&rft.au=Feng%2C+Xiangfei&rft.au=Yuan%2C+Zhanjiang&rft.date=2025-10-03&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pone.0333376&rft.externalDocID=3257043599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon