Single-phase full-bridge inverter control based on discrete adaptive sliding mode algorithm with error compensation

This paper proposes that the control process of the single-phase full bridge inverter circuit is equivalent to two buck circuits, and the control strategy of the DC-DC circuit is adopted to enable the output voltage to track the given sine wave target value in real time, realizing the control of the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 20; číslo 10; s. e0334233
Hlavní autoři: Zhang, Yun, Tang, Zhenyu, Xu, Fenghui, Zhou, Kaichen, Yang, Kun
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 10.10.2025
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes that the control process of the single-phase full bridge inverter circuit is equivalent to two buck circuits, and the control strategy of the DC-DC circuit is adopted to enable the output voltage to track the given sine wave target value in real time, realizing the control of the inverter circuit, simplifying the control process, and enhancing the anti-interference ability of the system. On the basis of traditional discrete sliding mode control, a new adaptive approach rate is introduced, which can dynamically adjust the control gain according to the distance between the sliding surface and the sliding band. When the state variable is far from the sliding surface, it accelerates the approach speed, and when the state variable approaches the sliding surface, it reduces the approach speed, which can effectively reduce chattering. As a result, the width level of the sliding mode band is reduced from the traditional O ( T ) to the same level O ( T 3 ), and the width of the sliding mode band is significantly reduced, significantly improving the control accuracy and jitter suppression ability. The proposed control method was rigorously mathematically proven in terms of sliding mode bandwidth, jitter range, and convergence steps, and the advantages of the improved method in voltage tracking speed, steady-state error, and disturbance rejection performance were verified through multiple simulation experiments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0334233