Early risk assessment for COVID-19 patients from emergency department data using machine learning

Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with more than 55 million reported cases and 1.3 million estimated deaths worldwide. While epidemiological and clinical characteristics of COVID-19 have been reported, risk factor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 11; číslo 1; s. 4200 - 13
Hlavní autoři: Heldt, Frank S., Vizcaychipi, Marcela P., Peacock, Sophie, Cinelli, Mattia, McLachlan, Lachlan, Andreotti, Fernando, Jovanović, Stojan, Dürichen, Robert, Lipunova, Nadezda, Fletcher, Robert A., Hancock, Anne, McCarthy, Alex, Pointon, Richard A., Brown, Alexander, Eaton, James, Liddi, Roberto, Mackillop, Lucy, Tarassenko, Lionel, Khan, Rabia T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 18.02.2021
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with more than 55 million reported cases and 1.3 million estimated deaths worldwide. While epidemiological and clinical characteristics of COVID-19 have been reported, risk factors underlying the transition from mild to severe disease among patients remain poorly understood. In this retrospective study, we analysed data of 879 confirmed SARS-CoV-2 positive patients admitted to a two-site NHS Trust hospital in London, England, between January 1st and May 26th, 2020, with a majority of cases occurring in March and April. We extracted anonymised demographic data, physiological clinical variables and laboratory results from electronic healthcare records (EHR) and applied multivariate logistic regression, random forest and extreme gradient boosted trees. To evaluate the potential for early risk assessment, we used data available during patients’ initial presentation at the emergency department (ED) to predict deterioration to one of three clinical endpoints in the remainder of the hospital stay: admission to intensive care, need for invasive mechanical ventilation and in-hospital mortality. Based on the trained models, we extracted the most informative clinical features in determining these patient trajectories. Considering our inclusion criteria, we have identified 129 of 879 (15%) patients that required intensive care, 62 of 878 (7%) patients needing mechanical ventilation, and 193 of 619 (31%) cases of in-hospital mortality. Our models learned successfully from early clinical data and predicted clinical endpoints with high accuracy, the best model achieving area under the receiver operating characteristic (AUC-ROC) scores of 0.76 to 0.87 (F1 scores of 0.42–0.60). Younger patient age was associated with an increased risk of receiving intensive care and ventilation, but lower risk of mortality. Clinical indicators of a patient’s oxygen supply and selected laboratory results, such as blood lactate and creatinine levels, were most predictive of COVID-19 patient trajectories. Among COVID-19 patients machine learning can aid in the early identification of those with a poor prognosis, using EHR data collected during a patient’s first presentation at ED. Patient age and measures of oxygenation status during ED stay are primary indicators of poor patient outcomes.
AbstractList Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with more than 55 million reported cases and 1.3 million estimated deaths worldwide. While epidemiological and clinical characteristics of COVID-19 have been reported, risk factors underlying the transition from mild to severe disease among patients remain poorly understood. In this retrospective study, we analysed data of 879 confirmed SARS-CoV-2 positive patients admitted to a two-site NHS Trust hospital in London, England, between January 1st and May 26th, 2020, with a majority of cases occurring in March and April. We extracted anonymised demographic data, physiological clinical variables and laboratory results from electronic healthcare records (EHR) and applied multivariate logistic regression, random forest and extreme gradient boosted trees. To evaluate the potential for early risk assessment, we used data available during patients’ initial presentation at the emergency department (ED) to predict deterioration to one of three clinical endpoints in the remainder of the hospital stay: admission to intensive care, need for invasive mechanical ventilation and in-hospital mortality. Based on the trained models, we extracted the most informative clinical features in determining these patient trajectories. Considering our inclusion criteria, we have identified 129 of 879 (15%) patients that required intensive care, 62 of 878 (7%) patients needing mechanical ventilation, and 193 of 619 (31%) cases of in-hospital mortality. Our models learned successfully from early clinical data and predicted clinical endpoints with high accuracy, the best model achieving area under the receiver operating characteristic (AUC-ROC) scores of 0.76 to 0.87 (F1 scores of 0.42–0.60). Younger patient age was associated with an increased risk of receiving intensive care and ventilation, but lower risk of mortality. Clinical indicators of a patient’s oxygen supply and selected laboratory results, such as blood lactate and creatinine levels, were most predictive of COVID-19 patient trajectories. Among COVID-19 patients machine learning can aid in the early identification of those with a poor prognosis, using EHR data collected during a patient’s first presentation at ED. Patient age and measures of oxygenation status during ED stay are primary indicators of poor patient outcomes.
Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with more than 55 million reported cases and 1.3 million estimated deaths worldwide. While epidemiological and clinical characteristics of COVID-19 have been reported, risk factors underlying the transition from mild to severe disease among patients remain poorly understood. In this retrospective study, we analysed data of 879 confirmed SARS-CoV-2 positive patients admitted to a two-site NHS Trust hospital in London, England, between January 1st and May 26th, 2020, with a majority of cases occurring in March and April. We extracted anonymised demographic data, physiological clinical variables and laboratory results from electronic healthcare records (EHR) and applied multivariate logistic regression, random forest and extreme gradient boosted trees. To evaluate the potential for early risk assessment, we used data available during patients' initial presentation at the emergency department (ED) to predict deterioration to one of three clinical endpoints in the remainder of the hospital stay: admission to intensive care, need for invasive mechanical ventilation and in-hospital mortality. Based on the trained models, we extracted the most informative clinical features in determining these patient trajectories. Considering our inclusion criteria, we have identified 129 of 879 (15%) patients that required intensive care, 62 of 878 (7%) patients needing mechanical ventilation, and 193 of 619 (31%) cases of in-hospital mortality. Our models learned successfully from early clinical data and predicted clinical endpoints with high accuracy, the best model achieving area under the receiver operating characteristic (AUC-ROC) scores of 0.76 to 0.87 (F1 scores of 0.42-0.60). Younger patient age was associated with an increased risk of receiving intensive care and ventilation, but lower risk of mortality. Clinical indicators of a patient's oxygen supply and selected laboratory results, such as blood lactate and creatinine levels, were most predictive of COVID-19 patient trajectories. Among COVID-19 patients machine learning can aid in the early identification of those with a poor prognosis, using EHR data collected during a patient's first presentation at ED. Patient age and measures of oxygenation status during ED stay are primary indicators of poor patient outcomes.Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with more than 55 million reported cases and 1.3 million estimated deaths worldwide. While epidemiological and clinical characteristics of COVID-19 have been reported, risk factors underlying the transition from mild to severe disease among patients remain poorly understood. In this retrospective study, we analysed data of 879 confirmed SARS-CoV-2 positive patients admitted to a two-site NHS Trust hospital in London, England, between January 1st and May 26th, 2020, with a majority of cases occurring in March and April. We extracted anonymised demographic data, physiological clinical variables and laboratory results from electronic healthcare records (EHR) and applied multivariate logistic regression, random forest and extreme gradient boosted trees. To evaluate the potential for early risk assessment, we used data available during patients' initial presentation at the emergency department (ED) to predict deterioration to one of three clinical endpoints in the remainder of the hospital stay: admission to intensive care, need for invasive mechanical ventilation and in-hospital mortality. Based on the trained models, we extracted the most informative clinical features in determining these patient trajectories. Considering our inclusion criteria, we have identified 129 of 879 (15%) patients that required intensive care, 62 of 878 (7%) patients needing mechanical ventilation, and 193 of 619 (31%) cases of in-hospital mortality. Our models learned successfully from early clinical data and predicted clinical endpoints with high accuracy, the best model achieving area under the receiver operating characteristic (AUC-ROC) scores of 0.76 to 0.87 (F1 scores of 0.42-0.60). Younger patient age was associated with an increased risk of receiving intensive care and ventilation, but lower risk of mortality. Clinical indicators of a patient's oxygen supply and selected laboratory results, such as blood lactate and creatinine levels, were most predictive of COVID-19 patient trajectories. Among COVID-19 patients machine learning can aid in the early identification of those with a poor prognosis, using EHR data collected during a patient's first presentation at ED. Patient age and measures of oxygenation status during ED stay are primary indicators of poor patient outcomes.
Abstract Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with more than 55 million reported cases and 1.3 million estimated deaths worldwide. While epidemiological and clinical characteristics of COVID-19 have been reported, risk factors underlying the transition from mild to severe disease among patients remain poorly understood. In this retrospective study, we analysed data of 879 confirmed SARS-CoV-2 positive patients admitted to a two-site NHS Trust hospital in London, England, between January 1st and May 26th, 2020, with a majority of cases occurring in March and April. We extracted anonymised demographic data, physiological clinical variables and laboratory results from electronic healthcare records (EHR) and applied multivariate logistic regression, random forest and extreme gradient boosted trees. To evaluate the potential for early risk assessment, we used data available during patients’ initial presentation at the emergency department (ED) to predict deterioration to one of three clinical endpoints in the remainder of the hospital stay: admission to intensive care, need for invasive mechanical ventilation and in-hospital mortality. Based on the trained models, we extracted the most informative clinical features in determining these patient trajectories. Considering our inclusion criteria, we have identified 129 of 879 (15%) patients that required intensive care, 62 of 878 (7%) patients needing mechanical ventilation, and 193 of 619 (31%) cases of in-hospital mortality. Our models learned successfully from early clinical data and predicted clinical endpoints with high accuracy, the best model achieving area under the receiver operating characteristic (AUC-ROC) scores of 0.76 to 0.87 (F1 scores of 0.42–0.60). Younger patient age was associated with an increased risk of receiving intensive care and ventilation, but lower risk of mortality. Clinical indicators of a patient’s oxygen supply and selected laboratory results, such as blood lactate and creatinine levels, were most predictive of COVID-19 patient trajectories. Among COVID-19 patients machine learning can aid in the early identification of those with a poor prognosis, using EHR data collected during a patient’s first presentation at ED. Patient age and measures of oxygenation status during ED stay are primary indicators of poor patient outcomes.
ArticleNumber 4200
Author Vizcaychipi, Marcela P.
Jovanović, Stojan
Brown, Alexander
Peacock, Sophie
Hancock, Anne
Andreotti, Fernando
Khan, Rabia T.
Pointon, Richard A.
Cinelli, Mattia
Tarassenko, Lionel
Heldt, Frank S.
Eaton, James
Fletcher, Robert A.
Lipunova, Nadezda
McLachlan, Lachlan
Mackillop, Lucy
McCarthy, Alex
Liddi, Roberto
Dürichen, Robert
Author_xml – sequence: 1
  givenname: Frank S.
  surname: Heldt
  fullname: Heldt, Frank S.
  email: stefan.heldt@sensynehealth.com
  organization: Sensyne Health Plc
– sequence: 2
  givenname: Marcela P.
  surname: Vizcaychipi
  fullname: Vizcaychipi, Marcela P.
  organization: Chelsea and Westminster Hospital NHS Foundation Trust, Academic Department of Anaesthesia and Intensive Care Medicine, Imperial College London, Chelsea and Westminster Campus
– sequence: 3
  givenname: Sophie
  surname: Peacock
  fullname: Peacock, Sophie
  organization: Sensyne Health Plc
– sequence: 4
  givenname: Mattia
  surname: Cinelli
  fullname: Cinelli, Mattia
  organization: Sensyne Health Plc
– sequence: 5
  givenname: Lachlan
  surname: McLachlan
  fullname: McLachlan, Lachlan
  organization: Sensyne Health Plc
– sequence: 6
  givenname: Fernando
  surname: Andreotti
  fullname: Andreotti, Fernando
  organization: Sensyne Health Plc
– sequence: 7
  givenname: Stojan
  surname: Jovanović
  fullname: Jovanović, Stojan
  organization: Sensyne Health Plc
– sequence: 8
  givenname: Robert
  surname: Dürichen
  fullname: Dürichen, Robert
  organization: Sensyne Health Plc
– sequence: 9
  givenname: Nadezda
  surname: Lipunova
  fullname: Lipunova, Nadezda
  organization: Sensyne Health Plc
– sequence: 10
  givenname: Robert A.
  surname: Fletcher
  fullname: Fletcher, Robert A.
  organization: Sensyne Health Plc
– sequence: 11
  givenname: Anne
  surname: Hancock
  fullname: Hancock, Anne
  organization: Sensyne Health Plc
– sequence: 12
  givenname: Alex
  surname: McCarthy
  fullname: McCarthy, Alex
  organization: Chelsea and Westminster Hospital NHS Foundation Trust
– sequence: 13
  givenname: Richard A.
  surname: Pointon
  fullname: Pointon, Richard A.
  organization: Chelsea and Westminster Hospital NHS Foundation Trust
– sequence: 14
  givenname: Alexander
  surname: Brown
  fullname: Brown, Alexander
  organization: Chelsea and Westminster Hospital NHS Foundation Trust
– sequence: 15
  givenname: James
  surname: Eaton
  fullname: Eaton, James
  organization: Chelsea and Westminster Hospital NHS Foundation Trust
– sequence: 16
  givenname: Roberto
  surname: Liddi
  fullname: Liddi, Roberto
  organization: Sensyne Health Plc
– sequence: 17
  givenname: Lucy
  surname: Mackillop
  fullname: Mackillop, Lucy
  organization: Sensyne Health Plc, Women’s Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Nuffield Department of Women’s and Reproductive Health, University of Oxford
– sequence: 18
  givenname: Lionel
  surname: Tarassenko
  fullname: Tarassenko, Lionel
  organization: Sensyne Health Plc, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford
– sequence: 19
  givenname: Rabia T.
  surname: Khan
  fullname: Khan, Rabia T.
  organization: Sensyne Health Plc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33603086$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV_gAOyxIVLwJ-JfUFCS4GVKvUCXK23zsvWS2IvdhZp_z3eTSltD_XF1vPMvHn2vKxOQgxYVa8Zfc-o0B-yZMromnJWa9FqWe-fVWecSlVzwfnJvfNpdZHzhpaluJHMvKhOhWiooLo5q-AS0rAnyedfBHLGnEcME-ljIovrn8vPNTNkC5MvxUz6FEeCI6Y1BrcnHW4hTUd8BxOQXfZhTUZwNz4gGRBSKIVX1fMehowXt_t59ePL5ffFt_rq-uty8emqdkrrqTZG00auutZQA0p30AvaccURFWrgWvS00eBEp1jTy466xplG9lKbljatQnFeLWfdLsLGbpMfIe1tBG-PhZjWtrj1bkAroIUVk9RIXEnaUOAODDaatyuOnVJF6-Ostd2tRuxcGTHB8ED04U3wN3Yd_9hWm2JVF4F3twIp_t5hnuzos8NhgIBxly2XhhnZllYF-vYRdBN3KZSnOqCoVmxGvbnv6M7Kv58sAD4DXIo5J-zvIIzaQ2LsnBhbEmOPibH7QtKPSM5P5bfjYSo_PE0VMzWXPmGN6b_tJ1h_ARJ_1Uw
CitedBy_id crossref_primary_10_3390_brainsci12020193
crossref_primary_10_3390_healthcare9111450
crossref_primary_10_1186_s12931_024_02874_3
crossref_primary_10_3389_fpubh_2022_912099
crossref_primary_10_3233_IDT_230320
crossref_primary_10_3389_fdata_2021_675882
crossref_primary_10_3390_jcm10163534
crossref_primary_10_1080_23311916_2021_1958666
crossref_primary_10_1007_s40747_021_00424_8
crossref_primary_10_1109_ACCESS_2024_3506979
crossref_primary_10_1038_s41598_024_52529_y
crossref_primary_10_1038_s41746_021_00459_8
crossref_primary_10_1016_j_ajem_2023_08_043
crossref_primary_10_3390_diagnostics11081368
crossref_primary_10_3390_app12188939
crossref_primary_10_1016_j_technovation_2022_102558
crossref_primary_10_1007_s10916_022_01807_1
crossref_primary_10_3390_electronics13061005
crossref_primary_10_3390_math11143145
crossref_primary_10_1038_s41598_022_05822_7
crossref_primary_10_1007_s00354_021_00131_5
crossref_primary_10_1371_journal_pone_0276509
crossref_primary_10_3389_frai_2024_1495074
crossref_primary_10_1016_j_clinsp_2022_100072
crossref_primary_10_1016_j_icte_2025_04_002
crossref_primary_10_1093_jamia_ocac083
crossref_primary_10_1371_journal_pone_0286210
crossref_primary_10_1016_j_imu_2022_100937
crossref_primary_10_1038_s41598_021_99671_5
crossref_primary_10_1186_s12874_024_02189_3
crossref_primary_10_1007_s00477_023_02403_6
crossref_primary_10_1089_omi_2021_0037
crossref_primary_10_1016_j_ijmedinf_2022_104791
crossref_primary_10_1016_j_ijmedinf_2021_104594
crossref_primary_10_1109_JBHI_2023_3279824
crossref_primary_10_1186_s12874_021_01441_4
crossref_primary_10_3389_feart_2022_944865
crossref_primary_10_3390_app112110417
crossref_primary_10_3390_pathogens10081048
crossref_primary_10_1177_20503121221136401
crossref_primary_10_1371_journal_pone_0282587
crossref_primary_10_1371_journal_pone_0296386
crossref_primary_10_1016_j_jbusres_2023_113806
crossref_primary_10_1186_s12911_025_03010_x
crossref_primary_10_3390_ijerph18168814
crossref_primary_10_3390_medsci10040058
crossref_primary_10_1007_s11517_022_02540_0
crossref_primary_10_3389_fmed_2022_792881
Cites_doi 10.1016/S2213-2600(20)30079-5
10.1023/A:1010933404324
10.1016/S0140-6736(20)30567-5
10.1093/jamia/ocw042
10.1136/bmj.m1091
10.1001/jama.2020.2648
10.1016/j.thromres.2020.04.013
10.1111/j.1467-9868.2005.00503.x
10.1001/jama.2020.4326
10.1038/s41586-020-2649-2
10.1001/jama.2020.1585
10.1093/cid/ciaa443
10.32604/cmc.2020.010691
10.1016/S0140-6736(20)30566-3
10.1109/MCSE.2007.55
10.1145/2939672.2939785
10.1101/2020.03.30.20047308
10.25080/Majora-92bf1922-00a
10.1101/2020.03.28.20045997
10.1101/2020.04.23.20076042
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-83784-y
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_3a7ab14094eb4060a2ca9e6827b2ed55
PMC7892838
33603086
10_1038_s41598_021_83784_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations London
United Kingdom
GeographicLocations_xml – name: United Kingdom
– name: London
GrantInformation_xml – fundername: Chelsea and Westminster Hospital NHS Foundation Trust
  funderid: http://dx.doi.org/10.13039/501100000773
– fundername: Sensyne Health plc
– fundername: Stroke Association
  grantid: TSA BHF 2017/01
  funderid: http://dx.doi.org/10.13039/501100000364
– fundername: National Institute for Health Research
  grantid: IS-BRC-1215-20008
  funderid: http://dx.doi.org/10.13039/501100000272
– fundername: National Institute for Health Research
  grantid: IS-BRC-1215-20008
– fundername: Stroke Association
  grantid: TSA BHF 2017/01
– fundername: ;
– fundername: ;
  grantid: TSA BHF 2017/01
– fundername: ;
  grantid: IS-BRC-1215-20008
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c588t-998064bd7909a58daf30d252ee5e8a283f068ac3d516f4d0c6c964f48970675e3
IEDL.DBID M7P
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621416400073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:04:43 EDT 2025
Tue Nov 04 02:05:18 EST 2025
Fri Sep 05 14:35:48 EDT 2025
Mon Nov 24 08:10:59 EST 2025
Mon Jul 21 06:07:01 EDT 2025
Sat Nov 29 02:21:04 EST 2025
Tue Nov 18 22:20:40 EST 2025
Fri Feb 21 02:39:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-998064bd7909a58daf30d252ee5e8a283f068ac3d516f4d0c6c964f48970675e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2490851553?pq-origsite=%requestingapplication%
PMID 33603086
PQID 2490851553
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_3a7ab14094eb4060a2ca9e6827b2ed55
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7892838
proquest_miscellaneous_2491947553
proquest_journals_2490851553
pubmed_primary_33603086
crossref_primary_10_1038_s41598_021_83784_y
crossref_citationtrail_10_1038_s41598_021_83784_y
springer_journals_10_1038_s41598_021_83784_y
PublicationCentury 2000
PublicationDate 2021-02-18
PublicationDateYYYYMMDD 2021-02-18
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zou, Hastie (CR20) 2005; 67
Jiang (CR13) 2020; 63
CR18
CR17
Vizcaychipi (CR5) 2020; 22
(CR6) 2020; 41
CR16
Arentz (CR11) 2020; 323
Chen (CR7) 2020; 368
CR12
Wu, McGoogan (CR1) 2020; 323
Harris (CR25) 2020; 585
Breiman (CR21) 2001; 45
Goldstein, Navar, Pencina, Ioannidis (CR8) 2017; 24
Yang (CR2) 2020; 9
Zhou (CR14) 2020; 395
Wang (CR10) 2020; 323
CR29
CR26
CR24
Wynants (CR9) 2020; 369
CR22
Pedregosa (CR27) 2011; 12
Anderson, Heesterbeek, Klinkenberg, Hollingsworth (CR4) 2020; 395
Klok (CR3) 2020; 191
Fisher, Rudin, Dominici (CR23) 2019; 20
Hunter (CR28) 2007; 9
Gong (CR15) 2020; 71
Lemaître, Nogueira, Aridas (CR19) 2017; 18
D Wang (83784_CR10) 2020; 323
X Yang (83784_CR2) 2020; 9
JD Hunter (83784_CR28) 2007; 9
MP Vizcaychipi (83784_CR5) 2020; 22
H Zou (83784_CR20) 2005; 67
83784_CR12
CR Harris (83784_CR25) 2020; 585
F Pedregosa (83784_CR27) 2011; 12
T Chen (83784_CR7) 2020; 368
Novel Coronavirus Pneumonia Emergency Response Epidemiology Team (83784_CR6) 2020; 41
RM Anderson (83784_CR4) 2020; 395
83784_CR17
83784_CR18
83784_CR16
M Arentz (83784_CR11) 2020; 323
J Gong (83784_CR15) 2020; 71
A Fisher (83784_CR23) 2019; 20
L Breiman (83784_CR21) 2001; 45
BA Goldstein (83784_CR8) 2017; 24
83784_CR22
Z Wu (83784_CR1) 2020; 323
F Zhou (83784_CR14) 2020; 395
G Lemaître (83784_CR19) 2017; 18
83784_CR29
83784_CR26
FA Klok (83784_CR3) 2020; 191
83784_CR24
L Wynants (83784_CR9) 2020; 369
X Jiang (83784_CR13) 2020; 63
References_xml – volume: 369
  start-page: 1
  year: 2020
  ident: CR9
  article-title: Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal
  publication-title: BMJ
– ident: CR22
– ident: CR18
– volume: 9
  start-page: 475
  year: 2020
  end-page: 481
  ident: CR2
  article-title: Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30079-5
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR21
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 395
  start-page: 931
  year: 2020
  end-page: 934
  ident: CR4
  article-title: How will country-based mitigation measures influence the course of the COVID-19 epidemic?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30567-5
– ident: CR16
– ident: CR12
– volume: 22
  start-page: 2413
  year: 2020
  ident: CR5
  article-title: Early detection of severe COVID-19 disease patterns define near real-time personalised care, bioseverity in males, and decelerating mortality rates
  publication-title: medRxiv
– volume: 24
  start-page: 198
  year: 2017
  end-page: 208
  ident: CR8
  article-title: Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocw042
– volume: 41
  start-page: 145
  year: 2020
  end-page: 151
  ident: CR6
  article-title: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China
  publication-title: Chin. Cent. Dis. Control Prev.
– ident: CR29
– volume: 368
  start-page: m1091
  year: 2020
  ident: CR7
  article-title: Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study
  publication-title: BMJ
  doi: 10.1136/bmj.m1091
– volume: 323
  start-page: 1239
  year: 2020
  end-page: 1242
  ident: CR1
  article-title: Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention
  publication-title: JAMA
  doi: 10.1001/jama.2020.2648
– volume: 191
  start-page: 145
  year: 2020
  end-page: 147
  ident: CR3
  article-title: Incidence of thrombotic complications in critically ill ICU patients with COVID-19
  publication-title: Thromb. Res.
  doi: 10.1016/j.thromres.2020.04.013
– volume: 18
  start-page: 1
  year: 2017
  end-page: 5
  ident: CR19
  article-title: Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: CR20
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 323
  start-page: 1612
  year: 2020
  end-page: 1614
  ident: CR11
  article-title: Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State
  publication-title: JAMA
  doi: 10.1001/jama.2020.4326
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: CR25
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 323
  start-page: 1061
  year: 2020
  end-page: 1069
  ident: CR10
  article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China
  publication-title: JAMA
  doi: 10.1001/jama.2020.1585
– ident: CR17
– volume: 71
  start-page: 833
  year: 2020
  end-page: 840
  ident: CR15
  article-title: A tool for early prediction of severe Coronavirus Disease 2019 (COVID-19): a multicenter study using the risk Nomogram in Wuhan and Guangdong, China
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa443
– volume: 63
  start-page: 537
  year: 2020
  end-page: 551
  ident: CR13
  article-title: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity
  publication-title: CMC-Comput. Mater. Contin.
  doi: 10.32604/cmc.2020.010691
– volume: 395
  start-page: 1054
  year: 2020
  end-page: 1062
  ident: CR14
  article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30566-3
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: CR28
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 20
  start-page: 1
  year: 2019
  end-page: 81
  ident: CR23
  article-title: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously
  publication-title: J. Mach. Learn. Res.
– ident: CR26
– ident: CR24
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR27
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 90
  year: 2007
  ident: 83784_CR28
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– ident: 83784_CR22
  doi: 10.1145/2939672.2939785
– volume: 20
  start-page: 1
  year: 2019
  ident: 83784_CR23
  publication-title: J. Mach. Learn. Res.
– volume: 323
  start-page: 1061
  year: 2020
  ident: 83784_CR10
  publication-title: JAMA
  doi: 10.1001/jama.2020.1585
– volume: 323
  start-page: 1612
  year: 2020
  ident: 83784_CR11
  publication-title: JAMA
  doi: 10.1001/jama.2020.4326
– ident: 83784_CR17
  doi: 10.1101/2020.03.30.20047308
– ident: 83784_CR26
  doi: 10.25080/Majora-92bf1922-00a
– volume: 395
  start-page: 1054
  year: 2020
  ident: 83784_CR14
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30566-3
– volume: 368
  start-page: m1091
  year: 2020
  ident: 83784_CR7
  publication-title: BMJ
  doi: 10.1136/bmj.m1091
– volume: 45
  start-page: 5
  year: 2001
  ident: 83784_CR21
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 67
  start-page: 301
  year: 2005
  ident: 83784_CR20
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 41
  start-page: 145
  year: 2020
  ident: 83784_CR6
  publication-title: Chin. Cent. Dis. Control Prev.
– volume: 395
  start-page: 931
  year: 2020
  ident: 83784_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30567-5
– volume: 22
  start-page: 2413
  year: 2020
  ident: 83784_CR5
  publication-title: medRxiv
– volume: 24
  start-page: 198
  year: 2017
  ident: 83784_CR8
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocw042
– volume: 9
  start-page: 475
  year: 2020
  ident: 83784_CR2
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30079-5
– ident: 83784_CR24
– volume: 191
  start-page: 145
  year: 2020
  ident: 83784_CR3
  publication-title: Thromb. Res.
  doi: 10.1016/j.thromres.2020.04.013
– ident: 83784_CR16
  doi: 10.1101/2020.03.28.20045997
– ident: 83784_CR29
  doi: 10.1101/2020.04.23.20076042
– volume: 585
  start-page: 357
  year: 2020
  ident: 83784_CR25
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: 83784_CR12
– volume: 18
  start-page: 1
  year: 2017
  ident: 83784_CR19
  publication-title: J. Mach. Learn. Res.
– volume: 71
  start-page: 833
  year: 2020
  ident: 83784_CR15
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa443
– volume: 12
  start-page: 2825
  year: 2011
  ident: 83784_CR27
  publication-title: J. Mach. Learn. Res.
– volume: 369
  start-page: 1
  year: 2020
  ident: 83784_CR9
  publication-title: BMJ
– volume: 323
  start-page: 1239
  year: 2020
  ident: 83784_CR1
  publication-title: JAMA
  doi: 10.1001/jama.2020.2648
– volume: 63
  start-page: 537
  year: 2020
  ident: 83784_CR13
  publication-title: CMC-Comput. Mater. Contin.
  doi: 10.32604/cmc.2020.010691
– ident: 83784_CR18
SSID ssj0000529419
Score 2.5629938
Snippet Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with more than 55 million reported...
Abstract Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with more than 55 million...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4200
SubjectTerms 631/114
631/114/1305
692/308
692/308/575
692/499
692/53/2422
692/699
692/699/255
692/699/255/2514
Adult
Aged
Aged, 80 and over
Coronaviruses
COVID-19
COVID-19 - mortality
Creatinine
Disease Progression
Emergency medical care
Emergency Service, Hospital - statistics & numerical data
Epidemiology
Female
Hospital Mortality - trends
Hospitalization - statistics & numerical data
Hospitals - statistics & numerical data
Humanities and Social Sciences
Humans
Intensive care
Laboratories
Lactic acid
Learning algorithms
London - epidemiology
Machine Learning
Male
Mechanical ventilation
Middle Aged
Mortality
Mortality risk
multidisciplinary
Oxygenation
Pandemics
Patients
Respiration, Artificial - statistics & numerical data
Retrospective Studies
Risk assessment
Risk Assessment - methods
Risk Factors
ROC Curve
SARS-CoV-2 - isolation & purification
Science
Science (multidisciplinary)
Severe acute respiratory syndrome coronavirus 2
United Kingdom - epidemiology
Ventilation
Ventilators
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDLfQBBIXxDeFgYLEDaK1TdokRxhMIKHBAabdonw4YxJ06L03pPffE6d9ZY_PC8e2rmT5Z8uOYv8M8EQK0XvhA9eYApfRa-6SQO5lUpiMCV1Z03n0Vh0e6uNj8_7Cqi_qCRvpgUfD7QmnnCdWJok-J5_atcEZ7HWrfIuxK-ylueq5cJgaWb1bIxszTcnUQu8tc6aiabK24cShLvl6KxMVwv7fVZm_Nkv-dGNaEtHBdbg2VZDs-aj5DbiEw024Mu6UXN8CVyiLGbWMMzfTbrJcm7L9d0dvXvLGsIlMdclouIThZgKTxZybFqXtnFHnKKOm-BP2pfRbIpsWTJzcho8Hrz7sv-bTHgUeOq1XPJ-ocuHhozK1cZ2OGYw6tl2L2KF2ub5Ida9dELFr-iRjHfpgepmkNorOEyjuwM5wNuA9YHUqlGMp-iBkhkJHidmYucZCkR9UBc3GpjZMJOO06-KzLZfdQtsRB5txsAUHu67g6fzP15Fi46_SLwiqWZLoscuL7DR2chr7L6epYHcDtJ1idmlbugOljTeigsfz5xxtdIXiBjw7LzKNkarI3B39YtYkez2R__QVqC2P2VJ1-8tw-qkweittMgy6gmcb3_qh1p9Ncf9_mOIBXG0pKGjHjd6FndXiHB_C5fBtdbpcPCpR9R1aQSVe
  priority: 102
  providerName: Directory of Open Access Journals
Title Early risk assessment for COVID-19 patients from emergency department data using machine learning
URI https://link.springer.com/article/10.1038/s41598-021-83784-y
https://www.ncbi.nlm.nih.gov/pubmed/33603086
https://www.proquest.com/docview/2490851553
https://www.proquest.com/docview/2491947553
https://pubmed.ncbi.nlm.nih.gov/PMC7892838
https://doaj.org/article/3a7ab14094eb4060a2ca9e6827b2ed55
Volume 11
WOSCitedRecordID wos000621416400073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsjISN7CaxE5snxAtrahElwhBtZwix3aWSpAtu1uk_fd4vE6q5dELF0uJHcnJ57EnnvH3AbzgjJUNawyVrjWU20ZS3TJHG94K1ypliiDTefpejMdyMlFV3HBbxLTKfk4ME7WdGdwj38sxQoV6JOz1-Q-KqlEYXY0SGluwgywJLKTuVcMeC0axeKbiWZmUyb2FX6_wTFmeUWRS53S1sR4F2v6_-Zp_pkz-FjcNy9HR7f99kTtwKzqi5M165NyFa667BzfW0pSr-6AD8zHBzHOiB_ZO4l1ccvDh9PgtzRSJnKwLgmdUiOsPchLrl7h5yF4nmIBKMLd-Sr6HtE1Hok7F9AF8Pjr8dPCORjkGagopl9T_mHn_pbFCpUoX0npMU5sXuXOFk9q7KW1aSm2YLbKy5TY1pVElb7lUAn9LHHsI292sc4-BpG1gLmttYxjXuZGWO4-Gd9Uc8xcigawHpTaRqxwlM77VIWbOZL0GsvZA1gHIepXAy-GZ8zVTx5Wt9xHroSWybIcbs_m0jkZbMy10g4xg3DXe8Ul9T7VypcxFkztbFAns9hDX0fQX9SW-CTwfqr3RYiRGd252EdpkiovQ5tF6YA098caDHEJlAmJjyG10dbOmO_saiMGFVB4GmcCrfnBeduvfn-LJ1W_xFG7maC8ogiN3YXs5v3DP4Lr5uTxbzEewJSYilHIEO_uH4-rjKOxr-PIkr0bBIH1NdXxSffkFdWs6ew
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFYT20nsA0LQUnXVpfRQqt6MYztLJdgtu1vQ_il-Ix7nUS2P3nrgmI03msTfPJKZ-QbgmeC8qHhlqfS1pcJVkpqae1qJuvS1UjaPYzoPhuXurjw8VHsr8LPrhcGyys4mRkPtJha_ka8zzFDhPBL--vgbxalRmF3tRmg0sNjxix_hlW32arAZ9vc5Y1vv9je2aTtVgNpcyjkN7xfBDVeuVKkyuXRBtNSxnHmfe2mCt63TQhrLXZ4VtXCpLawqRC2kKjG69jxc9wJcDGEEk7FUcK__poNZM5Gptjcn5XJ9Fvwj9rCxjCJzu6CLJf8XxwT8Lbb9s0TztzxtdH9b1_-3B3cDrrWBNnnTaMZNWPHjW3C5Gb25uA0mMjsTrKwnpmcnJSGEJxsfDgabNFOk5ZydEezBIb5rVCUuuPBprM4nWGBLsHdgRL7GslRP2jkcozvw8Vzu7y6sjidjfx9IWkdmttpVlgvDrHTCh90Poajn4aBMIOtAoG3LxY4jQb7oWBPApW6AowNwdASOXiTwov_PccNEcubqt4itfiWyiMcfJtORbo2S5qY0FTKeCV-FwC4NkhrlC8nKinmX5wmsdZDSrWmb6VM8JfC0Px2MEmaazNhPTuKaTIkyrrnXALmXJBgH5EgqEiiXIL4k6vKZ8dHnSHxeShW2QSbwslOGU7H-_SgenH0XT-DK9v77oR4OdncewlWGuooDf-QarM6nJ_4RXLLf50ez6eOo7AQ-nbeS_ALUq47s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4a4yJeuF8CA4wET2A1iZ3YfkAIViqqTaUPMO3NcxynmzTa0Xag_jV-HT7OZSqXve2BxzZu5STfuSTnnO8DeMEZywtWWCpdZSkvC0lNxRwteCVcpZTNgkzn3q4YjeT-vhpvwM92FgbbKlufGBx1ObP4jryXYoUK9UhYr2raIsb9wduTbxQVpLDS2spp1BDZcasf_vFt8WbY9_f6ZZoOPnze_kgbhQFqMymX1D9r-JBclELFymSy9NuMyzRLncucND7yVnEujWVlluQVL2ObW5XzikslMNN2zP_vJbgskLQ8tA2Ou_c7WEHjiWrmdGImewsfK3GeLU0osrhzulqLhUEy4G957p_tmr_VbEMoHNz8ny_iLbjRJODkXW0xt2HDTe_A1VqSc3UXTGB8JthxT0zHWkp8ak-2P-0N-zRRpOGiXRCczSGuHWAlpQ_t89C1T7DxluBMwYR8De2qjjT6HJN78OVCzu8-bE5nU_cQSFwFxraqLCzjJrWy5M4jwaeojvkPIoKkBYS2DUc7SoUc69ArwKSuQaQ9iHQAkV5F8Kr7zUnNUHLu6veIs24lsouHL2bziW6clWZGmAKZ0LgrfMIX-50a5XKZiiJ1ZZZFsNXCSzcub6HPsBXB8-6wd1ZYgTJTNzsNaxLFRVjzoAZ1txPvNJA7KY9ArMF9bavrR6ZHh4EQXUjlb4OM4HVrGGfb-veleHT-WTyDa9429O5wtPMYrqdotqgDJLdgczk_dU_giv2-PFrMnwa7J3Bw0TbyCzW5l6k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+risk+assessment+for+COVID-19+patients+from+emergency+department+data+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=Heldt%2C+Frank+S.&rft.au=Vizcaychipi%2C+Marcela+P.&rft.au=Peacock%2C+Sophie&rft.au=Cinelli%2C+Mattia&rft.date=2021-02-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-83784-y&rft.externalDocID=10_1038_s41598_021_83784_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon