Improving microgrid hosting capacity: A two-stage BONMIN solver-based framework for battery storage allocation and operational energy management strategy

The growing concerns over fossil fuel dependency, environmental impacts, and escalating energy expenses highlight the critical importance of enhancing energy system efficiency. This study presents a dual-phase optimization approach for improving grid-connected microgrid (μG) operations, focusing on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 20; H. 5; S. e0323525
1. Verfasser: Ali, Ziad M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 16.05.2025
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growing concerns over fossil fuel dependency, environmental impacts, and escalating energy expenses highlight the critical importance of enhancing energy system efficiency. This study presents a dual-phase optimization approach for improving grid-connected microgrid (μG) operations, focusing on Sodium-Sulfur (NaS) and Sodium Nickel Chloride (Na-NiCl₂) battery storage systems. The problem was structured as a mixed-integer nonlinear programming (MINLP) model and resolved using GAMS software with its embedded open-source BONMIN solver. The initial phase establishes optimal battery storage system (BSS) allocation methods to optimize renewable energy source (RES) self-consumption (SC), increase hosting capacity (HC), and minimize operational expenses. Building on these results, the second phase develops optimal microgrid operational strategies to reduce total operating costs further. The research evaluates five scenarios with incrementally increasing the number of BSSs, ranging from one to five units. Through this systematic analysis, the work demonstrates that both the quantity and type of BSS units significantly impact μG operating costs. The most efficient configuration emerged in Case 3, where three Na-NiCl₂ BSS units achieved a 32.35% reduction in operating costs. Additionally, the integration of BSS demonstrated notable improvements in both HC and SC rates.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0323525