Automated identification of sedimentary structures in core images using object detection algorithms

Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 20; H. 7; S. e0327738
Hauptverfasser: Abdlmutalib, Ammar J., Ayranci, Korhan, Waheed, Umair Bin, Alhajri, Hamad D., MacEachern, James A., Al-Khabbaz, Mohammed N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 18.07.2025
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models—YOLOv4 and Faster R-CNN—were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications.
AbstractList Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models-YOLOv4 and Faster R-CNN-were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications.
Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models-YOLOv4 and Faster R-CNN-were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications.Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models-YOLOv4 and Faster R-CNN-were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications.
Audience Academic
Author Ayranci, Korhan
Alhajri, Hamad D.
Waheed, Umair Bin
MacEachern, James A.
Abdlmutalib, Ammar J.
Al-Khabbaz, Mohammed N.
Author_xml – sequence: 1
  givenname: Ammar J.
  orcidid: 0000-0003-3580-9136
  surname: Abdlmutalib
  fullname: Abdlmutalib, Ammar J.
– sequence: 2
  givenname: Korhan
  orcidid: 0000-0002-4808-9898
  surname: Ayranci
  fullname: Ayranci, Korhan
– sequence: 3
  givenname: Umair Bin
  surname: Waheed
  fullname: Waheed, Umair Bin
– sequence: 4
  givenname: Hamad D.
  surname: Alhajri
  fullname: Alhajri, Hamad D.
– sequence: 5
  givenname: James A.
  surname: MacEachern
  fullname: MacEachern, James A.
– sequence: 6
  givenname: Mohammed N.
  orcidid: 0009-0005-3149-7587
  surname: Al-Khabbaz
  fullname: Al-Khabbaz, Mohammed N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40680021$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1r3DAQhkVJaZJt_0FpDYXSHnYrW7IsH5fQj4VAoF9XMZLHXi22tZVkaP595e4mZEsORYeRhmfmlUbvJTkb3YiEvMzpKmdV_mHnJj9Cv9qn9IqyoqqYfEIu8poVS1FQdvZgf04uQ9hRWjIpxDNyzqmQlBb5BTHrKboBIjaZbXCMtrUGonVj5tosYGOHlAR_m4XoJxMnjyGzY2acx8wO0KXjFOzYZU7v0MSswZjCXA9957yN2yE8J09b6AO-OMYF-fHp4_erL8vrm8-bq_X10pRSxmUlNG2LSjdQaNZKUzHgORW1rjjHuqhKIYGXQkshDdN1ySjnWmqqqeQMWcMW5PWh7753QR3nExQrWM65qFJckM2BaBzs1N6nF_hb5cCqvwnnOwU-WtOjEsDbmqMotUReGVlzqMFoTQUKyLVOvd4d1bz7NWGIarDBYN_DiG46yJZFTutZ9s0_6OOXO1IdJH07ti56MHNTtZZcFqzMpUzU6hEqrQYHa5IXWpvyJwXvTwoSE_F37GAKQW2-ff1_9ubnKfv2AbtF6OM2uH6aPz-cgq-Or5_0gM392O9MmAB-AIx3IXhs75Gcqtnrd-NSs9fV0evsD4ej74U
Cites_doi 10.1190/INT-2021-0189.1
10.1016/j.cageo.2020.104450
10.1109/TPAMI.2016.2577031
10.1007/s11440-023-02011-2
10.1016/j.sedgeo.2023.106570
10.1016/j.cageo.2019.104330
10.1306/03112221015
10.1016/j.marpetgeo.2022.105607
10.1306/08192019051
10.3997/1365-2397.29.6.51281
10.1007/978-3-030-87536-7_7
10.1038/s41598-023-47546-2
10.1016/j.geoen.2024.213012
10.1190/INT-2018-0245.1
10.2118/9247-PA
10.1007/s11760-020-01818-w
10.1109/TPAMI.2015.2437384
10.1186/s13071-024-06215-7
10.1016/j.gsf.2022.101436
10.2307/jj.12639005
10.1186/s00015-024-00458-3
10.1007/s12145-022-00808-5
10.1016/j.marpetgeo.2021.105159
10.3389/feart.2021.659611
10.3390/geosciences11080336
10.1016/j.cageo.2022.105099
10.1016/j.geoen.2023.211906
10.1016/j.marpetgeo.2020.104687
10.1016/j.petrol.2020.107933
10.15530/urtec-2021-5375
10.1016/j.petrol.2021.109471
10.1016/j.marpetgeo.2024.106965
10.1016/S0037-0738(00)00085-3
10.2110/jsr.2015.11
10.1016/j.petrol.2021.108853
10.3390/app11167736
ContentType Journal Article
Copyright Copyright: © 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0327738
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


MEDLINE - Academic
Agricultural Science Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Geology
EISSN 1932-6203
ExternalDocumentID 3231446732
oai_doaj_org_article_6a4f94e65b8e47c894a9acbb06e6a1bb
A848235188
40680021
10_1371_journal_pone_0327738
Genre Journal Article
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c588t-76b0f27bda2b3f8c73a41069b744e927568a456b868c3b953044b8b0b0843e3d3
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001532067600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sat Oct 25 10:54:39 EDT 2025
Tue Oct 14 19:05:46 EDT 2025
Fri Sep 05 15:41:55 EDT 2025
Tue Oct 07 07:46:28 EDT 2025
Sat Nov 29 13:46:34 EST 2025
Sat Nov 29 10:29:17 EST 2025
Wed Nov 26 10:45:12 EST 2025
Wed Nov 26 10:45:26 EST 2025
Tue Aug 05 02:11:46 EDT 2025
Tue Jul 22 01:41:54 EDT 2025
Sat Nov 29 07:43:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Copyright: © 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-76b0f27bda2b3f8c73a41069b744e927568a456b868c3b953044b8b0b0843e3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4808-9898
0009-0005-3149-7587
0000-0003-3580-9136
OpenAccessLink https://www.proquest.com/docview/3231446732?pq-origsite=%requestingapplication%
PMID 40680021
PQID 3231446732
PQPubID 1436336
PageCount e0327738
ParticipantIDs plos_journals_3231446732
doaj_primary_oai_doaj_org_article_6a4f94e65b8e47c894a9acbb06e6a1bb
proquest_miscellaneous_3231521092
proquest_journals_3231446732
gale_infotracmisc_A848235188
gale_infotracacademiconefile_A848235188
gale_incontextgauss_ISR_A848235188
gale_incontextgauss_IOV_A848235188
gale_healthsolutions_A848235188
pubmed_primary_40680021
crossref_primary_10_1371_journal_pone_0327738
PublicationCentury 2000
PublicationDate 20250718
PublicationDateYYYYMMDD 2025-07-18
PublicationDate_xml – month: 07
  year: 2025
  text: 20250718
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Bochkovskiy (pone.0327738.ref028) 2020
K Ayranci (pone.0327738.ref020) 2021; 11
I Goodfellow (pone.0327738.ref011) 2016
R Boiger (pone.0327738.ref023) 2024; 117
O Falivene (pone.0327738.ref017) 2022; 106
F Alzubaidi (pone.0327738.ref024) 2022; 208
OR Lazar (pone.0327738.ref005) 2015; 85
EE Baraboshkin (pone.0327738.ref003) 2022; 162
LJC Grant (pone.0327738.ref025) 2024; 11
S Ren (pone.0327738.ref041) 2017; 39
AJ Martin (pone.0327738.ref043) 2000; 136
T Martin (pone.0327738.ref015) 2021; 9
J Redmon (pone.0327738.ref027) 2016
AD Miall (pone.0327738.ref006) 2022
KJ Weber (pone.0327738.ref009) 1982; 34
J Collinson (pone.0327738.ref007) 2019
D Sukumarran (pone.0327738.ref049) 2024; 17
Z Cao (pone.0327738.ref019) 2024; 240
EE Baraboshkin (pone.0327738.ref013) 2020; 135
MK Gingras (pone.0327738.ref044) 2015; 26
Z Chen (pone.0327738.ref029) 2020; 138
D Zheng (pone.0327738.ref034) 2022; 13
A-S Lee (pone.0327738.ref016) 2022; 3
JG Solum (pone.0327738.ref004) 2022; 10
J Allen (pone.0327738.ref047) 1982
R Girshick (pone.0327738.ref040) 2016; 38
E Timmer (pone.0327738.ref021) 2021; 105
R Lindholm (pone.0327738.ref045) 2012
X Liu (pone.0327738.ref035) 2023; 227
J Davis (pone.0327738.ref042) 2006
S Xu (pone.0327738.ref026) 2023; 18
AJ Abdlmutalib (pone.0327738.ref010) 2022; 139
ME Tucker (pone.0327738.ref008) 2023
F Alzubaidi (pone.0327738.ref014) 2021; 197
K Kikuchi (pone.0327738.ref022) 2024; 461
A Koeshidayatullah (pone.0327738.ref030) 2020; 122
T-S Pan (pone.0327738.ref048) 2020; 15
Z Xu (pone.0327738.ref002) 2021; 205
W Seo (pone.0327738.ref033) 2022; 15
F Ricci Lucchi (pone.0327738.ref046) 1995
HL Dawson (pone.0327738.ref036) 2024
A Di Martino (pone.0327738.ref018) 2023; 13
A Thomas (pone.0327738.ref001) 2011; 29
B Zhang (pone.0327738.ref037) 2021
Kansas Geological Survey (pone.0327738.ref039)
ExxonMobil-SEPM Core Data (pone.0327738.ref038) 2022
A Davletshin (pone.0327738.ref031) 2021; 132
R Pires de Lima (pone.0327738.ref012) 2019; 7
R Pires de Lima (pone.0327738.ref032) 2021; 11
References_xml – volume-title: Oil and gas well database, core image, Wellington-KGS-No. 1-32 well, Sumner County, Kansas, USA
  ident: pone.0327738.ref039
– volume: 10
  issue: 3
  year: 2022
  ident: pone.0327738.ref004
  article-title: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets
  publication-title: Interpretation
  doi: 10.1190/INT-2021-0189.1
– volume: 138
  start-page: 104450
  year: 2020
  ident: pone.0327738.ref029
  article-title: Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2020.104450
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: pone.0327738.ref041
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– volume: 18
  start-page: 6027
  issue: 11
  year: 2023
  ident: pone.0327738.ref026
  article-title: Intelligent recognition of drill cores and automatic RQD analytics based on deep learning
  publication-title: Acta Geotech
  doi: 10.1007/s11440-023-02011-2
– volume: 461
  start-page: 106570
  year: 2024
  ident: pone.0327738.ref022
  article-title: Abundance of trace fossil Phycosiphon incertum in core sections measured using a convolutional neural network
  publication-title: Sedimentary Geology
  doi: 10.1016/j.sedgeo.2023.106570
– volume: 11
  issue: 3
  year: 2024
  ident: pone.0327738.ref025
  article-title: Leveraging Spatial Metadata in Machine Learning for Improved Objective Quantification of Geological Drill Core
  publication-title: Earth and Space Science
– volume: 135
  start-page: 104330
  year: 2020
  ident: pone.0327738.ref013
  article-title: Deep convolutions for in-depth automated rock typing
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2019.104330
– volume: 106
  start-page: 1357
  issue: 7
  year: 2022
  ident: pone.0327738.ref017
  article-title: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: turbidite deposits (Gulf of Mexico and North Sea)
  publication-title: AAPG Bulletin
  doi: 10.1306/03112221015
– volume-title: Sedimentary petrology
  year: 2023
  ident: pone.0327738.ref008
– volume: 139
  start-page: 105607
  year: 2022
  ident: pone.0327738.ref010
  article-title: Impact of sedimentary fabrics on small-scale permeability variations within fine-grained sediments: Early Silurian Qusaiba Member, Northern Saudi Arabia
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2022.105607
– volume: 105
  start-page: 631
  issue: 4
  year: 2021
  ident: pone.0327738.ref021
  article-title: Applying deep learning for identifying bioturbation from core photographs
  publication-title: AAPG Bulletin
  doi: 10.1306/08192019051
– volume: 29
  issue: 6
  year: 2011
  ident: pone.0327738.ref001
  article-title: Automated lithology extraction from core photographs
  publication-title: First Break
  doi: 10.3997/1365-2397.29.6.51281
– volume: 3
  issue: 1
  year: 2022
  ident: pone.0327738.ref016
  article-title: An automatic sediment-facies classification approach using machine learning and feature engineering
  publication-title: Commun Earth Environ
– volume-title: Delta parasequence, Panther Tongue Fm. Near Helper, Utah, PriceRiverC_PantherTongue.jpg
  year: 2022
  ident: pone.0327738.ref038
– start-page: 341
  volume-title: Stratigraphy: A modern synthesis
  year: 2022
  ident: pone.0327738.ref006
  article-title: Stratigraphy: the modern synthesis
  doi: 10.1007/978-3-030-87536-7_7
– volume: 13
  start-page: 20409
  issue: 1
  year: 2023
  ident: pone.0327738.ref018
  article-title: Sediment core analysis using artificial intelligence
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-47546-2
– volume-title: A practical approach to sedimentology
  year: 2012
  ident: pone.0327738.ref045
– volume: 240
  start-page: 213012
  year: 2024
  ident: pone.0327738.ref019
  article-title: CoreViT: A new vision transformer model for lithofacies identification in cores
  publication-title: Geoenergy Science and Engineering
  doi: 10.1016/j.geoen.2024.213012
– volume-title: Sedimentary structures, their character and physical basis Volume 1
  year: 1982
  ident: pone.0327738.ref047
– volume: 7
  issue: 3
  year: 2019
  ident: pone.0327738.ref012
  article-title: Convolutional neural networks as aid in core lithofacies classification
  publication-title: Interpretation
  doi: 10.1190/INT-2018-0245.1
– volume: 26
  start-page: 46
  issue: 4
  year: 2015
  ident: pone.0327738.ref044
  article-title: Bioturbation: reworking sediments for better or worse
  publication-title: Oilfield Review
– volume: 34
  start-page: 665
  issue: 03
  year: 1982
  ident: pone.0327738.ref009
  article-title: Influence of common sedimentary structures on fluid flow in reservoir models
  publication-title: Journal of Petroleum Technology
  doi: 10.2118/9247-PA
– volume: 15
  start-page: 941
  issue: 5
  year: 2020
  ident: pone.0327738.ref048
  article-title: Multi-scale ResNet for real-time underwater object detection
  publication-title: SIViP
  doi: 10.1007/s11760-020-01818-w
– volume: 38
  start-page: 142
  issue: 1
  year: 2016
  ident: pone.0327738.ref040
  article-title: Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2437384
– volume: 17
  start-page: 188
  issue: 1
  year: 2024
  ident: pone.0327738.ref049
  article-title: An optimised YOLOv4 deep learning model for efficient malarial cell detection in thin blood smear images
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-024-06215-7
– volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: pone.0327738.ref027
– volume: 13
  start-page: 101436
  issue: 6
  year: 2022
  ident: pone.0327738.ref034
  article-title: Zircon classification from cathodoluminescence images using deep learning
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2022.101436
– volume-title: Sedimentary structures
  year: 2019
  ident: pone.0327738.ref007
  doi: 10.2307/jj.12639005
– volume: 117
  issue: 1
  year: 2024
  ident: pone.0327738.ref023
  article-title: Direct mineral content prediction from drill core images via transfer learning
  publication-title: Swiss J Geosci
  doi: 10.1186/s00015-024-00458-3
– volume-title: Sedimentographica: Photographic atlas of sedimentary structures
  year: 1995
  ident: pone.0327738.ref046
– volume: 15
  start-page: 1297
  issue: 2
  year: 2022
  ident: pone.0327738.ref033
  article-title: Classification of igneous rocks from petrographic thin section images using convolutional neural network
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-022-00808-5
– volume: 132
  start-page: 105159
  year: 2021
  ident: pone.0327738.ref031
  article-title: Detection of framboidal pyrite size distributions using convolutional neural networks
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2021.105159
– volume: 9
  start-page: 659611
  year: 2021
  ident: pone.0327738.ref015
  article-title: Centimeter-scale lithology and facies prediction in cored wells using machine learning
  publication-title: Frontiers in Earth Science
  doi: 10.3389/feart.2021.659611
– volume: 11
  start-page: 336
  issue: 8
  year: 2021
  ident: pone.0327738.ref032
  article-title: Pretraining Convolutional Neural Networks for Mudstone Petrographic Thin-Section Image Classification
  publication-title: Geosciences
  doi: 10.3390/geosciences11080336
– volume: 162
  start-page: 105099
  year: 2022
  ident: pone.0327738.ref003
  article-title: Core box image recognition and its improvement with a new augmentation technique
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2022.105099
– volume: 227
  start-page: 211906
  year: 2023
  ident: pone.0327738.ref035
  article-title: Using deep-learning to predict Dunham textures and depositional facies of carbonate rocks from thin sections
  publication-title: Geoenergy Science and Engineering
  doi: 10.1016/j.geoen.2023.211906
– volume-title: Deep learning
  year: 2016
  ident: pone.0327738.ref011
– volume: 122
  start-page: 104687
  year: 2020
  ident: pone.0327738.ref030
  article-title: Fully automated carbonate petrography using deep convolutional neural networks
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2020.104687
– volume: 197
  start-page: 107933
  year: 2021
  ident: pone.0327738.ref014
  article-title: Automated lithology classification from drill core images using convolutional neural networks
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2020.107933
– volume-title: In SPE/AAPG/SEG Unconventional Resources Technology Conference
  year: 2021
  ident: pone.0327738.ref037
  article-title: Vision-based Sedimentary Structure Identification of Core Images using Transfer Learning and Convolutional Neural Network Approach
  doi: 10.15530/urtec-2021-5375
– volume: 208
  start-page: 109471
  year: 2022
  ident: pone.0327738.ref024
  article-title: Automatic fracture detection and characterization from unwrapped drill-core images using mask R–CNN
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2021.109471
– start-page: 106965
  year: 2024
  ident: pone.0327738.ref036
  article-title: Object Detection Algorithms to Identify Skeletal Components in Carbonate Cores
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2024.106965
– volume: 136
  start-page: 1
  year: 2000
  ident: pone.0327738.ref043
  article-title: Flaser and wavy bedding in ephemeral streams: a modern and an ancient example
  publication-title: Sedimentary Geology
  doi: 10.1016/S0037-0738(00)00085-3
– year: 2020
  ident: pone.0327738.ref028
  article-title: Yolov4: Optimal speed and accuracy of object detection
  publication-title: arXiv preprint arXiv:2004.10934
– volume: 85
  start-page: 230
  issue: 3
  year: 2015
  ident: pone.0327738.ref005
  article-title: Capturing Key Attributes of Fine-Grained Sedimentary Rocks In Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines
  publication-title: Journal of Sedimentary Research
  doi: 10.2110/jsr.2015.11
– volume: 205
  start-page: 108853
  year: 2021
  ident: pone.0327738.ref002
  article-title: Integrated lithology identification based on images and elemental data from rocks
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2021.108853
– start-page: 233
  volume-title: In Proceedings of the 23rd international conference on Machine learning
  year: 2006
  ident: pone.0327738.ref042
  article-title: The relationship between Precision-Recall and ROC curves
– volume: 11
  start-page: 7736
  issue: 16
  year: 2021
  ident: pone.0327738.ref020
  article-title: Deep learning applications in geosciences: insights into ichnological analysis
  publication-title: Applied Sciences
  doi: 10.3390/app11167736
SSID ssj0053866
Score 2.4832172
Snippet Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive,...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0327738
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Automation
Boxes
Datasets
Deep learning
Geology
Identification
Identification and classification
Image processing
Lithology
Machine learning
Methods
Neural networks
Object recognition
Sedimentary structures
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQxYELYnltYRcMQgIO2U1jx4_jgljBZUG8tDfLTpwSaTepmhSJf78zthttJRAcuNZfq3Ye9jfp-BtCXhQLoWtfyszXjcu4ynWmayByHOXiytoDJ-dh2IQ8O1Pn5_rTtVFf2BMW5YGj4Y6F5Y3mXpROeS4rpbnVtnIuF17YhXO4-wLr2RZTcQ-GLBYiXZRjcnGc_HK06jt_lLNChvso1w6ioNc_7cqz1UU__JlyhqPn9A65nTgjPYnfdY_c8N1dspeycqCvknT063sEn3j1wEF9Tds69QEF09O-oQOcU6FVfP2LRtnYDdTatO0oSlnS9hK2loFiI_yS9g6fz9Daj6FVq6P2Ytmv2_HH5XCffDt99_Xt-yyNUciqUqkxk8LlTSFdbQvHGlVJZjkUgtpJzr1G-XdlgUY5JVTFnC5ZzrlTLne54syzmj0gsw4Mt09ow4SzvoC8rS1HJTghG_AveKYBZublnGRbm5pVVMsw4S8zCVVGNJZBH5jkgzl5g4afsKh1HV6ACDApAszfImBOnqLbTLw4OmWsOVFcFQwF5-bkeUCg3kWHDTVLuxkG8-Hj938Affm8A3qZQE0_rm1l0yUG-E2oo7WDPNhBQtZWO8v7GGRbqwyGAdGG0lyyAt65DbzfLz-blvFDsUmu8_0mYoCN5RowD2PATpblOGMF-Nyj_2Hxx-RWgWOQUV9UHZAZhKw_JDern2M7rJ-ETLwCYXY4Aw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZgAakvQMvRhQIGIQEPKdnY8fFYEAtIqFRc6ltkJ842UpusNlmk_ntmHG9QECvBazy55rC_ScbfEPI8mQlduFRGrihtxFWsI10AkONIF5cWDjA5980m5PGxOj3VJ78TxT_-4DM5ex10erhsancYs0RKpq6SawkTAku45iefNjMvxK4QYXvctjNHy49n6R_m4snyvGm3A02_4Mxv_e-j3iY3A7SkR70v7JIrrt4jN9771r2Xe2Q3hHFLXwau6Vd3CH4iawC0uoJWRSgc8raiTUlbWNh8bfnqkvY8s2tIzmlVU-S-pNUFzEUtxcr5BW0sftChhet8bVdNzfmiWVXd2UV7l3yfv_v29kMU-i5EeapUF0lh4zKRtjCJZaXKJTMcMkdtJedOI1-8MoC7rBIqZ1anLObcKhvbWHHmWMHukUkNKtgntGTCGpdAoBeGI3WckCU4hHK8BCjn5JREG3Nky55eI_P_2CSkJb3aMtRmFrQ5JW_QZoMskmP7A2CGLMRaJgwvNXcitXAfmSvNjTa5tbFwwsysnZInaPGs32k6hHh2pLhKGDLUTckzL4EEGTVW4CzMum2zj59__IPQ1y8joRdBqGy6lclN2PUA74TEWyPJg5EkhHk-Gt5H_9xopc0YIHPI5SVL4MyNz_59-OkwjBfFqrraNeteBuBbrEHmfu_rg2Y5NmUBAPhg-30fkp0EuyEjzag6IBNwRPeIXM9_dlW7euxD8xfD1zYb
  priority: 102
  providerName: Public Library of Science
Title Automated identification of sedimentary structures in core images using object detection algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/40680021
https://www.proquest.com/docview/3231446732
https://www.proquest.com/docview/3231521092
https://doaj.org/article/6a4f94e65b8e47c894a9acbb06e6a1bb
http://dx.doi.org/10.1371/journal.pone.0327738
Volume 20
WOSCitedRecordID wos001532067600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvwMbHCqMYhAQ8pEtjJ3ae0DqtMI2VaGNT4SWyE6dU2pLStEj777lz3EIlQEi83EN9SRPfh8-X8-8IeRn0ojg3ofBMXmiPSz_24hwCOY5wcWFuICbnttmEGA7laBQnLuFWu7LKpU-0jjqvMsyR7zEIRGDrIljwdvrNw65R-HXVtdDYIJuIkoCGmYRflp4YbDmK3HE5Jnp7TjrdaVWars8CYU-l_LIcWdT-lW9uTS-r-s-Bp12ABnf_99HvkTsu9KT7ja5skRum3Ca33tnWvtfbZMuZeU1fOyzqN_cJptAqCGpNTie5KyyysqRVQWtY-Gzt-eyaNji0C9i800lJERuTTq7AV9UUK-vHtNKY8KG5mdvar5KqyzE84_zrVf2AnA8OPx2891xfBi8LpZx7ItJ-EQidq0CzQmaCKQ47y1gLzk2MePJSQVymZSQzpuOQ-ZxrqX3tS84My9lD0ipBBjuEFizSygTgCHLFEVouEgUojDS8gFDPiDbxluJJpw38Rmq_wQnYtjTTlqI4UyfONumjDFe8CJ5tf6hm49TZYhopXsTcRKGG_xGZjLmKVaa1H5lI9bRuk2eoAWlzEnXlAtJ9yWXAEMGuTV5YDgTQKLFCZ6wWdZ0efbz4B6az0zWmV46pqOYzlSl3KgLeCYG51jh31zjBDWRrwzuor8tZqdOfWgdXLvXy98PPV8N4U6y6K021aHggvPNj4HnU6P5qZjk2bYEA8fHfb_6E3A6wYzJCkcpd0gJlNE_Jzez7fFLPOmRDnF4gHQlLJVB50OuQzf7hMDnt2AwJ0EHyAehxvwv0xD9GKhJLzzrW5OGK5Ogk-fwDeLBUVw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAoIL0PLoQqEGgYBD2mzsje0DQuVRumopCAram7ETZ1mpTZbNLmj_FL-RGecBKwHi0gPXeOIozsznGWfmG0LuR71Ypa4vApdmNuAyVIFKwZHjSBfXTx345Nw3mxCHh3I4VG9XyPemFgbTKhtM9ECdFgmekW8zcEQgdBEsejr5EmDXKPy72rTQqNRi3y2-QchWPhm8gO_7IIp2Xx493wvqrgJB0pdyFojYhlkkbGoiyzKZCGY4xEXKCs6dQjZ0acCrsDKWCbOqD_E-t9KGNpScOZYymPcMOQs4LjCFTAzbAA-wI47r8jwmetu1NmxNitxthSwSvgrml-3Pdwlo94LO5Lgo_-zo-g1v9_L_tlRXyKXataY7lS2skhWXr5Hzr3zr4sUaWa1hrKSPaq7tx1cJHhEW4LS7lI7TOnHK6yotMlrCxu5z66cLWvHszqdw-zinyP1JxyeAxSXFyoERLSweaNHUzXxuW07N8QjWZPb5pLxGPpzKa18nnRy--TqhGYutcREAXWo4UufFIgODkI5n4Mo60SVBow56UtGLaP-PUUBYVi2bRvXRtfp0yTPUmVYWycH9hWI60jXW6NjwTHEX9y08RyRScaNMYm0Yu9j0rO2STdQ4XVXathCndySXEUOGvi655yWQICTHDKSRmZelHrz5-A9C798tCT2shbJiNjWJqas-4J2QeGxJcmNJEmAuWRpeR_toVqXUP7Uc7mzs4PfDd9thnBSzCnNXzCsZcF9DBTI3KltrV5ZjUxpwgG_-ffJNcmHv6PWBPhgc7t8iFyPsDo20q3KDdEAx3W1yLvk6G5fTOx4qKPl02gb3A5iMoic
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdG-RAvwMbHCoMZBII9ZE1jJ3YeEBqMQjVUqgHTxEuwE6dU2pLStKD-a_x13DlOoRIgXvbAa3xxFOd35zvn7neEPAy6UZyZUHgmy7XHpR97cQaOHEe6uDAz4JNz22xCDAby-DgerpHvTS0MplU2NtEa6qxM8Yy8w8ARgdBFsKCTu7SI4X7v2eSLhx2k8E9r006jhsiBWXyD8K162t-Hb_0oCHov37947bkOA14aSjnzRKT9PBA6U4FmuUwFUxxipFgLzk2MzOhSgYehZSRTpuMQYn-upfa1LzkzLGMw7zlyXkCMiYHfMPzY7AJgR6LIleox0e04ZOxOysLs-iwQtiLml63QdgxY7gutyUlZ_dnptZtf7-r_vGzXyBXnctO9WkfWyZopNsjFV7al8WKDrDvzVtEnjoN75zrBo8MSnHmT0XHmEqoshmmZ0wo2fJtzP13Qmn93PoXbxwVFTlA6PgUbXVGsKBjRUuNBF83MzOa8FVSdjGBNZp9Pqxvkw5m89k3SKuD7bxKas0grE4ABzBRHSr1I5KAo0vAcXFwj2sRroJFMatqRxP57FBCu1cuWIJQSB6U2eY74Wcoiabi9UE5HibNBSaR4HnMThRqeI1IZcxWrVGs_MpHqat0m24i-pK7AXZq-ZE9yGTBk7muTB1YCiUMKxNJIzasq6b89-gehd4crQo-dUF7OpipVrhoE3gkJyVYkt1YkwfylK8ObqCvNqlTJT8TDnY1O_H74_nIYJ8Vsw8KU81oG3Fo_Bplbtd4tV5ZjsxpwjG__ffJtcgn0LHnTHxzcIZcDbBqNbKxyi7QAl-YuuZB-nY2r6T1rNSj5dNb69gOZN6sa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+identification+of+sedimentary+structures+in+core+images+using+object+detection+algorithms&rft.jtitle=PloS+one&rft.au=Abdlmutalib%2C+Ammar+J.&rft.au=Ayranci%2C+Korhan&rft.au=Waheed%2C+Umair+Bin&rft.au=Alhajri%2C+Hamad+D.&rft.date=2025-07-18&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=7&rft.spage=e0327738&rft_id=info:doi/10.1371%2Fjournal.pone.0327738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0327738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon