Automated identification of sedimentary structures in core images using object detection algorithms
Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification...
Gespeichert in:
| Veröffentlicht in: | PloS one Jg. 20; H. 7; S. e0327738 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
18.07.2025
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models—YOLOv4 and Faster R-CNN—were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications. |
|---|---|
| AbstractList | Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models-YOLOv4 and Faster R-CNN-were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications. Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models-YOLOv4 and Faster R-CNN-were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications.Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models-YOLOv4 and Faster R-CNN-were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications. |
| Audience | Academic |
| Author | Ayranci, Korhan Alhajri, Hamad D. Waheed, Umair Bin MacEachern, James A. Abdlmutalib, Ammar J. Al-Khabbaz, Mohammed N. |
| Author_xml | – sequence: 1 givenname: Ammar J. orcidid: 0000-0003-3580-9136 surname: Abdlmutalib fullname: Abdlmutalib, Ammar J. – sequence: 2 givenname: Korhan orcidid: 0000-0002-4808-9898 surname: Ayranci fullname: Ayranci, Korhan – sequence: 3 givenname: Umair Bin surname: Waheed fullname: Waheed, Umair Bin – sequence: 4 givenname: Hamad D. surname: Alhajri fullname: Alhajri, Hamad D. – sequence: 5 givenname: James A. surname: MacEachern fullname: MacEachern, James A. – sequence: 6 givenname: Mohammed N. orcidid: 0009-0005-3149-7587 surname: Al-Khabbaz fullname: Al-Khabbaz, Mohammed N. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40680021$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1r3DAQhkVJaZJt_0FpDYXSHnYrW7IsH5fQj4VAoF9XMZLHXi22tZVkaP595e4mZEsORYeRhmfmlUbvJTkb3YiEvMzpKmdV_mHnJj9Cv9qn9IqyoqqYfEIu8poVS1FQdvZgf04uQ9hRWjIpxDNyzqmQlBb5BTHrKboBIjaZbXCMtrUGonVj5tosYGOHlAR_m4XoJxMnjyGzY2acx8wO0KXjFOzYZU7v0MSswZjCXA9957yN2yE8J09b6AO-OMYF-fHp4_erL8vrm8-bq_X10pRSxmUlNG2LSjdQaNZKUzHgORW1rjjHuqhKIYGXQkshDdN1ySjnWmqqqeQMWcMW5PWh7753QR3nExQrWM65qFJckM2BaBzs1N6nF_hb5cCqvwnnOwU-WtOjEsDbmqMotUReGVlzqMFoTQUKyLVOvd4d1bz7NWGIarDBYN_DiG46yJZFTutZ9s0_6OOXO1IdJH07ti56MHNTtZZcFqzMpUzU6hEqrQYHa5IXWpvyJwXvTwoSE_F37GAKQW2-ff1_9ubnKfv2AbtF6OM2uH6aPz-cgq-Or5_0gM392O9MmAB-AIx3IXhs75Gcqtnrd-NSs9fV0evsD4ej74U |
| Cites_doi | 10.1190/INT-2021-0189.1 10.1016/j.cageo.2020.104450 10.1109/TPAMI.2016.2577031 10.1007/s11440-023-02011-2 10.1016/j.sedgeo.2023.106570 10.1016/j.cageo.2019.104330 10.1306/03112221015 10.1016/j.marpetgeo.2022.105607 10.1306/08192019051 10.3997/1365-2397.29.6.51281 10.1007/978-3-030-87536-7_7 10.1038/s41598-023-47546-2 10.1016/j.geoen.2024.213012 10.1190/INT-2018-0245.1 10.2118/9247-PA 10.1007/s11760-020-01818-w 10.1109/TPAMI.2015.2437384 10.1186/s13071-024-06215-7 10.1016/j.gsf.2022.101436 10.2307/jj.12639005 10.1186/s00015-024-00458-3 10.1007/s12145-022-00808-5 10.1016/j.marpetgeo.2021.105159 10.3389/feart.2021.659611 10.3390/geosciences11080336 10.1016/j.cageo.2022.105099 10.1016/j.geoen.2023.211906 10.1016/j.marpetgeo.2020.104687 10.1016/j.petrol.2020.107933 10.15530/urtec-2021-5375 10.1016/j.petrol.2021.109471 10.1016/j.marpetgeo.2024.106965 10.1016/S0037-0738(00)00085-3 10.2110/jsr.2015.11 10.1016/j.petrol.2021.108853 10.3390/app11167736 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
| DOI | 10.1371/journal.pone.0327738 |
| DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection (ProQuest) ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Geology |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3231446732 oai_doaj_org_article_6a4f94e65b8e47c894a9acbb06e6a1bb A848235188 40680021 10_1371_journal_pone_0327738 |
| Genre | Journal Article |
| GeographicLocations | Saudi Arabia |
| GeographicLocations_xml | – name: Saudi Arabia |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c588t-76b0f27bda2b3f8c73a41069b744e927568a456b868c3b953044b8b0b0843e3d3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001532067600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Sat Oct 25 10:54:39 EDT 2025 Tue Oct 14 19:05:46 EDT 2025 Fri Sep 05 15:41:55 EDT 2025 Tue Oct 07 07:46:28 EDT 2025 Sat Nov 29 13:46:34 EST 2025 Sat Nov 29 10:29:17 EST 2025 Wed Nov 26 10:45:12 EST 2025 Wed Nov 26 10:45:26 EST 2025 Tue Aug 05 02:11:46 EDT 2025 Tue Jul 22 01:41:54 EDT 2025 Sat Nov 29 07:43:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Copyright: © 2025 Abdlmutalib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c588t-76b0f27bda2b3f8c73a41069b744e927568a456b868c3b953044b8b0b0843e3d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4808-9898 0009-0005-3149-7587 0000-0003-3580-9136 |
| OpenAccessLink | https://www.proquest.com/docview/3231446732?pq-origsite=%requestingapplication% |
| PMID | 40680021 |
| PQID | 3231446732 |
| PQPubID | 1436336 |
| PageCount | e0327738 |
| ParticipantIDs | plos_journals_3231446732 doaj_primary_oai_doaj_org_article_6a4f94e65b8e47c894a9acbb06e6a1bb proquest_miscellaneous_3231521092 proquest_journals_3231446732 gale_infotracmisc_A848235188 gale_infotracacademiconefile_A848235188 gale_incontextgauss_ISR_A848235188 gale_incontextgauss_IOV_A848235188 gale_healthsolutions_A848235188 pubmed_primary_40680021 crossref_primary_10_1371_journal_pone_0327738 |
| PublicationCentury | 2000 |
| PublicationDate | 20250718 |
| PublicationDateYYYYMMDD | 2025-07-18 |
| PublicationDate_xml | – month: 07 year: 2025 text: 20250718 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | A Bochkovskiy (pone.0327738.ref028) 2020 K Ayranci (pone.0327738.ref020) 2021; 11 I Goodfellow (pone.0327738.ref011) 2016 R Boiger (pone.0327738.ref023) 2024; 117 O Falivene (pone.0327738.ref017) 2022; 106 F Alzubaidi (pone.0327738.ref024) 2022; 208 OR Lazar (pone.0327738.ref005) 2015; 85 EE Baraboshkin (pone.0327738.ref003) 2022; 162 LJC Grant (pone.0327738.ref025) 2024; 11 S Ren (pone.0327738.ref041) 2017; 39 AJ Martin (pone.0327738.ref043) 2000; 136 T Martin (pone.0327738.ref015) 2021; 9 J Redmon (pone.0327738.ref027) 2016 AD Miall (pone.0327738.ref006) 2022 KJ Weber (pone.0327738.ref009) 1982; 34 J Collinson (pone.0327738.ref007) 2019 D Sukumarran (pone.0327738.ref049) 2024; 17 Z Cao (pone.0327738.ref019) 2024; 240 EE Baraboshkin (pone.0327738.ref013) 2020; 135 MK Gingras (pone.0327738.ref044) 2015; 26 Z Chen (pone.0327738.ref029) 2020; 138 D Zheng (pone.0327738.ref034) 2022; 13 A-S Lee (pone.0327738.ref016) 2022; 3 JG Solum (pone.0327738.ref004) 2022; 10 J Allen (pone.0327738.ref047) 1982 R Girshick (pone.0327738.ref040) 2016; 38 E Timmer (pone.0327738.ref021) 2021; 105 R Lindholm (pone.0327738.ref045) 2012 X Liu (pone.0327738.ref035) 2023; 227 J Davis (pone.0327738.ref042) 2006 S Xu (pone.0327738.ref026) 2023; 18 AJ Abdlmutalib (pone.0327738.ref010) 2022; 139 ME Tucker (pone.0327738.ref008) 2023 F Alzubaidi (pone.0327738.ref014) 2021; 197 K Kikuchi (pone.0327738.ref022) 2024; 461 A Koeshidayatullah (pone.0327738.ref030) 2020; 122 T-S Pan (pone.0327738.ref048) 2020; 15 Z Xu (pone.0327738.ref002) 2021; 205 W Seo (pone.0327738.ref033) 2022; 15 F Ricci Lucchi (pone.0327738.ref046) 1995 HL Dawson (pone.0327738.ref036) 2024 A Di Martino (pone.0327738.ref018) 2023; 13 A Thomas (pone.0327738.ref001) 2011; 29 B Zhang (pone.0327738.ref037) 2021 Kansas Geological Survey (pone.0327738.ref039) ExxonMobil-SEPM Core Data (pone.0327738.ref038) 2022 A Davletshin (pone.0327738.ref031) 2021; 132 R Pires de Lima (pone.0327738.ref012) 2019; 7 R Pires de Lima (pone.0327738.ref032) 2021; 11 |
| References_xml | – volume-title: Oil and gas well database, core image, Wellington-KGS-No. 1-32 well, Sumner County, Kansas, USA ident: pone.0327738.ref039 – volume: 10 issue: 3 year: 2022 ident: pone.0327738.ref004 article-title: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets publication-title: Interpretation doi: 10.1190/INT-2021-0189.1 – volume: 138 start-page: 104450 year: 2020 ident: pone.0327738.ref029 article-title: Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2020.104450 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: pone.0327738.ref041 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 18 start-page: 6027 issue: 11 year: 2023 ident: pone.0327738.ref026 article-title: Intelligent recognition of drill cores and automatic RQD analytics based on deep learning publication-title: Acta Geotech doi: 10.1007/s11440-023-02011-2 – volume: 461 start-page: 106570 year: 2024 ident: pone.0327738.ref022 article-title: Abundance of trace fossil Phycosiphon incertum in core sections measured using a convolutional neural network publication-title: Sedimentary Geology doi: 10.1016/j.sedgeo.2023.106570 – volume: 11 issue: 3 year: 2024 ident: pone.0327738.ref025 article-title: Leveraging Spatial Metadata in Machine Learning for Improved Objective Quantification of Geological Drill Core publication-title: Earth and Space Science – volume: 135 start-page: 104330 year: 2020 ident: pone.0327738.ref013 article-title: Deep convolutions for in-depth automated rock typing publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2019.104330 – volume: 106 start-page: 1357 issue: 7 year: 2022 ident: pone.0327738.ref017 article-title: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: turbidite deposits (Gulf of Mexico and North Sea) publication-title: AAPG Bulletin doi: 10.1306/03112221015 – volume-title: Sedimentary petrology year: 2023 ident: pone.0327738.ref008 – volume: 139 start-page: 105607 year: 2022 ident: pone.0327738.ref010 article-title: Impact of sedimentary fabrics on small-scale permeability variations within fine-grained sediments: Early Silurian Qusaiba Member, Northern Saudi Arabia publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2022.105607 – volume: 105 start-page: 631 issue: 4 year: 2021 ident: pone.0327738.ref021 article-title: Applying deep learning for identifying bioturbation from core photographs publication-title: AAPG Bulletin doi: 10.1306/08192019051 – volume: 29 issue: 6 year: 2011 ident: pone.0327738.ref001 article-title: Automated lithology extraction from core photographs publication-title: First Break doi: 10.3997/1365-2397.29.6.51281 – volume: 3 issue: 1 year: 2022 ident: pone.0327738.ref016 article-title: An automatic sediment-facies classification approach using machine learning and feature engineering publication-title: Commun Earth Environ – volume-title: Delta parasequence, Panther Tongue Fm. Near Helper, Utah, PriceRiverC_PantherTongue.jpg year: 2022 ident: pone.0327738.ref038 – start-page: 341 volume-title: Stratigraphy: A modern synthesis year: 2022 ident: pone.0327738.ref006 article-title: Stratigraphy: the modern synthesis doi: 10.1007/978-3-030-87536-7_7 – volume: 13 start-page: 20409 issue: 1 year: 2023 ident: pone.0327738.ref018 article-title: Sediment core analysis using artificial intelligence publication-title: Sci Rep doi: 10.1038/s41598-023-47546-2 – volume-title: A practical approach to sedimentology year: 2012 ident: pone.0327738.ref045 – volume: 240 start-page: 213012 year: 2024 ident: pone.0327738.ref019 article-title: CoreViT: A new vision transformer model for lithofacies identification in cores publication-title: Geoenergy Science and Engineering doi: 10.1016/j.geoen.2024.213012 – volume-title: Sedimentary structures, their character and physical basis Volume 1 year: 1982 ident: pone.0327738.ref047 – volume: 7 issue: 3 year: 2019 ident: pone.0327738.ref012 article-title: Convolutional neural networks as aid in core lithofacies classification publication-title: Interpretation doi: 10.1190/INT-2018-0245.1 – volume: 26 start-page: 46 issue: 4 year: 2015 ident: pone.0327738.ref044 article-title: Bioturbation: reworking sediments for better or worse publication-title: Oilfield Review – volume: 34 start-page: 665 issue: 03 year: 1982 ident: pone.0327738.ref009 article-title: Influence of common sedimentary structures on fluid flow in reservoir models publication-title: Journal of Petroleum Technology doi: 10.2118/9247-PA – volume: 15 start-page: 941 issue: 5 year: 2020 ident: pone.0327738.ref048 article-title: Multi-scale ResNet for real-time underwater object detection publication-title: SIViP doi: 10.1007/s11760-020-01818-w – volume: 38 start-page: 142 issue: 1 year: 2016 ident: pone.0327738.ref040 article-title: Region-Based Convolutional Networks for Accurate Object Detection and Segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2437384 – volume: 17 start-page: 188 issue: 1 year: 2024 ident: pone.0327738.ref049 article-title: An optimised YOLOv4 deep learning model for efficient malarial cell detection in thin blood smear images publication-title: Parasit Vectors doi: 10.1186/s13071-024-06215-7 – volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: pone.0327738.ref027 – volume: 13 start-page: 101436 issue: 6 year: 2022 ident: pone.0327738.ref034 article-title: Zircon classification from cathodoluminescence images using deep learning publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2022.101436 – volume-title: Sedimentary structures year: 2019 ident: pone.0327738.ref007 doi: 10.2307/jj.12639005 – volume: 117 issue: 1 year: 2024 ident: pone.0327738.ref023 article-title: Direct mineral content prediction from drill core images via transfer learning publication-title: Swiss J Geosci doi: 10.1186/s00015-024-00458-3 – volume-title: Sedimentographica: Photographic atlas of sedimentary structures year: 1995 ident: pone.0327738.ref046 – volume: 15 start-page: 1297 issue: 2 year: 2022 ident: pone.0327738.ref033 article-title: Classification of igneous rocks from petrographic thin section images using convolutional neural network publication-title: Earth Sci Inform doi: 10.1007/s12145-022-00808-5 – volume: 132 start-page: 105159 year: 2021 ident: pone.0327738.ref031 article-title: Detection of framboidal pyrite size distributions using convolutional neural networks publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2021.105159 – volume: 9 start-page: 659611 year: 2021 ident: pone.0327738.ref015 article-title: Centimeter-scale lithology and facies prediction in cored wells using machine learning publication-title: Frontiers in Earth Science doi: 10.3389/feart.2021.659611 – volume: 11 start-page: 336 issue: 8 year: 2021 ident: pone.0327738.ref032 article-title: Pretraining Convolutional Neural Networks for Mudstone Petrographic Thin-Section Image Classification publication-title: Geosciences doi: 10.3390/geosciences11080336 – volume: 162 start-page: 105099 year: 2022 ident: pone.0327738.ref003 article-title: Core box image recognition and its improvement with a new augmentation technique publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2022.105099 – volume: 227 start-page: 211906 year: 2023 ident: pone.0327738.ref035 article-title: Using deep-learning to predict Dunham textures and depositional facies of carbonate rocks from thin sections publication-title: Geoenergy Science and Engineering doi: 10.1016/j.geoen.2023.211906 – volume-title: Deep learning year: 2016 ident: pone.0327738.ref011 – volume: 122 start-page: 104687 year: 2020 ident: pone.0327738.ref030 article-title: Fully automated carbonate petrography using deep convolutional neural networks publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2020.104687 – volume: 197 start-page: 107933 year: 2021 ident: pone.0327738.ref014 article-title: Automated lithology classification from drill core images using convolutional neural networks publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2020.107933 – volume-title: In SPE/AAPG/SEG Unconventional Resources Technology Conference year: 2021 ident: pone.0327738.ref037 article-title: Vision-based Sedimentary Structure Identification of Core Images using Transfer Learning and Convolutional Neural Network Approach doi: 10.15530/urtec-2021-5375 – volume: 208 start-page: 109471 year: 2022 ident: pone.0327738.ref024 article-title: Automatic fracture detection and characterization from unwrapped drill-core images using mask R–CNN publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2021.109471 – start-page: 106965 year: 2024 ident: pone.0327738.ref036 article-title: Object Detection Algorithms to Identify Skeletal Components in Carbonate Cores publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2024.106965 – volume: 136 start-page: 1 year: 2000 ident: pone.0327738.ref043 article-title: Flaser and wavy bedding in ephemeral streams: a modern and an ancient example publication-title: Sedimentary Geology doi: 10.1016/S0037-0738(00)00085-3 – year: 2020 ident: pone.0327738.ref028 article-title: Yolov4: Optimal speed and accuracy of object detection publication-title: arXiv preprint arXiv:2004.10934 – volume: 85 start-page: 230 issue: 3 year: 2015 ident: pone.0327738.ref005 article-title: Capturing Key Attributes of Fine-Grained Sedimentary Rocks In Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines publication-title: Journal of Sedimentary Research doi: 10.2110/jsr.2015.11 – volume: 205 start-page: 108853 year: 2021 ident: pone.0327738.ref002 article-title: Integrated lithology identification based on images and elemental data from rocks publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2021.108853 – start-page: 233 volume-title: In Proceedings of the 23rd international conference on Machine learning year: 2006 ident: pone.0327738.ref042 article-title: The relationship between Precision-Recall and ROC curves – volume: 11 start-page: 7736 issue: 16 year: 2021 ident: pone.0327738.ref020 article-title: Deep learning applications in geosciences: insights into ichnological analysis publication-title: Applied Sciences doi: 10.3390/app11167736 |
| SSID | ssj0053866 |
| Score | 2.4832172 |
| Snippet | Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive,... |
| SourceID | plos doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | e0327738 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Automation Boxes Datasets Deep learning Geology Identification Identification and classification Image processing Lithology Machine learning Methods Neural networks Object recognition Sedimentary structures |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQxYELYnltYRcMQgIO2U1jx4_jgljBZUG8tDfLTpwSaTepmhSJf78zthttJRAcuNZfq3Ye9jfp-BtCXhQLoWtfyszXjcu4ynWmayByHOXiytoDJ-dh2IQ8O1Pn5_rTtVFf2BMW5YGj4Y6F5Y3mXpROeS4rpbnVtnIuF17YhXO4-wLr2RZTcQ-GLBYiXZRjcnGc_HK06jt_lLNChvso1w6ioNc_7cqz1UU__JlyhqPn9A65nTgjPYnfdY_c8N1dspeycqCvknT063sEn3j1wEF9Tds69QEF09O-oQOcU6FVfP2LRtnYDdTatO0oSlnS9hK2loFiI_yS9g6fz9Daj6FVq6P2Ytmv2_HH5XCffDt99_Xt-yyNUciqUqkxk8LlTSFdbQvHGlVJZjkUgtpJzr1G-XdlgUY5JVTFnC5ZzrlTLne54syzmj0gsw4Mt09ow4SzvoC8rS1HJTghG_AveKYBZublnGRbm5pVVMsw4S8zCVVGNJZBH5jkgzl5g4afsKh1HV6ACDApAszfImBOnqLbTLw4OmWsOVFcFQwF5-bkeUCg3kWHDTVLuxkG8-Hj938Affm8A3qZQE0_rm1l0yUG-E2oo7WDPNhBQtZWO8v7GGRbqwyGAdGG0lyyAt65DbzfLz-blvFDsUmu8_0mYoCN5RowD2PATpblOGMF-Nyj_2Hxx-RWgWOQUV9UHZAZhKw_JDern2M7rJ-ETLwCYXY4Aw priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZgAakvQMvRhQIGIQEPKdnY8fFYEAtIqFRc6ltkJ842UpusNlmk_ntmHG9QECvBazy55rC_ScbfEPI8mQlduFRGrihtxFWsI10AkONIF5cWDjA5980m5PGxOj3VJ78TxT_-4DM5ex10erhsancYs0RKpq6SawkTAku45iefNjMvxK4QYXvctjNHy49n6R_m4snyvGm3A02_4Mxv_e-j3iY3A7SkR70v7JIrrt4jN9771r2Xe2Q3hHFLXwau6Vd3CH4iawC0uoJWRSgc8raiTUlbWNh8bfnqkvY8s2tIzmlVU-S-pNUFzEUtxcr5BW0sftChhet8bVdNzfmiWVXd2UV7l3yfv_v29kMU-i5EeapUF0lh4zKRtjCJZaXKJTMcMkdtJedOI1-8MoC7rBIqZ1anLObcKhvbWHHmWMHukUkNKtgntGTCGpdAoBeGI3WckCU4hHK8BCjn5JREG3Nky55eI_P_2CSkJb3aMtRmFrQ5JW_QZoMskmP7A2CGLMRaJgwvNXcitXAfmSvNjTa5tbFwwsysnZInaPGs32k6hHh2pLhKGDLUTckzL4EEGTVW4CzMum2zj59__IPQ1y8joRdBqGy6lclN2PUA74TEWyPJg5EkhHk-Gt5H_9xopc0YIHPI5SVL4MyNz_59-OkwjBfFqrraNeteBuBbrEHmfu_rg2Y5NmUBAPhg-30fkp0EuyEjzag6IBNwRPeIXM9_dlW7euxD8xfD1zYb priority: 102 providerName: Public Library of Science |
| Title | Automated identification of sedimentary structures in core images using object detection algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40680021 https://www.proquest.com/docview/3231446732 https://www.proquest.com/docview/3231521092 https://doaj.org/article/6a4f94e65b8e47c894a9acbb06e6a1bb http://dx.doi.org/10.1371/journal.pone.0327738 |
| Volume | 20 |
| WOSCitedRecordID | wos001532067600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvwMbHCqMYhAQ8pEtjJ3ae0DqtMI2VaGNT4SWyE6dU2pLStEj777lz3EIlQEi83EN9SRPfh8-X8-8IeRn0ojg3ofBMXmiPSz_24hwCOY5wcWFuICbnttmEGA7laBQnLuFWu7LKpU-0jjqvMsyR7zEIRGDrIljwdvrNw65R-HXVtdDYIJuIkoCGmYRflp4YbDmK3HE5Jnp7TjrdaVWars8CYU-l_LIcWdT-lW9uTS-r-s-Bp12ABnf_99HvkTsu9KT7ja5skRum3Ca33tnWvtfbZMuZeU1fOyzqN_cJptAqCGpNTie5KyyysqRVQWtY-Gzt-eyaNji0C9i800lJERuTTq7AV9UUK-vHtNKY8KG5mdvar5KqyzE84_zrVf2AnA8OPx2891xfBi8LpZx7ItJ-EQidq0CzQmaCKQ47y1gLzk2MePJSQVymZSQzpuOQ-ZxrqX3tS84My9lD0ipBBjuEFizSygTgCHLFEVouEgUojDS8gFDPiDbxluJJpw38Rmq_wQnYtjTTlqI4UyfONumjDFe8CJ5tf6hm49TZYhopXsTcRKGG_xGZjLmKVaa1H5lI9bRuk2eoAWlzEnXlAtJ9yWXAEMGuTV5YDgTQKLFCZ6wWdZ0efbz4B6az0zWmV46pqOYzlSl3KgLeCYG51jh31zjBDWRrwzuor8tZqdOfWgdXLvXy98PPV8N4U6y6K021aHggvPNj4HnU6P5qZjk2bYEA8fHfb_6E3A6wYzJCkcpd0gJlNE_Jzez7fFLPOmRDnF4gHQlLJVB50OuQzf7hMDnt2AwJ0EHyAehxvwv0xD9GKhJLzzrW5OGK5Ogk-fwDeLBUVw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAoIL0PLoQqEGgYBD2mzsje0DQuVRumopCAram7ETZ1mpTZbNLmj_FL-RGecBKwHi0gPXeOIozsznGWfmG0LuR71Ypa4vApdmNuAyVIFKwZHjSBfXTx345Nw3mxCHh3I4VG9XyPemFgbTKhtM9ECdFgmekW8zcEQgdBEsejr5EmDXKPy72rTQqNRi3y2-QchWPhm8gO_7IIp2Xx493wvqrgJB0pdyFojYhlkkbGoiyzKZCGY4xEXKCs6dQjZ0acCrsDKWCbOqD_E-t9KGNpScOZYymPcMOQs4LjCFTAzbAA-wI47r8jwmetu1NmxNitxthSwSvgrml-3Pdwlo94LO5Lgo_-zo-g1v9_L_tlRXyKXataY7lS2skhWXr5Hzr3zr4sUaWa1hrKSPaq7tx1cJHhEW4LS7lI7TOnHK6yotMlrCxu5z66cLWvHszqdw-zinyP1JxyeAxSXFyoERLSweaNHUzXxuW07N8QjWZPb5pLxGPpzKa18nnRy--TqhGYutcREAXWo4UufFIgODkI5n4Mo60SVBow56UtGLaP-PUUBYVi2bRvXRtfp0yTPUmVYWycH9hWI60jXW6NjwTHEX9y08RyRScaNMYm0Yu9j0rO2STdQ4XVXathCndySXEUOGvi655yWQICTHDKSRmZelHrz5-A9C798tCT2shbJiNjWJqas-4J2QeGxJcmNJEmAuWRpeR_toVqXUP7Uc7mzs4PfDd9thnBSzCnNXzCsZcF9DBTI3KltrV5ZjUxpwgG_-ffJNcmHv6PWBPhgc7t8iFyPsDo20q3KDdEAx3W1yLvk6G5fTOx4qKPl02gb3A5iMoic |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdG-RAvwMbHCoMZBII9ZE1jJ3YeEBqMQjVUqgHTxEuwE6dU2pLStKD-a_x13DlOoRIgXvbAa3xxFOd35zvn7neEPAy6UZyZUHgmy7XHpR97cQaOHEe6uDAz4JNz22xCDAby-DgerpHvTS0MplU2NtEa6qxM8Yy8w8ARgdBFsKCTu7SI4X7v2eSLhx2k8E9r006jhsiBWXyD8K162t-Hb_0oCHov37947bkOA14aSjnzRKT9PBA6U4FmuUwFUxxipFgLzk2MzOhSgYehZSRTpuMQYn-upfa1LzkzLGMw7zlyXkCMiYHfMPzY7AJgR6LIleox0e04ZOxOysLs-iwQtiLml63QdgxY7gutyUlZ_dnptZtf7-r_vGzXyBXnctO9WkfWyZopNsjFV7al8WKDrDvzVtEnjoN75zrBo8MSnHmT0XHmEqoshmmZ0wo2fJtzP13Qmn93PoXbxwVFTlA6PgUbXVGsKBjRUuNBF83MzOa8FVSdjGBNZp9Pqxvkw5m89k3SKuD7bxKas0grE4ABzBRHSr1I5KAo0vAcXFwj2sRroJFMatqRxP57FBCu1cuWIJQSB6U2eY74Wcoiabi9UE5HibNBSaR4HnMThRqeI1IZcxWrVGs_MpHqat0m24i-pK7AXZq-ZE9yGTBk7muTB1YCiUMKxNJIzasq6b89-gehd4crQo-dUF7OpipVrhoE3gkJyVYkt1YkwfylK8ObqCvNqlTJT8TDnY1O_H74_nIYJ8Vsw8KU81oG3Fo_Bplbtd4tV5ZjsxpwjG__ffJtcgn0LHnTHxzcIZcDbBqNbKxyi7QAl-YuuZB-nY2r6T1rNSj5dNb69gOZN6sa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+identification+of+sedimentary+structures+in+core+images+using+object+detection+algorithms&rft.jtitle=PloS+one&rft.au=Abdlmutalib%2C+Ammar+J.&rft.au=Ayranci%2C+Korhan&rft.au=Waheed%2C+Umair+Bin&rft.au=Alhajri%2C+Hamad+D.&rft.date=2025-07-18&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=7&rft.spage=e0327738&rft_id=info:doi/10.1371%2Fjournal.pone.0327738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0327738 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |