Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering
Of two closely related species of geese, one, the greylag goose, lives in the Indian plains all year round, while the other, the bar-headed goose, lives at the Tibetan lakes and migrates across the Himalayas to winter in India. Another species, the Andean goose, lives in the High Andes all year roun...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 88; H. 15; S. 6519 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.08.1991
|
| Schlagworte: | |
| ISSN: | 0027-8424 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Of two closely related species of geese, one, the greylag goose, lives in the Indian plains all year round, while the other, the bar-headed goose, lives at the Tibetan lakes and migrates across the Himalayas to winter in India. Another species, the Andean goose, lives in the High Andes all year round. Possession of a Hb with high oxygen affinity helps to adapt bar-headed and Andean geese to high altitudes. The Hb amino acid sequences of the bar-headed and the greylag geese differ by four substitutions, of which only one is unique among bird sequences: Pro-119 alpha (H2)---Ala. Perutz proposed that the two-carbon gap left by this substitution at the alpha 1 beta 1 contact raises the oxygen affinity, because it relaxes the tension in the deoxy or T structure [Perutz, M. F. (1983) Mol. Biol. Evol. 1, 1-28]. It was later found that the Hb of the Andean goose has a gap in the same position, due to the complementary substitution Leu-55 beta (D6)---Ser. We have tested Perutz's hypothesis by introducing each of these substitutions into human globin synthesized in Escherichia coli. The reconstituted Hbs combine cooperatively with oxygen. Their oxygen affinities exceed that of normal human Hb by an even larger factor than that found between the high-flying geese and the greylag goose. The mutant Hb Met-55 beta (D6)---Ser was crystallized. Its structure is the same as that of HbA, except in the immediate environment of the gap left by the substitution of the serine for the methionine side chain, which evidently causes the increased oxygen affinity of this Hb. |
|---|---|
| AbstractList | Of two closely related species of geese, one, the greylag goose, lives in the Indian plains all year round, while the other, the bar-headed goose, lives at the Tibetan lakes and migrates across the Himalayas to winter in India. Another species, the Andean goose, lives in the High Andes all year round. Possession of a Hb with high oxygen affinity helps to adapt bar-headed and Andean geese to high altitudes. The Hb amino acid sequences of the bar-headed and the greylag geese differ by four substitutions, of which only one is unique among bird sequences: Pro-119 alpha (H2)---Ala. Perutz proposed that the two-carbon gap left by this substitution at the alpha 1 beta 1 contact raises the oxygen affinity, because it relaxes the tension in the deoxy or T structure [Perutz, M. F. (1983) Mol. Biol. Evol. 1, 1-28]. It was later found that the Hb of the Andean goose has a gap in the same position, due to the complementary substitution Leu-55 beta (D6)---Ser. We have tested Perutz's hypothesis by introducing each of these substitutions into human globin synthesized in Escherichia coli. The reconstituted Hbs combine cooperatively with oxygen. Their oxygen affinities exceed that of normal human Hb by an even larger factor than that found between the high-flying geese and the greylag goose. The mutant Hb Met-55 beta (D6)---Ser was crystallized. Its structure is the same as that of HbA, except in the immediate environment of the gap left by the substitution of the serine for the methionine side chain, which evidently causes the increased oxygen affinity of this Hb.Of two closely related species of geese, one, the greylag goose, lives in the Indian plains all year round, while the other, the bar-headed goose, lives at the Tibetan lakes and migrates across the Himalayas to winter in India. Another species, the Andean goose, lives in the High Andes all year round. Possession of a Hb with high oxygen affinity helps to adapt bar-headed and Andean geese to high altitudes. The Hb amino acid sequences of the bar-headed and the greylag geese differ by four substitutions, of which only one is unique among bird sequences: Pro-119 alpha (H2)---Ala. Perutz proposed that the two-carbon gap left by this substitution at the alpha 1 beta 1 contact raises the oxygen affinity, because it relaxes the tension in the deoxy or T structure [Perutz, M. F. (1983) Mol. Biol. Evol. 1, 1-28]. It was later found that the Hb of the Andean goose has a gap in the same position, due to the complementary substitution Leu-55 beta (D6)---Ser. We have tested Perutz's hypothesis by introducing each of these substitutions into human globin synthesized in Escherichia coli. The reconstituted Hbs combine cooperatively with oxygen. Their oxygen affinities exceed that of normal human Hb by an even larger factor than that found between the high-flying geese and the greylag goose. The mutant Hb Met-55 beta (D6)---Ser was crystallized. Its structure is the same as that of HbA, except in the immediate environment of the gap left by the substitution of the serine for the methionine side chain, which evidently causes the increased oxygen affinity of this Hb. Of two closely related species of geese, one, the greylag goose, lives in the Indian plains all year round, while the other, the bar-headed goose, lives at the Tibetan lakes and migrates across the Himalayas to winter in India. Another species, the Andean goose, lives in the High Andes all year round. Possession of a Hb with high oxygen affinity helps to adapt bar-headed and Andean geese to high altitudes. The Hb amino acid sequences of the bar-headed and the greylag geese differ by four substitutions, of which only one is unique among bird sequences: Pro-119 alpha (H2)---Ala. Perutz proposed that the two-carbon gap left by this substitution at the alpha 1 beta 1 contact raises the oxygen affinity, because it relaxes the tension in the deoxy or T structure [Perutz, M. F. (1983) Mol. Biol. Evol. 1, 1-28]. It was later found that the Hb of the Andean goose has a gap in the same position, due to the complementary substitution Leu-55 beta (D6)---Ser. We have tested Perutz's hypothesis by introducing each of these substitutions into human globin synthesized in Escherichia coli. The reconstituted Hbs combine cooperatively with oxygen. Their oxygen affinities exceed that of normal human Hb by an even larger factor than that found between the high-flying geese and the greylag goose. The mutant Hb Met-55 beta (D6)---Ser was crystallized. Its structure is the same as that of HbA, except in the immediate environment of the gap left by the substitution of the serine for the methionine side chain, which evidently causes the increased oxygen affinity of this Hb. |
| Author | Weber, R E Tame, J Jessen, T H Fermi, G Braunitzer, G |
| Author_xml | – sequence: 1 givenname: T H surname: Jessen fullname: Jessen, T H organization: Max-Planck-Institut für Biochemie, Abteilung Proteinchemie, Martinsried, Federal Republic of Germany – sequence: 2 givenname: R E surname: Weber fullname: Weber, R E – sequence: 3 givenname: G surname: Fermi fullname: Fermi, G – sequence: 4 givenname: J surname: Tame fullname: Tame, J – sequence: 5 givenname: G surname: Braunitzer fullname: Braunitzer, G |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/1862080$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9ULtOwzAU9VBU2sLMhOSJLcF2HnbYqoqXVIkF5siObxKj2A6xM_TviUTEdKTz0r1njzbOO0DojpKUEp49jk6GVIiUFmlZ0GqDdoQwnoic5ddoH8I3IaQqBNmiLRUlI4LskD1qOUYZjXfYt1iZSeMerO8Gr4wLOHrcm67HcogmzhrCE9aL7EKc_kPWD9DMg5ywhaaXzgSL1QWPk49gHAbXGQcwGdfdoKtWDgFuVzygr5fnz9Nbcv54fT8dz0lTCBGTUuUcINOagZYtrSjPG0bLMoOWtAshoSG8EhUlyzeZKnPZSsgVFYw2XCrGDujhr3e54WeGEGtrQgPDIB34OdSCcMozli_G-9U4Kwu6Hidj5XSp133YLw1famg |
| CitedBy_id | crossref_primary_10_1016_j_resp_2006_01_002 crossref_primary_10_1371_journal_pbio_1000266 crossref_primary_10_1007_s10592_015_0769_2 crossref_primary_10_1242_jeb_119321 crossref_primary_10_1006_jmbi_2001_5028 crossref_primary_10_1007_BF02102799 crossref_primary_10_1016_j_gene_2007_07_031 crossref_primary_10_1126_science_1192481 crossref_primary_10_1371_journal_pone_0183649 crossref_primary_10_1073_pnas_1017295108 crossref_primary_10_1242_jeb_160457 crossref_primary_10_1073_pnas_1315456110 crossref_primary_10_1371_journal_pone_0067548 crossref_primary_10_1093_gigascience_giy044 crossref_primary_10_1111_1749_4877_12829 crossref_primary_10_3389_fgene_2020_00743 crossref_primary_10_1002_j_2040_4603_2012_tb00415_x crossref_primary_10_1111_evo_13396 crossref_primary_10_1111_j_1365_294X_2011_05400_x crossref_primary_10_1242_jeb_245975 crossref_primary_10_1046_j_1432_1327_2001_02333_x crossref_primary_10_1016_j_neuroscience_2012_07_052 crossref_primary_10_1016_j_toxicon_2015_03_007 crossref_primary_10_1016_j_resp_2010_04_004 crossref_primary_10_1093_icb_icae062 crossref_primary_10_1016_j_ydbio_2009_04_040 crossref_primary_10_1111_1744_7917_12605 crossref_primary_10_1016_j_ympev_2010_04_034 crossref_primary_10_1111_j_1365_294X_2008_03942_x crossref_primary_10_1016_j_resp_2004_07_021 crossref_primary_10_1007_s10930_024_10206_z crossref_primary_10_1073_pnas_1720487115 crossref_primary_10_1006_bbrc_2002_6399 crossref_primary_10_1056_NEJM199801223380407 crossref_primary_10_1242_jeb_185470 crossref_primary_10_1242_jeb_033761 crossref_primary_10_1093_molbev_msp007 crossref_primary_10_1186_s12862_016_0637_9 crossref_primary_10_1073_pnas_1507300112 crossref_primary_10_1111_jav_01443 crossref_primary_10_1016_j_resp_2007_05_001 crossref_primary_10_1080_14888386_2012_700345 crossref_primary_10_1107_S0907444911006044 crossref_primary_10_1242_jeb_202_20_2787 crossref_primary_10_1093_molbev_msq171 crossref_primary_10_1111_j_1558_5646_2007_00105_x crossref_primary_10_1016_S0034_5687_01_00309_7 crossref_primary_10_1111_j_1365_201X_2004_01360_x crossref_primary_10_2478_s11756_010_0150_3 crossref_primary_10_1186_1471_2148_14_54 crossref_primary_10_1371_journal_pone_0012389 crossref_primary_10_1107_S2059798321003417 crossref_primary_10_1111_j_1365_294X_2009_04352_x crossref_primary_10_1111_mec_14118 crossref_primary_10_7554_eLife_56259 crossref_primary_10_1111_j_1432_1033_1994_tb18996_x crossref_primary_10_1242_jeb_142711 crossref_primary_10_1242_jeb_052548 crossref_primary_10_1016_j_cbpa_2012_09_001 crossref_primary_10_1016_j_resp_2004_04_018 crossref_primary_10_1038_hdy_1994_54 crossref_primary_10_1073_pnas_0403999101 crossref_primary_10_1089_152702902753639531 crossref_primary_10_1111_jzo_70061 crossref_primary_10_1242_jeb_211250 crossref_primary_10_1038_ng0402_350 crossref_primary_10_1038_nrg3540 crossref_primary_10_1111_j_1474_919X_2011_01196_x crossref_primary_10_1186_1471_2148_11_120 crossref_primary_10_1016_j_mito_2014_07_012 crossref_primary_10_1016_S0966_842X_01_02203_X crossref_primary_10_1038_nsb0396_211 crossref_primary_10_1016_j_resp_2004_02_010 crossref_primary_10_1093_molbev_msu234 crossref_primary_10_3390_ijms18091882 crossref_primary_10_1038_s41467_024_49947_x crossref_primary_10_1016_j_cbpa_2014_10_029 crossref_primary_10_1086_606020 crossref_primary_10_1093_molbev_msq205 crossref_primary_10_1111_mec_12151 crossref_primary_10_1038_nrg2160 crossref_primary_10_1074_jbc_M401740200 crossref_primary_10_1007_s00360_014_0823_2 crossref_primary_10_1371_journal_pgen_1005681 crossref_primary_10_5483_BMBRep_2007_40_3_426 crossref_primary_10_1093_protein_13_2_113 crossref_primary_10_1111_btp_13047 crossref_primary_10_1146_annurev_physiol_65_092101_142711 crossref_primary_10_3109_01677063_2013_799670 crossref_primary_10_1371_journal_pbio_0030245 crossref_primary_10_1101_gr_171876_113 crossref_primary_10_1016_j_margen_2012_03_005 crossref_primary_10_1111_j_1558_5646_2012_01740_x crossref_primary_10_3389_fevo_2023_1103406 crossref_primary_10_1371_journal_pone_0174395 crossref_primary_10_1152_japplphysiol_00110_2017 crossref_primary_10_1242_jeb_127134 crossref_primary_10_1371_journal_pgen_1007331 crossref_primary_10_1186_gb_2006_7_8_r68 crossref_primary_10_1111_voxs_12191 crossref_primary_10_1038_hdy_2011_85 crossref_primary_10_1111_2041_210X_12324 crossref_primary_10_1089_ham_2020_0159 crossref_primary_10_1107_S0907444912029459 crossref_primary_10_1890_ES15_00086_1 crossref_primary_10_1093_molbev_msu341 crossref_primary_10_1038_ncomms2860 crossref_primary_10_1111_febs_12586 crossref_primary_10_1089_152702901750265332 crossref_primary_10_3390_ijms23073909 crossref_primary_10_1111_1749_4877_12996 crossref_primary_10_1089_ham_2007_1079 crossref_primary_10_1002_ame2_12189 crossref_primary_10_3390_ani14101440 crossref_primary_10_1038_srep26770 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.88.15.6519 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| ExternalDocumentID | 1862080 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TN5 UKR VOH VQA VXZ W8F WH7 WHG WOQ WOW X7M XSW Y6R YIF YIN YKV YSK ZCA ZCG ~02 ~KM 7X8 ADQXQ ADXHL |
| ID | FETCH-LOGICAL-c588t-6b47ee3dd2edaf19174c21663ef0faf1aec07989105803b64afae4b1821c7ab22 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 152 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1073_pnas_88_15_6519&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0027-8424 |
| IngestDate | Thu Oct 02 04:04:08 EDT 2025 Wed Feb 19 02:33:29 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c588t-6b47ee3dd2edaf19174c21663ef0faf1aec07989105803b64afae4b1821c7ab22 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/52117 |
| PMID | 1862080 |
| PQID | 80717324 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_80717324 pubmed_primary_1862080 |
| PublicationCentury | 1900 |
| PublicationDate | 1991-08-01 |
| PublicationDateYYYYMMDD | 1991-08-01 |
| PublicationDate_xml | – month: 08 year: 1991 text: 1991-08-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 1991 |
| SSID | ssj0009580 |
| Score | 1.7567642 |
| Snippet | Of two closely related species of geese, one, the greylag goose, lives in the Indian plains all year round, while the other, the bar-headed goose, lives at the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 6519 |
| SubjectTerms | Adaptation, Physiological Altitude Amino Acid Sequence Animals Biological Evolution Geese - genetics Globins - genetics Hemoglobins - genetics Hemoglobins - metabolism Humans Models, Molecular Mutagenesis, Site-Directed Oxyhemoglobins - metabolism Protein Conformation Protein Engineering Species Specificity |
| Title | Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/1862080 https://www.proquest.com/docview/80717324 |
| Volume | 88 |
| WOSCitedRecordID | wos10_1073_pnas_88_15_6519&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSxAgYry9MAAQ9rEcRIHISGEqBig6gCoW2XHZ5EhD0hB4t9zzkMwwcCSIZGj6PL58l3u7jtCTl0d6IDLxImV52OAomJHhJ52ZCQ0RLbbsS6ieb6PJhMxm8XTJXLZ9cLYssrOJ9aOWheJ_Uc-EnW-mPGr8tWxM6NsbrUdoLFMVn0kMhbT0Uz8kNwVTQMKQz_MGe-EfSJ_VOayQogMvWAYBt4v7LL-yow3__d8W2SjZZf0uoFDjyxBvk167f6t6FkrMn2-Q7JrLcsmDU8LQ1X6pukLZIUVCEnzii4KapWMqbT9ue8aqguq8XLeyezaRVk3WpdmYBuI0yqj6pPW0g9pTuFb6nCXPI1vH2_unHb0gpMEQiycUPEIwNeagZbGxnQ8YR6yEzCuwRMSEjeKBXINNLKvQi6NBK4wWPGSSCrG-mQlL3LYIxRv44qYBwwCDPWUjv3EGDAhj0PlM-EOyEln0DlC2-YrZA7FezXvTDog_eadzMtGgWPuYRyGVHf_z6UHZL2p7bIVe4dk1eCehiOylnws0urtuAYMHifThy_lL80u |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+of+bird+hemoglobins+to+high+altitudes%3A+demonstration+of+molecular+mechanism+by+protein+engineering&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jessen%2C+T+H&rft.au=Weber%2C+R+E&rft.au=Fermi%2C+G&rft.au=Tame%2C+J&rft.date=1991-08-01&rft.issn=0027-8424&rft.volume=88&rft.issue=15&rft.spage=6519&rft_id=info:doi/10.1073%2Fpnas.88.15.6519&rft_id=info%3Apmid%2F1862080&rft_id=info%3Apmid%2F1862080&rft.externalDocID=1862080 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |