Optimization of non-smooth functions via differentiable surrogates
Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are common...
Gespeichert in:
| Veröffentlicht in: | PloS one Jg. 20; H. 5; S. e0321862 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
30.05.2025
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are commonly used to predict outputs based on a combination of fixed parameters and adjustable variables. A key transition in optimization involves moving beyond simple prediction to determine optimal variable values. Specifically, the challenge lies in identifying values of adjustable variables that maximize the output quality according to the model’s predictions, given a set of fixed parameters. To address this challenge, we propose a method that combines XGBoost’s superior prediction accuracy with neural networks’ differentiability as optimization surrogates. The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. Through extensive testing on classical optimization benchmarks including Rosenbrock, Levy, and Rastrigin functions with varying dimensions and constraint conditions, we demonstrate that our method achieves solutions up to 40% better than traditional methods while reducing computation time by orders of magnitude. The framework consistently maintains near-zero constraint violations across all test cases, even as problem complexity increases. This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints. |
|---|---|
| AbstractList | Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are commonly used to predict outputs based on a combination of fixed parameters and adjustable variables. A key transition in optimization involves moving beyond simple prediction to determine optimal variable values. Specifically, the challenge lies in identifying values of adjustable variables that maximize the output quality according to the model’s predictions, given a set of fixed parameters. To address this challenge, we propose a method that combines XGBoost’s superior prediction accuracy with neural networks’ differentiability as optimization surrogates. The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. Through extensive testing on classical optimization benchmarks including Rosenbrock, Levy, and Rastrigin functions with varying dimensions and constraint conditions, we demonstrate that our method achieves solutions up to 40% better than traditional methods while reducing computation time by orders of magnitude. The framework consistently maintains near-zero constraint violations across all test cases, even as problem complexity increases. This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints. Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are commonly used to predict outputs based on a combination of fixed parameters and adjustable variables. A key transition in optimization involves moving beyond simple prediction to determine optimal variable values. Specifically, the challenge lies in identifying values of adjustable variables that maximize the output quality according to the model's predictions, given a set of fixed parameters. To address this challenge, we propose a method that combines XGBoost's superior prediction accuracy with neural networks' differentiability as optimization surrogates. The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost's prediction precision. Through extensive testing on classical optimization benchmarks including Rosenbrock, Levy, and Rastrigin functions with varying dimensions and constraint conditions, we demonstrate that our method achieves solutions up to 40% better than traditional methods while reducing computation time by orders of magnitude. The framework consistently maintains near-zero constraint violations across all test cases, even as problem complexity increases. This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are commonly used to predict outputs based on a combination of fixed parameters and adjustable variables. A key transition in optimization involves moving beyond simple prediction to determine optimal variable values. Specifically, the challenge lies in identifying values of adjustable variables that maximize the output quality according to the model's predictions, given a set of fixed parameters. To address this challenge, we propose a method that combines XGBoost's superior prediction accuracy with neural networks' differentiability as optimization surrogates. The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost's prediction precision. Through extensive testing on classical optimization benchmarks including Rosenbrock, Levy, and Rastrigin functions with varying dimensions and constraint conditions, we demonstrate that our method achieves solutions up to 40% better than traditional methods while reducing computation time by orders of magnitude. The framework consistently maintains near-zero constraint violations across all test cases, even as problem complexity increases. This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints. |
| Audience | Academic |
| Author | Zheng, Wenlong Chen, Shikun Huang, Zebin |
| Author_xml | – sequence: 1 givenname: Shikun orcidid: 0000-0001-5958-7545 surname: Chen fullname: Chen, Shikun – sequence: 2 givenname: Zebin surname: Huang fullname: Huang, Zebin – sequence: 3 givenname: Wenlong surname: Zheng fullname: Zheng, Wenlong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40445907$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkllr3DAUhU1JaZb2H5TWUCjtw0y12JL1mIYuA4GBbq_iWsuMgm1NJLm0_fWVM07IlDwUPUgcPt2je3VOi6PBD6YonmO0xJTjd1d-DAN0y12Wl4gS3DDyqDjBgpIFI4ge3TsfF6cxXiFU04axJ8VxhaqqFoifFO_Xu-R69weS80PpbZldFrH3Pm1LOw5qkmP500GpnbUmmCE5aDtTxjEEv4Fk4tPisYUummfzflZ8__jh28XnxeX60-ri_HKh6qZJi8rUDQEhsBAWQGtOwFJe1xZXLafGMt02hNYCRFW3CrVaWd1iTrHQtqkx0LPi5b7urvNRzu1HmTuvEGeI40ys9oT2cCV3wfUQfksPTt4IPmwkhORUZ2StQDctJogTUbWABDOKKTBcE8KUmGq9md2Cvx5NTLJ3UZmug8H4cW9LcU0Yzeirf9CHHzdTG8j-brA-BVBTUXneVARzRvlUa_kAlZc2vVP5q63L-sGFtwcXMpPMr7SBMUa5-vrl_9n1j0P29T12a6BL2-i78SYQh-CLufux7Y2-G_ttxjJQ7QEVfIzB2DsEIzlF-XZccoqynKNM_wKn1uPJ |
| Cites_doi | 10.1038/scientificamerican0792-66 10.1016/B978-0-323-88506-5.50071-1 10.1109/TIT.2016.2586080 10.1073/pnas.2111997119 10.1016/j.apenergy.2021.116455 10.1016/j.compchemeng.2020.107118 10.1016/j.probengmech.2022.103248 10.1002/aic.18338 10.1016/j.ins.2021.03.002 10.1016/j.applthermaleng.2023.122101 10.2140/camcos.2010.5.65 10.1109/TMAG.2020.3005446 10.1109/20.376418 10.1109/TEC.2017.2755590 10.55248/gengpi.5.1124.3343 10.1038/s41524-019-0189-9 10.1007/s10898-004-1936-z 10.1007/s00163-020-00336-7 10.1109/TEVC.2021.3108185 10.1109/TEC.2020.3046721 10.2514/1.J051583 10.1016/j.paerosci.2005.02.001 10.1137/1019005 10.1080/19401493.2024.2375304 10.1364/JOSAB.506389 10.1016/B978-0-444-64241-7.50158-0 10.1137/S003614450242889 10.1007/BF00932858 10.1109/ICNN.1995.488968 10.1016/j.jmps.2019.103814 10.1214/ss/1177011077 10.1007/s00500-023-07845-2 10.1109/TMAG.2007.907990 10.1007/b98874 10.1016/j.eswa.2023.121254 10.1016/j.ijepes.2021.107401 10.1016/j.renene.2024.120122 10.1109/TIA.2016.2587702 10.1016/j.apenergy.2024.123236 10.1016/j.dche.2023.100111 10.1007/s00500-022-07362-8 10.1002/wics.117 10.1007/s00158-023-03493-0 10.1109/TMAG.2011.2105273 10.1016/j.apenergy.2024.123130 10.1016/j.asoc.2021.108353 10.1109/TEC.2015.2411677 10.1109/TTE.2024.3366417 10.1093/comjnl/3.3.175 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
| DOI | 10.1371/journal.pone.0321862 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3214076071 oai_doaj_org_article_5cad8b1207294ba096ec6cae7d226c91 A842176373 40445907 10_1371_journal_pone_0321862 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM PMFND RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c588t-4e582a99199faadd72af3755f14b73ef6db82359a945bc0bdcfdb17319df851a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499546000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Sun Aug 31 00:08:05 EDT 2025 Mon Nov 10 04:32:15 EST 2025 Fri Sep 05 15:57:33 EDT 2025 Tue Oct 07 07:44:46 EDT 2025 Sat Nov 29 13:48:21 EST 2025 Sat Nov 29 10:31:29 EST 2025 Wed Nov 26 10:47:02 EST 2025 Wed Nov 26 10:46:51 EST 2025 Tue Jun 17 02:10:50 EDT 2025 Tue Jun 03 01:34:04 EDT 2025 Sat Nov 29 07:48:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright: © 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c588t-4e582a99199faadd72af3755f14b73ef6db82359a945bc0bdcfdb17319df851a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5958-7545 |
| OpenAccessLink | https://doaj.org/article/5cad8b1207294ba096ec6cae7d226c91 |
| PMID | 40445907 |
| PQID | 3214076071 |
| PQPubID | 1436336 |
| PageCount | e0321862 |
| ParticipantIDs | plos_journals_3214076071 doaj_primary_oai_doaj_org_article_5cad8b1207294ba096ec6cae7d226c91 proquest_miscellaneous_3214315263 proquest_journals_3214076071 gale_infotracmisc_A842176373 gale_infotracacademiconefile_A842176373 gale_incontextgauss_ISR_A842176373 gale_incontextgauss_IOV_A842176373 gale_healthsolutions_A842176373 pubmed_primary_40445907 crossref_primary_10_1371_journal_pone_0321862 |
| PublicationCentury | 2000 |
| PublicationDate | 20250530 |
| PublicationDateYYYYMMDD | 2025-05-30 |
| PublicationDate_xml | – month: 05 year: 2025 text: 20250530 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | P Ghafariasl (pone.0321862.ref006) 2024; 364 NV Queipo (pone.0321862.ref033) 2005; 41 pone.0321862.ref053 pone.0321862.ref052 R Alizadeh (pone.0321862.ref029) 2020; 31 pone.0321862.ref051 G Chen (pone.0321862.ref009) 2022; 116 B Williams (pone.0321862.ref031) 2021 A Thakur (pone.0321862.ref028) 2022; 68 R Gupta (pone.0321862.ref004) 2024; 70 GC Enss (pone.0321862.ref034) 2016; 62 R Haupt (pone.0321862.ref041) 1995; 31 SK Bishnu (pone.0321862.ref001) 2023; 8 Z Jin (pone.0321862.ref021) 2021; 57 MJD Powell (pone.0321862.ref049) 1978 PJ Dos Santos Neto (pone.0321862.ref023) 2017; 33 JC Meza (pone.0321862.ref042) 2010; 2 O Owoyele (pone.0321862.ref027) 2021; 285 pone.0321862.ref057 G Bramerdorfer (pone.0321862.ref035) 2016; 52 S Kim (pone.0321862.ref036) 2024; 239 S Koziel (pone.0321862.ref026) 2013; 51 pone.0321862.ref060 Z Li (pone.0321862.ref039) 2024; 365 pone.0321862.ref061 M Laguna (pone.0321862.ref064) 2005; 33 A Parnianifard (pone.0321862.ref011) 2023; 66 F Ekundayo (pone.0321862.ref003) 2024; 5 S Baisthakur (pone.0321862.ref038) 2024; 224 JH Friedman (pone.0321862.ref059) M Berkemeier (pone.0321862.ref010) 2021; 26 T Yabe (pone.0321862.ref002) 2022; 119 TG Kolda (pone.0321862.ref040) 2003; 45 HH Rosenbrock (pone.0321862.ref062) 1960; 3 J Kudela (pone.0321862.ref007) 2022; 26 S Shadab (pone.0321862.ref012) 2022; 134 L Wang (pone.0321862.ref019) 2020; 35 Y-F Lim (pone.0321862.ref013) 2021; 3 R de Paula Garcia (pone.0321862.ref015) 2023; 27 M Kaveh (pone.0321862.ref016) 2022 F Li (pone.0321862.ref056) 2024; 236 T Chen (pone.0321862.ref058) 2016 C Ma (pone.0321862.ref022) 2015; 30 K Diao (pone.0321862.ref020) 2021; 36 H Sahraoui (pone.0321862.ref025) 2007; 43 R Al (pone.0321862.ref017) 2020; 143 SP Han (pone.0321862.ref048) 1977; 22 L Meunier (pone.0321862.ref050) 2022; 26 Y Liu (pone.0321862.ref014) 2022; 65 JE Jr. (pone.0321862.ref044) 1977; 19 H Tong (pone.0321862.ref008) 2021; 562 J Goodman (pone.0321862.ref063) 2010; 5 M Marvi-Mashhadi (pone.0321862.ref018) 2020; 135 JH Holland (pone.0321862.ref054) 1992; 267 S Ferreira (pone.0321862.ref037) 2024; 17 C Nyshadham (pone.0321862.ref030) 2019; 5 pone.0321862.ref046 pone.0321862.ref045 SE Davis (pone.0321862.ref032) 2018 pone.0321862.ref043 J Kennedy (pone.0321862.ref055) 1995 pone.0321862.ref005 J Cai (pone.0321862.ref024) 2011; 47 pone.0321862.ref047 |
| References_xml | – ident: pone.0321862.ref051 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: pone.0321862.ref054 article-title: Genetic algorithms publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – start-page: 785 volume-title: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining year: 2016 ident: pone.0321862.ref058 – start-page: 451 year: 2021 ident: pone.0321862.ref031 article-title: Novel tool for selecting surrogate modeling techniques for surface approximation publication-title: Comput Aided Chem Eng doi: 10.1016/B978-0-323-88506-5.50071-1 – volume: 62 start-page: 5727 issue: 10 year: 2016 ident: pone.0321862.ref034 article-title: Nonparametric quantile estimation based on surrogate models publication-title: IEEE Trans Inform Theory doi: 10.1109/TIT.2016.2586080 – volume: 119 issue: 8 year: 2022 ident: pone.0321862.ref002 article-title: Toward data-driven, dynamical complex systems approaches to disaster resilience publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2111997119 – volume: 285 start-page: 116455 year: 2021 ident: pone.0321862.ref027 article-title: A novel machine learning-based optimization algorithm (ActivO) for accelerating simulation-driven engine design publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116455 – volume: 143 start-page: 107118 year: 2020 ident: pone.0321862.ref017 article-title: Stochastic simulation-based superstructure optimization framework for process synthesis and design under uncertainty publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2020.107118 – ident: pone.0321862.ref061 – ident: pone.0321862.ref046 – volume: 3 issue: 11 year: 2021 ident: pone.0321862.ref013 article-title: Extrapolative Bayesian optimization with Gaussian process and neural network ensemble surrogate models publication-title: Adv Intell Syst – volume: 35 start-page: 101211 year: 2020 ident: pone.0321862.ref019 article-title: Meta-modeling of high-fidelity FEA simulation for efficient product and process design in additive manufacturing publication-title: Addit Manuf – volume: 68 start-page: 103248 year: 2022 ident: pone.0321862.ref028 article-title: A deep learning based surrogate model for stochastic simulators publication-title: Probabilistic Eng Mech doi: 10.1016/j.probengmech.2022.103248 – volume: 70 issue: 4 year: 2024 ident: pone.0321862.ref004 article-title: Data-driven decision-focused surrogate modeling publication-title: AIChE J doi: 10.1002/aic.18338 – volume: 562 start-page: 414 year: 2021 ident: pone.0321862.ref008 article-title: Surrogate models in evolutionary single-objective optimization: a new taxonomy and experimental study publication-title: Inf Sci doi: 10.1016/j.ins.2021.03.002 – volume: 239 start-page: 122101 year: 2024 ident: pone.0321862.ref036 article-title: Optimizing energy-efficient jet impingement cooling using an artificial neural network (ANN) surrogate model for high heat flux semiconductors publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2023.122101 – volume: 5 start-page: 65 issue: 1 year: 2010 ident: pone.0321862.ref063 article-title: Ensemble samplers with affine invariance publication-title: CAMCoS doi: 10.2140/camcos.2010.5.65 – volume: 57 start-page: 1 issue: 2 year: 2021 ident: pone.0321862.ref021 article-title: Comprehensive sensitivity and cross-factor variance analysis-based multi-objective design optimization of a 3-DOF hybrid magnetic bearing publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2020.3005446 – volume: 31 start-page: 1932 issue: 3 year: 1995 ident: pone.0321862.ref041 article-title: Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems publication-title: IEEE Trans Magn doi: 10.1109/20.376418 – ident: pone.0321862.ref060 – volume: 33 start-page: 406 issue: 1 year: 2017 ident: pone.0321862.ref023 article-title: Design of computational experiment for performance optimization of a switched reluctance generator in wind systems publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2017.2755590 – volume: 5 start-page: 1 issue: 11 year: 2024 ident: pone.0321862.ref003 article-title: Leveraging AI-driven decision intelligence for complex systems engineering publication-title: Int J Res Publ Rev doi: 10.55248/gengpi.5.1124.3343 – ident: pone.0321862.ref043 – volume: 5 issue: 1 year: 2019 ident: pone.0321862.ref030 article-title: Machine-learned multi-system surrogate models for materials prediction publication-title: npj Comput Mater doi: 10.1038/s41524-019-0189-9 – volume: 33 start-page: 235 issue: 2 year: 2005 ident: pone.0321862.ref064 article-title: Experimental testing of advanced scatter search designs for global optimization of multimodal functions publication-title: J Glob Optim doi: 10.1007/s10898-004-1936-z – volume: 31 start-page: 275 issue: 3 year: 2020 ident: pone.0321862.ref029 article-title: Managing computational complexity using surrogate models: a critical review publication-title: Res Eng Design doi: 10.1007/s00163-020-00336-7 – ident: pone.0321862.ref047 – volume: 26 start-page: 490 issue: 3 year: 2022 ident: pone.0321862.ref050 article-title: Black-box optimization revisited: improving algorithm selection wizards through massive benchmarking publication-title: IEEE Trans Evol Computat doi: 10.1109/TEVC.2021.3108185 – volume: 36 start-page: 2217 issue: 3 year: 2021 ident: pone.0321862.ref020 article-title: Multimode optimization of switched reluctance machines in hybrid electric vehicles publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2020.3046721 – volume: 51 start-page: 94 issue: 1 year: 2013 ident: pone.0321862.ref026 article-title: Surrogate-based aerodynamic shape optimization by variable-resolution models publication-title: AIAA J doi: 10.2514/1.J051583 – volume: 41 start-page: 1 issue: 1 year: 2005 ident: pone.0321862.ref033 article-title: Surrogate-based analysis and optimization publication-title: Prog Aerosp Sci doi: 10.1016/j.paerosci.2005.02.001 – volume: 19 start-page: 46 issue: 1 year: 1977 ident: pone.0321862.ref044 article-title: Quasi-Newton methods, motivation and theory publication-title: SIAM Rev doi: 10.1137/1019005 – ident: pone.0321862.ref053 – volume: 17 start-page: 631 issue: 5 year: 2024 ident: pone.0321862.ref037 article-title: A neural network-based surrogate model to predict building features from heating and cooling load signatures publication-title: J Build Perform Simul doi: 10.1080/19401493.2024.2375304 – volume: 26 start-page: 31 issue: 2 year: 2021 ident: pone.0321862.ref010 article-title: Derivative-free multiobjective trust region descent method using radial basis function surrogate models publication-title: Math Comput Appl – ident: pone.0321862.ref052 doi: 10.1364/JOSAB.506389 – start-page: 979 year: 2018 ident: pone.0321862.ref032 article-title: Efficient surrogate model development: impact of sample size and underlying model dimensions publication-title: Comput Aided Chem Eng doi: 10.1016/B978-0-444-64241-7.50158-0 – volume: 45 start-page: 385 issue: 3 year: 2003 ident: pone.0321862.ref040 article-title: Optimization by direct search: new perspectives on some classical and modern methods publication-title: SIAM Rev doi: 10.1137/S003614450242889 – volume: 22 start-page: 297 issue: 3 year: 1977 ident: pone.0321862.ref048 article-title: A globally convergent method for nonlinear programming publication-title: J Optim Theory Appl doi: 10.1007/BF00932858 – start-page: 1942 year: 1995 ident: pone.0321862.ref055 article-title: Particle swarm optimization. publication-title: Proceedings of ICNN’95 - International Conference on Neural Networks doi: 10.1109/ICNN.1995.488968 – volume: 135 start-page: 103814 year: 2020 ident: pone.0321862.ref018 article-title: High fidelity simulation of the mechanical behavior of closed-cell polyurethane foams publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2019.103814 – ident: pone.0321862.ref057 doi: 10.1214/ss/1177011077 – volume: 27 start-page: 6391 issue: 10 year: 2023 ident: pone.0321862.ref015 article-title: An enhanced surrogate-assisted differential evolution for constrained optimization problems publication-title: Soft Comput doi: 10.1007/s00500-023-07845-2 – volume: 43 start-page: 4089 issue: 12 year: 2007 ident: pone.0321862.ref025 article-title: Switched reluctance motor design using neural-network method with static finite-element simulation publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2007.907990 – ident: pone.0321862.ref059 – ident: pone.0321862.ref045 doi: 10.1007/b98874 – volume: 236 start-page: 121254 year: 2024 ident: pone.0321862.ref056 article-title: A fast density peak clustering based particle swarm optimizer for dynamic optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121254 – start-page: 1 year: 2022 ident: pone.0321862.ref016 article-title: Application of meta-heuristic algorithms for training neural networks and deep learning architectures: a comprehensive review publication-title: Neural Process Lett – volume: 134 start-page: 107401 year: 2022 ident: pone.0321862.ref012 article-title: Gaussian process surrogate model for an effective life assessment of transformer considering model and measurement uncertainties publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.107401 – volume: 224 start-page: 120122 year: 2024 ident: pone.0321862.ref038 article-title: Physics-informed neural network surrogate model for bypassing blade element momentum theory in wind turbine aerodynamic load estimation publication-title: Renew Energy doi: 10.1016/j.renene.2024.120122 – volume: 65 year: 2022 ident: pone.0321862.ref014 article-title: Analytical robust design optimization based on a hybrid surrogate model by combining polynomial chaos expansion and Gaussian kernel publication-title: Struct Multidisc Optim – volume: 52 start-page: 4668 issue: 6 year: 2016 ident: pone.0321862.ref035 article-title: Possibilities for speeding up the FE-based optimization of electrical machines—a case study publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2016.2587702 – volume: 365 start-page: 123236 year: 2024 ident: pone.0321862.ref039 article-title: Multi-objective optimization of protonic ceramic electrolysis cells based on a deep neural network surrogate model publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.123236 – volume: 8 start-page: 100111 year: 2023 ident: pone.0321862.ref001 article-title: Computational applications using data driven modeling in process systems: a review publication-title: Digit Chem Eng doi: 10.1016/j.dche.2023.100111 – volume: 26 start-page: 13709 issue: 24 year: 2022 ident: pone.0321862.ref007 article-title: Recent advances and applications of surrogate models for finite element method computations: a review publication-title: Soft Comput doi: 10.1007/s00500-022-07362-8 – volume: 2 start-page: 719 issue: 6 year: 2010 ident: pone.0321862.ref042 article-title: Steepest descent publication-title: WIREs Comput Stat doi: 10.1002/wics.117 – volume: 66 year: 2023 ident: pone.0321862.ref011 article-title: Expedited surrogate-based quantification of engineering tolerances using a modified polynomial regression publication-title: Struct Multidisc Optim doi: 10.1007/s00158-023-03493-0 – volume: 47 start-page: 830 issue: 4 year: 2011 ident: pone.0321862.ref024 article-title: A novel BVC-RBF neural network based system simulation model for switched reluctance motor publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2011.2105273 – volume: 364 start-page: 123130 year: 2024 ident: pone.0321862.ref006 article-title: Neural network-based surrogate modeling and optimization of a multigeneration system publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.123130 – start-page: 27 year: 1978 ident: pone.0321862.ref049 article-title: The convergence of variable metric methods for nonlinearly constrained optimization calculations publication-title: Nonlinear Program3 – volume: 116 start-page: 108353 year: 2022 ident: pone.0321862.ref009 article-title: A radial basis function surrogate model assisted evolutionary algorithm for high-dimensional expensive optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.108353 – volume: 30 start-page: 1144 issue: 3 year: 2015 ident: pone.0321862.ref022 article-title: Multiobjective optimization of switched reluctance motors based on design of experiments and particle swarm optimization publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2015.2411677 – ident: pone.0321862.ref005 doi: 10.1109/TTE.2024.3366417 – volume: 3 start-page: 175 issue: 3 year: 1960 ident: pone.0321862.ref062 article-title: An automatic method for finding the greatest or least value of a function publication-title: Comput J doi: 10.1093/comjnl/3.3.175 |
| SSID | ssj0053866 |
| Score | 2.479702 |
| Snippet | Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random... |
| SourceID | plos doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | e0321862 |
| SubjectTerms | Accuracy Algorithms Analysis Approximation Benchmarks Constraints Cost control Efficiency Energy consumption Genetic algorithms Heuristic Machine learning Mathematical analysis Mathematical functions Mathematical models Mathematical optimization Medical informatics Methods Models, Theoretical Neural networks Neural Networks, Computer Optimization Parameters Predictions Simulation Variables |
| SummonAdditionalLinks | – databaseName: Nursing & Allied Health Database dbid: 7RV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0IKFAxdKebRbCgSEBBzSJrEdJyfUIiq4tKhA1ZvlV6pKbbzEu_1-ZhInaCVASFzjiePMy2PPi5DXFg4N1Fn0sBYuZYwy0IOFSHXOrdJcm1KovtmEOD6uzs_rL_HCLcSwylEn9oraeoN35PvYUAe9SCJ_v_iRYtco9K7GFhq3yZ0cbWPgZ3F6NmpikOWyjOlyVOT7kTp7C9-6vYxiN6ZibTvqq_ZPunm2uPLhz4ZnvwEdbfzv0h-Q-9H0TA4GXtkkt1z7kGxG4Q7J21iB-t0jcngCiuQ6Zmgmvkla36bh2gNVE9wIe15Nbi5VMvZXAT2hr1wSVl3n8WIuPCbfjz5--_Apjc0WUsOrapkyx6tCgbVY140CpScK1VDBeZMzLahrSqurgvJa1QwomGlrGqtzARJsG7DaFH1CZrAYt00SxcsKrCxVm0KzimZawV7odEOVs7kVbk7SEedyMdTUkL1jTcBZZMCFRBrJSKM5OUTCTLBYEbt_4LsLGQVMcqNspfMCK6Ez-GJdOlMa5YQFA9PU-Zy8QLLKIb10kmt5UDE4lZVU0Dl51UNgVYwWw24u1CoE-fnk7B-Avp6uAb2JQI1fdsqomOoA_4TVttYgd9cgQbbN2vA2MuGIlSB_sRK8OTLb74dfTsM4KYbStc6vBhgKVlsJs28NDD1hlmWM8ToTO3-f_Cm5V2AbZAyiyHbJbNmt3DNy19wsL0P3vJfBn1ApOeI priority: 102 providerName: ProQuest – databaseName: Public Library of Science dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0EJLD1yAlkcXFggICTikTeJXcmwRK5BQW_FSb5ZfQZXaZJXs9vuZSZxUQV0JrvHEjuflmYxnhpC3DpwG6h1GWDMfM0YZ6MFMxiblThturJC6azYhT07y8_Pi7MZR_CuCT2V6GHB6sKorf5BQ7KEEKvduRoXAVg3Ls6-D5gXZFSKkx217c3L8dFX6R108W13W7XZDsztwlg_-91MfkvvBtIyOel7YJXd8tUd2g_C20ftQYfrDI3J8CoriKmRgRnUZVXUVt1c1UC3Cg67jxej6QkdD_xTQA-bSR-2maWr88dY-Jj-Xn358_ByHZgqx5Xm-jpnneabBGiyKUoNSk5kuqeS8TJmR1JfCmTyjvNAFAwolxtnSmVSChLoSrDJNn5AZfIzfJ5HmIgcrShc2MyynidFw1nlTUu1d6qSfk3jAsVr1NTNUFziT4Gv0uFCIIhVQNCfHSIgRFitedw8AtyoIkOJWu9ykGVY6Z7BiIbwVVnvpwIC0RTonr5CMqk8fHeVWHeUMvC5BJZ2TNx0EVr2o8FrNb71pW_Xl9Nc_AH3_NgF6F4DKet1oq0MqA-wJq2lNIBcTSJBdOxneR6YbsNIqbBuFsVIJ-1kMjHj78OtxGCfFq3KVrzc9DAWrTMDsT3sGHjHLEsZ4kchn29d9Tu5l2OIYL0gkCzJbNxv_guzY6_VF27zs5O0PL9YoHA priority: 102 providerName: Public Library of Science |
| Title | Optimization of non-smooth functions via differentiable surrogates |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40445907 https://www.proquest.com/docview/3214076071 https://www.proquest.com/docview/3214315263 https://doaj.org/article/5cad8b1207294ba096ec6cae7d226c91 http://dx.doi.org/10.1371/journal.pone.0321862 |
| Volume | 20 |
| WOSCitedRecordID | wos001499546000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MALYnytUEpASMBDuiS2Y-dxnVYxjXVRB1PhJbJjB03amqpp9_dz5zgVlUDwwMs9xJco-Z3vfBf77gh5ZyBooNbgDmtiQ8YoAzuYiFDH3CjNdZkK5ZpNiOlUzudZ_kurLzwT1pYHboE74KUyUscJVrhmWoHHbcu0VFYYcBxKl7cOY1kXTLU2GLQ4TX2iHBXxgZfLaFkv7Cii2Icp2VmIXL3-rVXuLa_r5s8up1t6Jo_IQ-8zBoftu-6RO3bxmOx5rWyCD7509McnZHwOFuDGp1YGdRVAcB82NzWII8AVzE2y4PZKBV1jFFBwfW2DZrNa1fhHrXlKvk6Ovxx9Cn2XhLDkUq5DZrlMFLh5WVYpsFYiURUVnFcx04LaKjVaJpRnKmMAfaRNWRkdC1A9U4G7pegz0oOXsfskUDyV4B6prEw0kzQCuKPY6ooqa2IjbJ-EHWTFsi2GUbgdMQFBRItFgRAXHuI-GSOuW14sZe0ugIALL-DibwLuk9colaLNC90qZHEoGYRTKRW0T946DixnscDzMj_UpmmKk_PLf2C6mO0wvfdMVb1eqVL5HAX4JiyTtcM52OEEpSx3hvdxDnWoNAX2g8JNUAHfM-jm1e-H32yH8aF4Bm5h603LQ8HdSuHpz9v5uEWWRYzxLBIv_gfiL8mDBLsc4xmJaEB669XGviL3y9v1VbMakrtidol0LhyVQOVRPCT3xsfTfDZ0igh0kn8GejoeAT2LTpGK3NELoDn_DnfkJ2f5t5-RRjjZ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLy6UGhAIOCQNrGdODkg1Baqrlq2CArqLfiVqlKbLMluEX-K38hM4gRFAsSlB67riTdxvvlmHM-DkKcGNg3MGjxhpdbnnHHgQSp8FUZGqkjpWMim2YSYTpOjo_T9EvnR5cJgWGXHiQ1Rm1LjN_INbKiDp0gifD376mPXKDxd7VpotLDYs9-_wZatfjV5A-_3GaU7bw-3d33XVcDXUZLMfW6jhEpwi9I0l6DdgsqciSjKQ64Es3lsVEJZlMqUw60GyujcqFAAVE0O7olkMO8lcpkzylCLku0-pAS4I45deh4T4YZDw_qsLOx6wLD7Ex2Yv6ZLQG8LRrPTsv6zo9sYvJ0b_9tS3STXnWvtbba6sEyWbHGLLDvyqr0XrsL2y9tk6wCI8sxloHpl7hVl4ddnJaDWQ0Pf6KJ3fiK9rn8M8KA6tV69qKoSPzzWd8inC3mWu2QEN2NXiCejOAEvUqaaKp6wQEmw9VblTFoTGmHHxO_ecTZra4ZkzcGhgL1WuxYZYiJzmBiTLQRCL4sVv5sfyuo4cwSSRVqaRIUUK71z-Mc0tjrW0goDDrROwzFZQxhlbfpsz1vZZsJh1xkzwcbkSSOBVT8KDCs6lou6ziYHn_9B6OOHgdBzJ5SX80pq6VI54JmwmthAcnUgCdylB8MrCPpuVersF3Thyg7cvx9-3A_jpBgqWNhy0cow8EpjmP1eq0D9yvKA8ygNxP2_T75Gru4evtvP9ifTvQfkGsWWzxgwEqyS0bxa2Ifkij6fn9TVo0b_PfLlorXoJ0QqmBI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKghAXoLy6UGhAIOCQNrGdODkg1FJWrIq2FRTUm_ErVaU2WZLdIv4av46ZxFm0EiAuPXCNJ47jfPN5HM-DkKcWNg3MWTxhpS7knHHgQSpCHSdW6USbVKi22ISYTLKjo_xghfzoY2HQrbLnxJaobWXwH_kWFtTBUyQRbxXeLeJgd_R6-jXEClJ40tqX0-ggsue-f4PtW_NqvAvf-hmlo7eHb96FvsJAaJIsm4XcJRlVYCLleaFA0wVVBRNJUsRcC-aK1OqMsiRXOYdhR9qawupYAGxtAaaKYtDvJXJZ8DSirdvgQb8KAI-kqQ_VYzBmj4zNaVW6zYhhJSi6tBS2FQMW68Jgelo1fzZ628VvdON_nrab5Lo3uYPtTkdWyYorb5FVT2pN8MJn3n55m-zsA4Ge-cjUoCqCsirD5qwCNAdoALQ6GpyfqKCvKwP8qE9d0MzrusIfks0d8ulC3uUuGcBg3BoJVJJmYF2q3FDNMxZpBTaA0wVTzsZWuCEJ--8tp10uEdkeKArYg3VzIREf0uNjSHYQFAtZzATeXqjqY-mJRSZG2UzHFDPAc3hinjqTGuWEBcPa5PGQbCCkZBdWu-AzuZ1x2I2mTLAhedJKYDaQEgFyrOZNI8f7n_9B6OOHJaHnXqioZrUyyod4wDthlrElyfUlSeA0s9S8hgrQz0ojf8EY7uyB_vvmx4tm7BRdCEtXzTsZBtZqCr3f65RpMbM84jzJI3H_751vkKugPPL9eLL3gFyjWAka_UiidTKY1XP3kFwx57OTpn7UUkFAvly0Ev0ECRShHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+non-smooth+functions+via+differentiable+surrogates&rft.jtitle=PloS+one&rft.au=Chen%2C+Shikun&rft.au=Huang%2C+Zebin&rft.au=Zheng%2C+Wenlong&rft.date=2025-05-30&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=5&rft.spage=e0321862&rft_id=info:doi/10.1371%2Fjournal.pone.0321862&rft.externalDocID=A842176373 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |