Optimization of non-smooth functions via differentiable surrogates

Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are common...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 20; H. 5; S. e0321862
Hauptverfasser: Chen, Shikun, Huang, Zebin, Zheng, Wenlong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 30.05.2025
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are commonly used to predict outputs based on a combination of fixed parameters and adjustable variables. A key transition in optimization involves moving beyond simple prediction to determine optimal variable values. Specifically, the challenge lies in identifying values of adjustable variables that maximize the output quality according to the model’s predictions, given a set of fixed parameters. To address this challenge, we propose a method that combines XGBoost’s superior prediction accuracy with neural networks’ differentiability as optimization surrogates. The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. Through extensive testing on classical optimization benchmarks including Rosenbrock, Levy, and Rastrigin functions with varying dimensions and constraint conditions, we demonstrate that our method achieves solutions up to 40% better than traditional methods while reducing computation time by orders of magnitude. The framework consistently maintains near-zero constraint violations across all test cases, even as problem complexity increases. This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.
AbstractList Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are commonly used to predict outputs based on a combination of fixed parameters and adjustable variables. A key transition in optimization involves moving beyond simple prediction to determine optimal variable values. Specifically, the challenge lies in identifying values of adjustable variables that maximize the output quality according to the model’s predictions, given a set of fixed parameters. To address this challenge, we propose a method that combines XGBoost’s superior prediction accuracy with neural networks’ differentiability as optimization surrogates. The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. Through extensive testing on classical optimization benchmarks including Rosenbrock, Levy, and Rastrigin functions with varying dimensions and constraint conditions, we demonstrate that our method achieves solutions up to 40% better than traditional methods while reducing computation time by orders of magnitude. The framework consistently maintains near-zero constraint violations across all test cases, even as problem complexity increases. This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.
Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are commonly used to predict outputs based on a combination of fixed parameters and adjustable variables. A key transition in optimization involves moving beyond simple prediction to determine optimal variable values. Specifically, the challenge lies in identifying values of adjustable variables that maximize the output quality according to the model's predictions, given a set of fixed parameters. To address this challenge, we propose a method that combines XGBoost's superior prediction accuracy with neural networks' differentiability as optimization surrogates. The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost's prediction precision. Through extensive testing on classical optimization benchmarks including Rosenbrock, Levy, and Rastrigin functions with varying dimensions and constraint conditions, we demonstrate that our method achieves solutions up to 40% better than traditional methods while reducing computation time by orders of magnitude. The framework consistently maintains near-zero constraint violations across all test cases, even as problem complexity increases. This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random forests excel at prediction tasks, they often lack mathematical regularity, being non-differentiable or even discontinuous. These models are commonly used to predict outputs based on a combination of fixed parameters and adjustable variables. A key transition in optimization involves moving beyond simple prediction to determine optimal variable values. Specifically, the challenge lies in identifying values of adjustable variables that maximize the output quality according to the model's predictions, given a set of fixed parameters. To address this challenge, we propose a method that combines XGBoost's superior prediction accuracy with neural networks' differentiability as optimization surrogates. The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost's prediction precision. Through extensive testing on classical optimization benchmarks including Rosenbrock, Levy, and Rastrigin functions with varying dimensions and constraint conditions, we demonstrate that our method achieves solutions up to 40% better than traditional methods while reducing computation time by orders of magnitude. The framework consistently maintains near-zero constraint violations across all test cases, even as problem complexity increases. This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.
Audience Academic
Author Zheng, Wenlong
Chen, Shikun
Huang, Zebin
Author_xml – sequence: 1
  givenname: Shikun
  orcidid: 0000-0001-5958-7545
  surname: Chen
  fullname: Chen, Shikun
– sequence: 2
  givenname: Zebin
  surname: Huang
  fullname: Huang, Zebin
– sequence: 3
  givenname: Wenlong
  surname: Zheng
  fullname: Zheng, Wenlong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40445907$$D View this record in MEDLINE/PubMed
BookMark eNqNkllr3DAUhU1JaZb2H5TWUCjtw0y12JL1mIYuA4GBbq_iWsuMgm1NJLm0_fWVM07IlDwUPUgcPt2je3VOi6PBD6YonmO0xJTjd1d-DAN0y12Wl4gS3DDyqDjBgpIFI4ge3TsfF6cxXiFU04axJ8VxhaqqFoifFO_Xu-R69weS80PpbZldFrH3Pm1LOw5qkmP500GpnbUmmCE5aDtTxjEEv4Fk4tPisYUummfzflZ8__jh28XnxeX60-ri_HKh6qZJi8rUDQEhsBAWQGtOwFJe1xZXLafGMt02hNYCRFW3CrVaWd1iTrHQtqkx0LPi5b7urvNRzu1HmTuvEGeI40ys9oT2cCV3wfUQfksPTt4IPmwkhORUZ2StQDctJogTUbWABDOKKTBcE8KUmGq9md2Cvx5NTLJ3UZmug8H4cW9LcU0Yzeirf9CHHzdTG8j-brA-BVBTUXneVARzRvlUa_kAlZc2vVP5q63L-sGFtwcXMpPMr7SBMUa5-vrl_9n1j0P29T12a6BL2-i78SYQh-CLufux7Y2-G_ttxjJQ7QEVfIzB2DsEIzlF-XZccoqynKNM_wKn1uPJ
Cites_doi 10.1038/scientificamerican0792-66
10.1016/B978-0-323-88506-5.50071-1
10.1109/TIT.2016.2586080
10.1073/pnas.2111997119
10.1016/j.apenergy.2021.116455
10.1016/j.compchemeng.2020.107118
10.1016/j.probengmech.2022.103248
10.1002/aic.18338
10.1016/j.ins.2021.03.002
10.1016/j.applthermaleng.2023.122101
10.2140/camcos.2010.5.65
10.1109/TMAG.2020.3005446
10.1109/20.376418
10.1109/TEC.2017.2755590
10.55248/gengpi.5.1124.3343
10.1038/s41524-019-0189-9
10.1007/s10898-004-1936-z
10.1007/s00163-020-00336-7
10.1109/TEVC.2021.3108185
10.1109/TEC.2020.3046721
10.2514/1.J051583
10.1016/j.paerosci.2005.02.001
10.1137/1019005
10.1080/19401493.2024.2375304
10.1364/JOSAB.506389
10.1016/B978-0-444-64241-7.50158-0
10.1137/S003614450242889
10.1007/BF00932858
10.1109/ICNN.1995.488968
10.1016/j.jmps.2019.103814
10.1214/ss/1177011077
10.1007/s00500-023-07845-2
10.1109/TMAG.2007.907990
10.1007/b98874
10.1016/j.eswa.2023.121254
10.1016/j.ijepes.2021.107401
10.1016/j.renene.2024.120122
10.1109/TIA.2016.2587702
10.1016/j.apenergy.2024.123236
10.1016/j.dche.2023.100111
10.1007/s00500-022-07362-8
10.1002/wics.117
10.1007/s00158-023-03493-0
10.1109/TMAG.2011.2105273
10.1016/j.apenergy.2024.123130
10.1016/j.asoc.2021.108353
10.1109/TEC.2015.2411677
10.1109/TTE.2024.3366417
10.1093/comjnl/3.3.175
ContentType Journal Article
Copyright Copyright: © 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0321862
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE - Academic
MEDLINE


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3214076071
oai_doaj_org_article_5cad8b1207294ba096ec6cae7d226c91
A842176373
40445907
10_1371_journal_pone_0321862
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PMFND
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c588t-4e582a99199faadd72af3755f14b73ef6db82359a945bc0bdcfdb17319df851a3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499546000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Aug 31 00:08:05 EDT 2025
Mon Nov 10 04:32:15 EST 2025
Fri Sep 05 15:57:33 EDT 2025
Tue Oct 07 07:44:46 EDT 2025
Sat Nov 29 13:48:21 EST 2025
Sat Nov 29 10:31:29 EST 2025
Wed Nov 26 10:47:02 EST 2025
Wed Nov 26 10:46:51 EST 2025
Tue Jun 17 02:10:50 EDT 2025
Tue Jun 03 01:34:04 EDT 2025
Sat Nov 29 07:48:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-4e582a99199faadd72af3755f14b73ef6db82359a945bc0bdcfdb17319df851a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5958-7545
OpenAccessLink https://doaj.org/article/5cad8b1207294ba096ec6cae7d226c91
PMID 40445907
PQID 3214076071
PQPubID 1436336
PageCount e0321862
ParticipantIDs plos_journals_3214076071
doaj_primary_oai_doaj_org_article_5cad8b1207294ba096ec6cae7d226c91
proquest_miscellaneous_3214315263
proquest_journals_3214076071
gale_infotracmisc_A842176373
gale_infotracacademiconefile_A842176373
gale_incontextgauss_ISR_A842176373
gale_incontextgauss_IOV_A842176373
gale_healthsolutions_A842176373
pubmed_primary_40445907
crossref_primary_10_1371_journal_pone_0321862
PublicationCentury 2000
PublicationDate 20250530
PublicationDateYYYYMMDD 2025-05-30
PublicationDate_xml – month: 05
  year: 2025
  text: 20250530
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Ghafariasl (pone.0321862.ref006) 2024; 364
NV Queipo (pone.0321862.ref033) 2005; 41
pone.0321862.ref053
pone.0321862.ref052
R Alizadeh (pone.0321862.ref029) 2020; 31
pone.0321862.ref051
G Chen (pone.0321862.ref009) 2022; 116
B Williams (pone.0321862.ref031) 2021
A Thakur (pone.0321862.ref028) 2022; 68
R Gupta (pone.0321862.ref004) 2024; 70
GC Enss (pone.0321862.ref034) 2016; 62
R Haupt (pone.0321862.ref041) 1995; 31
SK Bishnu (pone.0321862.ref001) 2023; 8
Z Jin (pone.0321862.ref021) 2021; 57
MJD Powell (pone.0321862.ref049) 1978
PJ Dos Santos Neto (pone.0321862.ref023) 2017; 33
JC Meza (pone.0321862.ref042) 2010; 2
O Owoyele (pone.0321862.ref027) 2021; 285
pone.0321862.ref057
G Bramerdorfer (pone.0321862.ref035) 2016; 52
S Kim (pone.0321862.ref036) 2024; 239
S Koziel (pone.0321862.ref026) 2013; 51
pone.0321862.ref060
Z Li (pone.0321862.ref039) 2024; 365
pone.0321862.ref061
M Laguna (pone.0321862.ref064) 2005; 33
A Parnianifard (pone.0321862.ref011) 2023; 66
F Ekundayo (pone.0321862.ref003) 2024; 5
S Baisthakur (pone.0321862.ref038) 2024; 224
JH Friedman (pone.0321862.ref059)
M Berkemeier (pone.0321862.ref010) 2021; 26
T Yabe (pone.0321862.ref002) 2022; 119
TG Kolda (pone.0321862.ref040) 2003; 45
HH Rosenbrock (pone.0321862.ref062) 1960; 3
J Kudela (pone.0321862.ref007) 2022; 26
S Shadab (pone.0321862.ref012) 2022; 134
L Wang (pone.0321862.ref019) 2020; 35
Y-F Lim (pone.0321862.ref013) 2021; 3
R de Paula Garcia (pone.0321862.ref015) 2023; 27
M Kaveh (pone.0321862.ref016) 2022
F Li (pone.0321862.ref056) 2024; 236
T Chen (pone.0321862.ref058) 2016
C Ma (pone.0321862.ref022) 2015; 30
K Diao (pone.0321862.ref020) 2021; 36
H Sahraoui (pone.0321862.ref025) 2007; 43
R Al (pone.0321862.ref017) 2020; 143
SP Han (pone.0321862.ref048) 1977; 22
L Meunier (pone.0321862.ref050) 2022; 26
Y Liu (pone.0321862.ref014) 2022; 65
JE Jr. (pone.0321862.ref044) 1977; 19
H Tong (pone.0321862.ref008) 2021; 562
J Goodman (pone.0321862.ref063) 2010; 5
M Marvi-Mashhadi (pone.0321862.ref018) 2020; 135
JH Holland (pone.0321862.ref054) 1992; 267
S Ferreira (pone.0321862.ref037) 2024; 17
C Nyshadham (pone.0321862.ref030) 2019; 5
pone.0321862.ref046
pone.0321862.ref045
SE Davis (pone.0321862.ref032) 2018
pone.0321862.ref043
J Kennedy (pone.0321862.ref055) 1995
pone.0321862.ref005
J Cai (pone.0321862.ref024) 2011; 47
pone.0321862.ref047
References_xml – ident: pone.0321862.ref051
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: pone.0321862.ref054
  article-title: Genetic algorithms
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– start-page: 785
  volume-title: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2016
  ident: pone.0321862.ref058
– start-page: 451
  year: 2021
  ident: pone.0321862.ref031
  article-title: Novel tool for selecting surrogate modeling techniques for surface approximation
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/B978-0-323-88506-5.50071-1
– volume: 62
  start-page: 5727
  issue: 10
  year: 2016
  ident: pone.0321862.ref034
  article-title: Nonparametric quantile estimation based on surrogate models
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/TIT.2016.2586080
– volume: 119
  issue: 8
  year: 2022
  ident: pone.0321862.ref002
  article-title: Toward data-driven, dynamical complex systems approaches to disaster resilience
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2111997119
– volume: 285
  start-page: 116455
  year: 2021
  ident: pone.0321862.ref027
  article-title: A novel machine learning-based optimization algorithm (ActivO) for accelerating simulation-driven engine design
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116455
– volume: 143
  start-page: 107118
  year: 2020
  ident: pone.0321862.ref017
  article-title: Stochastic simulation-based superstructure optimization framework for process synthesis and design under uncertainty
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2020.107118
– ident: pone.0321862.ref061
– ident: pone.0321862.ref046
– volume: 3
  issue: 11
  year: 2021
  ident: pone.0321862.ref013
  article-title: Extrapolative Bayesian optimization with Gaussian process and neural network ensemble surrogate models
  publication-title: Adv Intell Syst
– volume: 35
  start-page: 101211
  year: 2020
  ident: pone.0321862.ref019
  article-title: Meta-modeling of high-fidelity FEA simulation for efficient product and process design in additive manufacturing
  publication-title: Addit Manuf
– volume: 68
  start-page: 103248
  year: 2022
  ident: pone.0321862.ref028
  article-title: A deep learning based surrogate model for stochastic simulators
  publication-title: Probabilistic Eng Mech
  doi: 10.1016/j.probengmech.2022.103248
– volume: 70
  issue: 4
  year: 2024
  ident: pone.0321862.ref004
  article-title: Data-driven decision-focused surrogate modeling
  publication-title: AIChE J
  doi: 10.1002/aic.18338
– volume: 562
  start-page: 414
  year: 2021
  ident: pone.0321862.ref008
  article-title: Surrogate models in evolutionary single-objective optimization: a new taxonomy and experimental study
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.03.002
– volume: 239
  start-page: 122101
  year: 2024
  ident: pone.0321862.ref036
  article-title: Optimizing energy-efficient jet impingement cooling using an artificial neural network (ANN) surrogate model for high heat flux semiconductors
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2023.122101
– volume: 5
  start-page: 65
  issue: 1
  year: 2010
  ident: pone.0321862.ref063
  article-title: Ensemble samplers with affine invariance
  publication-title: CAMCoS
  doi: 10.2140/camcos.2010.5.65
– volume: 57
  start-page: 1
  issue: 2
  year: 2021
  ident: pone.0321862.ref021
  article-title: Comprehensive sensitivity and cross-factor variance analysis-based multi-objective design optimization of a 3-DOF hybrid magnetic bearing
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2020.3005446
– volume: 31
  start-page: 1932
  issue: 3
  year: 1995
  ident: pone.0321862.ref041
  article-title: Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems
  publication-title: IEEE Trans Magn
  doi: 10.1109/20.376418
– ident: pone.0321862.ref060
– volume: 33
  start-page: 406
  issue: 1
  year: 2017
  ident: pone.0321862.ref023
  article-title: Design of computational experiment for performance optimization of a switched reluctance generator in wind systems
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2017.2755590
– volume: 5
  start-page: 1
  issue: 11
  year: 2024
  ident: pone.0321862.ref003
  article-title: Leveraging AI-driven decision intelligence for complex systems engineering
  publication-title: Int J Res Publ Rev
  doi: 10.55248/gengpi.5.1124.3343
– ident: pone.0321862.ref043
– volume: 5
  issue: 1
  year: 2019
  ident: pone.0321862.ref030
  article-title: Machine-learned multi-system surrogate models for materials prediction
  publication-title: npj Comput Mater
  doi: 10.1038/s41524-019-0189-9
– volume: 33
  start-page: 235
  issue: 2
  year: 2005
  ident: pone.0321862.ref064
  article-title: Experimental testing of advanced scatter search designs for global optimization of multimodal functions
  publication-title: J Glob Optim
  doi: 10.1007/s10898-004-1936-z
– volume: 31
  start-page: 275
  issue: 3
  year: 2020
  ident: pone.0321862.ref029
  article-title: Managing computational complexity using surrogate models: a critical review
  publication-title: Res Eng Design
  doi: 10.1007/s00163-020-00336-7
– ident: pone.0321862.ref047
– volume: 26
  start-page: 490
  issue: 3
  year: 2022
  ident: pone.0321862.ref050
  article-title: Black-box optimization revisited: improving algorithm selection wizards through massive benchmarking
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2021.3108185
– volume: 36
  start-page: 2217
  issue: 3
  year: 2021
  ident: pone.0321862.ref020
  article-title: Multimode optimization of switched reluctance machines in hybrid electric vehicles
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2020.3046721
– volume: 51
  start-page: 94
  issue: 1
  year: 2013
  ident: pone.0321862.ref026
  article-title: Surrogate-based aerodynamic shape optimization by variable-resolution models
  publication-title: AIAA J
  doi: 10.2514/1.J051583
– volume: 41
  start-page: 1
  issue: 1
  year: 2005
  ident: pone.0321862.ref033
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2005.02.001
– volume: 19
  start-page: 46
  issue: 1
  year: 1977
  ident: pone.0321862.ref044
  article-title: Quasi-Newton methods, motivation and theory
  publication-title: SIAM Rev
  doi: 10.1137/1019005
– ident: pone.0321862.ref053
– volume: 17
  start-page: 631
  issue: 5
  year: 2024
  ident: pone.0321862.ref037
  article-title: A neural network-based surrogate model to predict building features from heating and cooling load signatures
  publication-title: J Build Perform Simul
  doi: 10.1080/19401493.2024.2375304
– volume: 26
  start-page: 31
  issue: 2
  year: 2021
  ident: pone.0321862.ref010
  article-title: Derivative-free multiobjective trust region descent method using radial basis function surrogate models
  publication-title: Math Comput Appl
– ident: pone.0321862.ref052
  doi: 10.1364/JOSAB.506389
– start-page: 979
  year: 2018
  ident: pone.0321862.ref032
  article-title: Efficient surrogate model development: impact of sample size and underlying model dimensions
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/B978-0-444-64241-7.50158-0
– volume: 45
  start-page: 385
  issue: 3
  year: 2003
  ident: pone.0321862.ref040
  article-title: Optimization by direct search: new perspectives on some classical and modern methods
  publication-title: SIAM Rev
  doi: 10.1137/S003614450242889
– volume: 22
  start-page: 297
  issue: 3
  year: 1977
  ident: pone.0321862.ref048
  article-title: A globally convergent method for nonlinear programming
  publication-title: J Optim Theory Appl
  doi: 10.1007/BF00932858
– start-page: 1942
  year: 1995
  ident: pone.0321862.ref055
  article-title: Particle swarm optimization.
  publication-title: Proceedings of ICNN’95 - International Conference on Neural Networks
  doi: 10.1109/ICNN.1995.488968
– volume: 135
  start-page: 103814
  year: 2020
  ident: pone.0321862.ref018
  article-title: High fidelity simulation of the mechanical behavior of closed-cell polyurethane foams
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2019.103814
– ident: pone.0321862.ref057
  doi: 10.1214/ss/1177011077
– volume: 27
  start-page: 6391
  issue: 10
  year: 2023
  ident: pone.0321862.ref015
  article-title: An enhanced surrogate-assisted differential evolution for constrained optimization problems
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-07845-2
– volume: 43
  start-page: 4089
  issue: 12
  year: 2007
  ident: pone.0321862.ref025
  article-title: Switched reluctance motor design using neural-network method with static finite-element simulation
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2007.907990
– ident: pone.0321862.ref059
– ident: pone.0321862.ref045
  doi: 10.1007/b98874
– volume: 236
  start-page: 121254
  year: 2024
  ident: pone.0321862.ref056
  article-title: A fast density peak clustering based particle swarm optimizer for dynamic optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121254
– start-page: 1
  year: 2022
  ident: pone.0321862.ref016
  article-title: Application of meta-heuristic algorithms for training neural networks and deep learning architectures: a comprehensive review
  publication-title: Neural Process Lett
– volume: 134
  start-page: 107401
  year: 2022
  ident: pone.0321862.ref012
  article-title: Gaussian process surrogate model for an effective life assessment of transformer considering model and measurement uncertainties
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107401
– volume: 224
  start-page: 120122
  year: 2024
  ident: pone.0321862.ref038
  article-title: Physics-informed neural network surrogate model for bypassing blade element momentum theory in wind turbine aerodynamic load estimation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2024.120122
– volume: 65
  year: 2022
  ident: pone.0321862.ref014
  article-title: Analytical robust design optimization based on a hybrid surrogate model by combining polynomial chaos expansion and Gaussian kernel
  publication-title: Struct Multidisc Optim
– volume: 52
  start-page: 4668
  issue: 6
  year: 2016
  ident: pone.0321862.ref035
  article-title: Possibilities for speeding up the FE-based optimization of electrical machines—a case study
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2016.2587702
– volume: 365
  start-page: 123236
  year: 2024
  ident: pone.0321862.ref039
  article-title: Multi-objective optimization of protonic ceramic electrolysis cells based on a deep neural network surrogate model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.123236
– volume: 8
  start-page: 100111
  year: 2023
  ident: pone.0321862.ref001
  article-title: Computational applications using data driven modeling in process systems: a review
  publication-title: Digit Chem Eng
  doi: 10.1016/j.dche.2023.100111
– volume: 26
  start-page: 13709
  issue: 24
  year: 2022
  ident: pone.0321862.ref007
  article-title: Recent advances and applications of surrogate models for finite element method computations: a review
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-07362-8
– volume: 2
  start-page: 719
  issue: 6
  year: 2010
  ident: pone.0321862.ref042
  article-title: Steepest descent
  publication-title: WIREs Comput Stat
  doi: 10.1002/wics.117
– volume: 66
  year: 2023
  ident: pone.0321862.ref011
  article-title: Expedited surrogate-based quantification of engineering tolerances using a modified polynomial regression
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-023-03493-0
– volume: 47
  start-page: 830
  issue: 4
  year: 2011
  ident: pone.0321862.ref024
  article-title: A novel BVC-RBF neural network based system simulation model for switched reluctance motor
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2011.2105273
– volume: 364
  start-page: 123130
  year: 2024
  ident: pone.0321862.ref006
  article-title: Neural network-based surrogate modeling and optimization of a multigeneration system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.123130
– start-page: 27
  year: 1978
  ident: pone.0321862.ref049
  article-title: The convergence of variable metric methods for nonlinearly constrained optimization calculations
  publication-title: Nonlinear Program3
– volume: 116
  start-page: 108353
  year: 2022
  ident: pone.0321862.ref009
  article-title: A radial basis function surrogate model assisted evolutionary algorithm for high-dimensional expensive optimization problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.108353
– volume: 30
  start-page: 1144
  issue: 3
  year: 2015
  ident: pone.0321862.ref022
  article-title: Multiobjective optimization of switched reluctance motors based on design of experiments and particle swarm optimization
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2015.2411677
– ident: pone.0321862.ref005
  doi: 10.1109/TTE.2024.3366417
– volume: 3
  start-page: 175
  issue: 3
  year: 1960
  ident: pone.0321862.ref062
  article-title: An automatic method for finding the greatest or least value of a function
  publication-title: Comput J
  doi: 10.1093/comjnl/3.3.175
SSID ssj0053866
Score 2.479702
Snippet Mathematical optimization is fundamental across many scientific and engineering applications. While data-driven models like gradient boosting and random...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0321862
SubjectTerms Accuracy
Algorithms
Analysis
Approximation
Benchmarks
Constraints
Cost control
Efficiency
Energy consumption
Genetic algorithms
Heuristic
Machine learning
Mathematical analysis
Mathematical functions
Mathematical models
Mathematical optimization
Medical informatics
Methods
Models, Theoretical
Neural networks
Neural Networks, Computer
Optimization
Parameters
Predictions
Simulation
Variables
SummonAdditionalLinks – databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0IKFAxdKebRbCgSEBBzSJrEdJyfUIiq4tKhA1ZvlV6pKbbzEu_1-ZhInaCVASFzjiePMy2PPi5DXFg4N1Fn0sBYuZYwy0IOFSHXOrdJcm1KovtmEOD6uzs_rL_HCLcSwylEn9oraeoN35PvYUAe9SCJ_v_iRYtco9K7GFhq3yZ0cbWPgZ3F6NmpikOWyjOlyVOT7kTp7C9-6vYxiN6ZibTvqq_ZPunm2uPLhz4ZnvwEdbfzv0h-Q-9H0TA4GXtkkt1z7kGxG4Q7J21iB-t0jcngCiuQ6Zmgmvkla36bh2gNVE9wIe15Nbi5VMvZXAT2hr1wSVl3n8WIuPCbfjz5--_Apjc0WUsOrapkyx6tCgbVY140CpScK1VDBeZMzLahrSqurgvJa1QwomGlrGqtzARJsG7DaFH1CZrAYt00SxcsKrCxVm0KzimZawV7odEOVs7kVbk7SEedyMdTUkL1jTcBZZMCFRBrJSKM5OUTCTLBYEbt_4LsLGQVMcqNspfMCK6Ez-GJdOlMa5YQFA9PU-Zy8QLLKIb10kmt5UDE4lZVU0Dl51UNgVYwWw24u1CoE-fnk7B-Avp6uAb2JQI1fdsqomOoA_4TVttYgd9cgQbbN2vA2MuGIlSB_sRK8OTLb74dfTsM4KYbStc6vBhgKVlsJs28NDD1hlmWM8ToTO3-f_Cm5V2AbZAyiyHbJbNmt3DNy19wsL0P3vJfBn1ApOeI
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0EJLD1yAlkcXFggICTikTeJXcmwRK5BQW_FSb5ZfQZXaZJXs9vuZSZxUQV0JrvHEjuflmYxnhpC3DpwG6h1GWDMfM0YZ6MFMxiblThturJC6azYhT07y8_Pi7MZR_CuCT2V6GHB6sKorf5BQ7KEEKvduRoXAVg3Ls6-D5gXZFSKkx217c3L8dFX6R108W13W7XZDsztwlg_-91MfkvvBtIyOel7YJXd8tUd2g_C20ftQYfrDI3J8CoriKmRgRnUZVXUVt1c1UC3Cg67jxej6QkdD_xTQA-bSR-2maWr88dY-Jj-Xn358_ByHZgqx5Xm-jpnneabBGiyKUoNSk5kuqeS8TJmR1JfCmTyjvNAFAwolxtnSmVSChLoSrDJNn5AZfIzfJ5HmIgcrShc2MyynidFw1nlTUu1d6qSfk3jAsVr1NTNUFziT4Gv0uFCIIhVQNCfHSIgRFitedw8AtyoIkOJWu9ykGVY6Z7BiIbwVVnvpwIC0RTonr5CMqk8fHeVWHeUMvC5BJZ2TNx0EVr2o8FrNb71pW_Xl9Nc_AH3_NgF6F4DKet1oq0MqA-wJq2lNIBcTSJBdOxneR6YbsNIqbBuFsVIJ-1kMjHj78OtxGCfFq3KVrzc9DAWrTMDsT3sGHjHLEsZ4kchn29d9Tu5l2OIYL0gkCzJbNxv_guzY6_VF27zs5O0PL9YoHA
  priority: 102
  providerName: Public Library of Science
Title Optimization of non-smooth functions via differentiable surrogates
URI https://www.ncbi.nlm.nih.gov/pubmed/40445907
https://www.proquest.com/docview/3214076071
https://www.proquest.com/docview/3214315263
https://doaj.org/article/5cad8b1207294ba096ec6cae7d226c91
http://dx.doi.org/10.1371/journal.pone.0321862
Volume 20
WOSCitedRecordID wos001499546000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MALYnytUEpASMBDuiS2Y-dxnVYxjXVRB1PhJbJjB03amqpp9_dz5zgVlUDwwMs9xJco-Z3vfBf77gh5ZyBooNbgDmtiQ8YoAzuYiFDH3CjNdZkK5ZpNiOlUzudZ_kurLzwT1pYHboE74KUyUscJVrhmWoHHbcu0VFYYcBxKl7cOY1kXTLU2GLQ4TX2iHBXxgZfLaFkv7Cii2Icp2VmIXL3-rVXuLa_r5s8up1t6Jo_IQ-8zBoftu-6RO3bxmOx5rWyCD7509McnZHwOFuDGp1YGdRVAcB82NzWII8AVzE2y4PZKBV1jFFBwfW2DZrNa1fhHrXlKvk6Ovxx9Cn2XhLDkUq5DZrlMFLh5WVYpsFYiURUVnFcx04LaKjVaJpRnKmMAfaRNWRkdC1A9U4G7pegz0oOXsfskUDyV4B6prEw0kzQCuKPY6ooqa2IjbJ-EHWTFsi2GUbgdMQFBRItFgRAXHuI-GSOuW14sZe0ugIALL-DibwLuk9colaLNC90qZHEoGYRTKRW0T946DixnscDzMj_UpmmKk_PLf2C6mO0wvfdMVb1eqVL5HAX4JiyTtcM52OEEpSx3hvdxDnWoNAX2g8JNUAHfM-jm1e-H32yH8aF4Bm5h603LQ8HdSuHpz9v5uEWWRYzxLBIv_gfiL8mDBLsc4xmJaEB669XGviL3y9v1VbMakrtidol0LhyVQOVRPCT3xsfTfDZ0igh0kn8GejoeAT2LTpGK3NELoDn_DnfkJ2f5t5-RRjjZ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLy6UGhAIOCQNrGdODkg1Baqrlq2CArqLfiVqlKbLMluEX-K38hM4gRFAsSlB67riTdxvvlmHM-DkKcGNg3MGjxhpdbnnHHgQSp8FUZGqkjpWMim2YSYTpOjo_T9EvnR5cJgWGXHiQ1Rm1LjN_INbKiDp0gifD376mPXKDxd7VpotLDYs9-_wZatfjV5A-_3GaU7bw-3d33XVcDXUZLMfW6jhEpwi9I0l6DdgsqciSjKQ64Es3lsVEJZlMqUw60GyujcqFAAVE0O7olkMO8lcpkzylCLku0-pAS4I45deh4T4YZDw_qsLOx6wLD7Ex2Yv6ZLQG8LRrPTsv6zo9sYvJ0b_9tS3STXnWvtbba6sEyWbHGLLDvyqr0XrsL2y9tk6wCI8sxloHpl7hVl4ddnJaDWQ0Pf6KJ3fiK9rn8M8KA6tV69qKoSPzzWd8inC3mWu2QEN2NXiCejOAEvUqaaKp6wQEmw9VblTFoTGmHHxO_ecTZra4ZkzcGhgL1WuxYZYiJzmBiTLQRCL4sVv5sfyuo4cwSSRVqaRIUUK71z-Mc0tjrW0goDDrROwzFZQxhlbfpsz1vZZsJh1xkzwcbkSSOBVT8KDCs6lou6ziYHn_9B6OOHgdBzJ5SX80pq6VI54JmwmthAcnUgCdylB8MrCPpuVersF3Thyg7cvx9-3A_jpBgqWNhy0cow8EpjmP1eq0D9yvKA8ygNxP2_T75Gru4evtvP9ifTvQfkGsWWzxgwEqyS0bxa2Ifkij6fn9TVo0b_PfLlorXoJ0QqmBI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKghAXoLy6UGhAIOCQNrGdODkg1FJWrIq2FRTUm_ErVaU2WZLdIv4av46ZxFm0EiAuPXCNJ47jfPN5HM-DkKcWNg3MWTxhpS7knHHgQSpCHSdW6USbVKi22ISYTLKjo_xghfzoY2HQrbLnxJaobWXwH_kWFtTBUyQRbxXeLeJgd_R6-jXEClJ40tqX0-ggsue-f4PtW_NqvAvf-hmlo7eHb96FvsJAaJIsm4XcJRlVYCLleaFA0wVVBRNJUsRcC-aK1OqMsiRXOYdhR9qawupYAGxtAaaKYtDvJXJZ8DSirdvgQb8KAI-kqQ_VYzBmj4zNaVW6zYhhJSi6tBS2FQMW68Jgelo1fzZ628VvdON_nrab5Lo3uYPtTkdWyYorb5FVT2pN8MJn3n55m-zsA4Ge-cjUoCqCsirD5qwCNAdoALQ6GpyfqKCvKwP8qE9d0MzrusIfks0d8ulC3uUuGcBg3BoJVJJmYF2q3FDNMxZpBTaA0wVTzsZWuCEJ--8tp10uEdkeKArYg3VzIREf0uNjSHYQFAtZzATeXqjqY-mJRSZG2UzHFDPAc3hinjqTGuWEBcPa5PGQbCCkZBdWu-AzuZ1x2I2mTLAhedJKYDaQEgFyrOZNI8f7n_9B6OOHJaHnXqioZrUyyod4wDthlrElyfUlSeA0s9S8hgrQz0ojf8EY7uyB_vvmx4tm7BRdCEtXzTsZBtZqCr3f65RpMbM84jzJI3H_751vkKugPPL9eLL3gFyjWAka_UiidTKY1XP3kFwx57OTpn7UUkFAvly0Ev0ECRShHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+non-smooth+functions+via+differentiable+surrogates&rft.jtitle=PloS+one&rft.au=Chen%2C+Shikun&rft.au=Huang%2C+Zebin&rft.au=Zheng%2C+Wenlong&rft.date=2025-05-30&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=5&rft.spage=e0321862&rft_id=info:doi/10.1371%2Fjournal.pone.0321862&rft.externalDocID=A842176373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon