SMMTM: Motor imagery EEG decoding algorithm using a hybrid multi-branch separable convolutional self-attention temporal convolutional network

Motor imagery (MI) is a brain-computer interface (BCI) technology with the potential to change human life in the future. MI signals have been widely applied in various BCI applications, including neurorehabilitation, smart home control, and prosthetic control. However, the limited accuracy of MI sig...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 20; no. 10; p. e0333805
Main Authors: Cao, DianGuo, Yu, ZhenYuan, Wang, Jinqiang, Wu, Yuqiang
Format: Journal Article
Language:English
Published: United States Public Library of Science 23.10.2025
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motor imagery (MI) is a brain-computer interface (BCI) technology with the potential to change human life in the future. MI signals have been widely applied in various BCI applications, including neurorehabilitation, smart home control, and prosthetic control. However, the limited accuracy of MI signals decoding remains a significant barrier to the broader growth of the BCI applications. In this study, we propose the SMMTM model, which combines spatiotemporal convolution (SC), multi-branch separable convolution (MSC), multi-head self-attention (MSA), temporal convolution network (TCN), and multimodal feature fusion (MFF). Specifically, we use the SC module to capture both temporal and spatial features. We design a MSC to capture temporal features at multiple scales. In addition, MSA is designed to extract valuable global features with long-term dependence. The TCN is employed to capture higher-level temporal features. The MFF consists of feature fusion and decision fusion, using the features output from the SMMTM to improve robustness. The SMMTM was evaluated on the public benchmark BCI Comparison IV 2a and 2b datasets, the results showed that the within-subject classification accuracies for the datasets were 84.96% and 89.26% respectively, with kappa values of 0.797 and 0.756. The cross-subject classification accuracy for the 2a dataset was 69.21%, with a kappa value of 0.584. These results indicate that the SMMTM significantly enhances decoding performance, providing a strong foundation for advancing practical BCI implementations.
AbstractList Motor imagery (MI) is a brain-computer interface (BCI) technology with the potential to change human life in the future. MI signals have been widely applied in various BCI applications, including neurorehabilitation, smart home control, and prosthetic control. However, the limited accuracy of MI signals decoding remains a significant barrier to the broader growth of the BCI applications. In this study, we propose the SMMTM model, which combines spatiotemporal convolution (SC), multi-branch separable convolution (MSC), multi-head self-attention (MSA), temporal convolution network (TCN), and multimodal feature fusion (MFF). Specifically, we use the SC module to capture both temporal and spatial features. We design a MSC to capture temporal features at multiple scales. In addition, MSA is designed to extract valuable global features with long-term dependence. The TCN is employed to capture higher-level temporal features. The MFF consists of feature fusion and decision fusion, using the features output from the SMMTM to improve robustness. The SMMTM was evaluated on the public benchmark BCI Comparison IV 2a and 2b datasets, the results showed that the within-subject classification accuracies for the datasets were 84.96% and 89.26% respectively, with kappa values of 0.797 and 0.756. The cross-subject classification accuracy for the 2a dataset was 69.21%, with a kappa value of 0.584. These results indicate that the SMMTM significantly enhances decoding performance, providing a strong foundation for advancing practical BCI implementations.
Motor imagery (MI) is a brain-computer interface (BCI) technology with the potential to change human life in the future. MI signals have been widely applied in various BCI applications, including neurorehabilitation, smart home control, and prosthetic control. However, the limited accuracy of MI signals decoding remains a significant barrier to the broader growth of the BCI applications. In this study, we propose the SMMTM model, which combines spatiotemporal convolution (SC), multi-branch separable convolution (MSC), multi-head self-attention (MSA), temporal convolution network (TCN), and multimodal feature fusion (MFF). Specifically, we use the SC module to capture both temporal and spatial features. We design a MSC to capture temporal features at multiple scales. In addition, MSA is designed to extract valuable global features with long-term dependence. The TCN is employed to capture higher-level temporal features. The MFF consists of feature fusion and decision fusion, using the features output from the SMMTM to improve robustness. The SMMTM was evaluated on the public benchmark BCI Comparison IV 2a and 2b datasets, the results showed that the within-subject classification accuracies for the datasets were 84.96% and 89.26% respectively, with kappa values of 0.797 and 0.756. The cross-subject classification accuracy for the 2a dataset was 69.21%, with a kappa value of 0.584. These results indicate that the SMMTM significantly enhances decoding performance, providing a strong foundation for advancing practical BCI implementations.Motor imagery (MI) is a brain-computer interface (BCI) technology with the potential to change human life in the future. MI signals have been widely applied in various BCI applications, including neurorehabilitation, smart home control, and prosthetic control. However, the limited accuracy of MI signals decoding remains a significant barrier to the broader growth of the BCI applications. In this study, we propose the SMMTM model, which combines spatiotemporal convolution (SC), multi-branch separable convolution (MSC), multi-head self-attention (MSA), temporal convolution network (TCN), and multimodal feature fusion (MFF). Specifically, we use the SC module to capture both temporal and spatial features. We design a MSC to capture temporal features at multiple scales. In addition, MSA is designed to extract valuable global features with long-term dependence. The TCN is employed to capture higher-level temporal features. The MFF consists of feature fusion and decision fusion, using the features output from the SMMTM to improve robustness. The SMMTM was evaluated on the public benchmark BCI Comparison IV 2a and 2b datasets, the results showed that the within-subject classification accuracies for the datasets were 84.96% and 89.26% respectively, with kappa values of 0.797 and 0.756. The cross-subject classification accuracy for the 2a dataset was 69.21%, with a kappa value of 0.584. These results indicate that the SMMTM significantly enhances decoding performance, providing a strong foundation for advancing practical BCI implementations.
Audience Academic
Author Yu, ZhenYuan
Wu, Yuqiang
Wang, Jinqiang
Cao, DianGuo
Author_xml – sequence: 1
  givenname: DianGuo
  orcidid: 0000-0002-6179-2991
  surname: Cao
  fullname: Cao, DianGuo
– sequence: 2
  givenname: ZhenYuan
  surname: Yu
  fullname: Yu, ZhenYuan
– sequence: 3
  givenname: Jinqiang
  surname: Wang
  fullname: Wang, Jinqiang
– sequence: 4
  givenname: Yuqiang
  surname: Wu
  fullname: Wu, Yuqiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41129590$$D View this record in MEDLINE/PubMed
BookMark eNqNk11v0zAUhiM0xD7gHyCIhITgIsUfiZtwN01jVFo1iQ1ureOPtC5OXGwH6I_gP-Ou2bSiXaBcOH79-Jzj1z7H2UHvep1lLzGaYDrFH1Zu8D3YyTrJE0QprVH1JDvCDSUFI4gePPg_zI5DWCFU0ZqxZ9lhiTFpqgYdZX-u5_Ob-cd87qLzuelgof0mPz-_yJWWTpl-kYNdOG_issuHcDvPlxvhjcq7wUZTCA-9XOZBr8GDsDqXrv_p7BCNS-Ul3bYFxKj7rZBH3a2dT_o-1ev4y_nvz7OnLdigX4zjSfb10_nN2efi8upidnZ6WciqrmNBFCKSgcSa4obVQKASpG6xSKtkKoFUjdAM11pU6aSYSZAtY1IBRVMiJNCT7PUu7tq6wEcnA6eEldW0Rg1LxGxHKAcrvvbJGb_hDgy_FZxfcPDRSKu5aDGhSirVYFI2ohVTkEpgLVIlbStFivVuzObdj0GHyDsTpLYWeu2GXVpWIcTKhL75B328uJFaQMpv-tZFD3IblJ_WLBF1VTaJmjxCpU_pziT7dWuSvrfh_d6GxET9Oy5gCIHPrr_8P3v1bZ99-4BdarBxGca7D_vgq_H0g-i0urf97rkmoNwB0rsQvG7vEYz4tivu7OLbruBjV9C_ymoBEg
Cites_doi 10.1109/TNSRE.2023.3237375
10.1109/SMC.2019.8914544
10.1016/j.cmpb.2020.105464
10.1109/TII.2022.3197419
10.1109/ACCESS.2019.2934018
10.1007/978-3-319-74060-7_9
10.1016/S1388-2457(02)00057-3
10.1007/s13246-020-00897-w
10.7717/peerj-cs.375
10.1109/ACCESS.2024.3351204
10.36227/techrxiv.24003582
10.1088/1741-2552/ab0ab5
10.1161/STROKEAHA.116.016304
10.1002/hbm.23730
10.1109/SMC.2018.00185
10.1016/j.neuroscience.2020.04.006
10.3390/app122111255
10.1016/j.bspc.2022.103718
10.1109/ANDESCON.2016.7836266
10.1007/s42979-024-02773-w
10.1109/TNSRE.2022.3194600
10.1109/TNSRE.2023.3242280
10.1109/ICCP.2017.8116986
10.1016/j.jneumeth.2023.109953
10.1016/j.bspc.2021.102826
10.1007/978-3-030-51935-3_11
10.1109/TNSRE.2024.3382226
10.1109/TITB.2006.879600
10.1109/SMC.2018.00178
10.3390/s20123496
10.1109/SMC42975.2020.9283028
10.1109/JBHI.2015.2450196
10.1016/j.future.2019.06.027
10.1109/TNSRE.2004.834627
10.1142/S0129065723500685
10.1109/LSP.2019.2906824
10.1016/j.eswa.2018.08.031
10.1109/ICIEA.2019.8834381
10.3389/fnbot.2024.1343249
10.1016/j.bspc.2022.104066
10.1109/JBHI.2020.2967128
10.1088/1741-2552/aace8c
10.1109/TNSRE.2024.3351863
10.1109/JBHI.2023.3243698
10.1109/TAFFC.2022.3169001
10.1109/TNSRE.2023.3323325
10.3390/s19132854
ContentType Journal Article
Copyright Copyright: © 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0333805
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE

Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3264578096
oai_doaj_org_article_bf123dcdd91249bfb7acdb1eb7caffcb
A860968549
41129590
10_1371_journal_pone_0333805
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
ESTFP
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c588t-2d02c6ac1e31968a2a5b28f1b58827ca259be618eb541116cacf66cda3072bca3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001600295000050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Tue Dec 02 00:10:34 EST 2025
Tue Oct 28 02:22:34 EDT 2025
Sat Oct 25 08:52:15 EDT 2025
Sat Nov 01 11:21:50 EDT 2025
Sat Nov 29 13:46:26 EST 2025
Sat Nov 29 10:30:21 EST 2025
Wed Nov 26 10:43:02 EST 2025
Wed Nov 26 10:43:03 EST 2025
Tue Nov 04 03:26:52 EST 2025
Tue Oct 28 02:37:12 EDT 2025
Sat Nov 29 07:01:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Copyright: © 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-2d02c6ac1e31968a2a5b28f1b58827ca259be618eb541116cacf66cda3072bca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6179-2991
OpenAccessLink https://doaj.org/article/bf123dcdd91249bfb7acdb1eb7caffcb
PMID 41129590
PQID 3264578096
PQPubID 1436336
PageCount e0333805
ParticipantIDs plos_journals_3264578096
doaj_primary_oai_doaj_org_article_bf123dcdd91249bfb7acdb1eb7caffcb
proquest_miscellaneous_3264650064
proquest_journals_3264578096
gale_infotracmisc_A860968549
gale_infotracacademiconefile_A860968549
gale_incontextgauss_ISR_A860968549
gale_incontextgauss_IOV_A860968549
gale_healthsolutions_A860968549
pubmed_primary_41129590
crossref_primary_10_1371_journal_pone_0333805
PublicationCentury 2000
PublicationDate 2025-10-23
PublicationDateYYYYMMDD 2025-10-23
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References G Liang (pone.0333805.ref043) 2024; 32
pone.0333805.ref014
pone.0333805.ref011
N Mammone (pone.0333805.ref028) 2023; 27
H Li (pone.0333805.ref024) 2023; 79
R Zhang (pone.0333805.ref046) 2023; 398
X Tang (pone.0333805.ref050) 2023; 31
SU Amin (pone.0333805.ref052) 2019; 101
C Wang (pone.0333805.ref047) 2024; 12
X Xie (pone.0333805.ref051) 2024; 18
pone.0333805.ref019
GE Fabiani (pone.0333805.ref007) 2004; 12
R Alazrai (pone.0333805.ref009) 2019; 7
Y Qin (pone.0333805.ref048) 2024; 32
R Sharma (pone.0333805.ref033) 2024; 5
pone.0333805.ref025
K-W Ha (pone.0333805.ref049) 2019; 19
J Luo (pone.0333805.ref030) 2020; 193
VJ Lawhern (pone.0333805.ref021) 2018; 15
pone.0333805.ref023
pone.0333805.ref020
D Zhang (pone.0333805.ref053) 2019; 26
Y Ding (pone.0333805.ref032) 2023; 14
H Zhi (pone.0333805.ref045) 2023; 31
N Grover (pone.0333805.ref004) 2023; 31
D Zhang (pone.0333805.ref054) 2020; 24
L Gu (pone.0333805.ref005) 2020; 436
M Saeedi (pone.0333805.ref013) 2020; 43
Z Hu (pone.0333805.ref026) 2022; 12
DT Bundy (pone.0333805.ref008) 2017; 48
H Altaheri (pone.0333805.ref027) 2023; 19
YK Musallam (pone.0333805.ref022) 2021; 69
pone.0333805.ref039
pone.0333805.ref038
pone.0333805.ref037
H Dose (pone.0333805.ref015) 2018; 114
pone.0333805.ref035
I Güler (pone.0333805.ref012) 2007; 11
J Xie (pone.0333805.ref034) 2022; 30
S Kumar (pone.0333805.ref017) 2021; 7
A Craik (pone.0333805.ref016) 2019; 16
C Brunner (pone.0333805.ref041) 2008; 16
JR Wolpaw (pone.0333805.ref001) 2002; 113
pone.0333805.ref006
A Vaswani (pone.0333805.ref036) 2017; 30
pone.0333805.ref003
pone.0333805.ref002
N Mammone (pone.0333805.ref029) 2024; 34
W Ma (pone.0333805.ref031) 2022; 77
G Wang (pone.0333805.ref010) 2016; 20
J Xu (pone.0333805.ref018) 2020; 20
pone.0333805.ref040
RT Schirrmeister (pone.0333805.ref044) 2017; 38
R Leeb (pone.0333805.ref042) 2008
References_xml – volume: 31
  start-page: 464
  year: 2023
  ident: pone.0333805.ref004
  article-title: Schizo-net: a novel schizophrenia diagnosis framework using late fusion multimodal deep learning on electroencephalogram-based brain connectivity indices
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2023.3237375
– ident: pone.0333805.ref006
  doi: 10.1109/SMC.2019.8914544
– volume: 193
  start-page: 105464
  year: 2020
  ident: pone.0333805.ref030
  article-title: Motor imagery EEG classification based on ensemble support vector learning
  publication-title: Comput Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105464
– volume: 19
  start-page: 2249
  issue: 2
  year: 2023
  ident: pone.0333805.ref027
  article-title: Physics-informed attention temporal convolutional network for EEG-based motor imagery classification
  publication-title: IEEE Trans Ind Inf.
  doi: 10.1109/TII.2022.3197419
– ident: pone.0333805.ref039
– volume: 7
  start-page: 109612
  year: 2019
  ident: pone.0333805.ref009
  article-title: A deep learning framework for decoding motor imagery tasks of the same hand using EEG signals
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2934018
– ident: pone.0333805.ref011
  doi: 10.1007/978-3-319-74060-7_9
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: pone.0333805.ref001
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 43
  start-page: 1007
  issue: 3
  year: 2020
  ident: pone.0333805.ref013
  article-title: Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals
  publication-title: Phys Eng Sci Med.
  doi: 10.1007/s13246-020-00897-w
– volume: 16
  start-page: 1
  year: 2008
  ident: pone.0333805.ref041
  article-title: BCI competition 2008 –Graz data set A
  publication-title: Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology.
– volume: 7
  year: 2021
  ident: pone.0333805.ref017
  article-title: OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals
  publication-title: PeerJ Comput Sci.
  doi: 10.7717/peerj-cs.375
– volume: 12
  start-page: 8325
  year: 2024
  ident: pone.0333805.ref047
  article-title: MSFNet: a multi-scale space-time frequency fusion network for motor imagery EEG classification
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3351204
– ident: pone.0333805.ref035
  doi: 10.36227/techrxiv.24003582
– ident: pone.0333805.ref040
– ident: pone.0333805.ref038
– volume: 16
  start-page: 031001
  issue: 3
  year: 2019
  ident: pone.0333805.ref016
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 48
  start-page: 1908
  issue: 7
  year: 2017
  ident: pone.0333805.ref008
  article-title: Contralesional brain-computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.116.016304
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: pone.0333805.ref044
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum Brain Mapp.
  doi: 10.1002/hbm.23730
– ident: pone.0333805.ref020
  doi: 10.1109/SMC.2018.00185
– volume: 436
  start-page: 93
  year: 2020
  ident: pone.0333805.ref005
  article-title: EEG-based classification of lower limb motor imagery with brain network analysis
  publication-title: Neuroscience.
  doi: 10.1016/j.neuroscience.2020.04.006
– volume: 12
  start-page: 11255
  issue: 21
  year: 2022
  ident: pone.0333805.ref026
  article-title: EEG-based emotion recognition using convolutional recurrent neural network with multi-head self-attention
  publication-title: Applied Sciences.
  doi: 10.3390/app122111255
– volume: 77
  start-page: 103718
  year: 2022
  ident: pone.0333805.ref031
  article-title: A novel multi-branch hybrid neural network for motor imagery EEG signal classification
  publication-title: Biomedical Signal Processing and Control.
  doi: 10.1016/j.bspc.2022.103718
– ident: pone.0333805.ref002
  doi: 10.1109/ANDESCON.2016.7836266
– volume: 5
  issue: 4
  year: 2024
  ident: pone.0333805.ref033
  article-title: Emerging trends in EEG signal processing: a systematic review
  publication-title: SN COMPUT SCI.
  doi: 10.1007/s42979-024-02773-w
– volume: 30
  start-page: 2126
  year: 2022
  ident: pone.0333805.ref034
  article-title: A transformer-based approach combining deep learning network and spatial-temporal information for raw EEG classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2022.3194600
– volume: 31
  start-page: 1208
  year: 2023
  ident: pone.0333805.ref050
  article-title: Motor imagery EEG decoding based on multi-scale hybrid networks and feature enhancement
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2023.3242280
– volume: 30
  year: 2017
  ident: pone.0333805.ref036
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems.
– ident: pone.0333805.ref037
– ident: pone.0333805.ref014
  doi: 10.1109/ICCP.2017.8116986
– volume: 398
  start-page: 109953
  year: 2023
  ident: pone.0333805.ref046
  article-title: Self-attention-based convolutional neural network and time-frequency common spatial pattern for enhanced motor imagery classification
  publication-title: J Neurosci Methods.
  doi: 10.1016/j.jneumeth.2023.109953
– volume: 69
  start-page: 102826
  year: 2021
  ident: pone.0333805.ref022
  article-title: Electroencephalography-based motor imagery classification using temporal convolutional network fusion
  publication-title: Biomedical Signal Processing and Control.
  doi: 10.1016/j.bspc.2021.102826
– ident: pone.0333805.ref025
  doi: 10.1007/978-3-030-51935-3_11
– volume: 32
  start-page: 1535
  year: 2024
  ident: pone.0333805.ref043
  article-title: EISATC-fusion: inception self-attention temporal convolutional network fusion for motor imagery EEG decoding
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2024.3382226
– volume: 11
  start-page: 117
  issue: 2
  year: 2007
  ident: pone.0333805.ref012
  article-title: Multiclass support vector machines for EEG-signals classification
  publication-title: IEEE Trans Inf Technol Biomed.
  doi: 10.1109/TITB.2006.879600
– ident: pone.0333805.ref003
  doi: 10.1109/SMC.2018.00178
– volume: 20
  start-page: 3496
  issue: 12
  year: 2020
  ident: pone.0333805.ref018
  article-title: Recognition of EEG signal motor imagery intention based on deep multi-view feature learning
  publication-title: Sensors (Basel).
  doi: 10.3390/s20123496
– ident: pone.0333805.ref023
  doi: 10.1109/SMC42975.2020.9283028
– year: 2008
  ident: pone.0333805.ref042
  article-title: BCI competition 2008 –Graz data set B
  publication-title: Putz.
– volume: 20
  start-page: 1301
  issue: 5
  year: 2016
  ident: pone.0333805.ref010
  article-title: The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition
  publication-title: IEEE J Biomed Health Inform.
  doi: 10.1109/JBHI.2015.2450196
– volume: 101
  start-page: 542
  year: 2019
  ident: pone.0333805.ref052
  article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion
  publication-title: Future Generation Computer Systems.
  doi: 10.1016/j.future.2019.06.027
– volume: 12
  start-page: 331
  issue: 3
  year: 2004
  ident: pone.0333805.ref007
  article-title: Conversion of EEG activity into cursor movement by a brain-computer interface (BCI)
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2004.834627
– volume: 34
  start-page: 2350068
  issue: 2
  year: 2024
  ident: pone.0333805.ref029
  article-title: A few-shot transfer learning approach for motion intention decoding from electroencephalographic signals
  publication-title: Int J Neural Syst.
  doi: 10.1142/S0129065723500685
– volume: 26
  start-page: 715
  issue: 5
  year: 2019
  ident: pone.0333805.ref053
  article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2019.2906824
– volume: 114
  start-page: 532
  year: 2018
  ident: pone.0333805.ref015
  article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2018.08.031
– ident: pone.0333805.ref019
  doi: 10.1109/ICIEA.2019.8834381
– volume: 18
  start-page: 1343249
  year: 2024
  ident: pone.0333805.ref051
  article-title: Bidirectional feature pyramid attention-based temporal convolutional network model for motor imagery electroencephalogram classification
  publication-title: Front Neurorobot.
  doi: 10.3389/fnbot.2024.1343249
– volume: 79
  start-page: 104066
  year: 2023
  ident: pone.0333805.ref024
  article-title: A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification
  publication-title: Biomedical Signal Processing and Control.
  doi: 10.1016/j.bspc.2022.104066
– volume: 24
  start-page: 2570
  issue: 9
  year: 2020
  ident: pone.0333805.ref054
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE J Biomed Health Inform.
  doi: 10.1109/JBHI.2020.2967128
– volume: 15
  start-page: 056013
  issue: 5
  year: 2018
  ident: pone.0333805.ref021
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 32
  start-page: 401
  year: 2024
  ident: pone.0333805.ref048
  article-title: M-FANet: multi-feature attention convolutional neural network for motor imagery decoding
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2024.3351863
– volume: 27
  start-page: 2365
  issue: 5
  year: 2023
  ident: pone.0333805.ref028
  article-title: AutoEncoder filter bank common spatial patterns to decode motor imagery from EEG
  publication-title: IEEE J Biomed Health Inform.
  doi: 10.1109/JBHI.2023.3243698
– volume: 14
  start-page: 2238
  issue: 3
  year: 2023
  ident: pone.0333805.ref032
  article-title: TSception: capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition
  publication-title: IEEE Trans Affective Comput.
  doi: 10.1109/TAFFC.2022.3169001
– volume: 31
  start-page: 3988
  year: 2023
  ident: pone.0333805.ref045
  article-title: A multi-domain convolutional neural network for EEG-based motor imagery decoding
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2023.3323325
– volume: 19
  start-page: 2854
  issue: 13
  year: 2019
  ident: pone.0333805.ref049
  article-title: Motor imagery EEG classification using capsule networks
  publication-title: Sensors (Basel).
  doi: 10.3390/s19132854
SSID ssj0053866
Score 2.4902673
Snippet Motor imagery (MI) is a brain-computer interface (BCI) technology with the potential to change human life in the future. MI signals have been widely applied in...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0333805
SubjectTerms Accuracy
Algorithms
Analysis
Biochips
Brain
Brain research
Brain-Computer Interfaces
Classification
Computational linguistics
Computer applications
Convolution
Datasets
Decoding
Deep learning
Electroencephalography - methods
Human-computer interface
Humans
Imagery
Imagination - physiology
Implants
Language processing
Mental task performance
Natural language interfaces
Neural networks
Neural Networks, Computer
Neurology
Prostheses
Rehabilitation
Smart buildings
Technology application
Temporal variations
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5B4MAFKI_WUGBBSMDBbbx-c0EFpYBESkVL1Zu1z6SSa4fYQeqP4D8zs14bggAhcYx3vFnvvO3Zbwh5qkzKlDS5z2KZ-xHnxs8SCOQilQkOHkqFtiXLyYf04CA7Pc0P3Qu3xpVV9jbRGmpVS3xHvgthRgTSBRH3q8UXH7tG4ddV10LjMrmCKAmhLd077C0x6HKSuONyYRrsOu7sLOpK74xDSM6wad1P7sii9g-2ebQo6-bPgad1QPs3_nfpN8l1F3rSvU5WNsglXd0iG065G_rcIVC_uE2-HU2nx9OXdFpDRk7PzhHn4oJOJm-pgmwVvR3l5Qz-op2fU6ych990foGHv6itUPQF9uuY00YjtLgoNcXqdiflsIZGl8ZHZE9ba0kdPlb5C1XVlajfIZ_3J8dv3vmub4Mv4yxrfabGTCZcBhr1O-OMx4JlJhAwylLJIeMSOgkyLeIITG0iuTRJIhUHe8OE5OFdMqqAR1uE5kKEUsVSKxlHwqQ8jxVMaTiXiWbGeMTv2VcsOniOwn6jSyGt6ba1QHYXjt0eeY08HmgRXNteqJezwulqIQy4cyWVyrEztzAi5VKJQAtYuzFSeOQRSkjRnVQdTESxlyXA4wwybo88sRQIsFFhBc-Mr5qmeP_x5B-Ijj6tET1zRKZulxy2qjs1Ac-EwF1rlNtrlGAm5NrwFspzvytN8UMq4c5ebn8__HgYxkmxKq_S9aqjgQgfolqPbHa6MexshIF8nI_v_X3y--Qaw47KEA2wcJuM2uVKPyBX5df2rFk-tOr8HSIXWMk
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hwIELUF41FFgQEnBwidf22uZWUAJITaloqXqz9tlEcu0odpD6I_jPzNgbI1dEgqMzY3szO0959htCXmubMK1s5rNYZX4khPVTDolcpFMpIELpsB3JcnaYHB2l5-fZ8Z9C8doX_DAJ3juZ7i-r0uyPQyipELL0Jgs5xxau6fHhxvOC7XLujsdtu3MQflqU_t4Xj5ZFVW9PNNuAM737v0u9R-641JIedLqwQ26Y8j7ZccZb07cOYfrdA_LrZDY7nX2gswoqbrq4RByLKzqZfKYaqlGMZlQUF9Vq0cwvKXbGwzWdX-HhLtp2IPoS53HMaW0QOlwWhmL3utNiWENtCusjcmfbS0kd_lVxjavsWtAfkh_TyemnL76by-CrOE0bn-kxU1yowKD9poKJWLLUBhKoLFECKippeJAaGUfgSrkSynKutAB_wqQS4SMyKkFEu4RmUoZKx8poFUfSJiKLNTzSCqG4YdZ6xN9sV77s4Dfy9htcAmVLJ9YcpZ07aXvkI-5pz4vg2e0PsE25s8VcWgjXWmmd4eRtaWUilJaBkbB2a5X0yAvUiLw7idq7gPwg5VDwpVBRe-RVy4EAGiV26FyIdV3nX7-d_QPTyfcB0xvHZKtmJUBU3akI-E8IzDXg3BtwghtQA_Iu6u9GKnUOeXkE7hjIcOdGp_9OftmT8aHYdVeaat3xQAYPWatHHne20Es2wkQ9zsZPtr_3KbnNcFoyRHoW7pFRs1qbZ-SW-tks6tXz1nR_A6wyRwU
  priority: 102
  providerName: Public Library of Science
Title SMMTM: Motor imagery EEG decoding algorithm using a hybrid multi-branch separable convolutional self-attention temporal convolutional network
URI https://www.ncbi.nlm.nih.gov/pubmed/41129590
https://www.proquest.com/docview/3264578096
https://www.proquest.com/docview/3264650064
https://doaj.org/article/bf123dcdd91249bfb7acdb1eb7caffcb
http://dx.doi.org/10.1371/journal.pone.0333805
Volume 20
WOSCitedRecordID wos001600295000050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4MAFtbwaWsKCkICD0_i95tZUCVStg5WUKHCx9tlESu0oTpD6I_jPzNhO1CAQHLiMZM_YcmZnZmeU2W8IeaNM6ChpIsvxZWR5nBuLBZDIeYoJDjuUcsuRLOOLcDBgk0mU3Br1hT1hFTxwpbhjYSC2KqlUhGOShREhl0rYWoSSGyMFRl_IejbFVBWDwYuDoD4o54b2cb0u7UWe6XbHhbIMx9Xd2ohKvP5tVG4s5nnx55Sz3Hr6e-RhnTPSk-pb98kdnT0i-7VXFvRdDR39_jH5MYrjy_gDjXMopensGgEqbmiv95EqKDNxm6J8fpUvZ6vpNcWWd7im0xs8tUXL1kJL4KCNKS00YoKLuabYll6bJ3xDoefGQkjOskmS1sBW81-ksqq3_An50u9dnn6y6oELlvQZW1mO6jgy4NLW6JiMO9wXDjO2AK4D-oZSSejAZlr4HsTIQHJpgkAqDoHCEZK7T0kjAxUfEBoJ4UrlS62k7wkT8shX8ErDuQy0Y0yTWBvtp4sKVyMt_1wLoR6p1JriaqX1ajVJF5doK4uo2OUNsJW0tpX0b7bSJC9xgdPqiOnWt9MTFkAlx6BUbpLXpQQiY2TYenPF10WRnn0e_4PQaLgj9LYWMvlqyUFV1XEH-E2IuLUjebQjCf4td9gHaI4brRQpJNwexFlgw5MbE_09-9WWjS_FdrpM5-tKBlJzSEeb5Fll2lvNepiB-1Hn-f_Q-CF54ODAZNjsHfeINFbLtX5B7svvq1mxbJG74XCMdBKWlAFlp3aL3Ov2BsmwVfo00H5yAfS82wYad86RhklJR0AT_xs8kZzFydeffKNakw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQXoLwaKHRBIODgNl6_kRAqkNKoSajaEPVm9plUSu0QO6D8CP4Kv5EZPwJBgLj0wDHZycqefPPtjD0PQh4rEzAlTWQxT0aWy7mxQh8cOVeFgsMJpZxiJMuwG_T74clJdLhGvtW1MJhWWXNiQdQqlfiMfAfcDBfQBR73q-knC6dG4dvVeoRGCYsDvfgCIVv2svMW_t8njO21B2_2rWqqgCW9MMwtplpM-lzaGtEXcsY9wUJjC1hlgeQQDwjt26EWngtE4Esuje9LxcEamJDcgX0vkIvA4zamkAVHw5r5gTt8vyrPcwJ7p0LD9jRN9HbLgWAQh-T9dPwVUwKWZ0FjOkmzPzu6xYG3d-1_U9V1crVyreluaQvrZE0nN8h6RV4ZfVZ12H5-k3w97vUGvRe0l-bpjJ6eYR-PBW2331EF0Tie5pRPRnBL-fiMYmUAfKbjBRa30SID0xI4j2RMM42t08VEU8zer6wYriHTE2Nh59Iil5RW_b8mv0glZQr-LfLhXNRymzQSwMQGoZEQjlSe1Ep6rjABjzwFWxrOpa-ZMU1i1XCJp2X7kbh4BxlA2FaqNUZ4xRW8muQ1Ymopi83Diy_S2SiuuCgWBtwVJZWKcPK4MCLgUglbC7h2Y6Roki1EZFxW4i4pMN4NfcBU6LlRkzwqJLCBSIIZSiM-z7K48374D0LHRytCTyshk-YzDqoqq0LgnrAx2Yrk5ook0KBcWd5A-6m1ksU_rAB-WdvJ75cfLpdxU8w6THQ6L2UgggGvvUnulLa41KyLgYoXte7-ffMtcnl_0OvG3U7_4B65wnB6NHg-zNkkjXw21_fJJfk5P81mDwoqoeTjeRvkdznttmg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgBAXoLwaKHRBIODgJlm_kRAqbQJRm1LRUvVm9plUSu0QJ6D8CP4Qv44Ze20IAsSlB472jlf2-JuXPQ9CHisTMiVN7DBfxo7HuXGiABw5T0WCg4VSbjGS5Xgv3N-PTk7igxXyraqFwbTKSicWilplEr-Rt8DN8ABd4HG3jE2LONjpvZp8cnCCFP5prcZplBDZ1YsvEL7lL_s78K6fMNbrHm2_deyEAUf6UTRzmGozGXDZ0YjEiDPuCxaZjoBVFkoOsYHQQSfSwvdAKQSSSxMEUnGQDCYkd2HfC-Ri6AKKsUp9u04vAT0SBLZUzw07LYuMzUmW6s22C4EhDsz7yRQWEwNqu9CYjLP8z05vYfx61_5ntl0nV63LTbdKGVklKzq9QVatUsvpM9t5-_lN8vVwMDgavKCDbJZN6ekZ9vdY0G73DVUQpaOVp3w8hEeajc4oVgzAMR0tsOiNFpmZjsA5JSOaa2ypLsaaYla_lW64h1yPjYMdTYscU2r7go1_oUrL1Pxb5MO5sOU2aaSAjzVCYyFcqXyplfQ9YUIe-wq2NJzLQDNjmsSpoJNMyrYkSfFvMoRwrmRrglBLLNSa5DXiq6bFpuLFiWw6TKyOSoQBN0ZJpWKcSC6MCLlUoqMF3LsxUjTJBqIzKSt0a9WYbEUB4CvyvbhJHhUU2FgkRawN-TzPk_67438gOny_RPTUEplsNuXAqrJaBJ4JG5YtUa4vUYJ6lEvLayhLFVfy5IdEwJWVzPx--WG9jJtiNmKqs3lJA5ENePNNcqeUy5qzHgYwfty--_fNN8hlkMNkr7-_e49cYThUGhwi5q6Txmw61_fJJfl5dppPHxRahZKP5y2P3wHof77D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SMMTM%3A+Motor+imagery+EEG+decoding+algorithm+using+a+hybrid+multi-branch+separable+convolutional+self-attention+temporal+convolutional+network&rft.jtitle=PloS+one&rft.au=DianGuo+Cao&rft.au=ZhenYuan+Yu&rft.au=Jinqiang+Wang&rft.au=Yuqiang+Wu&rft.date=2025-10-23&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=20&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pone.0333805&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf123dcdd91249bfb7acdb1eb7caffcb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon