Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance

Thicker snowpacks and their insulation effects cause winter‐warming and invoke thaw of permafrost ecosystems. Temperature‐dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and ma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Global change biology Ročník 26; číslo 10; s. 5886 - 5898
Hlavní autoři: Olid, Carolina, Klaminder, Jonatan, Monteux, Sylvain, Johansson, Margareta, Dorrepaal, Ellen
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishing Ltd 01.10.2020
Témata:
ISSN:1354-1013, 1365-2486, 1365-2486
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Thicker snowpacks and their insulation effects cause winter‐warming and invoke thaw of permafrost ecosystems. Temperature‐dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow‐free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long‐term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter‐warming. By combining 210Pb and 14Cdating of peat cores with peat growth models, we investigated thawing effects on year‐round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter‐warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long‐term responses of whole‐year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage. Thicker snowpacks cause winter‐warming and invoke thawing of permafrost ecosystems. Decomposition of previously frozen carbon (C) may cause a strong positive feedback to the climate system, but the magnitude of the permafrost C loss remains uncertain. We investigated the long‐term effects of winter‐warming on the C balance of a permafrost‐containing peatland subjected to a 10 years snow manipulation experiment. Winter‐warming did not affect the net C balance regardless of the increased old C losses. This small overall effect was due to a strong decrease in young C losses associated with the new water saturated conditions and the decline in bryophytes.
AbstractList Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow-free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long-term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter-warming. By combining(210)Pb and(14)Cdating of peat cores with peat growth models, we investigated thawing effects on year-round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter-warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long-term responses of whole-year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.
Thicker snowpacks and their insulation effects cause winter‐warming and invoke thaw of permafrost ecosystems. Temperature‐dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow‐free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long‐term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter‐warming. By combining 210Pb and 14Cdating of peat cores with peat growth models, we investigated thawing effects on year‐round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter‐warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long‐term responses of whole‐year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.
Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow-free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long-term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter-warming. By combining Pb and Cdating of peat cores with peat growth models, we investigated thawing effects on year-round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter-warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long-term responses of whole-year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.
Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow-free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long-term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter-warming. By combining 210 Pb and 14 Cdating of peat cores with peat growth models, we investigated thawing effects on year-round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter-warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long-term responses of whole-year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow-free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long-term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter-warming. By combining 210 Pb and 14 Cdating of peat cores with peat growth models, we investigated thawing effects on year-round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter-warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long-term responses of whole-year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.
Thicker snowpacks and their insulation effects cause winter‐warming and invoke thaw of permafrost ecosystems. Temperature‐dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow‐free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long‐term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter‐warming. By combining 210Pb and 14Cdating of peat cores with peat growth models, we investigated thawing effects on year‐round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter‐warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long‐term responses of whole‐year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage. Thicker snowpacks cause winter‐warming and invoke thawing of permafrost ecosystems. Decomposition of previously frozen carbon (C) may cause a strong positive feedback to the climate system, but the magnitude of the permafrost C loss remains uncertain. We investigated the long‐term effects of winter‐warming on the C balance of a permafrost‐containing peatland subjected to a 10 years snow manipulation experiment. Winter‐warming did not affect the net C balance regardless of the increased old C losses. This small overall effect was due to a strong decrease in young C losses associated with the new water saturated conditions and the decline in bryophytes.
Thicker snowpacks and their insulation effects cause winter‐warming and invoke thaw of permafrost ecosystems. Temperature‐dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow‐free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long‐term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter‐warming. By combining 210 Pb and 14 Cdating of peat cores with peat growth models, we investigated thawing effects on year‐round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter‐warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long‐term responses of whole‐year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.
Thicker snowpacks and their insulation effects cause winter‐warming and invoke thaw of permafrost ecosystems. Temperature‐dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow‐free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long‐term net C balance (Net Ecosystem Production) in a sub‐arctic peat plateau subjected to 10‐years experimental winter‐warming. By combining 210Pb and 14C dating of peat cores with peat growth models, we investigated thawing effects on year‐round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter‐warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent water logging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long‐term responses of whole‐year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.
Thicker snowpacks and their insulation effects cause winter‐warming and invoke thaw of permafrost ecosystems. Temperature‐dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow‐free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long‐term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter‐warming. By combining ²¹⁰Pb and ¹⁴Cdating of peat cores with peat growth models, we investigated thawing effects on year‐round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter‐warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long‐term responses of whole‐year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.
Author Johansson, Margareta
Monteux, Sylvain
Dorrepaal, Ellen
Olid, Carolina
Klaminder, Jonatan
Author_xml – sequence: 1
  givenname: Carolina
  orcidid: 0000-0003-3857-3210
  surname: Olid
  fullname: Olid, Carolina
  email: olid.carolina@gmail.com
  organization: Umeå University
– sequence: 2
  givenname: Jonatan
  surname: Klaminder
  fullname: Klaminder, Jonatan
  organization: Umeå University
– sequence: 3
  givenname: Sylvain
  surname: Monteux
  fullname: Monteux, Sylvain
  organization: Swedish University of Agricultural Sciences
– sequence: 4
  givenname: Margareta
  surname: Johansson
  fullname: Johansson, Margareta
  organization: Royal Swedish Academy of Science
– sequence: 5
  givenname: Ellen
  orcidid: 0000-0002-0523-2471
  surname: Dorrepaal
  fullname: Dorrepaal, Ellen
  organization: Umeå University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32681580$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174733$$DView record from Swedish Publication Index (Umeå universitet)
https://res.slu.se/id/publ/107727$$DView record from Swedish Publication Index (Sveriges lantbruksuniversitet)
BookMark eNqFks1uEzEUhUeoiP7AghdAltiARFKP_2dZUihIldgAW8vjuU5cTcbB9hDyHjwwniZhUVHhzfXiO9fX557z6mQIA1TVyxrP63Iul7ad15wo-qQ6q6ngM8KUOJnunM1qXNPT6jylO4wxJVg8q04pEarmCp9Vv6_Bmg5QcAh-bSD6NQzZ9Khc18bFkDLKK7NFEbrRQkJ5jEP4CXES7MI4LJE1sQ0DMkOH_GAjmFSwPqSpFCj03QF5h7Y-r8KYkXEObPZFnFeABsjHJq3pzWDhefXUmT7Bi0O9qL59_PB18Wl2--Xm8-Lqdma5UnQmHWPMOacAs7bDLa8bRxqQuKGNEq113CnKQJCOtRgrLBmzvJGMF18620l6Uc33fdMWNmOrN-X7Ju50MF6nfmxNnIpOoGssJZkE5lHBJsRinI6QwES70nthoXpvTfZhSFoZMB01RgshuWZOOK1IQ7VVnZJSTIOL8sbs0Teu_fcrHeJSj-tR15JJSgv_Zs9vYvgxQsp67ZOFvjgJYUya8OKLpFI0_0cZYU0jCZ-meP0AvQtl9WUbhWJMNowTUqhXB2ps19D9nfWYrwJc7gFbopQiOG19vncjR-P74queEqxLgvV9govi7QPFsem_2EP3re9h9ziobxbv94o_KsIB3w
CitedBy_id crossref_primary_10_1029_2021GB007113
crossref_primary_10_1016_j_catena_2023_107311
crossref_primary_10_1038_s41467_022_33278_w
crossref_primary_10_1038_s41467_023_43410_z
crossref_primary_10_1139_as_2023_0049
crossref_primary_10_1007_s10021_022_00758_5
crossref_primary_10_1111_gcb_15540
crossref_primary_10_3389_fmicb_2024_1523084
crossref_primary_10_1088_1748_9326_aca701
crossref_primary_10_1016_j_catena_2021_105964
crossref_primary_10_1016_j_scitotenv_2023_161943
Cites_doi 10.1007/s10584-014-1247-4
10.2307/1939337
10.1098/rsta.2014.0423
10.1038/s41561-019-0526-0
10.1111/j.1365-2486.2005.00927.x
10.1111/j.1751-8369.2006.tb00026.x
10.1111/j.1600-0587.1999.tb00523.x
10.1007/s13253-018-0328-7
10.1023/A:1005667424292
10.1029/1999JD900433
10.1080/00040851.1972.12003650
10.1007/s10021-007-9024-0
10.1007/s004420000544
10.1038/srep17951
10.1038/ngeo1573
10.1029/2019JG005501
10.1007/s13280-011-0163-3
10.1007/s10021-007-9033-z
10.1029/2003GL018680
10.1038/nclimate3054
10.1007/s10021-011-9500-4
10.1046/j.1365-3040.1998.00292.x
10.1088/1748-9326/8/3/035025
10.1579/0044-7447(2006)35[190:WDTCPO]2.0.CO;2
10.1111/j.1365-2486.2012.02663.x
10.1111/j.1529-8817.2003.00783.x
10.1088/1748-9326/10/9/094011
10.1007/BF02386425
10.1191/0959683602hl522rp
10.1023/A:1018380922280
10.1016/S0048-9697(97)00139-3
10.1038/nature12129
10.1038/nature08031
10.1111/jvs.12322
10.1038/s41396-018-0176-z
10.1046/j.1365-2486.2000.06021.x
10.1657/1938-4246-44.4.446
10.2458/azu_js_rc.55.16947
10.1098/rstb.1984.0002
10.1016/j.scitotenv.2015.09.131
10.1002/ppp.656
10.1016/j.soilbio.2003.09.008
10.1657/1523-0430(2006)38[530:PDATFS]2.0.CO;2
10.1111/gcb.13403
10.5194/bg-9-4071-2012
10.1002/ppp.626
10.1007/978-0-387-98141-3
10.1038/nclimate1955
10.1007/BF00333212
10.1111/nph.15903
10.1111/j.1365-2486.2010.02303.x
10.1038/nature14338
10.1111/j.1365-2745.2011.01925.x
10.1111/j.1365-2486.2006.01259.x
10.1088/1748-9326/aad5f0
10.1073/pnas.1719903115
10.1038/s41558-018-0095-z
10.5194/bgd-11-4771-2014
10.18637/jss.v067.i01
10.1111/gcb.12116
10.1191/095968300671749538
10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A
10.1038/nature08216
10.1016/j.scitotenv.2018.07.150
10.1073/pnas.1516017113
10.1002/2013JG002365
10.1111/gcb.12572
10.1111/gcb.12058
10.1111/gcb.13032
10.1111/gcb.13804
10.1111/gcb.14574
10.1111/gcb.13242
10.1890/13-0602.1
10.1038/s41558-019-0592-8
10.1038/nclimate3328
10.4202/ppres.2010.08
10.1038/nclimate2830
10.1016/0038-0717(94)00242-S
10.1038/s41467-018-08240-4
10.1016/j.soilbio.2016.09.017
10.1088/1748-9326/11/3/034014
10.1111/gcb.13204
10.1016/j.soilbio.2017.12.010
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd
2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Copyright Blackwell Publishing Ltd. Oct 2020
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd
– notice: 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: Copyright Blackwell Publishing Ltd. Oct 2020
CorporateAuthor MERGE: ModElling the Regional and Global Earth system
Strategiska forskningsområden (SFO)
Dept of Physical Geography and Ecosystem Science
Strategic research areas (SRA)
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
BECC: Biodiversity and Ecosystem services in a Changing Climate
Faculty of Science
Lund University
Profilområden och andra starka forskningsmiljöer
Institutionen för naturgeografi och ekosystemvetenskap
Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Dept of Physical Geography and Ecosystem Science
– name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Profilområden och andra starka forskningsmiljöer
– name: MERGE: ModElling the Regional and Global Earth system
– name: Lund University
– name: BECC: Biodiversity and Ecosystem services in a Changing Climate
– name: Institutionen för naturgeografi och ekosystemvetenskap
– name: Profile areas and other strong research environments
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
– name: Sveriges lantbruksuniversitet
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
AGCHP
D95
DOI 10.1111/gcb.15283
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
SWEPUB Lunds universitet full text
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic

CrossRef


AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Ecology
EISSN 1365-2486
EndPage 5898
ExternalDocumentID oai_slubar_slu_se_107727
oai_portal_research_lu_se_publications_8aead3aa_6675_4f6f_8293_c8d877670936
oai_DiVA_org_umu_174733
32681580
10_1111_gcb_15283
GCB15283
Genre article
Journal Article
GeographicLocations Arctic Regions
Arctic region
GeographicLocations_xml – name: Arctic Regions
– name: Arctic region
GrantInformation_xml – fundername: Svenska Forskningsrådet Formas
  funderid: 214‐2011‐788
– fundername: Swedish Research Council
  funderid: 621‐2011‐5444
– fundername: Knut och Alice Wallenbergs Stiftelse
  funderid: KAW 2012.0152
– fundername: Svenska Forskningsrådet Formas
  grantid: 214-2011-788
– fundername: Knut och Alice Wallenbergs Stiftelse
  grantid: KAW 2012.0152
– fundername: Swedish Research Council
  grantid: 621-2011-5444
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
AGCHP
D95
ID FETCH-LOGICAL-c5883-7f444fff8e04bd0b519f29e7093986bcf5f834e62d4b0080744c59745135dcd73
IEDL.DBID 24P
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000560893800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
1365-2486
IngestDate Tue Nov 04 16:32:39 EST 2025
Tue Nov 04 16:09:44 EST 2025
Tue Nov 04 17:19:01 EST 2025
Fri Jul 11 18:32:30 EDT 2025
Wed Oct 01 13:55:25 EDT 2025
Fri Aug 29 17:19:15 EDT 2025
Thu Apr 03 07:07:44 EDT 2025
Tue Nov 18 22:45:22 EST 2025
Sat Nov 29 06:02:34 EST 2025
Wed Jan 22 16:33:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords permafrost thawing
peat dating
production
snow addition
decomposition
carbon cycle
winter-warming
carbon accumulation
age-depth modelling
climate change
Language English
License Attribution
2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5883-7f444fff8e04bd0b519f29e7093986bcf5f834e62d4b0080744c59745135dcd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0523-2471
0000-0003-3857-3210
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15283
PMID 32681580
PQID 2444794522
PQPubID 30327
PageCount 13
ParticipantIDs swepub_primary_oai_slubar_slu_se_107727
swepub_primary_oai_portal_research_lu_se_publications_8aead3aa_6675_4f6f_8293_c8d877670936
swepub_primary_oai_DiVA_org_umu_174733
proquest_miscellaneous_2551973769
proquest_miscellaneous_2424997256
proquest_journals_2444794522
pubmed_primary_32681580
crossref_citationtrail_10_1111_gcb_15283
crossref_primary_10_1111_gcb_15283
wiley_primary_10_1111_gcb_15283_GCB15283
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 7
2013; 3
2000; 6
2006; 35
2019; 10
2006; 38
2002; 12
1995; 76
2016; 541
2001; 48
2012; 18
2020; 13
2020; 125
2012; 15
2016; 103
2019; 646
2011; 17
2013; 8
1996; 108
2014; 20
2013; 19
2014; 127
2004; 31
2018; 8
2013; 55
1995; 27
1980; 30
2004; 36
2000; 10
1997; 100
2006; 25
2015; 373
2019; 25
1999; 13
2016; 113
2008; 113
2014; 95
2014; 11
2014; 119
2010; 31
2019; 9
2015; 6
2012; 100
2015; 5
2009; 20
2006; 12
2011
2015; 520
2008; 19
1984; 303
2011; 40
2017; 23
2015; 10
2009
1997
2019; 223
2007
1999; 22
2003
1991
2018; 23
2009; 459
1972; 4
2007; 10
1999; 104
1998; 21
2001; 126
2016; 11
2004; 10
2015; 67
1997; 203
2016; 6
2009; 36
2015; 27
2018; 118
2015; 20
2018; 115
2015; 21
2013; 497
2018
2017
2009; 460
1998; 227
2006; 182
2013
2018; 12
2012; 44
2012; 5
2012; 117
2005; 11
2016; 22
2018; 13
2012; 9
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_100_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
Rosswall T. (e_1_2_7_70_1) 1980; 30
R Core Team (e_1_2_7_67_1) 2017
Lemke P. (e_1_2_7_51_1) 2007
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
Trucco C. (e_1_2_7_86_1) 2012; 117
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
Njuabe H. M. (e_1_2_7_62_1) 2011
e_1_2_7_16_1
e_1_2_7_40_1
IPCC (e_1_2_7_35_1) 2013
e_1_2_7_63_1
e_1_2_7_12_1
Aerts R. (e_1_2_7_3_1) 2006; 182
e_1_2_7_29_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
Callaghan T. V. (e_1_2_7_15_1) 2011
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_81_1
Klaminder J. (e_1_2_7_44_1) 2008; 113
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Svensson B. H. (e_1_2_7_83_1) 1980; 30
Koven C. D. (e_1_2_7_48_1) 2015; 20
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_58_1
Sælthun N. R. (e_1_2_7_72_1) 2003
e_1_2_7_39_1
Alexandersson H. (e_1_2_7_5_1) 1991
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
R Core Team (e_1_2_7_68_1) 2018
Brown J. (e_1_2_7_14_1) 1997
St Jaques J.‐M. (e_1_2_7_82_1) 2009; 36
e_1_2_7_91_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 7
  start-page: 507
  issue: 7
  year: 2017
  end-page: 511
  article-title: Limited contribution of permafrost carbon to methane release from thawing peatlands
  publication-title: Nature Climate Change
– volume: 22
  start-page: 736
  issue: 6
  year: 1999
  end-page: 750
  article-title: The dynamics of peat accumulation on bogs: Mass balance of hummocks and hollows and its variation throughout a millennium
  publication-title: Ecography
– volume: 119
  start-page: 392
  issue: 3
  year: 2014
  end-page: 403
  article-title: The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient‐poor boreal mire: Decadal effects assessed using Pb peat chronologies
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 30
  start-page: 209
  year: 1980
  end-page: 234
  article-title: Nitrogen cycling in a subarctic ombrotrophic mire
  publication-title: Ecological Bulletins
– volume: 19
  start-page: 1160
  year: 2013
  end-page: 1172
  article-title: Predicting long‐term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia
  publication-title: Global Change Biology
– volume: 100
  start-page: 488
  issue: 2
  year: 2012
  end-page: 498
  article-title: Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost
  publication-title: Journal of Ecology
– volume: 20
  start-page: 201415123
  year: 2015
  article-title: Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 497
  start-page: 615
  issue: 7451
  year: 2013
  end-page: 618
  article-title: Long‐term warming restructures Arctic tundra without changing net soil carbon storage
  publication-title: Nature
– volume: 10
  start-page: 1043
  issue: 7
  year: 2004
  end-page: 1052
  article-title: Carbon sequestration in peatland: Patterns and mechanisms of response to climate change
  publication-title: Global Change Biology
– volume: 12
  start-page: 2336
  issue: 12
  year: 2006
  end-page: 2351
  article-title: Potential carbon release from permafrost soils of Northeastern Siberia
  publication-title: Global Change Biology
– volume: 35
  start-page: 1
  issue: 4
  year: 2006
  end-page: 9
  article-title: What determines the current presence or absense of permafrost in the Torneträsk region, a sub‐arctic landscape in Northern Sweden?
  publication-title: Ambio
– volume: 646
  start-page: 158
  year: 2019
  end-page: 167
  article-title: Soil organic carbon depletion and degradation in surface soil after long‐term non‐growing season warming in High Arctic Svalbard
  publication-title: Science of the Total Environment
– volume: 8
  issue: 3
  year: 2013
  article-title: Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub‐arctic Sweden
  publication-title: Environmental Research Letters
– volume: 19
  start-page: 279
  issue: 3
  year: 2008
  end-page: 292
  article-title: Thawing permafrost and thicker active layers in sub‐arctic Sweden
  publication-title: Permafrost and Periglacial Processes
– volume: 23
  start-page: 1109
  year: 2017
  end-page: 1127
  article-title: Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands
  publication-title: Global Change Biology
– volume: 113
  start-page: 1
  issue: 4
  year: 2008
  end-page: 9
  article-title: An explorative study of mercury export from a thawing palsa mire
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 11
  article-title: Permafrost is warming at a global scale
  publication-title: Nature Communications
– volume: 3
  start-page: 890
  issue: 10
  year: 2013
  end-page: 894
  article-title: Long‐term CO production following permafrost thaw
  publication-title: Nature Climate Change
– volume: 22
  start-page: 2818
  issue: 8
  year: 2016
  end-page: 2833
  article-title: Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra
  publication-title: Global Change Biology
– volume: 182
  start-page: 65
  issue: 1–2
  year: 2006
  end-page: 77
  article-title: Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events
  publication-title: Plant Ecology
– volume: 9
  start-page: 4071
  issue: 10
  year: 2012
  end-page: 4085
  article-title: Northern peatland carbon stocks and dynamics: A review
  publication-title: Biogeosciences
– volume: 5
  start-page: 719
  issue: 10
  year: 2012
  end-page: 721
  article-title: Significant contribution to climate warming from the permafrost carbon feedback
  publication-title: Nature Geoscience
– volume: 127
  start-page: 321
  issue: 2
  year: 2014
  end-page: 334
  article-title: Increased photosynthesis compensates for shorter growing season in subarctic tundra – 8 years of snow accumulation manipulations
  publication-title: Climatic Change
– volume: 6
  start-page: 214
  issue: 2
  year: 2015
  end-page: 218
  article-title: Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra
  publication-title: Nature Climate Change
– volume: 48
  start-page: 551
  year: 2001
  end-page: 579
  article-title: Permafrost degradation and ecological changes associated with a warming climate in central Alaska
  publication-title: Climatic Change
– volume: 459
  start-page: 556
  issue: 7246
  year: 2009
  end-page: 559
  article-title: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
  publication-title: Nature
– volume: 67
  start-page: 1
  issue: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 31
  start-page: 141
  issue: 2
  year: 2010
  end-page: 158
  article-title: Geophysical characteristics of permafrost in the Abisko area, northern Sweden
  publication-title: Polish Polar Research
– volume: 17
  start-page: 1394
  issue: 3
  year: 2011
  end-page: 1407
  article-title: Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra
  publication-title: Global Change Biology
– volume: 4
  start-page: 291
  issue: 4
  year: 1972
  end-page: 305
  article-title: Vegetation types and plant biomass in tundra
  publication-title: Arctic and Alpine Research
– volume: 55
  start-page: 1869
  issue: 4
  year: 2013
  end-page: 1887
  article-title: IntCal 13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP
  publication-title: Radiocarbon
– volume: 30
  start-page: 283
  year: 1980
  end-page: 301
  article-title: Energy flow through the subarctic mire at Stordalen
  publication-title: Ecological Bulletins
– start-page: 337
  year: 2007
  end-page: 383
– volume: 23
  start-page: 4257
  year: 2017
  end-page: 4266
  article-title: Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep‐rooting subarctic peatland species
  publication-title: Global Change Biology
– volume: 520
  start-page: 171
  issue: 7546
  year: 2015
  end-page: 179
  article-title: Climate change and the permafrost carbon feedback
  publication-title: Nature
– volume: 15
  start-page: 162
  issue: 1
  year: 2012
  end-page: 173
  article-title: Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw
  publication-title: Ecosystems
– volume: 21
  start-page: 555
  year: 1998
  end-page: 564
  article-title: Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium
  publication-title: Plant, Cell & Environment
– volume: 22
  start-page: 1927
  year: 2016
  end-page: 1941
  article-title: Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw
  publication-title: Global Change Biology
– volume: 9
  start-page: 852
  issue: 11
  year: 2019
  end-page: 857
  article-title: Large loss of CO in winter observed across the northern permafrost region
  publication-title: Nature Climate Change
– volume: 13
  start-page: 2315
  year: 1999
  end-page: 2330
  article-title: Long‐term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra
  publication-title: Hydrological Processes
– volume: 113
  start-page: 40
  issue: 1
  year: 2016
  end-page: 45
  article-title: Cold season emissions dominate the Arctic tundra methane budget
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 203
  start-page: 115
  issue: 2
  year: 1997
  end-page: 127
  article-title: Isotopic evidence of the relative retention and mobility of lead and radiocaesium in Scottish ombrotrophic peats
  publication-title: Science of the Total Environment
– volume: 104
  start-page: 27673
  issue: D22
  year: 1999
  end-page: 27682
  article-title: Carbon cycling in boreal wetlands: A comparison of three approaches
  publication-title: Journal of Geophysical Research
– volume: 6
  start-page: 196
  year: 2000
  end-page: 210
  article-title: Controls over carbon storage and turnover in high‐latitude soils
  publication-title: Global Change Biology
– volume: 5
  start-page: 17951
  year: 2015
  article-title: The long‐term fate of permafrost peatlands under rapid climate warming
  publication-title: Scientific Reports
– volume: 25
  start-page: 91
  issue: 2
  year: 2006
  end-page: 113
  article-title: A long‐term Arctic snow depth record from Abisko, northern Sweden, 1913–2004
  publication-title: Polar Research
– volume: 12
  start-page: 2129
  issue: 9
  year: 2018
  end-page: 2141
  article-title: Long‐term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration
  publication-title: The ISME Journal
– volume: 118
  start-page: 115
  year: 2018
  end-page: 129
  article-title: Limited release of previously‐frozen C and increased new peat formation after thaw in permafrost peatlands
  publication-title: Soil Biology and Biochemistry
– volume: 95
  start-page: 602
  issue: 3
  year: 2014
  end-page: 608
  article-title: Permafrost degradation stimulates carbon loss from experimentally warmed tundra
  publication-title: Ecology
– volume: 126
  start-page: 543
  issue: 4
  year: 2001
  end-page: 562
  article-title: A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming
  publication-title: Oecologia
– volume: 31
  issue: 4
  year: 2004
  article-title: Thawing sub‐arctic permafrost: Effects on vegetation and methane emissions
  publication-title: Geophysical Research Letters
– volume: 27
  start-page: 165
  year: 2015
  end-page: 175
  article-title: Multi‐species competition experiments with peatland bryophytes
  publication-title: Journal of Vegetation Science
– volume: 11
  start-page: 4771
  issue: 3
  year: 2014
  end-page: 4822
  article-title: Improved estimates show large circumpolar stocks of permafrost carbon while quantifying substantial uncertainty ranges and identifying remaining data gaps
  publication-title: Biogeosciences Discussions
– year: 2009
– volume: 303
  start-page: 605
  issue: 1117
  year: 1984
  end-page: 654
  article-title: The limits to peat bog growth
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 373
  start-page: 20140423
  issue: 2054
  year: 2015
  article-title: A simplified, data‐constrained approach to estimate the permafrost carbon‐climate feedback
  publication-title: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
– volume: 11
  start-page: 537
  issue: 4
  year: 2005
  end-page: 552
  article-title: Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment
  publication-title: Global Change Biology
– year: 2018
– volume: 13
  year: 2018
  article-title: Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst
  publication-title: Environmental Research Letters
– start-page: 87
  year: 1991
– volume: 541
  start-page: 1222
  year: 2016
  end-page: 1231
  article-title: Modeling the downward transport of Pb in Peatlands: Initial Penetration‐Constant Rate of Supply (IP‐CRS) model
  publication-title: Science of the Total Environment
– volume: 13
  start-page: 138
  issue: 2
  year: 2020
  end-page: 143
  article-title: Carbon release through abrupt permafrost thaw
  publication-title: Nature Geoscience
– volume: 76
  start-page: 694
  issue: 3
  year: 1995
  end-page: 711
  article-title: Responses of Arctic tundra to experimental and observed changes in climate
  publication-title: Ecology
– volume: 44
  start-page: 446
  issue: 4
  year: 2012
  end-page: 456
  article-title: Cold season respiration across a low Arctic landscape: The influence of vegetation type, snow depth, and interannual climatic variation
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 100
  start-page: 223
  year: 1997
  end-page: 231
  article-title: Lead‐210 age dating of three peat cores in the Jura Mountains, Switzerland
  publication-title: Water, Air, and Soil Pollution
– volume: 40
  start-page: 558
  year: 2011
  end-page: 565
  article-title: Past and present permafrost temperatures in the Abisko area: Redrilling of boreholes
  publication-title: Ambio
– year: 1997
– start-page: 3
  year: 2013
  end-page: 29
– volume: 223
  start-page: 1328
  issue: 3
  year: 2019
  end-page: 1339
  article-title: Dwelling in the deep – Strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil
  publication-title: New Phytologist
– volume: 36
  issue: 1
  year: 2009
  article-title: Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada
  publication-title: Geophysical Research Letters
– volume: 11
  issue: 3
  year: 2016
  article-title: Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment
  publication-title: Environmental Research Letters
– volume: 227
  start-page: 19
  issue: 1–2
  year: 1998
  end-page: 22
  article-title: Pb and Po analysis in sediments and soils by microwave acid digestion
  publication-title: Journal of Radioanalytical and Nuclear Chemistry
– volume: 103
  start-page: 388
  year: 2016
  end-page: 393
  article-title: Response of terrestrial carbon dynamics to snow cover change: A meta analysis of experimental manipulation (II)
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 273
  issue: 2
  year: 2000
  end-page: 280
  article-title: Carbon accumulation in permafrost peatlands in the Northwest Territories and Nunavut, Canada
  publication-title: The Holocene
– year: 2003
– volume: 10
  issue: 9
  year: 2015
  article-title: Permafrost thaw and resulting soil moisture changes regulate projected high‐latitude CO and CH emissions
  publication-title: Environmental Research Letters
– volume: 6
  start-page: 950
  issue: 10
  year: 2016
  end-page: 953
  article-title: Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils
  publication-title: Nature Climate Change
– volume: 117
  issue: 2
  year: 2012
  article-title: Seven‐year trends of CO exchange in a tundra ecosystem affected by long‐term permafrost thaw
  publication-title: Journal of Geophysical Research Biogeosciences
– volume: 25
  start-page: 1746
  issue: 5
  year: 2019
  end-page: 1764
  article-title: Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
  publication-title: Global Change Biology
– volume: 10
  start-page: 280
  year: 2007
  end-page: 292
  article-title: Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra
  publication-title: Ecosystems
– volume: 23
  start-page: 317
  issue: 3
  year: 2018
  end-page: 333
  article-title: Bayesian analysis of Pb dating
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– volume: 10
  start-page: 419
  issue: 3
  year: 2007
  end-page: 431
  article-title: Deeper snow enhances winter respiration from both plant‐associated and bulk soil carbon pools in birch hummock tundra
  publication-title: Ecosystems
– volume: 18
  start-page: 1998
  issue: 6
  year: 2012
  end-page: 2007
  article-title: A frozen feast: Thawing permafrost increases plant‐available nitrogen in subarctic peatlands
  publication-title: Global Change Biology
– volume: 27
  start-page: 753
  issue: 6
  year: 1995
  end-page: 760
  article-title: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage
  publication-title: Soil Biology and Biochemistry
– volume: 108
  start-page: 38
  year: 1996
  end-page: 46
  article-title: Effect of changes in water content on photosynthesis, transpiration and discrimination against CO and C O O in Pleurozium and Sphagnum
  publication-title: Oecologia
– volume: 125
  issue: 3
  year: 2020
  article-title: Long‐term impacts of permafrost thaw on carbon storage in peatlands: Deep losses offset by surficial accumulation
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 12
  start-page: 69
  issue: 1
  year: 2002
  end-page: 80
  article-title: Estimating carbon accumulation rates of undrained mires in Finland – Application to boreal and subarctic regions
  publication-title: The Holocene
– volume: 21
  start-page: 4508
  issue: 12
  year: 2015
  end-page: 4519
  article-title: Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems
  publication-title: Global Change Biology
– start-page: 1
  year: 2011
  end-page: 58
– volume: 19
  start-page: 649
  issue: 19
  year: 2013
  end-page: 661
  article-title: Thawing permafrost increases old soil and autotrophic respiration in tundra: Particioning ecosystem respiration using d C and Δ C
  publication-title: Global Change Biology
– volume: 115
  start-page: 3882
  issue: 15
  year: 2018
  end-page: 3887
  article-title: Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 38
  start-page: 530
  issue: 4
  year: 2006
  end-page: 539
  article-title: Permafrost destabilization and thermokarst following snow fence installation, barrow, Alaska, U.S.A
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 20
  start-page: 235
  issue: 3
  year: 2009
  end-page: 256
  article-title: Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska
  publication-title: Permafrost and Periglacial Processes
– year: 2017
– volume: 36
  start-page: 217
  issue: 2
  year: 2004
  end-page: 227
  article-title: Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities
  publication-title: Soil Biology and Biochemistry
– volume: 20
  start-page: 2674
  year: 2014
  end-page: 2686
  article-title: Temperature and peat type control CO and CH production in Alaskan permafrost peats
  publication-title: Global Change Biology
– volume: 8
  start-page: 1
  issue: 4
  year: 2018
  end-page: 4
  article-title: Methane production as key to the greenhouse gas budget of thawing permafrost
  publication-title: Nature Climate Change
– volume: 460
  start-page: 616
  issue: 7255
  year: 2009
  end-page: 619
  article-title: Carbon respiration from subsurface peat accelerated by climate warming in the subarctic
  publication-title: Nature
– ident: e_1_2_7_13_1
  doi: 10.1007/s10584-014-1247-4
– ident: e_1_2_7_16_1
  doi: 10.2307/1939337
– ident: e_1_2_7_49_1
  doi: 10.1098/rsta.2014.0423
– start-page: 337
  volume-title: Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change
  year: 2007
  ident: e_1_2_7_51_1
– ident: e_1_2_7_88_1
  doi: 10.1038/s41561-019-0526-0
– ident: e_1_2_7_93_1
  doi: 10.1111/j.1365-2486.2005.00927.x
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1751-8369.2006.tb00026.x
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1600-0587.1999.tb00523.x
– ident: e_1_2_7_7_1
  doi: 10.1007/s13253-018-0328-7
– ident: e_1_2_7_40_1
  doi: 10.1023/A:1005667424292
– ident: e_1_2_7_87_1
  doi: 10.1029/1999JD900433
– ident: e_1_2_7_96_1
  doi: 10.1080/00040851.1972.12003650
– ident: e_1_2_7_77_1
  doi: 10.1007/s10021-007-9024-0
– ident: e_1_2_7_71_1
  doi: 10.1007/s004420000544
– ident: e_1_2_7_84_1
  doi: 10.1038/srep17951
– ident: e_1_2_7_53_1
  doi: 10.1038/ngeo1573
– ident: e_1_2_7_27_1
  doi: 10.1029/2019JG005501
– ident: e_1_2_7_36_1
  doi: 10.1007/s13280-011-0163-3
– ident: e_1_2_7_63_1
  doi: 10.1007/s10021-007-9033-z
– ident: e_1_2_7_17_1
  doi: 10.1029/2003GL018680
– ident: e_1_2_7_75_1
  doi: 10.1038/nclimate3054
– ident: e_1_2_7_29_1
  doi: 10.1007/s10021-011-9500-4
– volume: 117
  issue: 2
  year: 2012
  ident: e_1_2_7_86_1
  article-title: Seven‐year trends of CO2 exchange in a tundra ecosystem affected by long‐term permafrost thaw
  publication-title: Journal of Geophysical Research Biogeosciences
– ident: e_1_2_7_98_1
  doi: 10.1046/j.1365-3040.1998.00292.x
– ident: e_1_2_7_37_1
  doi: 10.1088/1748-9326/8/3/035025
– ident: e_1_2_7_38_1
  doi: 10.1579/0044-7447(2006)35[190:WDTCPO]2.0.CO;2
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-2486.2012.02663.x
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1529-8817.2003.00783.x
– ident: e_1_2_7_50_1
  doi: 10.1088/1748-9326/10/9/094011
– ident: e_1_2_7_74_1
  doi: 10.1007/BF02386425
– ident: e_1_2_7_89_1
  doi: 10.1191/0959683602hl522rp
– ident: e_1_2_7_6_1
  doi: 10.1023/A:1018380922280
– ident: e_1_2_7_54_1
  doi: 10.1016/S0048-9697(97)00139-3
– start-page: 87
  volume-title: Temperature and precipitation in Sweden 1961–1990. Meteorologi Nr. 81/1991
  year: 1991
  ident: e_1_2_7_5_1
– ident: e_1_2_7_81_1
  doi: 10.1038/nature12129
– ident: e_1_2_7_79_1
  doi: 10.1038/nature08031
– ident: e_1_2_7_90_1
  doi: 10.1111/jvs.12322
– ident: e_1_2_7_57_1
  doi: 10.1038/s41396-018-0176-z
– ident: e_1_2_7_33_1
  doi: 10.1046/j.1365-2486.2000.06021.x
– start-page: 3
  volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change
  year: 2013
  ident: e_1_2_7_35_1
– volume: 20
  start-page: 201415123
  year: 2015
  ident: e_1_2_7_48_1
  article-title: Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 30
  start-page: 283
  year: 1980
  ident: e_1_2_7_83_1
  article-title: Energy flow through the subarctic mire at Stordalen
  publication-title: Ecological Bulletins
– ident: e_1_2_7_26_1
  doi: 10.1657/1938-4246-44.4.446
– ident: e_1_2_7_69_1
  doi: 10.2458/azu_js_rc.55.16947
– ident: e_1_2_7_18_1
  doi: 10.1098/rstb.1984.0002
– ident: e_1_2_7_64_1
  doi: 10.1016/j.scitotenv.2015.09.131
– ident: e_1_2_7_66_1
  doi: 10.1002/ppp.656
– volume-title: R: A language and environment for statistical computing
  year: 2017
  ident: e_1_2_7_67_1
– ident: e_1_2_7_76_1
  doi: 10.1016/j.soilbio.2003.09.008
– ident: e_1_2_7_32_1
  doi: 10.1657/1523-0430(2006)38[530:PDATFS]2.0.CO;2
– ident: e_1_2_7_39_1
  doi: 10.1111/gcb.13403
– ident: e_1_2_7_99_1
  doi: 10.5194/bg-9-4071-2012
– ident: e_1_2_7_4_1
  doi: 10.1002/ppp.626
– start-page: 1
  volume-title: Snow, water, ice and permafrost in the Arctic (SWIPA)
  year: 2011
  ident: e_1_2_7_15_1
– ident: e_1_2_7_95_1
  doi: 10.1007/978-0-387-98141-3
– ident: e_1_2_7_23_1
  doi: 10.1038/nclimate1955
– ident: e_1_2_7_97_1
  doi: 10.1007/BF00333212
– ident: e_1_2_7_12_1
  doi: 10.1111/nph.15903
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1365-2486.2010.02303.x
– ident: e_1_2_7_78_1
  doi: 10.1038/nature14338
– volume: 113
  start-page: 1
  issue: 4
  year: 2008
  ident: e_1_2_7_44_1
  article-title: An explorative study of mercury export from a thawing palsa mire
  publication-title: Journal of Geophysical Research: Biogeosciences
– ident: e_1_2_7_58_1
  doi: 10.1111/j.1365-2745.2011.01925.x
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-2486.2006.01259.x
– ident: e_1_2_7_25_1
  doi: 10.1088/1748-9326/aad5f0
– ident: e_1_2_7_56_1
  doi: 10.1073/pnas.1719903115
– ident: e_1_2_7_45_1
  doi: 10.1038/s41558-018-0095-z
– ident: e_1_2_7_34_1
  doi: 10.5194/bgd-11-4771-2014
– ident: e_1_2_7_8_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_7_46_1
  doi: 10.1111/gcb.12116
– ident: e_1_2_7_91_1
  doi: 10.1191/095968300671749538
– ident: e_1_2_7_94_1
  doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A
– volume-title: A language and environment for statistical computing
  year: 2018
  ident: e_1_2_7_68_1
– ident: e_1_2_7_21_1
  doi: 10.1038/nature08216
– ident: e_1_2_7_80_1
  doi: 10.1016/j.scitotenv.2018.07.150
– ident: e_1_2_7_100_1
  doi: 10.1073/pnas.1516017113
– ident: e_1_2_7_65_1
  doi: 10.1002/2013JG002365
– volume: 36
  issue: 1
  year: 2009
  ident: e_1_2_7_82_1
  article-title: Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada
  publication-title: Geophysical Research Letters
– ident: e_1_2_7_85_1
  doi: 10.1111/gcb.12572
– ident: e_1_2_7_28_1
  doi: 10.1111/gcb.12058
– volume-title: Climate change scenarios for the SCANNET region
  year: 2003
  ident: e_1_2_7_72_1
– ident: e_1_2_7_31_1
  doi: 10.1111/gcb.13032
– ident: e_1_2_7_42_1
  doi: 10.1111/gcb.13804
– volume: 30
  start-page: 209
  year: 1980
  ident: e_1_2_7_70_1
  article-title: Nitrogen cycling in a subarctic ombrotrophic mire
  publication-title: Ecological Bulletins
– ident: e_1_2_7_92_1
  doi: 10.1111/gcb.14574
– ident: e_1_2_7_11_1
  doi: 10.1111/gcb.13242
– volume-title: Subarctic peatlands in a changing climate: Greenhouse gas response to experimentally increased snow cover
  year: 2011
  ident: e_1_2_7_62_1
– ident: e_1_2_7_60_1
  doi: 10.1890/13-0602.1
– ident: e_1_2_7_61_1
  doi: 10.1038/s41558-019-0592-8
– ident: e_1_2_7_19_1
  doi: 10.1038/nclimate3328
– ident: e_1_2_7_20_1
  doi: 10.4202/ppres.2010.08
– ident: e_1_2_7_30_1
  doi: 10.1038/nclimate2830
– volume: 182
  start-page: 65
  issue: 1
  year: 2006
  ident: e_1_2_7_3_1
  article-title: Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events
  publication-title: Plant Ecology
– ident: e_1_2_7_43_1
  doi: 10.1016/0038-0717(94)00242-S
– ident: e_1_2_7_10_1
  doi: 10.1038/s41467-018-08240-4
– ident: e_1_2_7_52_1
  doi: 10.1016/j.soilbio.2016.09.017
– volume-title: Circum‐Arctic of permafrost and ground ice conditions
  year: 1997
  ident: e_1_2_7_14_1
– ident: e_1_2_7_2_1
  doi: 10.1088/1748-9326/11/3/034014
– ident: e_1_2_7_73_1
  doi: 10.1111/gcb.13204
– ident: e_1_2_7_24_1
  doi: 10.1016/j.soilbio.2017.12.010
SSID ssj0003206
Score 2.41727
Snippet Thicker snowpacks and their insulation effects cause winter‐warming and invoke thaw of permafrost ecosystems. Temperature‐dependent decomposition of previously...
Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously...
SourceID swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5886
SubjectTerms age-depth modelling
Arctic region
Arctic Regions
Biological Sciences
Bryophytes
Carbon
carbon accumulation
carbon cycle
carbon sequestration
carbon sinks
climate
climate change
Climate Research
Climate Science
Climate system
Decomposition
Deep layer
Earth and Related Environmental Sciences
Ecology
Ecosystem
Ekologi
Fluxes
Geovetenskap och relaterad miljövetenskap
global change
Growth models
Insulating materials
Insulation
Klimatforskning
Klimatvetenskap
Leaching
Lead isotopes
Melting
Natural Sciences
Naturgeografi
Naturvetenskap
net ecosystem production
Peat
peat dating
Permafrost
permafrost thawing
Permafrost thaws
Physical Geography
Primary production
primary productivity
production
snow addition
Snowpack
Soil
Soil layers
Storage
subsidence
Temperature dependence
Thawing
Waterlogging
Winter
winter-warming
Title Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15283
https://www.ncbi.nlm.nih.gov/pubmed/32681580
https://www.proquest.com/docview/2444794522
https://www.proquest.com/docview/2424997256
https://www.proquest.com/docview/2551973769
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174733
https://res.slu.se/id/publ/107727
Volume 26
WOSCitedRecordID wos000560893800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbGBhIvXAqDwJgMQoMHIuXiJI54Gu0KD2OaEJsqXiw7trdKIamSBrT_wQ_mnCQNnSgIiZdelBPL7bn4O87xdwh5mUIAZJ7SLmOBclmsfVfGvnaNQeoV65m47UVwfpycnPDZLD3dIm9XZ2E6fohhww09o43X6OBS1WtOfpEpbN7Dwxtkx_dDjn0bAnY6hOEwaBtr-mHEINb4YU8rhGU8w63XF6PfEOZAH3odubZLz_Tuf036HrnTI0562JnIfbJlihG51fWgvBqR3aNfR91ArPf1ekScj4Cny6oVowd0nM8B3LbfHpAfE4N19bS0dL1FAF1gnLd4kIQuL-V3WiExrKkprGsF1oriDVcYX2gmK1UWVBaazgtErjWI5SU-gkahMte9yBuKW8Vls6SyLT2BpRbGNrQwy9UgCsszM_OQnE2PPo8_uH1_BzeLOA_dxDLGrLXceExpTwGYtEFqEi8NUx6rzEaWhwysRTOFyDZhLMP8JwKd6kwn4S7ZLsrCPCbUxpEJAusr5SkWq0jaTCvfaG05jz3OHPJ6pWiR9eTn2IMjF6skCDQjWs045MUguugYPzYJ7a2sRfROXwtASsjXD4jWIc-Hy-Cu-AxGFqZsUAby3TQBoPkXmQhPE0PkTx3yqLPEYSaAtrkfcc8hB51pDleQJ3wyPz8UZXUhmq-NgFwzCWGmXzYIdrmd6AmlLkXeiNqIxdpOseASgkwopYghpxTMxlZwwIYi45ojBRRoCX7Dqw2D13mjZIVvOKjvQQKXgAJav_jzXyrej9-1H578u-hTcjvA_Y-2uHKPbC-rxjwjN7Nvy3ld7bfxAF6TGd8nO5NP07Pjn4VFadE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKAcGFx0IhUMAgVDgQKQ8ncSQuZdtSxLbqoVRVL1Yc2-1KIVklG1D_Bz-YGScbtmJBSJx2V5lYzs7D3zjjbwh5nUIAZJ5ULmOBdFmsfDeLfeVqjdQrxtOx7UVwMkkOD_npaXq0Rt4vzsJ0_BDDhht6ho3X6OC4Ib3k5ee5xO49PLxGrjNYZdDKA3Y0xOEwsJ01_TBiEGz8sOcVwjqe4darq9FvEHPgD70KXe3as3f3_2Z9j9zpMSfd7ozkPlnT5Yjc7LpQXo7Ixu6vw24g1nt7MyLOASDqqrZidIuOiynAW_vrAfmxo7GynlaGLjcJoDOM9AaPktD5Rfad1kgNqxsKK1uJ1aJ4wyVGGJpntaxKmpWKTkvErg2IFRW-hEahqlC9yDuKm8VVO6eZLT6BxRbG1rTU88UgEgs0c_2QfNnbPR7vu32HBzePOA_dxDDGjDFce0wqTwKcNEGqEy8NUx7L3ESGhwzsRTGJ2DZhLMcMKAKlqlwl4QZZL6tSPybUxJEOAuNL6UkWyygzuZK-VspwHnucOeTtQtMi7-nPsQtHIRZpEGhGWM045NUgOus4P1YJbS7MRfRu3wjASsjYD5jWIS-Hy-Cw-BYmK3XVogxkvGkCUPMvMhGeJ4bYnzrkUWeKw0wAb3M_4p5DtjrbHK4gU_jO9GRbVPW5aL-2ArLNJISZnq0Q7LI70VNKXYiiFY0Ws6W9YsEzCDNhlokYskrBTGwEB3Qocq44kkCBluAZ3qwYvClamdX4gYP6HqRwCSjAOsaf_1LxcfzBfnny76IvyK3944OJmHw6_PyU3A5wN8SWWm6S9Xnd6mfkRv5tPm3q5zY4_AQSbGs0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZGB4gXLoVBYIBBaOOBSLk4iSPxMtoVEKWaEJsmXqw4trdKIamSBrT_wQ_mnCQNnSgIiae2yonl9Fz8Hef4O4S8iCEAMkcqmzFP2ixUrp2ErrK1RuoV4-iw6UVwMo1mM356Gh9tkderszAtP0S_4Yae0cRrdHC9UGbNy89Sid17uH-FbDNsIjMg2-NPk-NpH4l9r-mt6foBg3Dj-h2zEFby9DdfXo9-A5k9g-hl8NqsPpNb_zfv2-RmhzrpQWsmd8iWzofkWtuH8mJIdg5_HXcDsc7fqyGxPgKmLspGjO7RUTYHgNv8ukt-jDXW1tPC0PU2AXSBsd7gYRK6PE--0xLJYXVFYW3LsV4Ub7jAGEPTpJRFTpNc0XmO6LUCsazA19AoVGSqE3lFcbu4qJc0acpPYLmFsTXN9XI1iMQSzVTfI8eTw8-jd3bX48FOA859OzKMMWMM1w6TypEAKI0X68iJ_ZiHMjWB4T4Di1FMIrqNGEsxBwpAqSpVkb9DBnmR6weEmjDQnmdcKR3JQhkkJlXS1UoZzkOHM4u8XGlapB0BOvbhyMQqEQLNiEYzFnneiy5a1o9NQrsrcxGd41cC0BJy9gOqtciz_jK4LL6HSXJd1CgDOW8cAdj8i0yAJ4oh-scWud-aYj8TQNzcDbhjkb3WNvsryBU-np8ciKI8E_XXWkC-Gfkw0y8bBNv8TnSkUuciq0WlxWJtt1jwBAKNnyQihLxSMBMawQEfipQrjjRQoCV4hv0Ng1dZLZMSP3BQ14EkLgIFNI7x579UvB29ab48_HfRp-T60Xgipu9nHx6RGx5uhzS1lrtksCxr_ZhcTb8t51X5pIsOPwF_pmxK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decade+of+experimental+permafrost+thaw+reduces+turnover+of+young+carbon+and+increases+losses+of+old+carbon%2C+without+affecting+the+net+carbon+balance&rft.jtitle=Global+change+biology&rft.au=Olid%2C+Carolina&rft.au=Klaminder%2C+Jonatan&rft.au=Monteux%2C+Sylvain&rft.au=Johansson%2C+Margareta&rft.date=2020-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=26&rft.issue=10&rft.spage=5886&rft.epage=5898&rft_id=info:doi/10.1111%2Fgcb.15283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcb_15283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon