Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient
Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level‐dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluct...
Uloženo v:
| Vydáno v: | Human brain mapping Ročník 30; číslo 8; s. 2393 - 2400 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2009
Wiley-Liss Wiley Liss, Inc |
| Témata: | |
| ISSN: | 1065-9471, 1097-0193, 1097-0193 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level‐dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico‐thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico‐cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio‐respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age‐matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task‐positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long‐distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico-thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico-cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio-respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age-matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task-positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long-distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population. Hum Brain Mapp, 2009. Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico-thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico-cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio-respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age-matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task-positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long-distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population.Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico-thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico-cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio-respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age-matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task-positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long-distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population. Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level‐dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico‐thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico‐cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio‐respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age‐matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task‐positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long‐distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc. Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico-thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico-cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio-respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age-matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task-positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long-distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population. |
| Author | Laureys, S. Boly, M. Phillips, C. Bassetti, C. Ledoux, D. Noirhomme, Q. Moonen, G. Maquet, P. Boveroux, P. Garweg, C. Tshibanda, L. Vanhaudenhuyse, A. Luxen, A. Schnakers, C. Lambermont, B. |
| AuthorAffiliation | 6 Department of Neurology, University Hospital, Zürich, Switzerland 2 Department of Neurology, Sart Tilman University Hospital, Liège, Belgium 3 Department of Radiology, Sart Tilman University Hospital, Liège, Belgium 5 Department of Internal Medicine, Sart Tilman University Hospital, Liège, Belgium 4 Department of Anesthesiology and Reanimation, Sart Tilman University Hospital, Liège, Belgium 1 Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium |
| AuthorAffiliation_xml | – name: 5 Department of Internal Medicine, Sart Tilman University Hospital, Liège, Belgium – name: 2 Department of Neurology, Sart Tilman University Hospital, Liège, Belgium – name: 1 Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium – name: 3 Department of Radiology, Sart Tilman University Hospital, Liège, Belgium – name: 4 Department of Anesthesiology and Reanimation, Sart Tilman University Hospital, Liège, Belgium – name: 6 Department of Neurology, University Hospital, Zürich, Switzerland |
| Author_xml | – sequence: 1 givenname: M. surname: Boly fullname: Boly, M. email: mboly@student.ulg.ac.be organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium – sequence: 2 givenname: L. surname: Tshibanda fullname: Tshibanda, L. organization: Department of Radiology, Sart Tilman University Hospital, Liège, Belgium – sequence: 3 givenname: A. surname: Vanhaudenhuyse fullname: Vanhaudenhuyse, A. organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium – sequence: 4 givenname: Q. surname: Noirhomme fullname: Noirhomme, Q. organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium – sequence: 5 givenname: C. surname: Schnakers fullname: Schnakers, C. organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium – sequence: 6 givenname: D. surname: Ledoux fullname: Ledoux, D. organization: Department of Anesthesiology and Reanimation, Sart Tilman University Hospital, Liège, Belgium – sequence: 7 givenname: P. surname: Boveroux fullname: Boveroux, P. organization: Department of Anesthesiology and Reanimation, Sart Tilman University Hospital, Liège, Belgium – sequence: 8 givenname: C. surname: Garweg fullname: Garweg, C. organization: Department of Internal Medicine, Sart Tilman University Hospital, Liège, Belgium – sequence: 9 givenname: B. surname: Lambermont fullname: Lambermont, B. organization: Department of Internal Medicine, Sart Tilman University Hospital, Liège, Belgium – sequence: 10 givenname: C. surname: Phillips fullname: Phillips, C. organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium – sequence: 11 givenname: A. surname: Luxen fullname: Luxen, A. organization: Department of Radiology, Sart Tilman University Hospital, Liège, Belgium – sequence: 12 givenname: G. surname: Moonen fullname: Moonen, G. organization: Department of Neurology, Sart Tilman University Hospital, Liège, Belgium – sequence: 13 givenname: C. surname: Bassetti fullname: Bassetti, C. organization: Department of Neurology, University Hospital, Zürich, Switzerland – sequence: 14 givenname: P. surname: Maquet fullname: Maquet, P. organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium – sequence: 15 givenname: S. surname: Laureys fullname: Laureys, S. organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21737508$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19350563$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1DAQxyNURB9w4AsgXwBxSGs7duxcKkGhXUQpHEBIXCzHmeyaZu3FTrbsjY-Os7tdAeJxGnvm95-HPYfZnvMOsuwhwccEY3oyq-fHFJeC3skOCK5EjklV7I3nkucVE2Q_O4zxC8aEcEzuZfspzDEvi4Ps-_ngTG-90x0y3jlIl6XtV8g61M8ANdDqoeuRg_7Gh2vUDMG6KQoQ-9HGXveAbESL5IGwhGYUarSEKaSQXQKqh6T2_cZfB51sA7pBixQG19_P7ra6i_Bga4-yj-evPpxN8st3F6_Pnl_mhktJ85rXFat1y5gEjksta8oxbWtgBW5aYFzogoE0vCGyqFrZGsNYwVkLJSeVbIqj7HSTdzHUc2hMKh10pxbBznVYKa-t-jXi7ExN_VKVUmBRFikB3STobBpO-VBbtaRr4fo8dFOljapBUVpKRQUmLImebqsG_3VIj6bmNhroOu3AD1EJzjjHFZX_JxmvilLIMpFP_kmWgiWSjR0_-nnk3ay3v5-Ax1tAR6O7NmhnbNxxlIhCcDz2drLhTPAxBmiVsePv-vGlbKcIVuMeqrSHar2HSfHsN8Wu-B_YbfYb28Hq76CavHh7q8g3Cht7-LZT6HCdhk8tq09XFwpXk89X799U6mXxAyfZ_Pg |
| CitedBy_id | crossref_primary_10_1002_hbm_23370 crossref_primary_10_1016_j_jphysparis_2015_11_002 crossref_primary_10_3389_fneur_2020_00933 crossref_primary_10_1002_hbm_22166 crossref_primary_10_1016_j_brainres_2009_12_075 crossref_primary_10_3389_fncir_2017_00015 crossref_primary_10_1007_s11055_021_01173_4 crossref_primary_10_1111_cns_14641 crossref_primary_10_1016_j_yebeh_2013_09_005 crossref_primary_10_1016_j_clinph_2018_08_009 crossref_primary_10_1016_j_nic_2017_06_005 crossref_primary_10_3109_02699052_2013_775507 crossref_primary_10_1371_journal_pone_0298110 crossref_primary_10_3390_brainsci9050123 crossref_primary_10_1162_jocn_a_00517 crossref_primary_10_1016_j_nicl_2015_11_004 crossref_primary_10_1002_hbm_26199 crossref_primary_10_1038_nrneurol_2013_279 crossref_primary_10_1016_j_neubiorev_2013_05_004 crossref_primary_10_1109_JBHI_2022_3218652 crossref_primary_10_1016_j_bandc_2018_02_005 crossref_primary_10_1016_j_yebeh_2013_09_014 crossref_primary_10_1161_STROKEAHA_114_007645 crossref_primary_10_1016_j_neuropsychologia_2020_107487 crossref_primary_10_1097_WCO_0b013e328359488f crossref_primary_10_1073_pnas_1216856110 crossref_primary_10_1007_s11948_014_9583_3 crossref_primary_10_1093_brain_awv169 crossref_primary_10_1016_j_neuroimage_2010_08_035 crossref_primary_10_1016_j_neuroimage_2009_05_031 crossref_primary_10_1038_ncomms8751 crossref_primary_10_1093_cercor_bhu089 crossref_primary_10_1089_neu_2012_2654 crossref_primary_10_1016_j_nicl_2022_102962 crossref_primary_10_1093_nc_nix010 crossref_primary_10_1007_s00415_012_6734_9 crossref_primary_10_1007_s10072_011_0636_y crossref_primary_10_1162_jocn_a_01025 crossref_primary_10_1007_s00415_024_12591_y crossref_primary_10_1016_j_neuroimage_2012_12_049 crossref_primary_10_1002_hbm_23269 crossref_primary_10_1016_j_neuroimage_2017_11_030 crossref_primary_10_1016_j_brainresbull_2013_06_008 crossref_primary_10_1038_s41598_020_68683_y crossref_primary_10_1002_hbm_22056 crossref_primary_10_1007_s11682_020_00378_4 crossref_primary_10_3109_02699052_2013_794961 crossref_primary_10_1017_S1355617716000485 crossref_primary_10_1016_j_nicl_2019_101998 crossref_primary_10_1016_j_nicl_2022_102951 crossref_primary_10_1016_j_clineuro_2019_105465 crossref_primary_10_1371_journal_pone_0026373 crossref_primary_10_3389_fnins_2023_1113695 crossref_primary_10_3233_JAD_161105 crossref_primary_10_3389_fnins_2023_1166187 crossref_primary_10_1016_S1474_4422_16_00111_3 crossref_primary_10_1089_neu_2014_3539 crossref_primary_10_1002_hbm_21151 crossref_primary_10_1016_j_nicl_2013_12_005 crossref_primary_10_1016_j_neuroimage_2009_07_028 crossref_primary_10_1007_s00415_016_8083_6 crossref_primary_10_1371_journal_pone_0016322 crossref_primary_10_1016_j_brainres_2012_05_006 crossref_primary_10_3390_ctn7030021 crossref_primary_10_1111_ane_12299 crossref_primary_10_1212_WNL_0b013e318233b3b4 crossref_primary_10_1212_CPJ_0000000000000473 crossref_primary_10_1212_CPJ_0000000000000596 crossref_primary_10_1038_nrneurol_2009_198 crossref_primary_10_1007_s10339_009_0355_y crossref_primary_10_1007_s10943_019_00886_8 crossref_primary_10_1016_j_jneumeth_2012_08_016 crossref_primary_10_2217_fnl_10_87 crossref_primary_10_1038_s41598_021_91211_5 crossref_primary_10_4329_wjr_v6_i8_589 crossref_primary_10_1097_MCC_0b013e328343476d crossref_primary_10_1371_journal_pone_0036222 crossref_primary_10_1016_j_neulet_2016_05_045 crossref_primary_10_1186_1471_2377_10_77 crossref_primary_10_3390_jcm9030828 crossref_primary_10_1016_j_pediatrneurol_2023_12_003 crossref_primary_10_1007_s12264_018_0253_3 crossref_primary_10_1016_j_concog_2020_103031 crossref_primary_10_1097_WNP_0000000000000846 crossref_primary_10_1097_WCO_0b013e328347da94 crossref_primary_10_3389_fpsyg_2015_00028 crossref_primary_10_1007_s10548_018_0693_0 crossref_primary_10_3389_fneur_2022_990686 crossref_primary_10_3389_fnhum_2017_00489 crossref_primary_10_1002_ana_24634 crossref_primary_10_1136_postgradmedj_2014_133211 crossref_primary_10_3171_2015_7_JNS15617 crossref_primary_10_1212_WNL_0b013e31823fcd61 crossref_primary_10_1016_j_neuron_2011_03_018 crossref_primary_10_1073_pnas_1418031112 crossref_primary_10_1016_j_neuroimage_2017_01_020 crossref_primary_10_1016_j_neurol_2010_01_008 crossref_primary_10_1093_nc_niw011 crossref_primary_10_1038_srep38866 crossref_primary_10_1016_j_neuroimage_2021_118466 crossref_primary_10_3389_fpsyg_2018_00585 crossref_primary_10_1016_j_nicl_2018_07_025 crossref_primary_10_1007_s00234_009_0614_8 crossref_primary_10_1038_nrneurol_2014_15 crossref_primary_10_1007_s00134_023_07110_y crossref_primary_10_1007_s10339_015_0743_4 crossref_primary_10_1016_j_nicl_2019_101687 crossref_primary_10_1111_jon_12033 crossref_primary_10_1111_cns_14009 crossref_primary_10_1016_j_nicl_2023_103358 crossref_primary_10_1162_imag_a_00366 crossref_primary_10_3389_fnhum_2014_00362 crossref_primary_10_1016_j_cortex_2011_04_014 crossref_primary_10_1002_acn3_70094 crossref_primary_10_1176_appi_ajp_2012_11060976 crossref_primary_10_1016_j_neuropsychologia_2014_01_020 crossref_primary_10_1016_j_neuropsychologia_2016_01_022 crossref_primary_10_1016_j_clinph_2015_10_044 crossref_primary_10_3389_fneur_2025_1497316 crossref_primary_10_1002_hbm_22308 crossref_primary_10_3389_fneur_2018_00439 crossref_primary_10_1371_journal_pone_0037238 crossref_primary_10_1089_brain_2011_0049 crossref_primary_10_1016_j_neuroimage_2011_12_041 crossref_primary_10_3389_fnhum_2015_00105 crossref_primary_10_3390_brainsci13050814 crossref_primary_10_1016_j_neuroimage_2015_01_037 crossref_primary_10_1016_j_acra_2015_10_013 crossref_primary_10_1007_s11434_015_0910_0 crossref_primary_10_1162_jocn_2010_21488 crossref_primary_10_1097_WCO_0b013e32833fd4e7 crossref_primary_10_1016_j_nicl_2016_06_003 crossref_primary_10_1371_journal_pone_0093252 crossref_primary_10_1002_hbm_21249 crossref_primary_10_1073_pnas_1311868111 crossref_primary_10_1186_s13195_019_0575_z crossref_primary_10_3390_brainsci11060749 crossref_primary_10_1007_s00234_022_02911_2 crossref_primary_10_1016_j_neuropsychologia_2013_03_012 crossref_primary_10_1016_j_neuroimage_2015_12_034 crossref_primary_10_1016_j_cortex_2018_05_004 crossref_primary_10_1016_j_clinph_2015_01_017 crossref_primary_10_3389_fneur_2023_1227195 crossref_primary_10_3390_bs14040349 crossref_primary_10_1148_radiol_14132388 crossref_primary_10_1027_0269_8803_a000015 crossref_primary_10_1089_brain_2012_0117 crossref_primary_10_1515_REVNEURO_2009_20_3_4_203 crossref_primary_10_1371_journal_pone_0100012 crossref_primary_10_1523_JNEUROSCI_3769_11_2012 crossref_primary_10_1002_ana_23635 crossref_primary_10_3389_fnins_2021_766633 crossref_primary_10_1016_j_neuroimage_2012_06_074 crossref_primary_10_1002_brb3_424 crossref_primary_10_1146_annurev_clinpsy_032511_143049 crossref_primary_10_1007_s12264_018_0250_6 crossref_primary_10_1016_j_aucc_2011_10_002 crossref_primary_10_1089_brain_2016_0448 crossref_primary_10_1155_2014_462765 crossref_primary_10_1523_JNEUROSCI_0415_15_2015 crossref_primary_10_3389_fnsys_2020_00042 crossref_primary_10_1097_WNR_0000000000000853 crossref_primary_10_3389_fnhum_2020_00230 crossref_primary_10_1016_j_concog_2010_08_003 crossref_primary_10_1007_s12630_023_02421_6 crossref_primary_10_1155_2012_385626 crossref_primary_10_1038_s41598_018_31525_z crossref_primary_10_1093_brain_awp313 crossref_primary_10_1016_j_nec_2017_05_004 crossref_primary_10_1007_s11682_022_00668_z crossref_primary_10_1089_neu_2015_4003 crossref_primary_10_1007_s10548_012_0267_5 crossref_primary_10_1016_j_cortex_2013_11_005 crossref_primary_10_3917_jalmalv_111_0093 crossref_primary_10_1146_annurev_clinpsy_032511_143050 crossref_primary_10_1007_s12264_018_0259_x crossref_primary_10_3389_fneur_2021_778951 crossref_primary_10_3390_diagnostics14121287 crossref_primary_10_3389_fneur_2018_00492 crossref_primary_10_1016_j_neulet_2017_04_036 crossref_primary_10_1016_j_nicl_2019_101702 crossref_primary_10_1371_journal_pcbi_1003271 crossref_primary_10_1016_j_cortex_2017_02_011 crossref_primary_10_1007_s00429_014_0948_9 crossref_primary_10_2217_fnl_12_77 crossref_primary_10_1002_ana_24479 crossref_primary_10_1016_j_nicl_2013_09_010 crossref_primary_10_1089_brain_2014_0336 crossref_primary_10_3109_02699052_2014_920527 crossref_primary_10_7554_eLife_04499 crossref_primary_10_1093_sleep_zsy235 crossref_primary_10_1097_ALN_0b013e3182a7ca92 crossref_primary_10_1007_s11682_017_9684_0 crossref_primary_10_3390_brainsci11081107 crossref_primary_10_1523_JNEUROSCI_1020_12_2012 crossref_primary_10_1016_j_neuroimage_2012_05_060 crossref_primary_10_3109_02699052_2014_920522 crossref_primary_10_1016_j_brainres_2024_149133 crossref_primary_10_3109_02699052_2013_793395 crossref_primary_10_1002_jnr_24921 crossref_primary_10_1177_197140091102400222 crossref_primary_10_1007_s11682_015_9417_1 crossref_primary_10_1093_cercor_bhq105 crossref_primary_10_31083_j_jin2201023 crossref_primary_10_1002_hbm_23611 crossref_primary_10_1080_17588928_2010_485677 |
| Cites_doi | 10.1212/WNL.45.5.1003 10.1126/science.8235588 10.1371/journal.pbio.0030141 10.1186/1471-2202-5-42 10.1111/j.1600-0404.1979.tb02947.x 10.1136/jnnp.67.1.121 10.1016/j.neuroimage.2007.02.047 10.1016/S0079-6123(05)50028-1 10.1073/pnas.0504136102 10.1073/pnas.0611404104 10.1056/NEJM200104193441606 10.1002/hbm.460030303 10.1080/02699050410001719952 10.1038/35094500 10.1093/brain/123.8.1589 10.1016/S1474-4422(04)00852-X 10.1080/09602010443000399 10.1073/pnas.98.2.676 10.1080/096020100389237 10.1126/science.1130197 10.1212/WNL.58.3.349 10.1073/pnas.1831638100 10.1016/j.pneurobio.2006.02.003 10.1097/00004691-199401000-00004 10.1227/00006123-198505000-00002 10.1001/archneur.63.4.562 10.1016/S0140-6736(00)02271-6 10.1056/NEJM199405263302107 10.1016/j.neuroimage.2006.02.048 10.1016/j.neuron.2007.08.023 10.1126/science.286.5446.1943 10.1073/pnas.0704380104 10.1006/nimg.1998.0414 10.1002/hbm.20537 10.1016/j.neuroimage.2005.09.030 10.1002/hbm.20113 10.1097/01.wco.0000189874.92362.12 10.1002/hbm.20428 10.1016/j.brainresbull.2006.06.012 10.1016/S1053-8119(03)00103-4 10.1038/nature05758 10.1038/nature02078 10.1016/j.apmr.2004.02.033 10.1073/pnas.0135058100 10.1016/j.neuropsychologia.2006.06.017 |
| ContentType | Journal Article |
| Copyright | Copyright © 2009 Wiley‐Liss, Inc. 2009 INIST-CNRS (c) 2009 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: 2009 INIST-CNRS – notice: (c) 2009 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK JLOSS Q33 5PM |
| DOI | 10.1002/hbm.20672 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
| DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic Neurosciences Abstracts CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Default Network Connectivity in Vegetative State |
| EISSN | 1097-0193 |
| EndPage | 2400 |
| ExternalDocumentID | PMC6870763 oai_orbi_ulg_ac_be_2268_27014 19350563 21737508 10_1002_hbm_20672 HBM20672 ark_67375_WNG_09HZNPK9_D |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Concerted Research Action from Belgian French Community funderid: ARC 06/11‐340 – fundername: University of Liège – fundername: Mind Science Foundation – fundername: Centre Hospitalier Universitaire Sart Tilman – fundername: Fondation Médicale Reine Elisabeth – fundername: McDonnell Foundation – fundername: Belgian Fonds National de la Recherche Scientifique (FNRS) funderid: 3.4517.04 – fundername: European Commission – fundername: Concerted Research Action from Belgian French Community grantid: ARC 06/11‐340 – fundername: Belgian Fonds National de la Recherche Scientifique (FNRS) grantid: 3.4517.04 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFFHD AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AGXDD AHMBA AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT 33P AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV C45 RWD RWI WRC WUP AAYXX CITATION O8X IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK JLOSS Q33 5PM |
| ID | FETCH-LOGICAL-c5882-b5b94baf448e506a8b2502fbe430dfe457a34e8c5d1839f8fcc44354fe65198d3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 241 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268698700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Tue Sep 30 16:25:15 EDT 2025 Sat Nov 29 01:23:34 EST 2025 Sat Sep 27 21:43:44 EDT 2025 Sun Nov 09 10:35:25 EST 2025 Thu Oct 02 07:07:15 EDT 2025 Thu Apr 03 07:03:20 EDT 2025 Mon Jul 21 09:14:02 EDT 2025 Sat Nov 29 06:33:40 EST 2025 Tue Nov 18 21:38:26 EST 2025 Wed Jan 22 16:47:06 EST 2025 Tue Nov 11 03:32:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Coma Human Nervous system diseases Radiodiagnosis consciousness Consciousness impairment Brain death Vegetative state default network Nuclear magnetic resonance imaging functional MRI resting state Neurological disorder |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 (c) 2009 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5882-b5b94baf448e506a8b2502fbe430dfe457a34e8c5d1839f8fcc44354fe65198d3 |
| Notes | istex:43A61D0029371F2346E492CDA9CE450A67B1B941 Centre Hospitalier Universitaire Sart Tilman ArticleID:HBM20672 Fondation Médicale Reine Elisabeth McDonnell Foundation Belgian Fonds National de la Recherche Scientifique (FNRS) - No. 3.4517.04 University of Liège European Commission Concerted Research Action from Belgian French Community - No. ARC 06/11-340 ark:/67375/WNG-09HZNPK9-D Mind Science Foundation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-67650480164 |
| ORCID | 0000-0002-4288-9237 0000-0002-4990-425X 0000-0001-7915-8748 0000-0002-9314-6564 0000-0003-3106-3357 0000-0002-9134-3265 0000-0002-3096-3807 |
| OpenAccessLink | https://orbi.uliege.be/handle/2268/27014 |
| PMID | 19350563 |
| PQID | 67493643 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870763 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_27014 proquest_miscellaneous_754550928 proquest_miscellaneous_745936786 proquest_miscellaneous_67493643 pubmed_primary_19350563 pascalfrancis_primary_21737508 crossref_citationtrail_10_1002_hbm_20672 crossref_primary_10_1002_hbm_20672 wiley_primary_10_1002_hbm_20672_HBM20672 istex_primary_ark_67375_WNG_09HZNPK9_D |
| PublicationCentury | 2000 |
| PublicationDate | August 2009 |
| PublicationDateYYYYMMDD | 2009-08-01 |
| PublicationDate_xml | – month: 08 year: 2009 text: August 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum. Brain Mapp |
| PublicationYear | 2009 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss Wiley Liss, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: Wiley Liss, Inc |
| References | Laureys S,Faymonville ME,Degueldre C,Fiore GD,Damas P,Lambermont B,Janssens N,Aerts J,Franck G,Luxen A,Moonen G,Lamy M,Maquet P( 2000a): Auditory processing in the vegetative state. Brain 123 (Pt 8): 1589-1601. Tsodyks M,Kenet T,Grinvald A,Arieli A ( 1999): Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286: 1943-1946. Ansell BJ,Keenan JE ( 1989): The Western Neuro Sensory Stimulation Profile: A tool for assessing slow-to-recover head-injured patients. Arch Phys Med Rehabil 70: 104-108. Fox MD,Snyder AZ,Vincent JL,Corbetta M,Van Essen DC, et al. ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678. Ingvar DH ( 1979): "Hyperfrontal" distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol Scand 60: 12-25. Laureys S,Perrin F,Schnakers C,Boly M,Majerus S ( 2005): Residual cognitive function in comatose, vegetative and minimally conscious states. Curr Opin Neurol 18: 726-733. Laureys S,Owen AM,Schiff ND ( 2004): Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3: 537-546. Majerus S,Gill-Thwaites H,Andrews K,Laureys S ( 2005): Behavioral evaluation of consciousness in severe brain damage. Prog Brain Res 150: 397-413. Dehaene S,Changeux JP ( 2005): Ongoing spontaneous activity controls access to consciousness: A neuronal model for inattentional blindness. PLoS Biol 3: e141. Gusnard DA,Raichle ME ( 2001): Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2: 685-694. Laureys S,Goldman S,Phillips C,Van Bogaert P,Aerts J,Luxen A,Franck G,Maquet P( 1999a): Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET. Neuroimage 9: 377-382. McKiernan KA,D'Angelo BR,Kaufman JN,Binder JR ( 2006): Interrupting the "stream of consciousness": An fMRI investigation. Neuroimage 29: 1185-1191. Steriade M,McCormick DA,Sejnowski TJ ( 1993): Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679-685. Born JD,Albert A,Hans P,Bonnal J ( 1985): Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury. Neurosurgery 16: 595-601. The Multi-Society Task Force on PVS ( 1994): Medical aspects of the persistent vegetative state (1). N Engl J Med 330: 1499-1508. Bates D ( 2005): The vegetative state and the Royal College of Physicians guidance. Neuropsychol Rehabil 15(3/4): 175-183. Fox MD,Snyder AZ,Vincent JL,Raichle ME ( 2007): Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56: 171-184. Gill-Thwaites H,Munday R ( 2004): The Sensory Modality Assessment and Rehabilitation Technique (SMART): A valid and reliable assessment for vegetative state and minimally conscious state patients. Brain Inj 18: 1255-1269. Fransson P ( 2006): How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44: 2836-2845. Boly M,Balteau E,Schnakers C,Degueldre C,Moonen G,Luxen A,Phillips C,Peigneux P,Maquet P,Laureys S( 2007a): Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA 104: 12187-12192. Horovitz SG,Fukunaga M,de Zwart JA,van Gelderen P,Fulton SC,Balkin TJ,Duyn JH ( 2007): Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study. Hum Brain Mapp 29: 671-682. Perrin F,Schnakers C,Schabus M,Degueldre C,Goldman S,Bredart S,Faymonville ME,Lamy M,Moonen G,Luxen A,Maquet P,Laureys S ( 2006): Brain response to one's own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch Neurol 63: 562-569. Vincent JL,Patel GH,Fox MD,Snyder AZ,Baker JT,Van Essen DC,Zempel JM,Snyder LH,Corbetta M,Raichle ME ( 2007): Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447: 83-86. Libet B ( 2006): Reflections on the interaction of the mind and brain. Prog Neurobiol 78(3-5): 322-326. White NS,Alkire MT ( 2003): Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. Neuroimage 19(2 Pt 1): 402-411. Wijdicks EF ( 2001): The diagnosis of brain death. N Engl J Med 344: 1215-1221. Giacino JT,Ashwal S,Childs N,Cranford R,Jennett B,Katz DI,Kelly JP,Rosenberg JH,Whyte J,Zafonte RD,Zasler ND ( 2002): The minimally conscious state: Definition and diagnostic criteria. Neurology 58: 349-353. Tononi G ( 2004): An information integration theory of consciousness. BMC Neurosci 5: 42. Boly M,Coleman MR,Davis MH,Hampshire A,Bor D,Moonen G,Maquet PA,Pickard JD,Laureys S,Owen AM ( 2007b): When thoughts become action: An fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage 36: 979-992. Giacino JT,Kalmar K,Whyte J ( 2004): The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85: 2020-2029. Laureys S,Faymonville ME,Luxen A,Lamy M,Franck G,Maquet P ( 2000b): Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355: 1790-1791. Raichle ME,MacLeod AM,Snyder AZ,Powers WJ,Gusnard DA,Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci USA 98: 676-682. Greicius MD,Krasnow B,Reiss AL,Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258. Laureys S,Lemaire C,Maquet P,Phillips C,Franck G ( 1999b): Cerebral metabolism during vegetative state and after recovery to consciousness. J Neurol Neurosurg Psychiatry 67: 121. Majerus S,Van der Linden M ( 2000): Wessex Head Injury Matrix and Glasgow/Glasgow-Liège Coma Scale: A validation and comparison study. Neuropsychol Rehabil 10: 167-184. Owen AM,Coleman MR,Boly M,Davis MH,Laureys S,Pickard JD ( 2006): Detecting awareness in the vegetative state. Science 313: 1402. Fransson P ( 2005): Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26: 15-29. Laufs H,Krakow K,Sterzer P,Eger E,Beyerle A,Salek-Haddadi A,Kleinschmidt A ( 2003): Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100: 11053-11058. Esposito F,Bertolino A,Scarabino T,Latorre V,Blasi G,Popolizio T,Tedeschi G,Cirillo S,Goebel R,Di Salle F ( 2006): Independent component model of the default-mode brain function: Assessing the impact of active thinking. Brain Res Bull 70(4-6): 263-269. American Electroencephalographic Society ( 1994): Guideline three: Minimum technical standards for EEG recording in suspected cerebral death. American Electroencephalographic Society. J Clin Neurophysiol 11: 10-13. Fransson P,Skiold B,Horsch S,Nordell A,Blennow M,Lagercrantz H,Aden U ( 2007): Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104: 15531-15536. Birn RM,Diamond JB,Smith MA,Bandettini PA ( 2006): Separating respiratory-variation-related fluctuations from neuronal- activity-related fluctuations in fMRI. Neuroimage 31: 1536-1548. Kenet T,Bibitchkov D,Tsodyks M,Grinvald A,Arieli A ( 2003): Spontaneously emerging cortical representations of visual attributes. Nature 425: 954-956. Wijdicks EF ( 1995): Determining brain death in adults. Neurology 45: 1003-1011. Greicius MD,Kiviniemi V,Tervonen O,Vainionpaa V,Alahuhta S,Reiss AL,Menon V ( 2008): Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29: 839-847. Friston K,Ashburner J,Frith C,Poline JB,Heather J,Frackowiak RSJ ( 1995): Spatial realignement and normalization of images. Hum Brain Mapp 2: 165-189. Cordes D,Haughton VM,Arfanakis K,Carew JD,Turski PA,Moritz CH,Quigley MA,Meyerand ME ( 2001): Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol 22: 1326-1333. 2006; 70 2007; 104 2002; 58 2004; 85 1994; 330 2001; 344 2005; 150 2006; 31 2007; 447 2006; 78 2000b; 355 2004; 3 1999; 286 1993; 262 2004; 5 2003; 19 2001; 22 2005; 26 1995; 2 2006; 313 2007; 56 2007; 29 1999b; 67 2007a; 104 2006; 63 2003; 425 2004; 18 1999a; 9 2005; 102 2006; 44 2008; 29 2000; 10 1989; 70 1995; 45 2000a; 123 1994; 11 2006; 29 2001; 2 2005; 3 2005; 15 2007b; 36 2005; 18 2003; 100 1979; 60 1985; 16 2001; 98 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Ansell BJ (e_1_2_6_3_1) 1989; 70 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 Cordes D (e_1_2_6_9_1) 2001; 22 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
| References_xml | – reference: Fransson P,Skiold B,Horsch S,Nordell A,Blennow M,Lagercrantz H,Aden U ( 2007): Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104: 15531-15536. – reference: Birn RM,Diamond JB,Smith MA,Bandettini PA ( 2006): Separating respiratory-variation-related fluctuations from neuronal- activity-related fluctuations in fMRI. Neuroimage 31: 1536-1548. – reference: Fransson P ( 2005): Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26: 15-29. – reference: Friston K,Ashburner J,Frith C,Poline JB,Heather J,Frackowiak RSJ ( 1995): Spatial realignement and normalization of images. Hum Brain Mapp 2: 165-189. – reference: White NS,Alkire MT ( 2003): Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. Neuroimage 19(2 Pt 1): 402-411. – reference: Born JD,Albert A,Hans P,Bonnal J ( 1985): Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury. Neurosurgery 16: 595-601. – reference: Dehaene S,Changeux JP ( 2005): Ongoing spontaneous activity controls access to consciousness: A neuronal model for inattentional blindness. PLoS Biol 3: e141. – reference: Owen AM,Coleman MR,Boly M,Davis MH,Laureys S,Pickard JD ( 2006): Detecting awareness in the vegetative state. Science 313: 1402. – reference: Esposito F,Bertolino A,Scarabino T,Latorre V,Blasi G,Popolizio T,Tedeschi G,Cirillo S,Goebel R,Di Salle F ( 2006): Independent component model of the default-mode brain function: Assessing the impact of active thinking. Brain Res Bull 70(4-6): 263-269. – reference: Majerus S,Gill-Thwaites H,Andrews K,Laureys S ( 2005): Behavioral evaluation of consciousness in severe brain damage. Prog Brain Res 150: 397-413. – reference: Greicius MD,Krasnow B,Reiss AL,Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258. – reference: Greicius MD,Kiviniemi V,Tervonen O,Vainionpaa V,Alahuhta S,Reiss AL,Menon V ( 2008): Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29: 839-847. – reference: Gusnard DA,Raichle ME ( 2001): Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2: 685-694. – reference: Fransson P ( 2006): How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44: 2836-2845. – reference: Gill-Thwaites H,Munday R ( 2004): The Sensory Modality Assessment and Rehabilitation Technique (SMART): A valid and reliable assessment for vegetative state and minimally conscious state patients. Brain Inj 18: 1255-1269. – reference: Horovitz SG,Fukunaga M,de Zwart JA,van Gelderen P,Fulton SC,Balkin TJ,Duyn JH ( 2007): Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study. Hum Brain Mapp 29: 671-682. – reference: Vincent JL,Patel GH,Fox MD,Snyder AZ,Baker JT,Van Essen DC,Zempel JM,Snyder LH,Corbetta M,Raichle ME ( 2007): Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447: 83-86. – reference: Laufs H,Krakow K,Sterzer P,Eger E,Beyerle A,Salek-Haddadi A,Kleinschmidt A ( 2003): Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100: 11053-11058. – reference: Laureys S,Lemaire C,Maquet P,Phillips C,Franck G ( 1999b): Cerebral metabolism during vegetative state and after recovery to consciousness. J Neurol Neurosurg Psychiatry 67: 121. – reference: Raichle ME,MacLeod AM,Snyder AZ,Powers WJ,Gusnard DA,Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci USA 98: 676-682. – reference: Wijdicks EF ( 1995): Determining brain death in adults. Neurology 45: 1003-1011. – reference: Tononi G ( 2004): An information integration theory of consciousness. BMC Neurosci 5: 42. – reference: Tsodyks M,Kenet T,Grinvald A,Arieli A ( 1999): Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286: 1943-1946. – reference: McKiernan KA,D'Angelo BR,Kaufman JN,Binder JR ( 2006): Interrupting the "stream of consciousness": An fMRI investigation. Neuroimage 29: 1185-1191. – reference: Libet B ( 2006): Reflections on the interaction of the mind and brain. Prog Neurobiol 78(3-5): 322-326. – reference: Steriade M,McCormick DA,Sejnowski TJ ( 1993): Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679-685. – reference: Majerus S,Van der Linden M ( 2000): Wessex Head Injury Matrix and Glasgow/Glasgow-Liège Coma Scale: A validation and comparison study. Neuropsychol Rehabil 10: 167-184. – reference: Laureys S,Faymonville ME,Degueldre C,Fiore GD,Damas P,Lambermont B,Janssens N,Aerts J,Franck G,Luxen A,Moonen G,Lamy M,Maquet P( 2000a): Auditory processing in the vegetative state. Brain 123 (Pt 8): 1589-1601. – reference: The Multi-Society Task Force on PVS ( 1994): Medical aspects of the persistent vegetative state (1). N Engl J Med 330: 1499-1508. – reference: American Electroencephalographic Society ( 1994): Guideline three: Minimum technical standards for EEG recording in suspected cerebral death. American Electroencephalographic Society. J Clin Neurophysiol 11: 10-13. – reference: Ansell BJ,Keenan JE ( 1989): The Western Neuro Sensory Stimulation Profile: A tool for assessing slow-to-recover head-injured patients. Arch Phys Med Rehabil 70: 104-108. – reference: Laureys S,Owen AM,Schiff ND ( 2004): Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3: 537-546. – reference: Giacino JT,Ashwal S,Childs N,Cranford R,Jennett B,Katz DI,Kelly JP,Rosenberg JH,Whyte J,Zafonte RD,Zasler ND ( 2002): The minimally conscious state: Definition and diagnostic criteria. Neurology 58: 349-353. – reference: Laureys S,Goldman S,Phillips C,Van Bogaert P,Aerts J,Luxen A,Franck G,Maquet P( 1999a): Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET. Neuroimage 9: 377-382. – reference: Boly M,Coleman MR,Davis MH,Hampshire A,Bor D,Moonen G,Maquet PA,Pickard JD,Laureys S,Owen AM ( 2007b): When thoughts become action: An fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage 36: 979-992. – reference: Perrin F,Schnakers C,Schabus M,Degueldre C,Goldman S,Bredart S,Faymonville ME,Lamy M,Moonen G,Luxen A,Maquet P,Laureys S ( 2006): Brain response to one's own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch Neurol 63: 562-569. – reference: Bates D ( 2005): The vegetative state and the Royal College of Physicians guidance. Neuropsychol Rehabil 15(3/4): 175-183. – reference: Fox MD,Snyder AZ,Vincent JL,Corbetta M,Van Essen DC, et al. ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678. – reference: Cordes D,Haughton VM,Arfanakis K,Carew JD,Turski PA,Moritz CH,Quigley MA,Meyerand ME ( 2001): Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol 22: 1326-1333. – reference: Laureys S,Faymonville ME,Luxen A,Lamy M,Franck G,Maquet P ( 2000b): Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355: 1790-1791. – reference: Laureys S,Perrin F,Schnakers C,Boly M,Majerus S ( 2005): Residual cognitive function in comatose, vegetative and minimally conscious states. Curr Opin Neurol 18: 726-733. – reference: Ingvar DH ( 1979): "Hyperfrontal" distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol Scand 60: 12-25. – reference: Kenet T,Bibitchkov D,Tsodyks M,Grinvald A,Arieli A ( 2003): Spontaneously emerging cortical representations of visual attributes. Nature 425: 954-956. – reference: Boly M,Balteau E,Schnakers C,Degueldre C,Moonen G,Luxen A,Phillips C,Peigneux P,Maquet P,Laureys S( 2007a): Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA 104: 12187-12192. – reference: Fox MD,Snyder AZ,Vincent JL,Raichle ME ( 2007): Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56: 171-184. – reference: Giacino JT,Kalmar K,Whyte J ( 2004): The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85: 2020-2029. – reference: Wijdicks EF ( 2001): The diagnosis of brain death. N Engl J Med 344: 1215-1221. – volume: 18 start-page: 1255 year: 2004 end-page: 1269 article-title: The Sensory Modality Assessment and Rehabilitation Technique (SMART): A valid and reliable assessment for vegetative state and minimally conscious state patients publication-title: Brain Inj – volume: 425 start-page: 954 year: 2003 end-page: 956 article-title: Spontaneously emerging cortical representations of visual attributes publication-title: Nature – volume: 104 start-page: 12187 year: 2007a end-page: 12192 article-title: Baseline brain activity fluctuations predict somatosensory perception in humans publication-title: Proc Natl Acad Sci USA – volume: 2 start-page: 685 year: 2001 end-page: 694 article-title: Searching for a baseline: Functional imaging and the resting human brain publication-title: Nat Rev Neurosci – volume: 355 start-page: 1790 year: 2000b end-page: 1791 article-title: Restoration of thalamocortical connectivity after recovery from persistent vegetative state publication-title: Lancet – volume: 31 start-page: 1536 year: 2006 end-page: 1548 article-title: Separating respiratory‐variation‐related fluctuations from neuronal‐ activity‐related fluctuations in fMRI publication-title: Neuroimage – volume: 16 start-page: 595 year: 1985 end-page: 601 article-title: Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury publication-title: Neurosurgery – volume: 447 start-page: 83 year: 2007 end-page: 86 article-title: Intrinsic functional architecture in the anaesthetized monkey brain publication-title: Nature – volume: 29 start-page: 839 year: 2008 end-page: 847 article-title: Persistent default‐mode network connectivity during light sedation publication-title: Hum Brain Mapp – volume: 29 start-page: 671 year: 2007 end-page: 682 article-title: Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG‐fMRI study publication-title: Hum Brain Mapp – volume: 67 start-page: 121 year: 1999b article-title: Cerebral metabolism during vegetative state and after recovery to consciousness publication-title: J Neurol Neurosurg Psychiatry – volume: 150 start-page: 397 year: 2005 end-page: 413 article-title: Behavioral evaluation of consciousness in severe brain damage publication-title: Prog Brain Res – volume: 344 start-page: 1215 year: 2001 end-page: 1221 article-title: The diagnosis of brain death publication-title: N Engl J Med – volume: 56 start-page: 171 year: 2007 end-page: 184 article-title: Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior publication-title: Neuron – volume: 78 start-page: 322 issue: 3–5 year: 2006 end-page: 326 article-title: Reflections on the interaction of the mind and brain publication-title: Prog Neurobiol – volume: 100 start-page: 253 year: 2003 end-page: 258 article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci USA – volume: 286 start-page: 1943 year: 1999 end-page: 1946 article-title: Linking spontaneous activity of single cortical neurons and the underlying functional architecture publication-title: Science – volume: 70 start-page: 104 year: 1989 end-page: 108 article-title: The Western Neuro Sensory Stimulation Profile: A tool for assessing slow‐to‐recover head‐injured patients publication-title: Arch Phys Med Rehabil – volume: 123 start-page: 1589 issue: Pt 8 year: 2000a end-page: 1601 article-title: Auditory processing in the vegetative state publication-title: Brain – volume: 45 start-page: 1003 year: 1995 end-page: 1011 article-title: Determining brain death in adults publication-title: Neurology – volume: 85 start-page: 2020 year: 2004 end-page: 2029 article-title: The JFK Coma Recovery Scale‐Revised: Measurement characteristics and diagnostic utility publication-title: Arch Phys Med Rehabil – volume: 3 start-page: 537 year: 2004 end-page: 546 article-title: Brain function in coma, vegetative state, and related disorders publication-title: Lancet Neurol – volume: 98 start-page: 676 year: 2001 end-page: 682 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci USA – volume: 102 start-page: 9673 year: 2005 end-page: 9678 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 10 year: 1994 end-page: 13 article-title: Guideline three: Minimum technical standards for EEG recording in suspected cerebral death. American Electroencephalographic Society publication-title: J Clin Neurophysiol – volume: 19 start-page: 402 issue: 2 Pt 1 year: 2003 end-page: 411 article-title: Impaired thalamocortical connectivity in humans during general‐anesthetic‐induced unconsciousness publication-title: Neuroimage – volume: 330 start-page: 1499 year: 1994 end-page: 1508 article-title: Medical aspects of the persistent vegetative state (1) publication-title: N Engl J Med – volume: 22 start-page: 1326 year: 2001 end-page: 1333 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting‐state” data publication-title: AJNR Am J Neuroradiol – volume: 313 start-page: 1402 year: 2006 article-title: Detecting awareness in the vegetative state publication-title: Science – volume: 9 start-page: 377 year: 1999a end-page: 382 article-title: Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET publication-title: Neuroimage – volume: 10 start-page: 167 year: 2000 end-page: 184 article-title: Wessex Head Injury Matrix and Glasgow/Glasgow‐Liège Coma Scale: A validation and comparison study publication-title: Neuropsychol Rehabil – volume: 262 start-page: 679 year: 1993 end-page: 685 article-title: Thalamocortical oscillations in the sleeping and aroused brain publication-title: Science – volume: 104 start-page: 15531 year: 2007 end-page: 15536 article-title: Resting‐state networks in the infant brain publication-title: Proc Natl Acad Sci USA – volume: 60 start-page: 12 year: 1979 end-page: 25 article-title: “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state publication-title: Acta Neurol Scand – volume: 15 start-page: 175 issue: 3/4 year: 2005 end-page: 183 article-title: The vegetative state and the Royal College of Physicians guidance publication-title: Neuropsychol Rehabil – volume: 2 start-page: 165 year: 1995 end-page: 189 article-title: Spatial realignement and normalization of images publication-title: Hum Brain Mapp – volume: 5 start-page: 42 year: 2004 article-title: An information integration theory of consciousness publication-title: BMC Neurosci – volume: 58 start-page: 349 year: 2002 end-page: 353 article-title: The minimally conscious state: Definition and diagnostic criteria publication-title: Neurology – volume: 63 start-page: 562 year: 2006 end-page: 569 article-title: Brain response to one's own name in vegetative state, minimally conscious state, and locked‐in syndrome publication-title: Arch Neurol – volume: 44 start-page: 2836 year: 2006 end-page: 2845 article-title: How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations publication-title: Neuropsychologia – volume: 100 start-page: 11053 year: 2003 end-page: 11058 article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: e141 year: 2005 article-title: Ongoing spontaneous activity controls access to consciousness: A neuronal model for inattentional blindness publication-title: PLoS Biol – volume: 70 start-page: 263 issue: 4–6 year: 2006 end-page: 269 article-title: Independent component model of the default‐mode brain function: Assessing the impact of active thinking publication-title: Brain Res Bull – volume: 18 start-page: 726 year: 2005 end-page: 733 article-title: Residual cognitive function in comatose, vegetative and minimally conscious states publication-title: Curr Opin Neurol – volume: 36 start-page: 979 year: 2007b end-page: 992 article-title: When thoughts become action: An fMRI paradigm to study volitional brain activity in non‐communicative brain injured patients publication-title: Neuroimage – volume: 29 start-page: 1185 year: 2006 end-page: 1191 article-title: Interrupting the “stream of consciousness”: An fMRI investigation publication-title: Neuroimage – volume: 26 start-page: 15 year: 2005 end-page: 29 article-title: Spontaneous low‐frequency BOLD signal fluctuations: An fMRI investigation of the resting‐state default mode of brain function hypothesis publication-title: Hum Brain Mapp – volume: 70 start-page: 104 year: 1989 ident: e_1_2_6_3_1 article-title: The Western Neuro Sensory Stimulation Profile: A tool for assessing slow‐to‐recover head‐injured patients publication-title: Arch Phys Med Rehabil – ident: e_1_2_6_47_1 doi: 10.1212/WNL.45.5.1003 – ident: e_1_2_6_41_1 doi: 10.1126/science.8235588 – ident: e_1_2_6_10_1 doi: 10.1371/journal.pbio.0030141 – volume: 22 start-page: 1326 year: 2001 ident: e_1_2_6_9_1 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting‐state” data publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_43_1 doi: 10.1186/1471-2202-5-42 – ident: e_1_2_6_25_1 doi: 10.1111/j.1600-0404.1979.tb02947.x – ident: e_1_2_6_29_1 doi: 10.1136/jnnp.67.1.121 – ident: e_1_2_6_7_1 doi: 10.1016/j.neuroimage.2007.02.047 – ident: e_1_2_6_36_1 doi: 10.1016/S0079-6123(05)50028-1 – ident: e_1_2_6_12_1 doi: 10.1073/pnas.0504136102 – ident: e_1_2_6_6_1 doi: 10.1073/pnas.0611404104 – ident: e_1_2_6_48_1 doi: 10.1056/NEJM200104193441606 – ident: e_1_2_6_17_1 doi: 10.1002/hbm.460030303 – ident: e_1_2_6_20_1 doi: 10.1080/02699050410001719952 – ident: e_1_2_6_23_1 doi: 10.1038/35094500 – ident: e_1_2_6_30_1 doi: 10.1093/brain/123.8.1589 – ident: e_1_2_6_32_1 doi: 10.1016/S1474-4422(04)00852-X – ident: e_1_2_6_4_1 doi: 10.1080/09602010443000399 – ident: e_1_2_6_40_1 doi: 10.1073/pnas.98.2.676 – ident: e_1_2_6_35_1 doi: 10.1080/096020100389237 – ident: e_1_2_6_38_1 doi: 10.1126/science.1130197 – ident: e_1_2_6_18_1 doi: 10.1212/WNL.58.3.349 – ident: e_1_2_6_27_1 doi: 10.1073/pnas.1831638100 – ident: e_1_2_6_34_1 doi: 10.1016/j.pneurobio.2006.02.003 – ident: e_1_2_6_2_1 doi: 10.1097/00004691-199401000-00004 – ident: e_1_2_6_8_1 doi: 10.1227/00006123-198505000-00002 – ident: e_1_2_6_39_1 doi: 10.1001/archneur.63.4.562 – ident: e_1_2_6_31_1 doi: 10.1016/S0140-6736(00)02271-6 – ident: e_1_2_6_42_1 doi: 10.1056/NEJM199405263302107 – ident: e_1_2_6_5_1 doi: 10.1016/j.neuroimage.2006.02.048 – ident: e_1_2_6_13_1 doi: 10.1016/j.neuron.2007.08.023 – ident: e_1_2_6_44_1 doi: 10.1126/science.286.5446.1943 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.0704380104 – ident: e_1_2_6_28_1 doi: 10.1006/nimg.1998.0414 – ident: e_1_2_6_22_1 doi: 10.1002/hbm.20537 – ident: e_1_2_6_37_1 doi: 10.1016/j.neuroimage.2005.09.030 – ident: e_1_2_6_14_1 doi: 10.1002/hbm.20113 – ident: e_1_2_6_33_1 doi: 10.1097/01.wco.0000189874.92362.12 – ident: e_1_2_6_24_1 doi: 10.1002/hbm.20428 – ident: e_1_2_6_11_1 doi: 10.1016/j.brainresbull.2006.06.012 – ident: e_1_2_6_46_1 doi: 10.1016/S1053-8119(03)00103-4 – ident: e_1_2_6_45_1 doi: 10.1038/nature05758 – ident: e_1_2_6_26_1 doi: 10.1038/nature02078 – ident: e_1_2_6_19_1 doi: 10.1016/j.apmr.2004.02.033 – ident: e_1_2_6_21_1 doi: 10.1073/pnas.0135058100 – ident: e_1_2_6_15_1 doi: 10.1016/j.neuropsychologia.2006.06.017 |
| SSID | ssj0011501 |
| Score | 2.4458814 |
| Snippet | Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level‐dependent (BOLD) signal in awake healthy subjects showed the presence of... Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of... |
| SourceID | pubmedcentral liege proquest pubmed pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2393 |
| SubjectTerms | Adult Biological and medical sciences Brain - physiopathology Brain Death - physiopathology Brain Mapping consciousness default network Electrodiagnosis. Electric activity recording Female Frontal Lobe - physiopathology functional MRI Gyrus Cinguli - physiopathology Human health sciences Humans Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging Male Medical sciences Middle Aged Nervous system Neural Pathways - physiopathology Neurologie Neurology Persistent Vegetative State - physiopathology Radiodiagnosis. Nmr imagery. Nmr spectrometry Rest - physiology resting state Sciences de la santé humaine Thalamus - physiopathology vegetative state |
| Title | Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient |
| URI | https://api.istex.fr/ark:/67375/WNG-09HZNPK9-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20672 https://www.ncbi.nlm.nih.gov/pubmed/19350563 https://www.proquest.com/docview/67493643 https://www.proquest.com/docview/745936786 https://www.proquest.com/docview/754550928 https://orbi.uliege.be/handle/2268/27014 https://pubmed.ncbi.nlm.nih.gov/PMC6870763 |
| Volume | 30 |
| WOSCitedRecordID | wos000268698700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKQYgLjxZoeCwWQlUlFDUPO07EqTyWRdCoB6CrXizbceiqSxbtS3DjpzNjZ1NWtAiJU6LN2FZmx5lv7PE3hDzjsRICPEFoOc9CZuI0VFFuw4LxpE4UF5WjFPr8QZRlPhwWRxvkxeosjOeH6BbccGa47zVOcKVn--ekoacaD5JnAr-_MYuxesHxu7LbQQCg44ItcLEwsIhXrEJRst-1XPNFV1Gt3-E6xt1qzJFUM1BT7etbXARA_8yj_B3fOgfVv_Vfr3ab3GxxKT3whnSHbNhmi2wfNBCTf_1Bd6nLFHVL8Fvk-mG7Ib9NfvbBL_rlRGowZ8b4ahR01FCAlrSytVqM57Tx2ebUn4qkWBAEr-44Ex3NKKbjYu5lhQ0VXYJu5o6SnOoFtJ7M_e8aC1pAp6qiLSHsXfKp_-bjq0HYFnUIDUc0r7kumFY1hIWWR5nKNYCwpNaWpVFVW8aFSpnNDa8Qu9V5bQwDSMdqmwHYzKv0HtlsJo3dIZQZkSK9YWxqwxKTalNU1qQQ72sFMLUKyN7q75WmZTzHwhtj6bmaEwmKlk7RAXnaiX7zNB8XCe06G-kk1PQM8-IEl8flWxkVg5Py6H0hXwfkuTMiOZnqkVwmEjm83f1i_EUqI7WVAHtzmQiIUAPSWzO1rnuIFqHvKA_Ik5XtSZj8uKOjGjtZzGBwVqSAKQNCL5EQDEs2ijz7iwjHk-1FAuPc9_Z8roIiRYQM_Ys1S-8E8MXWnzSjU0dSnoEjENhyz1n65VqVg5eH7ubBv4s-JDf8rh4mYj4im_Ppwj4m18xyPppNe-SKGOY99zn4BWKdYx8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqFgEXHi2P8GgthKpKKGo2seNE4lIey1bdjXootOrFsh2HRixZtC_BjZ_OjL2bsqJFSJwSbca2MjvOfGOPvyHkJe8oIcAThJbzNGSmk4QqymyYMx5XseKidJRCn_qiKLKzs_x4jbxenoXx_BDtghvODPe9xgmOC9L7l6yhFxpPkqcCPsAbDIAGFm44PSzaPQSAOi7cAicLQ4vOklcoivfbpiveaAMV-x2uQ9yvxixJNQFFVb7CxVUQ9M9Myt8RrnNR3bv_93L3yJ0FNKUH3pbukzXbbJKtgwbC8q8_6C51yaJuFX6T3Bws9uS3yM8uuEa_okgNps0YX5CC1g0FdElLW6nZcEobn3BO_cFIijVB8OpONNF6QjEjF9MvS2yo6ByUM3Ws5FTPoPVo6n_XWNMCOlUlXXDCPiAfu-9P3vbCRV2H0HAE9JrrnGlVQWRoeZSqTAMOiyttWRKVlWVcqITZzPAS4VuVVcYwQHWssingzaxMHpL1ZtTYx4QyIxJkOOyYyrDYJNrkpTUJhPxaAVItA7K3_H-lWZCeY-2NofR0zbEERUun6IC8aEW_eaaPq4R2nZG0Emr8BVPjBJenxQcZ5b3z4vgol-8C8spZkRyNdS3nsUQab3c_G36WykhtJSDfTMYCgtSAbK_YWts9BIzQd5QFZGdpfBLmP27qqMaOZhMYnOUJwMqA0GskBMOqjSJL_yLC8XB7HsM4j7xBX6ogTxAkQ_9ixdRbAXyx1SdNfeF4ylPwBQJb7jlTv16rsvdm4G6e_LvoDrnVOxn0Zf-wOHpKbvtNPszLfEbWp-OZfU5umPm0noy33VfhF_oRZlU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqFlVceLRQwqO1EKoqoajZxI4TiUuhLK3aRnvgUXGxbMemK5ZstS_BjZ_OjL2bsqJFSJwSbca2MjuOv7FnviHkBe8oIWAliC3necxMJ4tVUti4ZDx1qeKi9pRCH09FVRXn52Vvhbxa5MIEfoh2ww1nhv9e4wS3l7Xbv2INvdCYSZ4L-ACvsRz8ccwnOa7aMwSAOt7dgkUWhhadBa9Qku63TZdWozVU7He4DvC8GqMk1RgU5UKFi-sg6J-RlL8jXL9Ede_-38vdI3fm0JQeBFu6T1Zss0E2Dxpwy7_9oLvUB4v6XfgNsn42P5PfJD-7sDSGHUVqMGzGhIIUtN9QQJe0tk5NBxPahIBzGhIjKdYEwavPaKL9McWIXAy_rLGhojNQzsSzklM9hdbDSfhdY00L6FTVdM4J-4B86L59_-Yontd1iA1HQK-5LplWDjxDy5NcFRpwWOq0ZVlSO8u4UBmzheE1wjdXOGMYoDrmbA54s6izh2S1GTb2EaHMiAwZDjvGGZaaTJuytiYDl18rQKp1RPYW_680c9JzrL0xkIGuOZWgaOkVHZHnrehlYPq4TmjXG0kroUZfMTROcPmpeieT8uhz1Tsp5WFEXnorksOR7stZKpHG299PB1-kMlJbCci3kKkAJzUi20u21nYPDiP0nRQR2VkYn4T5j4c6qrHD6RgGZ2UGsDIi9AYJwbBqoyjyv4hwTG4vUxhnKxj0lQrKDEEy9C-WTL0VwBdbftL0LzxPeQ5rgcCWe97Ub9aqPHp95m8e_7voDlnvHXbl6XF18oTcDmd8GJb5lKxORlP7jNwys0l_PNr2H4VfF81l2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+connectivity+in+the+default+network+during+resting+state+is+preserved+in+a+vegetative+but+not+in+a+brain+dead+patient&rft.jtitle=Human+brain+mapping&rft.au=Boly%2C+M.&rft.au=Tshibanda%2C+L.&rft.au=Vanhaudenhuyse%2C+A.&rft.au=Noirhomme%2C+Q.&rft.date=2009-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=30&rft.issue=8&rft.spage=2393&rft.epage=2400&rft_id=info:doi/10.1002%2Fhbm.20672&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_09HZNPK9_D |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |