Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient

Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level‐dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluct...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Human brain mapping Ročník 30; číslo 8; s. 2393 - 2400
Hlavní autoři: Boly, M., Tshibanda, L., Vanhaudenhuyse, A., Noirhomme, Q., Schnakers, C., Ledoux, D., Boveroux, P., Garweg, C., Lambermont, B., Phillips, C., Luxen, A., Moonen, G., Bassetti, C., Maquet, P., Laureys, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2009
Wiley-Liss
Wiley Liss, Inc
Témata:
ISSN:1065-9471, 1097-0193, 1097-0193
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level‐dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico‐thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico‐cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio‐respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age‐matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task‐positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long‐distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.
AbstractList Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico-thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico-cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio-respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age-matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task-positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long-distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population. Hum Brain Mapp, 2009.
Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico-thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico-cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio-respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age-matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task-positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long-distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population.Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico-thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico-cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio-respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age-matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task-positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long-distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population.
Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level‐dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico‐thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico‐cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio‐respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age‐matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task‐positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long‐distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.
Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of coherent fluctuations among functionally defined neuroanatomical networks. However, the functional significance of these spontaneous BOLD fluctuations remains poorly understood. By means of 3 T functional MRI, we demonstrate absent cortico-thalamic BOLD functional connectivity (i.e. between posterior cingulate/precuneal cortex and medial thalamus), but preserved cortico-cortical connectivity within the default network in a case of vegetative state (VS) studied 2.5 years following cardio-respiratory arrest, as documented by extensive behavioral and paraclinical assessments. In the VS patient, as in age-matched controls, anticorrelations could also be observed between posterior cingulate/precuneus and a previously identified task-positive cortical network. Both correlations and anticorrelations were significantly reduced in VS as compared to controls. A similar approach in a brain dead patient did not show any such long-distance functional connectivity. We conclude that some slow coherent BOLD fluctuations previously identified in healthy awake human brain can be found in alive but unaware patients, and are thus unlikely to be uniquely due to ongoing modifications of conscious thoughts. Future studies are needed to give a full characterization of default network connectivity in the VS patients population.
Author Laureys, S.
Boly, M.
Phillips, C.
Bassetti, C.
Ledoux, D.
Noirhomme, Q.
Moonen, G.
Maquet, P.
Boveroux, P.
Garweg, C.
Tshibanda, L.
Vanhaudenhuyse, A.
Luxen, A.
Schnakers, C.
Lambermont, B.
AuthorAffiliation 6 Department of Neurology, University Hospital, Zürich, Switzerland
2 Department of Neurology, Sart Tilman University Hospital, Liège, Belgium
3 Department of Radiology, Sart Tilman University Hospital, Liège, Belgium
5 Department of Internal Medicine, Sart Tilman University Hospital, Liège, Belgium
4 Department of Anesthesiology and Reanimation, Sart Tilman University Hospital, Liège, Belgium
1 Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium
AuthorAffiliation_xml – name: 5 Department of Internal Medicine, Sart Tilman University Hospital, Liège, Belgium
– name: 2 Department of Neurology, Sart Tilman University Hospital, Liège, Belgium
– name: 1 Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium
– name: 3 Department of Radiology, Sart Tilman University Hospital, Liège, Belgium
– name: 4 Department of Anesthesiology and Reanimation, Sart Tilman University Hospital, Liège, Belgium
– name: 6 Department of Neurology, University Hospital, Zürich, Switzerland
Author_xml – sequence: 1
  givenname: M.
  surname: Boly
  fullname: Boly, M.
  email: mboly@student.ulg.ac.be
  organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium
– sequence: 2
  givenname: L.
  surname: Tshibanda
  fullname: Tshibanda, L.
  organization: Department of Radiology, Sart Tilman University Hospital, Liège, Belgium
– sequence: 3
  givenname: A.
  surname: Vanhaudenhuyse
  fullname: Vanhaudenhuyse, A.
  organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium
– sequence: 4
  givenname: Q.
  surname: Noirhomme
  fullname: Noirhomme, Q.
  organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium
– sequence: 5
  givenname: C.
  surname: Schnakers
  fullname: Schnakers, C.
  organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium
– sequence: 6
  givenname: D.
  surname: Ledoux
  fullname: Ledoux, D.
  organization: Department of Anesthesiology and Reanimation, Sart Tilman University Hospital, Liège, Belgium
– sequence: 7
  givenname: P.
  surname: Boveroux
  fullname: Boveroux, P.
  organization: Department of Anesthesiology and Reanimation, Sart Tilman University Hospital, Liège, Belgium
– sequence: 8
  givenname: C.
  surname: Garweg
  fullname: Garweg, C.
  organization: Department of Internal Medicine, Sart Tilman University Hospital, Liège, Belgium
– sequence: 9
  givenname: B.
  surname: Lambermont
  fullname: Lambermont, B.
  organization: Department of Internal Medicine, Sart Tilman University Hospital, Liège, Belgium
– sequence: 10
  givenname: C.
  surname: Phillips
  fullname: Phillips, C.
  organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium
– sequence: 11
  givenname: A.
  surname: Luxen
  fullname: Luxen, A.
  organization: Department of Radiology, Sart Tilman University Hospital, Liège, Belgium
– sequence: 12
  givenname: G.
  surname: Moonen
  fullname: Moonen, G.
  organization: Department of Neurology, Sart Tilman University Hospital, Liège, Belgium
– sequence: 13
  givenname: C.
  surname: Bassetti
  fullname: Bassetti, C.
  organization: Department of Neurology, University Hospital, Zürich, Switzerland
– sequence: 14
  givenname: P.
  surname: Maquet
  fullname: Maquet, P.
  organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium
– sequence: 15
  givenname: S.
  surname: Laureys
  fullname: Laureys, S.
  organization: Coma Science Group, Cyclotron Research Center, University of Liège, Liège, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21737508$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19350563$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAQxyNURB9w4AsgXwBxSGs7duxcKkGhXUQpHEBIXCzHmeyaZu3FTrbsjY-Os7tdAeJxGnvm95-HPYfZnvMOsuwhwccEY3oyq-fHFJeC3skOCK5EjklV7I3nkucVE2Q_O4zxC8aEcEzuZfspzDEvi4Ps-_ngTG-90x0y3jlIl6XtV8g61M8ANdDqoeuRg_7Gh2vUDMG6KQoQ-9HGXveAbESL5IGwhGYUarSEKaSQXQKqh6T2_cZfB51sA7pBixQG19_P7ra6i_Bga4-yj-evPpxN8st3F6_Pnl_mhktJ85rXFat1y5gEjksta8oxbWtgBW5aYFzogoE0vCGyqFrZGsNYwVkLJSeVbIqj7HSTdzHUc2hMKh10pxbBznVYKa-t-jXi7ExN_VKVUmBRFikB3STobBpO-VBbtaRr4fo8dFOljapBUVpKRQUmLImebqsG_3VIj6bmNhroOu3AD1EJzjjHFZX_JxmvilLIMpFP_kmWgiWSjR0_-nnk3ay3v5-Ax1tAR6O7NmhnbNxxlIhCcDz2drLhTPAxBmiVsePv-vGlbKcIVuMeqrSHar2HSfHsN8Wu-B_YbfYb28Hq76CavHh7q8g3Cht7-LZT6HCdhk8tq09XFwpXk89X799U6mXxAyfZ_Pg
CitedBy_id crossref_primary_10_1002_hbm_23370
crossref_primary_10_1016_j_jphysparis_2015_11_002
crossref_primary_10_3389_fneur_2020_00933
crossref_primary_10_1002_hbm_22166
crossref_primary_10_1016_j_brainres_2009_12_075
crossref_primary_10_3389_fncir_2017_00015
crossref_primary_10_1007_s11055_021_01173_4
crossref_primary_10_1111_cns_14641
crossref_primary_10_1016_j_yebeh_2013_09_005
crossref_primary_10_1016_j_clinph_2018_08_009
crossref_primary_10_1016_j_nic_2017_06_005
crossref_primary_10_3109_02699052_2013_775507
crossref_primary_10_1371_journal_pone_0298110
crossref_primary_10_3390_brainsci9050123
crossref_primary_10_1162_jocn_a_00517
crossref_primary_10_1016_j_nicl_2015_11_004
crossref_primary_10_1002_hbm_26199
crossref_primary_10_1038_nrneurol_2013_279
crossref_primary_10_1016_j_neubiorev_2013_05_004
crossref_primary_10_1109_JBHI_2022_3218652
crossref_primary_10_1016_j_bandc_2018_02_005
crossref_primary_10_1016_j_yebeh_2013_09_014
crossref_primary_10_1161_STROKEAHA_114_007645
crossref_primary_10_1016_j_neuropsychologia_2020_107487
crossref_primary_10_1097_WCO_0b013e328359488f
crossref_primary_10_1073_pnas_1216856110
crossref_primary_10_1007_s11948_014_9583_3
crossref_primary_10_1093_brain_awv169
crossref_primary_10_1016_j_neuroimage_2010_08_035
crossref_primary_10_1016_j_neuroimage_2009_05_031
crossref_primary_10_1038_ncomms8751
crossref_primary_10_1093_cercor_bhu089
crossref_primary_10_1089_neu_2012_2654
crossref_primary_10_1016_j_nicl_2022_102962
crossref_primary_10_1093_nc_nix010
crossref_primary_10_1007_s00415_012_6734_9
crossref_primary_10_1007_s10072_011_0636_y
crossref_primary_10_1162_jocn_a_01025
crossref_primary_10_1007_s00415_024_12591_y
crossref_primary_10_1016_j_neuroimage_2012_12_049
crossref_primary_10_1002_hbm_23269
crossref_primary_10_1016_j_neuroimage_2017_11_030
crossref_primary_10_1016_j_brainresbull_2013_06_008
crossref_primary_10_1038_s41598_020_68683_y
crossref_primary_10_1002_hbm_22056
crossref_primary_10_1007_s11682_020_00378_4
crossref_primary_10_3109_02699052_2013_794961
crossref_primary_10_1017_S1355617716000485
crossref_primary_10_1016_j_nicl_2019_101998
crossref_primary_10_1016_j_nicl_2022_102951
crossref_primary_10_1016_j_clineuro_2019_105465
crossref_primary_10_1371_journal_pone_0026373
crossref_primary_10_3389_fnins_2023_1113695
crossref_primary_10_3233_JAD_161105
crossref_primary_10_3389_fnins_2023_1166187
crossref_primary_10_1016_S1474_4422_16_00111_3
crossref_primary_10_1089_neu_2014_3539
crossref_primary_10_1002_hbm_21151
crossref_primary_10_1016_j_nicl_2013_12_005
crossref_primary_10_1016_j_neuroimage_2009_07_028
crossref_primary_10_1007_s00415_016_8083_6
crossref_primary_10_1371_journal_pone_0016322
crossref_primary_10_1016_j_brainres_2012_05_006
crossref_primary_10_3390_ctn7030021
crossref_primary_10_1111_ane_12299
crossref_primary_10_1212_WNL_0b013e318233b3b4
crossref_primary_10_1212_CPJ_0000000000000473
crossref_primary_10_1212_CPJ_0000000000000596
crossref_primary_10_1038_nrneurol_2009_198
crossref_primary_10_1007_s10339_009_0355_y
crossref_primary_10_1007_s10943_019_00886_8
crossref_primary_10_1016_j_jneumeth_2012_08_016
crossref_primary_10_2217_fnl_10_87
crossref_primary_10_1038_s41598_021_91211_5
crossref_primary_10_4329_wjr_v6_i8_589
crossref_primary_10_1097_MCC_0b013e328343476d
crossref_primary_10_1371_journal_pone_0036222
crossref_primary_10_1016_j_neulet_2016_05_045
crossref_primary_10_1186_1471_2377_10_77
crossref_primary_10_3390_jcm9030828
crossref_primary_10_1016_j_pediatrneurol_2023_12_003
crossref_primary_10_1007_s12264_018_0253_3
crossref_primary_10_1016_j_concog_2020_103031
crossref_primary_10_1097_WNP_0000000000000846
crossref_primary_10_1097_WCO_0b013e328347da94
crossref_primary_10_3389_fpsyg_2015_00028
crossref_primary_10_1007_s10548_018_0693_0
crossref_primary_10_3389_fneur_2022_990686
crossref_primary_10_3389_fnhum_2017_00489
crossref_primary_10_1002_ana_24634
crossref_primary_10_1136_postgradmedj_2014_133211
crossref_primary_10_3171_2015_7_JNS15617
crossref_primary_10_1212_WNL_0b013e31823fcd61
crossref_primary_10_1016_j_neuron_2011_03_018
crossref_primary_10_1073_pnas_1418031112
crossref_primary_10_1016_j_neuroimage_2017_01_020
crossref_primary_10_1016_j_neurol_2010_01_008
crossref_primary_10_1093_nc_niw011
crossref_primary_10_1038_srep38866
crossref_primary_10_1016_j_neuroimage_2021_118466
crossref_primary_10_3389_fpsyg_2018_00585
crossref_primary_10_1016_j_nicl_2018_07_025
crossref_primary_10_1007_s00234_009_0614_8
crossref_primary_10_1038_nrneurol_2014_15
crossref_primary_10_1007_s00134_023_07110_y
crossref_primary_10_1007_s10339_015_0743_4
crossref_primary_10_1016_j_nicl_2019_101687
crossref_primary_10_1111_jon_12033
crossref_primary_10_1111_cns_14009
crossref_primary_10_1016_j_nicl_2023_103358
crossref_primary_10_1162_imag_a_00366
crossref_primary_10_3389_fnhum_2014_00362
crossref_primary_10_1016_j_cortex_2011_04_014
crossref_primary_10_1002_acn3_70094
crossref_primary_10_1176_appi_ajp_2012_11060976
crossref_primary_10_1016_j_neuropsychologia_2014_01_020
crossref_primary_10_1016_j_neuropsychologia_2016_01_022
crossref_primary_10_1016_j_clinph_2015_10_044
crossref_primary_10_3389_fneur_2025_1497316
crossref_primary_10_1002_hbm_22308
crossref_primary_10_3389_fneur_2018_00439
crossref_primary_10_1371_journal_pone_0037238
crossref_primary_10_1089_brain_2011_0049
crossref_primary_10_1016_j_neuroimage_2011_12_041
crossref_primary_10_3389_fnhum_2015_00105
crossref_primary_10_3390_brainsci13050814
crossref_primary_10_1016_j_neuroimage_2015_01_037
crossref_primary_10_1016_j_acra_2015_10_013
crossref_primary_10_1007_s11434_015_0910_0
crossref_primary_10_1162_jocn_2010_21488
crossref_primary_10_1097_WCO_0b013e32833fd4e7
crossref_primary_10_1016_j_nicl_2016_06_003
crossref_primary_10_1371_journal_pone_0093252
crossref_primary_10_1002_hbm_21249
crossref_primary_10_1073_pnas_1311868111
crossref_primary_10_1186_s13195_019_0575_z
crossref_primary_10_3390_brainsci11060749
crossref_primary_10_1007_s00234_022_02911_2
crossref_primary_10_1016_j_neuropsychologia_2013_03_012
crossref_primary_10_1016_j_neuroimage_2015_12_034
crossref_primary_10_1016_j_cortex_2018_05_004
crossref_primary_10_1016_j_clinph_2015_01_017
crossref_primary_10_3389_fneur_2023_1227195
crossref_primary_10_3390_bs14040349
crossref_primary_10_1148_radiol_14132388
crossref_primary_10_1027_0269_8803_a000015
crossref_primary_10_1089_brain_2012_0117
crossref_primary_10_1515_REVNEURO_2009_20_3_4_203
crossref_primary_10_1371_journal_pone_0100012
crossref_primary_10_1523_JNEUROSCI_3769_11_2012
crossref_primary_10_1002_ana_23635
crossref_primary_10_3389_fnins_2021_766633
crossref_primary_10_1016_j_neuroimage_2012_06_074
crossref_primary_10_1002_brb3_424
crossref_primary_10_1146_annurev_clinpsy_032511_143049
crossref_primary_10_1007_s12264_018_0250_6
crossref_primary_10_1016_j_aucc_2011_10_002
crossref_primary_10_1089_brain_2016_0448
crossref_primary_10_1155_2014_462765
crossref_primary_10_1523_JNEUROSCI_0415_15_2015
crossref_primary_10_3389_fnsys_2020_00042
crossref_primary_10_1097_WNR_0000000000000853
crossref_primary_10_3389_fnhum_2020_00230
crossref_primary_10_1016_j_concog_2010_08_003
crossref_primary_10_1007_s12630_023_02421_6
crossref_primary_10_1155_2012_385626
crossref_primary_10_1038_s41598_018_31525_z
crossref_primary_10_1093_brain_awp313
crossref_primary_10_1016_j_nec_2017_05_004
crossref_primary_10_1007_s11682_022_00668_z
crossref_primary_10_1089_neu_2015_4003
crossref_primary_10_1007_s10548_012_0267_5
crossref_primary_10_1016_j_cortex_2013_11_005
crossref_primary_10_3917_jalmalv_111_0093
crossref_primary_10_1146_annurev_clinpsy_032511_143050
crossref_primary_10_1007_s12264_018_0259_x
crossref_primary_10_3389_fneur_2021_778951
crossref_primary_10_3390_diagnostics14121287
crossref_primary_10_3389_fneur_2018_00492
crossref_primary_10_1016_j_neulet_2017_04_036
crossref_primary_10_1016_j_nicl_2019_101702
crossref_primary_10_1371_journal_pcbi_1003271
crossref_primary_10_1016_j_cortex_2017_02_011
crossref_primary_10_1007_s00429_014_0948_9
crossref_primary_10_2217_fnl_12_77
crossref_primary_10_1002_ana_24479
crossref_primary_10_1016_j_nicl_2013_09_010
crossref_primary_10_1089_brain_2014_0336
crossref_primary_10_3109_02699052_2014_920527
crossref_primary_10_7554_eLife_04499
crossref_primary_10_1093_sleep_zsy235
crossref_primary_10_1097_ALN_0b013e3182a7ca92
crossref_primary_10_1007_s11682_017_9684_0
crossref_primary_10_3390_brainsci11081107
crossref_primary_10_1523_JNEUROSCI_1020_12_2012
crossref_primary_10_1016_j_neuroimage_2012_05_060
crossref_primary_10_3109_02699052_2014_920522
crossref_primary_10_1016_j_brainres_2024_149133
crossref_primary_10_3109_02699052_2013_793395
crossref_primary_10_1002_jnr_24921
crossref_primary_10_1177_197140091102400222
crossref_primary_10_1007_s11682_015_9417_1
crossref_primary_10_1093_cercor_bhq105
crossref_primary_10_31083_j_jin2201023
crossref_primary_10_1002_hbm_23611
crossref_primary_10_1080_17588928_2010_485677
Cites_doi 10.1212/WNL.45.5.1003
10.1126/science.8235588
10.1371/journal.pbio.0030141
10.1186/1471-2202-5-42
10.1111/j.1600-0404.1979.tb02947.x
10.1136/jnnp.67.1.121
10.1016/j.neuroimage.2007.02.047
10.1016/S0079-6123(05)50028-1
10.1073/pnas.0504136102
10.1073/pnas.0611404104
10.1056/NEJM200104193441606
10.1002/hbm.460030303
10.1080/02699050410001719952
10.1038/35094500
10.1093/brain/123.8.1589
10.1016/S1474-4422(04)00852-X
10.1080/09602010443000399
10.1073/pnas.98.2.676
10.1080/096020100389237
10.1126/science.1130197
10.1212/WNL.58.3.349
10.1073/pnas.1831638100
10.1016/j.pneurobio.2006.02.003
10.1097/00004691-199401000-00004
10.1227/00006123-198505000-00002
10.1001/archneur.63.4.562
10.1016/S0140-6736(00)02271-6
10.1056/NEJM199405263302107
10.1016/j.neuroimage.2006.02.048
10.1016/j.neuron.2007.08.023
10.1126/science.286.5446.1943
10.1073/pnas.0704380104
10.1006/nimg.1998.0414
10.1002/hbm.20537
10.1016/j.neuroimage.2005.09.030
10.1002/hbm.20113
10.1097/01.wco.0000189874.92362.12
10.1002/hbm.20428
10.1016/j.brainresbull.2006.06.012
10.1016/S1053-8119(03)00103-4
10.1038/nature05758
10.1038/nature02078
10.1016/j.apmr.2004.02.033
10.1073/pnas.0135058100
10.1016/j.neuropsychologia.2006.06.017
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
2009 INIST-CNRS
(c) 2009 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: 2009 INIST-CNRS
– notice: (c) 2009 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
JLOSS
Q33
5PM
DOI 10.1002/hbm.20672
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic
Neurosciences Abstracts
CrossRef



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Default Network Connectivity in Vegetative State
EISSN 1097-0193
EndPage 2400
ExternalDocumentID PMC6870763
oai_orbi_ulg_ac_be_2268_27014
19350563
21737508
10_1002_hbm_20672
HBM20672
ark_67375_WNG_09HZNPK9_D
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Concerted Research Action from Belgian French Community
  funderid: ARC 06/11‐340
– fundername: University of Liège
– fundername: Mind Science Foundation
– fundername: Centre Hospitalier Universitaire Sart Tilman
– fundername: Fondation Médicale Reine Elisabeth
– fundername: McDonnell Foundation
– fundername: Belgian Fonds National de la Recherche Scientifique (FNRS)
  funderid: 3.4517.04
– fundername: European Commission
– fundername: Concerted Research Action from Belgian French Community
  grantid: ARC 06/11‐340
– fundername: Belgian Fonds National de la Recherche Scientifique (FNRS)
  grantid: 3.4517.04
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFFHD
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
33P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
C45
RWD
RWI
WRC
WUP
AAYXX
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
JLOSS
Q33
5PM
ID FETCH-LOGICAL-c5882-b5b94baf448e506a8b2502fbe430dfe457a34e8c5d1839f8fcc44354fe65198d3
IEDL.DBID WIN
ISICitedReferencesCount 241
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268698700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:25:15 EDT 2025
Sat Nov 29 01:23:34 EST 2025
Sat Sep 27 21:43:44 EDT 2025
Sun Nov 09 10:35:25 EST 2025
Thu Oct 02 07:07:15 EDT 2025
Thu Apr 03 07:03:20 EDT 2025
Mon Jul 21 09:14:02 EDT 2025
Sat Nov 29 06:33:40 EST 2025
Tue Nov 18 21:38:26 EST 2025
Wed Jan 22 16:47:06 EST 2025
Tue Nov 11 03:32:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Coma
Human
Nervous system diseases
Radiodiagnosis
consciousness
Consciousness impairment
Brain death
Vegetative state
default network
Nuclear magnetic resonance imaging
functional MRI
resting state
Neurological disorder
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
(c) 2009 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5882-b5b94baf448e506a8b2502fbe430dfe457a34e8c5d1839f8fcc44354fe65198d3
Notes istex:43A61D0029371F2346E492CDA9CE450A67B1B941
Centre Hospitalier Universitaire Sart Tilman
ArticleID:HBM20672
Fondation Médicale Reine Elisabeth
McDonnell Foundation
Belgian Fonds National de la Recherche Scientifique (FNRS) - No. 3.4517.04
University of Liège
European Commission
Concerted Research Action from Belgian French Community - No. ARC 06/11-340
ark:/67375/WNG-09HZNPK9-D
Mind Science Foundation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-67650480164
ORCID 0000-0002-4288-9237
0000-0002-4990-425X
0000-0001-7915-8748
0000-0002-9314-6564
0000-0003-3106-3357
0000-0002-9134-3265
0000-0002-3096-3807
OpenAccessLink https://orbi.uliege.be/handle/2268/27014
PMID 19350563
PQID 67493643
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870763
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_27014
proquest_miscellaneous_754550928
proquest_miscellaneous_745936786
proquest_miscellaneous_67493643
pubmed_primary_19350563
pascalfrancis_primary_21737508
crossref_citationtrail_10_1002_hbm_20672
crossref_primary_10_1002_hbm_20672
wiley_primary_10_1002_hbm_20672_HBM20672
istex_primary_ark_67375_WNG_09HZNPK9_D
PublicationCentury 2000
PublicationDate August 2009
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: August 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Wiley Liss, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: Wiley Liss, Inc
References Laureys S,Faymonville ME,Degueldre C,Fiore GD,Damas P,Lambermont B,Janssens N,Aerts J,Franck G,Luxen A,Moonen G,Lamy M,Maquet P( 2000a): Auditory processing in the vegetative state. Brain 123 (Pt 8): 1589-1601.
Tsodyks M,Kenet T,Grinvald A,Arieli A ( 1999): Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286: 1943-1946.
Ansell BJ,Keenan JE ( 1989): The Western Neuro Sensory Stimulation Profile: A tool for assessing slow-to-recover head-injured patients. Arch Phys Med Rehabil 70: 104-108.
Fox MD,Snyder AZ,Vincent JL,Corbetta M,Van Essen DC, et al. ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678.
Ingvar DH ( 1979): "Hyperfrontal" distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol Scand 60: 12-25.
Laureys S,Perrin F,Schnakers C,Boly M,Majerus S ( 2005): Residual cognitive function in comatose, vegetative and minimally conscious states. Curr Opin Neurol 18: 726-733.
Laureys S,Owen AM,Schiff ND ( 2004): Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3: 537-546.
Majerus S,Gill-Thwaites H,Andrews K,Laureys S ( 2005): Behavioral evaluation of consciousness in severe brain damage. Prog Brain Res 150: 397-413.
Dehaene S,Changeux JP ( 2005): Ongoing spontaneous activity controls access to consciousness: A neuronal model for inattentional blindness. PLoS Biol 3: e141.
Gusnard DA,Raichle ME ( 2001): Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2: 685-694.
Laureys S,Goldman S,Phillips C,Van Bogaert P,Aerts J,Luxen A,Franck G,Maquet P( 1999a): Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET. Neuroimage 9: 377-382.
McKiernan KA,D'Angelo BR,Kaufman JN,Binder JR ( 2006): Interrupting the "stream of consciousness": An fMRI investigation. Neuroimage 29: 1185-1191.
Steriade M,McCormick DA,Sejnowski TJ ( 1993): Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679-685.
Born JD,Albert A,Hans P,Bonnal J ( 1985): Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury. Neurosurgery 16: 595-601.
The Multi-Society Task Force on PVS ( 1994): Medical aspects of the persistent vegetative state (1). N Engl J Med 330: 1499-1508.
Bates D ( 2005): The vegetative state and the Royal College of Physicians guidance. Neuropsychol Rehabil 15(3/4): 175-183.
Fox MD,Snyder AZ,Vincent JL,Raichle ME ( 2007): Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56: 171-184.
Gill-Thwaites H,Munday R ( 2004): The Sensory Modality Assessment and Rehabilitation Technique (SMART): A valid and reliable assessment for vegetative state and minimally conscious state patients. Brain Inj 18: 1255-1269.
Fransson P ( 2006): How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44: 2836-2845.
Boly M,Balteau E,Schnakers C,Degueldre C,Moonen G,Luxen A,Phillips C,Peigneux P,Maquet P,Laureys S( 2007a): Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA 104: 12187-12192.
Horovitz SG,Fukunaga M,de Zwart JA,van Gelderen P,Fulton SC,Balkin TJ,Duyn JH ( 2007): Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study. Hum Brain Mapp 29: 671-682.
Perrin F,Schnakers C,Schabus M,Degueldre C,Goldman S,Bredart S,Faymonville ME,Lamy M,Moonen G,Luxen A,Maquet P,Laureys S ( 2006): Brain response to one's own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch Neurol 63: 562-569.
Vincent JL,Patel GH,Fox MD,Snyder AZ,Baker JT,Van Essen DC,Zempel JM,Snyder LH,Corbetta M,Raichle ME ( 2007): Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447: 83-86.
Libet B ( 2006): Reflections on the interaction of the mind and brain. Prog Neurobiol 78(3-5): 322-326.
White NS,Alkire MT ( 2003): Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. Neuroimage 19(2 Pt 1): 402-411.
Wijdicks EF ( 2001): The diagnosis of brain death. N Engl J Med 344: 1215-1221.
Giacino JT,Ashwal S,Childs N,Cranford R,Jennett B,Katz DI,Kelly JP,Rosenberg JH,Whyte J,Zafonte RD,Zasler ND ( 2002): The minimally conscious state: Definition and diagnostic criteria. Neurology 58: 349-353.
Tononi G ( 2004): An information integration theory of consciousness. BMC Neurosci 5: 42.
Boly M,Coleman MR,Davis MH,Hampshire A,Bor D,Moonen G,Maquet PA,Pickard JD,Laureys S,Owen AM ( 2007b): When thoughts become action: An fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage 36: 979-992.
Giacino JT,Kalmar K,Whyte J ( 2004): The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85: 2020-2029.
Laureys S,Faymonville ME,Luxen A,Lamy M,Franck G,Maquet P ( 2000b): Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355: 1790-1791.
Raichle ME,MacLeod AM,Snyder AZ,Powers WJ,Gusnard DA,Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci USA 98: 676-682.
Greicius MD,Krasnow B,Reiss AL,Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258.
Laureys S,Lemaire C,Maquet P,Phillips C,Franck G ( 1999b): Cerebral metabolism during vegetative state and after recovery to consciousness. J Neurol Neurosurg Psychiatry 67: 121.
Majerus S,Van der Linden M ( 2000): Wessex Head Injury Matrix and Glasgow/Glasgow-Liège Coma Scale: A validation and comparison study. Neuropsychol Rehabil 10: 167-184.
Owen AM,Coleman MR,Boly M,Davis MH,Laureys S,Pickard JD ( 2006): Detecting awareness in the vegetative state. Science 313: 1402.
Fransson P ( 2005): Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26: 15-29.
Laufs H,Krakow K,Sterzer P,Eger E,Beyerle A,Salek-Haddadi A,Kleinschmidt A ( 2003): Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100: 11053-11058.
Esposito F,Bertolino A,Scarabino T,Latorre V,Blasi G,Popolizio T,Tedeschi G,Cirillo S,Goebel R,Di Salle F ( 2006): Independent component model of the default-mode brain function: Assessing the impact of active thinking. Brain Res Bull 70(4-6): 263-269.
American Electroencephalographic Society ( 1994): Guideline three: Minimum technical standards for EEG recording in suspected cerebral death. American Electroencephalographic Society. J Clin Neurophysiol 11: 10-13.
Fransson P,Skiold B,Horsch S,Nordell A,Blennow M,Lagercrantz H,Aden U ( 2007): Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104: 15531-15536.
Birn RM,Diamond JB,Smith MA,Bandettini PA ( 2006): Separating respiratory-variation-related fluctuations from neuronal- activity-related fluctuations in fMRI. Neuroimage 31: 1536-1548.
Kenet T,Bibitchkov D,Tsodyks M,Grinvald A,Arieli A ( 2003): Spontaneously emerging cortical representations of visual attributes. Nature 425: 954-956.
Wijdicks EF ( 1995): Determining brain death in adults. Neurology 45: 1003-1011.
Greicius MD,Kiviniemi V,Tervonen O,Vainionpaa V,Alahuhta S,Reiss AL,Menon V ( 2008): Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29: 839-847.
Friston K,Ashburner J,Frith C,Poline JB,Heather J,Frackowiak RSJ ( 1995): Spatial realignement and normalization of images. Hum Brain Mapp 2: 165-189.
Cordes D,Haughton VM,Arfanakis K,Carew JD,Turski PA,Moritz CH,Quigley MA,Meyerand ME ( 2001): Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol 22: 1326-1333.
2006; 70
2007; 104
2002; 58
2004; 85
1994; 330
2001; 344
2005; 150
2006; 31
2007; 447
2006; 78
2000b; 355
2004; 3
1999; 286
1993; 262
2004; 5
2003; 19
2001; 22
2005; 26
1995; 2
2006; 313
2007; 56
2007; 29
1999b; 67
2007a; 104
2006; 63
2003; 425
2004; 18
1999a; 9
2005; 102
2006; 44
2008; 29
2000; 10
1989; 70
1995; 45
2000a; 123
1994; 11
2006; 29
2001; 2
2005; 3
2005; 15
2007b; 36
2005; 18
2003; 100
1979; 60
1985; 16
2001; 98
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Ansell BJ (e_1_2_6_3_1) 1989; 70
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Cordes D (e_1_2_6_9_1) 2001; 22
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – reference: Fransson P,Skiold B,Horsch S,Nordell A,Blennow M,Lagercrantz H,Aden U ( 2007): Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104: 15531-15536.
– reference: Birn RM,Diamond JB,Smith MA,Bandettini PA ( 2006): Separating respiratory-variation-related fluctuations from neuronal- activity-related fluctuations in fMRI. Neuroimage 31: 1536-1548.
– reference: Fransson P ( 2005): Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26: 15-29.
– reference: Friston K,Ashburner J,Frith C,Poline JB,Heather J,Frackowiak RSJ ( 1995): Spatial realignement and normalization of images. Hum Brain Mapp 2: 165-189.
– reference: White NS,Alkire MT ( 2003): Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. Neuroimage 19(2 Pt 1): 402-411.
– reference: Born JD,Albert A,Hans P,Bonnal J ( 1985): Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury. Neurosurgery 16: 595-601.
– reference: Dehaene S,Changeux JP ( 2005): Ongoing spontaneous activity controls access to consciousness: A neuronal model for inattentional blindness. PLoS Biol 3: e141.
– reference: Owen AM,Coleman MR,Boly M,Davis MH,Laureys S,Pickard JD ( 2006): Detecting awareness in the vegetative state. Science 313: 1402.
– reference: Esposito F,Bertolino A,Scarabino T,Latorre V,Blasi G,Popolizio T,Tedeschi G,Cirillo S,Goebel R,Di Salle F ( 2006): Independent component model of the default-mode brain function: Assessing the impact of active thinking. Brain Res Bull 70(4-6): 263-269.
– reference: Majerus S,Gill-Thwaites H,Andrews K,Laureys S ( 2005): Behavioral evaluation of consciousness in severe brain damage. Prog Brain Res 150: 397-413.
– reference: Greicius MD,Krasnow B,Reiss AL,Menon V ( 2003): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258.
– reference: Greicius MD,Kiviniemi V,Tervonen O,Vainionpaa V,Alahuhta S,Reiss AL,Menon V ( 2008): Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29: 839-847.
– reference: Gusnard DA,Raichle ME ( 2001): Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2: 685-694.
– reference: Fransson P ( 2006): How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44: 2836-2845.
– reference: Gill-Thwaites H,Munday R ( 2004): The Sensory Modality Assessment and Rehabilitation Technique (SMART): A valid and reliable assessment for vegetative state and minimally conscious state patients. Brain Inj 18: 1255-1269.
– reference: Horovitz SG,Fukunaga M,de Zwart JA,van Gelderen P,Fulton SC,Balkin TJ,Duyn JH ( 2007): Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study. Hum Brain Mapp 29: 671-682.
– reference: Vincent JL,Patel GH,Fox MD,Snyder AZ,Baker JT,Van Essen DC,Zempel JM,Snyder LH,Corbetta M,Raichle ME ( 2007): Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447: 83-86.
– reference: Laufs H,Krakow K,Sterzer P,Eger E,Beyerle A,Salek-Haddadi A,Kleinschmidt A ( 2003): Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100: 11053-11058.
– reference: Laureys S,Lemaire C,Maquet P,Phillips C,Franck G ( 1999b): Cerebral metabolism during vegetative state and after recovery to consciousness. J Neurol Neurosurg Psychiatry 67: 121.
– reference: Raichle ME,MacLeod AM,Snyder AZ,Powers WJ,Gusnard DA,Shulman GL ( 2001): A default mode of brain function. Proc Natl Acad Sci USA 98: 676-682.
– reference: Wijdicks EF ( 1995): Determining brain death in adults. Neurology 45: 1003-1011.
– reference: Tononi G ( 2004): An information integration theory of consciousness. BMC Neurosci 5: 42.
– reference: Tsodyks M,Kenet T,Grinvald A,Arieli A ( 1999): Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286: 1943-1946.
– reference: McKiernan KA,D'Angelo BR,Kaufman JN,Binder JR ( 2006): Interrupting the "stream of consciousness": An fMRI investigation. Neuroimage 29: 1185-1191.
– reference: Libet B ( 2006): Reflections on the interaction of the mind and brain. Prog Neurobiol 78(3-5): 322-326.
– reference: Steriade M,McCormick DA,Sejnowski TJ ( 1993): Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679-685.
– reference: Majerus S,Van der Linden M ( 2000): Wessex Head Injury Matrix and Glasgow/Glasgow-Liège Coma Scale: A validation and comparison study. Neuropsychol Rehabil 10: 167-184.
– reference: Laureys S,Faymonville ME,Degueldre C,Fiore GD,Damas P,Lambermont B,Janssens N,Aerts J,Franck G,Luxen A,Moonen G,Lamy M,Maquet P( 2000a): Auditory processing in the vegetative state. Brain 123 (Pt 8): 1589-1601.
– reference: The Multi-Society Task Force on PVS ( 1994): Medical aspects of the persistent vegetative state (1). N Engl J Med 330: 1499-1508.
– reference: American Electroencephalographic Society ( 1994): Guideline three: Minimum technical standards for EEG recording in suspected cerebral death. American Electroencephalographic Society. J Clin Neurophysiol 11: 10-13.
– reference: Ansell BJ,Keenan JE ( 1989): The Western Neuro Sensory Stimulation Profile: A tool for assessing slow-to-recover head-injured patients. Arch Phys Med Rehabil 70: 104-108.
– reference: Laureys S,Owen AM,Schiff ND ( 2004): Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3: 537-546.
– reference: Giacino JT,Ashwal S,Childs N,Cranford R,Jennett B,Katz DI,Kelly JP,Rosenberg JH,Whyte J,Zafonte RD,Zasler ND ( 2002): The minimally conscious state: Definition and diagnostic criteria. Neurology 58: 349-353.
– reference: Laureys S,Goldman S,Phillips C,Van Bogaert P,Aerts J,Luxen A,Franck G,Maquet P( 1999a): Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET. Neuroimage 9: 377-382.
– reference: Boly M,Coleman MR,Davis MH,Hampshire A,Bor D,Moonen G,Maquet PA,Pickard JD,Laureys S,Owen AM ( 2007b): When thoughts become action: An fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage 36: 979-992.
– reference: Perrin F,Schnakers C,Schabus M,Degueldre C,Goldman S,Bredart S,Faymonville ME,Lamy M,Moonen G,Luxen A,Maquet P,Laureys S ( 2006): Brain response to one's own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch Neurol 63: 562-569.
– reference: Bates D ( 2005): The vegetative state and the Royal College of Physicians guidance. Neuropsychol Rehabil 15(3/4): 175-183.
– reference: Fox MD,Snyder AZ,Vincent JL,Corbetta M,Van Essen DC, et al. ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678.
– reference: Cordes D,Haughton VM,Arfanakis K,Carew JD,Turski PA,Moritz CH,Quigley MA,Meyerand ME ( 2001): Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol 22: 1326-1333.
– reference: Laureys S,Faymonville ME,Luxen A,Lamy M,Franck G,Maquet P ( 2000b): Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355: 1790-1791.
– reference: Laureys S,Perrin F,Schnakers C,Boly M,Majerus S ( 2005): Residual cognitive function in comatose, vegetative and minimally conscious states. Curr Opin Neurol 18: 726-733.
– reference: Ingvar DH ( 1979): "Hyperfrontal" distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol Scand 60: 12-25.
– reference: Kenet T,Bibitchkov D,Tsodyks M,Grinvald A,Arieli A ( 2003): Spontaneously emerging cortical representations of visual attributes. Nature 425: 954-956.
– reference: Boly M,Balteau E,Schnakers C,Degueldre C,Moonen G,Luxen A,Phillips C,Peigneux P,Maquet P,Laureys S( 2007a): Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA 104: 12187-12192.
– reference: Fox MD,Snyder AZ,Vincent JL,Raichle ME ( 2007): Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56: 171-184.
– reference: Giacino JT,Kalmar K,Whyte J ( 2004): The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85: 2020-2029.
– reference: Wijdicks EF ( 2001): The diagnosis of brain death. N Engl J Med 344: 1215-1221.
– volume: 18
  start-page: 1255
  year: 2004
  end-page: 1269
  article-title: The Sensory Modality Assessment and Rehabilitation Technique (SMART): A valid and reliable assessment for vegetative state and minimally conscious state patients
  publication-title: Brain Inj
– volume: 425
  start-page: 954
  year: 2003
  end-page: 956
  article-title: Spontaneously emerging cortical representations of visual attributes
  publication-title: Nature
– volume: 104
  start-page: 12187
  year: 2007a
  end-page: 12192
  article-title: Baseline brain activity fluctuations predict somatosensory perception in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 2
  start-page: 685
  year: 2001
  end-page: 694
  article-title: Searching for a baseline: Functional imaging and the resting human brain
  publication-title: Nat Rev Neurosci
– volume: 355
  start-page: 1790
  year: 2000b
  end-page: 1791
  article-title: Restoration of thalamocortical connectivity after recovery from persistent vegetative state
  publication-title: Lancet
– volume: 31
  start-page: 1536
  year: 2006
  end-page: 1548
  article-title: Separating respiratory‐variation‐related fluctuations from neuronal‐ activity‐related fluctuations in fMRI
  publication-title: Neuroimage
– volume: 16
  start-page: 595
  year: 1985
  end-page: 601
  article-title: Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury
  publication-title: Neurosurgery
– volume: 447
  start-page: 83
  year: 2007
  end-page: 86
  article-title: Intrinsic functional architecture in the anaesthetized monkey brain
  publication-title: Nature
– volume: 29
  start-page: 839
  year: 2008
  end-page: 847
  article-title: Persistent default‐mode network connectivity during light sedation
  publication-title: Hum Brain Mapp
– volume: 29
  start-page: 671
  year: 2007
  end-page: 682
  article-title: Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG‐fMRI study
  publication-title: Hum Brain Mapp
– volume: 67
  start-page: 121
  year: 1999b
  article-title: Cerebral metabolism during vegetative state and after recovery to consciousness
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 150
  start-page: 397
  year: 2005
  end-page: 413
  article-title: Behavioral evaluation of consciousness in severe brain damage
  publication-title: Prog Brain Res
– volume: 344
  start-page: 1215
  year: 2001
  end-page: 1221
  article-title: The diagnosis of brain death
  publication-title: N Engl J Med
– volume: 56
  start-page: 171
  year: 2007
  end-page: 184
  article-title: Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior
  publication-title: Neuron
– volume: 78
  start-page: 322
  issue: 3–5
  year: 2006
  end-page: 326
  article-title: Reflections on the interaction of the mind and brain
  publication-title: Prog Neurobiol
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
  publication-title: Proc Natl Acad Sci USA
– volume: 286
  start-page: 1943
  year: 1999
  end-page: 1946
  article-title: Linking spontaneous activity of single cortical neurons and the underlying functional architecture
  publication-title: Science
– volume: 70
  start-page: 104
  year: 1989
  end-page: 108
  article-title: The Western Neuro Sensory Stimulation Profile: A tool for assessing slow‐to‐recover head‐injured patients
  publication-title: Arch Phys Med Rehabil
– volume: 123
  start-page: 1589
  issue: Pt 8
  year: 2000a
  end-page: 1601
  article-title: Auditory processing in the vegetative state
  publication-title: Brain
– volume: 45
  start-page: 1003
  year: 1995
  end-page: 1011
  article-title: Determining brain death in adults
  publication-title: Neurology
– volume: 85
  start-page: 2020
  year: 2004
  end-page: 2029
  article-title: The JFK Coma Recovery Scale‐Revised: Measurement characteristics and diagnostic utility
  publication-title: Arch Phys Med Rehabil
– volume: 3
  start-page: 537
  year: 2004
  end-page: 546
  article-title: Brain function in coma, vegetative state, and related disorders
  publication-title: Lancet Neurol
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci USA
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 10
  year: 1994
  end-page: 13
  article-title: Guideline three: Minimum technical standards for EEG recording in suspected cerebral death. American Electroencephalographic Society
  publication-title: J Clin Neurophysiol
– volume: 19
  start-page: 402
  issue: 2 Pt 1
  year: 2003
  end-page: 411
  article-title: Impaired thalamocortical connectivity in humans during general‐anesthetic‐induced unconsciousness
  publication-title: Neuroimage
– volume: 330
  start-page: 1499
  year: 1994
  end-page: 1508
  article-title: Medical aspects of the persistent vegetative state (1)
  publication-title: N Engl J Med
– volume: 22
  start-page: 1326
  year: 2001
  end-page: 1333
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting‐state” data
  publication-title: AJNR Am J Neuroradiol
– volume: 313
  start-page: 1402
  year: 2006
  article-title: Detecting awareness in the vegetative state
  publication-title: Science
– volume: 9
  start-page: 377
  year: 1999a
  end-page: 382
  article-title: Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET
  publication-title: Neuroimage
– volume: 10
  start-page: 167
  year: 2000
  end-page: 184
  article-title: Wessex Head Injury Matrix and Glasgow/Glasgow‐Liège Coma Scale: A validation and comparison study
  publication-title: Neuropsychol Rehabil
– volume: 262
  start-page: 679
  year: 1993
  end-page: 685
  article-title: Thalamocortical oscillations in the sleeping and aroused brain
  publication-title: Science
– volume: 104
  start-page: 15531
  year: 2007
  end-page: 15536
  article-title: Resting‐state networks in the infant brain
  publication-title: Proc Natl Acad Sci USA
– volume: 60
  start-page: 12
  year: 1979
  end-page: 25
  article-title: “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state
  publication-title: Acta Neurol Scand
– volume: 15
  start-page: 175
  issue: 3/4
  year: 2005
  end-page: 183
  article-title: The vegetative state and the Royal College of Physicians guidance
  publication-title: Neuropsychol Rehabil
– volume: 2
  start-page: 165
  year: 1995
  end-page: 189
  article-title: Spatial realignement and normalization of images
  publication-title: Hum Brain Mapp
– volume: 5
  start-page: 42
  year: 2004
  article-title: An information integration theory of consciousness
  publication-title: BMC Neurosci
– volume: 58
  start-page: 349
  year: 2002
  end-page: 353
  article-title: The minimally conscious state: Definition and diagnostic criteria
  publication-title: Neurology
– volume: 63
  start-page: 562
  year: 2006
  end-page: 569
  article-title: Brain response to one's own name in vegetative state, minimally conscious state, and locked‐in syndrome
  publication-title: Arch Neurol
– volume: 44
  start-page: 2836
  year: 2006
  end-page: 2845
  article-title: How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations
  publication-title: Neuropsychologia
– volume: 100
  start-page: 11053
  year: 2003
  end-page: 11058
  article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: e141
  year: 2005
  article-title: Ongoing spontaneous activity controls access to consciousness: A neuronal model for inattentional blindness
  publication-title: PLoS Biol
– volume: 70
  start-page: 263
  issue: 4–6
  year: 2006
  end-page: 269
  article-title: Independent component model of the default‐mode brain function: Assessing the impact of active thinking
  publication-title: Brain Res Bull
– volume: 18
  start-page: 726
  year: 2005
  end-page: 733
  article-title: Residual cognitive function in comatose, vegetative and minimally conscious states
  publication-title: Curr Opin Neurol
– volume: 36
  start-page: 979
  year: 2007b
  end-page: 992
  article-title: When thoughts become action: An fMRI paradigm to study volitional brain activity in non‐communicative brain injured patients
  publication-title: Neuroimage
– volume: 29
  start-page: 1185
  year: 2006
  end-page: 1191
  article-title: Interrupting the “stream of consciousness”: An fMRI investigation
  publication-title: Neuroimage
– volume: 26
  start-page: 15
  year: 2005
  end-page: 29
  article-title: Spontaneous low‐frequency BOLD signal fluctuations: An fMRI investigation of the resting‐state default mode of brain function hypothesis
  publication-title: Hum Brain Mapp
– volume: 70
  start-page: 104
  year: 1989
  ident: e_1_2_6_3_1
  article-title: The Western Neuro Sensory Stimulation Profile: A tool for assessing slow‐to‐recover head‐injured patients
  publication-title: Arch Phys Med Rehabil
– ident: e_1_2_6_47_1
  doi: 10.1212/WNL.45.5.1003
– ident: e_1_2_6_41_1
  doi: 10.1126/science.8235588
– ident: e_1_2_6_10_1
  doi: 10.1371/journal.pbio.0030141
– volume: 22
  start-page: 1326
  year: 2001
  ident: e_1_2_6_9_1
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting‐state” data
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_43_1
  doi: 10.1186/1471-2202-5-42
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1600-0404.1979.tb02947.x
– ident: e_1_2_6_29_1
  doi: 10.1136/jnnp.67.1.121
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neuroimage.2007.02.047
– ident: e_1_2_6_36_1
  doi: 10.1016/S0079-6123(05)50028-1
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.0504136102
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.0611404104
– ident: e_1_2_6_48_1
  doi: 10.1056/NEJM200104193441606
– ident: e_1_2_6_17_1
  doi: 10.1002/hbm.460030303
– ident: e_1_2_6_20_1
  doi: 10.1080/02699050410001719952
– ident: e_1_2_6_23_1
  doi: 10.1038/35094500
– ident: e_1_2_6_30_1
  doi: 10.1093/brain/123.8.1589
– ident: e_1_2_6_32_1
  doi: 10.1016/S1474-4422(04)00852-X
– ident: e_1_2_6_4_1
  doi: 10.1080/09602010443000399
– ident: e_1_2_6_40_1
  doi: 10.1073/pnas.98.2.676
– ident: e_1_2_6_35_1
  doi: 10.1080/096020100389237
– ident: e_1_2_6_38_1
  doi: 10.1126/science.1130197
– ident: e_1_2_6_18_1
  doi: 10.1212/WNL.58.3.349
– ident: e_1_2_6_27_1
  doi: 10.1073/pnas.1831638100
– ident: e_1_2_6_34_1
  doi: 10.1016/j.pneurobio.2006.02.003
– ident: e_1_2_6_2_1
  doi: 10.1097/00004691-199401000-00004
– ident: e_1_2_6_8_1
  doi: 10.1227/00006123-198505000-00002
– ident: e_1_2_6_39_1
  doi: 10.1001/archneur.63.4.562
– ident: e_1_2_6_31_1
  doi: 10.1016/S0140-6736(00)02271-6
– ident: e_1_2_6_42_1
  doi: 10.1056/NEJM199405263302107
– ident: e_1_2_6_5_1
  doi: 10.1016/j.neuroimage.2006.02.048
– ident: e_1_2_6_13_1
  doi: 10.1016/j.neuron.2007.08.023
– ident: e_1_2_6_44_1
  doi: 10.1126/science.286.5446.1943
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.0704380104
– ident: e_1_2_6_28_1
  doi: 10.1006/nimg.1998.0414
– ident: e_1_2_6_22_1
  doi: 10.1002/hbm.20537
– ident: e_1_2_6_37_1
  doi: 10.1016/j.neuroimage.2005.09.030
– ident: e_1_2_6_14_1
  doi: 10.1002/hbm.20113
– ident: e_1_2_6_33_1
  doi: 10.1097/01.wco.0000189874.92362.12
– ident: e_1_2_6_24_1
  doi: 10.1002/hbm.20428
– ident: e_1_2_6_11_1
  doi: 10.1016/j.brainresbull.2006.06.012
– ident: e_1_2_6_46_1
  doi: 10.1016/S1053-8119(03)00103-4
– ident: e_1_2_6_45_1
  doi: 10.1038/nature05758
– ident: e_1_2_6_26_1
  doi: 10.1038/nature02078
– ident: e_1_2_6_19_1
  doi: 10.1016/j.apmr.2004.02.033
– ident: e_1_2_6_21_1
  doi: 10.1073/pnas.0135058100
– ident: e_1_2_6_15_1
  doi: 10.1016/j.neuropsychologia.2006.06.017
SSID ssj0011501
Score 2.4458814
Snippet Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level‐dependent (BOLD) signal in awake healthy subjects showed the presence of...
Recent studies on spontaneous fluctuations in the functional MRI blood oxygen level-dependent (BOLD) signal in awake healthy subjects showed the presence of...
SourceID pubmedcentral
liege
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2393
SubjectTerms Adult
Biological and medical sciences
Brain - physiopathology
Brain Death - physiopathology
Brain Mapping
consciousness
default network
Electrodiagnosis. Electric activity recording
Female
Frontal Lobe - physiopathology
functional MRI
Gyrus Cinguli - physiopathology
Human health sciences
Humans
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging
Male
Medical sciences
Middle Aged
Nervous system
Neural Pathways - physiopathology
Neurologie
Neurology
Persistent Vegetative State - physiopathology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Rest - physiology
resting state
Sciences de la santé humaine
Thalamus - physiopathology
vegetative state
Title Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient
URI https://api.istex.fr/ark:/67375/WNG-09HZNPK9-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20672
https://www.ncbi.nlm.nih.gov/pubmed/19350563
https://www.proquest.com/docview/67493643
https://www.proquest.com/docview/745936786
https://www.proquest.com/docview/754550928
https://orbi.uliege.be/handle/2268/27014
https://pubmed.ncbi.nlm.nih.gov/PMC6870763
Volume 30
WOSCitedRecordID wos000268698700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKQYgLjxZoeCwWQlUlFDUPO07EqTyWRdCoB6CrXizbceiqSxbtS3DjpzNjZ1NWtAiJU6LN2FZmx5lv7PE3hDzjsRICPEFoOc9CZuI0VFFuw4LxpE4UF5WjFPr8QZRlPhwWRxvkxeosjOeH6BbccGa47zVOcKVn--ekoacaD5JnAr-_MYuxesHxu7LbQQCg44ItcLEwsIhXrEJRst-1XPNFV1Gt3-E6xt1qzJFUM1BT7etbXARA_8yj_B3fOgfVv_Vfr3ab3GxxKT3whnSHbNhmi2wfNBCTf_1Bd6nLFHVL8Fvk-mG7Ib9NfvbBL_rlRGowZ8b4ahR01FCAlrSytVqM57Tx2ebUn4qkWBAEr-44Ex3NKKbjYu5lhQ0VXYJu5o6SnOoFtJ7M_e8aC1pAp6qiLSHsXfKp_-bjq0HYFnUIDUc0r7kumFY1hIWWR5nKNYCwpNaWpVFVW8aFSpnNDa8Qu9V5bQwDSMdqmwHYzKv0HtlsJo3dIZQZkSK9YWxqwxKTalNU1qQQ72sFMLUKyN7q75WmZTzHwhtj6bmaEwmKlk7RAXnaiX7zNB8XCe06G-kk1PQM8-IEl8flWxkVg5Py6H0hXwfkuTMiOZnqkVwmEjm83f1i_EUqI7WVAHtzmQiIUAPSWzO1rnuIFqHvKA_Ik5XtSZj8uKOjGjtZzGBwVqSAKQNCL5EQDEs2ijz7iwjHk-1FAuPc9_Z8roIiRYQM_Ys1S-8E8MXWnzSjU0dSnoEjENhyz1n65VqVg5eH7ubBv4s-JDf8rh4mYj4im_Ppwj4m18xyPppNe-SKGOY99zn4BWKdYx8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqFgEXHi2P8GgthKpKKGo2seNE4lIey1bdjXootOrFsh2HRixZtC_BjZ_OjL2bsqJFSJwSbca2MjvOfGOPvyHkJe8oIcAThJbzNGSmk4QqymyYMx5XseKidJRCn_qiKLKzs_x4jbxenoXx_BDtghvODPe9xgmOC9L7l6yhFxpPkqcCPsAbDIAGFm44PSzaPQSAOi7cAicLQ4vOklcoivfbpiveaAMV-x2uQ9yvxixJNQFFVb7CxVUQ9M9Myt8RrnNR3bv_93L3yJ0FNKUH3pbukzXbbJKtgwbC8q8_6C51yaJuFX6T3Bws9uS3yM8uuEa_okgNps0YX5CC1g0FdElLW6nZcEobn3BO_cFIijVB8OpONNF6QjEjF9MvS2yo6ByUM3Ws5FTPoPVo6n_XWNMCOlUlXXDCPiAfu-9P3vbCRV2H0HAE9JrrnGlVQWRoeZSqTAMOiyttWRKVlWVcqITZzPAS4VuVVcYwQHWssingzaxMHpL1ZtTYx4QyIxJkOOyYyrDYJNrkpTUJhPxaAVItA7K3_H-lWZCeY-2NofR0zbEERUun6IC8aEW_eaaPq4R2nZG0Emr8BVPjBJenxQcZ5b3z4vgol-8C8spZkRyNdS3nsUQab3c_G36WykhtJSDfTMYCgtSAbK_YWts9BIzQd5QFZGdpfBLmP27qqMaOZhMYnOUJwMqA0GskBMOqjSJL_yLC8XB7HsM4j7xBX6ogTxAkQ_9ixdRbAXyx1SdNfeF4ylPwBQJb7jlTv16rsvdm4G6e_LvoDrnVOxn0Zf-wOHpKbvtNPszLfEbWp-OZfU5umPm0noy33VfhF_oRZlU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqFlVceLRQwqO1EKoqoajZxI4TiUuhLK3aRnvgUXGxbMemK5ZstS_BjZ_OjL2bsqJFSJwSbca2MjuOv7FnviHkBe8oIWAliC3necxMJ4tVUti4ZDx1qeKi9pRCH09FVRXn52Vvhbxa5MIEfoh2ww1nhv9e4wS3l7Xbv2INvdCYSZ4L-ACvsRz8ccwnOa7aMwSAOt7dgkUWhhadBa9Qku63TZdWozVU7He4DvC8GqMk1RgU5UKFi-sg6J-RlL8jXL9Ede_-38vdI3fm0JQeBFu6T1Zss0E2Dxpwy7_9oLvUB4v6XfgNsn42P5PfJD-7sDSGHUVqMGzGhIIUtN9QQJe0tk5NBxPahIBzGhIjKdYEwavPaKL9McWIXAy_rLGhojNQzsSzklM9hdbDSfhdY00L6FTVdM4J-4B86L59_-Yontd1iA1HQK-5LplWDjxDy5NcFRpwWOq0ZVlSO8u4UBmzheE1wjdXOGMYoDrmbA54s6izh2S1GTb2EaHMiAwZDjvGGZaaTJuytiYDl18rQKp1RPYW_680c9JzrL0xkIGuOZWgaOkVHZHnrehlYPq4TmjXG0kroUZfMTROcPmpeieT8uhz1Tsp5WFEXnorksOR7stZKpHG299PB1-kMlJbCci3kKkAJzUi20u21nYPDiP0nRQR2VkYn4T5j4c6qrHD6RgGZ2UGsDIi9AYJwbBqoyjyv4hwTG4vUxhnKxj0lQrKDEEy9C-WTL0VwBdbftL0LzxPeQ5rgcCWe97Ub9aqPHp95m8e_7voDlnvHXbl6XF18oTcDmd8GJb5lKxORlP7jNwys0l_PNr2H4VfF81l2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+connectivity+in+the+default+network+during+resting+state+is+preserved+in+a+vegetative+but+not+in+a+brain+dead+patient&rft.jtitle=Human+brain+mapping&rft.au=Boly%2C+M.&rft.au=Tshibanda%2C+L.&rft.au=Vanhaudenhuyse%2C+A.&rft.au=Noirhomme%2C+Q.&rft.date=2009-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=30&rft.issue=8&rft.spage=2393&rft.epage=2400&rft_id=info:doi/10.1002%2Fhbm.20672&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_09HZNPK9_D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon