High-entropy materials for energy-related applications

High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which...

Full description

Saved in:
Bibliographic Details
Published in:iScience Vol. 24; no. 3; p. 102177
Main Authors: Fu, Maosen, Ma, Xiao, Zhao, Kangning, Li, Xiao, Su, Dong
Format: Journal Article
Language:English
Published: United States Elsevier Inc 19.03.2021
Elsevier
Subjects:
ISSN:2589-0042, 2589-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs. [Display omitted] Physics; Materials Science; Energy Materials
AbstractList High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs. [Display omitted] Physics; Materials Science; Energy Materials
High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs.High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs.
High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs.
High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs. Physics; Materials Science; Energy Materials
ArticleNumber 102177
Author Zhao, Kangning
Li, Xiao
Su, Dong
Fu, Maosen
Ma, Xiao
Author_xml – sequence: 1
  givenname: Maosen
  surname: Fu
  fullname: Fu, Maosen
  email: msfu@nwpu.edu.cn
  organization: Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
– sequence: 2
  givenname: Xiao
  surname: Ma
  fullname: Ma, Xiao
  email: maxiaonpu@nwpu.edu.cn
  organization: Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
– sequence: 3
  givenname: Kangning
  surname: Zhao
  fullname: Zhao, Kangning
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 5
  givenname: Dong
  surname: Su
  fullname: Su, Dong
  email: dongsu@iphy.ac.cn
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33718829$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rHCEUxaWkNGmaL9CHso99me31z4wKpVBC2wQCfcm7OHrduMyOU50N7Levm0lD0oeAoFzPOVfv7z05GdOIhHyksKZAuy_bdSwurhkwWguMSvmGnLFW6QZAsJNn51NyUcoWAFhdQnfvyCnnkirF9BnpruLmrsFxzmk6rHZ2xhztUFYh5RWOmDeHJuNQy35lp2mIzs4xjeUDeRuqDC8e93Ny-_PH7eVVc_P71_Xl95vGtUrOTVChlxaBaimYCt4LqCcXoPfMyaCs7hzlHbUtOOk815I6IXrHgQbOPD8n10usT3Zrphx3Nh9MstE8FFLeGJvn6AY0qvUaGdOBQy966HqOPVqmW8psEBhq1rcla9r3O_Tu-Gc7vAh9eTPGO7NJ90ZqRjsQNeDzY0BOf_ZYZrOrCHAY7IhpXwxrgQrVdq2u0k_Pez01-Tf3KmCLwOVUSsbwJKFgjnzN1hz5miNfs_CtJvWfycX5gUd9bxxet35drFhh3UfMpipwdOhjRjfXccbX7H8BkMvAqQ
CitedBy_id crossref_primary_10_1016_j_ceramint_2023_11_051
crossref_primary_10_1016_j_watres_2025_123957
crossref_primary_10_1002_adma_202411426
crossref_primary_10_1002_smll_202311631
crossref_primary_10_1016_j_jeurceramsoc_2024_05_041
crossref_primary_10_1038_s41529_023_00409_7
crossref_primary_10_1002_aesr_202500201
crossref_primary_10_1016_j_jallcom_2022_164724
crossref_primary_10_1002_adma_202413202
crossref_primary_10_1039_D5TA03392F
crossref_primary_10_1016_j_ijhydene_2024_02_344
crossref_primary_10_1016_j_materresbull_2024_113225
crossref_primary_10_1016_j_energy_2024_131307
crossref_primary_10_1016_j_pmatsci_2024_101382
crossref_primary_10_1039_D3MH02181E
crossref_primary_10_1016_j_pes_2025_100105
crossref_primary_10_1016_j_ijhydene_2023_06_121
crossref_primary_10_1016_j_jallcom_2023_172633
crossref_primary_10_1016_j_pmatsci_2024_101300
crossref_primary_10_1002_adfm_202413115
crossref_primary_10_1002_celc_202300606
crossref_primary_10_1063_5_0206316
crossref_primary_10_1002_ange_202505890
crossref_primary_10_1016_j_mtener_2024_101785
crossref_primary_10_1016_j_est_2023_108969
crossref_primary_10_1002_adsu_202300192
crossref_primary_10_1016_j_mtcomm_2025_113264
crossref_primary_10_1039_D4NR00474D
crossref_primary_10_1016_j_nanoen_2021_106261
crossref_primary_10_1002_eom2_12261
crossref_primary_10_1016_j_nanoms_2024_09_002
crossref_primary_10_1039_D4EE04442H
crossref_primary_10_1111_jace_19349
crossref_primary_10_1002_adma_202202943
crossref_primary_10_3390_coatings13111822
crossref_primary_10_1007_s11661_025_07928_9
crossref_primary_10_1016_j_electacta_2024_144601
crossref_primary_10_1016_j_jelechem_2024_118191
crossref_primary_10_1002_adma_202510911
crossref_primary_10_1007_s40820_024_01504_3
crossref_primary_10_1002_ange_202413826
crossref_primary_10_1016_j_ceramint_2023_12_095
crossref_primary_10_1016_j_coelec_2022_101010
crossref_primary_10_1016_j_jallcom_2023_171039
crossref_primary_10_1007_s40964_024_00840_5
crossref_primary_10_1016_j_nanoen_2022_108027
crossref_primary_10_1002_adfm_202110992
crossref_primary_10_1007_s12598_024_02749_y
crossref_primary_10_1002_advs_202401034
crossref_primary_10_1002_smtd_202300754
crossref_primary_10_1016_j_jpowsour_2025_236665
crossref_primary_10_1016_j_jmapro_2022_04_014
crossref_primary_10_1016_j_cej_2024_157197
crossref_primary_10_1016_j_jechem_2021_12_026
crossref_primary_10_1039_D3MH00360D
crossref_primary_10_1134_S0036029524701520
crossref_primary_10_1016_j_mtnano_2024_100485
crossref_primary_10_1016_j_coelec_2023_101264
crossref_primary_10_1111_jace_20156
crossref_primary_10_1088_1361_6528_acec4f
crossref_primary_10_1021_acsnano_5c05602
crossref_primary_10_1002_adfm_202204643
crossref_primary_10_1002_adfm_202310179
crossref_primary_10_3390_met13071177
crossref_primary_10_1002_smll_202400538
crossref_primary_10_1038_s41566_024_01468_1
crossref_primary_10_1016_j_est_2023_107419
crossref_primary_10_3390_met13050883
crossref_primary_10_1002_adma_202512274
crossref_primary_10_1039_D5DT01153A
crossref_primary_10_1111_ffe_14576
crossref_primary_10_1016_j_ijhydene_2022_02_113
crossref_primary_10_1016_j_est_2025_116952
crossref_primary_10_1002_smll_202405148
crossref_primary_10_1063_5_0123728
crossref_primary_10_1016_j_ceramint_2025_06_196
crossref_primary_10_1080_21663831_2023_2292079
crossref_primary_10_3390_met15010079
crossref_primary_10_1007_s12274_021_3860_7
crossref_primary_10_1021_acs_langmuir_5c01415
crossref_primary_10_1002_adfm_202204755
crossref_primary_10_1002_adfm_202206531
crossref_primary_10_1016_j_cap_2024_11_001
crossref_primary_10_1007_s42452_021_04724_z
crossref_primary_10_1016_j_jallcom_2025_181806
crossref_primary_10_1016_j_cej_2023_144134
crossref_primary_10_1016_j_jallcom_2025_180210
crossref_primary_10_3390_ma16165579
crossref_primary_10_1088_2053_1591_ad36b4
crossref_primary_10_1007_s40962_022_00891_w
crossref_primary_10_1016_j_elecom_2022_107392
crossref_primary_10_1016_j_mseb_2023_116454
crossref_primary_10_1039_D4MR00102H
crossref_primary_10_1016_j_jallcom_2023_172945
crossref_primary_10_1016_j_ccr_2025_216435
crossref_primary_10_1002_advs_202303078
crossref_primary_10_1016_j_cej_2022_138659
crossref_primary_10_1007_s41918_024_00216_x
crossref_primary_10_1016_j_ceramint_2024_09_152
crossref_primary_10_1016_j_ijhydene_2021_10_260
crossref_primary_10_3390_en15197130
crossref_primary_10_1002_sstr_202500237
crossref_primary_10_1002_smll_202304585
crossref_primary_10_1016_j_est_2021_103405
crossref_primary_10_1038_s41578_024_00654_5
crossref_primary_10_3389_frcdi_2024_1417527
crossref_primary_10_1002_smll_202104339
crossref_primary_10_1016_j_powtec_2022_117491
crossref_primary_10_1002_adsu_202500201
crossref_primary_10_1016_j_trechm_2022_03_010
crossref_primary_10_1016_j_decarb_2025_100110
crossref_primary_10_1002_cplu_202400691
crossref_primary_10_1039_D3SE01535A
crossref_primary_10_1007_s41403_024_00466_7
crossref_primary_10_1016_j_rser_2025_115903
crossref_primary_10_1039_D5YA00091B
crossref_primary_10_1002_smll_202200524
crossref_primary_10_1016_j_cej_2022_139510
crossref_primary_10_1002_nano_202200081
crossref_primary_10_1016_j_est_2023_110325
crossref_primary_10_1016_j_cej_2024_155302
crossref_primary_10_1002_anie_202505890
crossref_primary_10_4150_jpm_2024_00297
crossref_primary_10_1016_j_ijthermalsci_2024_109565
crossref_primary_10_1002_ppsc_202100094
crossref_primary_10_1039_D4MR00084F
crossref_primary_10_1016_j_ijhydene_2024_08_221
crossref_primary_10_1002_adfm_202300509
crossref_primary_10_1016_j_scriptamat_2023_115668
crossref_primary_10_1088_1361_6528_ac8060
crossref_primary_10_1016_j_commatsci_2023_112456
crossref_primary_10_1007_s12666_023_03075_0
crossref_primary_10_3103_S096709122110003X
crossref_primary_10_1002_cssc_202300927
crossref_primary_10_1016_j_jallcom_2025_183222
crossref_primary_10_1063_5_0194976
crossref_primary_10_3390_molecules29051064
crossref_primary_10_1002_cnma_202200384
crossref_primary_10_1107_S1600576724004497
crossref_primary_10_1007_s43207_023_00360_y
crossref_primary_10_1038_s43246_023_00341_y
crossref_primary_10_1002_aesr_202300297
crossref_primary_10_1002_cctc_202200699
crossref_primary_10_1002_ece2_91
crossref_primary_10_3389_fenrg_2022_862551
crossref_primary_10_1016_j_jpcs_2025_112778
crossref_primary_10_1016_j_msea_2025_148999
crossref_primary_10_1039_D4CY00467A
crossref_primary_10_1016_j_jece_2025_118132
crossref_primary_10_1002_adem_202300585
crossref_primary_10_1016_j_jallcom_2024_177585
crossref_primary_10_1016_j_cej_2025_166438
crossref_primary_10_1007_s00339_024_07507_6
crossref_primary_10_1016_j_ceramint_2024_12_400
crossref_primary_10_1016_j_ceramint_2023_08_061
crossref_primary_10_1021_acsnano_5c02374
crossref_primary_10_1002_anie_202413826
crossref_primary_10_1016_j_checat_2022_05_003
crossref_primary_10_1016_j_jssc_2025_125565
crossref_primary_10_1002_eem2_70057
crossref_primary_10_1016_j_matlet_2022_132628
crossref_primary_10_1039_D5NR01562F
crossref_primary_10_1016_j_surfin_2025_107290
crossref_primary_10_1007_s00339_022_05836_y
crossref_primary_10_1088_1742_6596_2368_1_012010
crossref_primary_10_1016_j_est_2024_113078
crossref_primary_10_1016_j_cej_2024_153743
crossref_primary_10_1021_acs_cgd_5c00549
crossref_primary_10_1002_adfm_202202892
crossref_primary_10_1021_acsnano_4c18277
crossref_primary_10_1007_s11666_022_01520_y
crossref_primary_10_1016_j_jpcs_2024_112345
crossref_primary_10_1016_j_intermet_2025_108756
crossref_primary_10_1016_j_susmat_2025_e01316
crossref_primary_10_3390_met11121980
crossref_primary_10_1016_j_matpr_2022_06_384
Cites_doi 10.1002/anie.202004892
10.1038/s41598-017-13810-5
10.1038/srep37946
10.1038/s41467-020-19277-9
10.1002/aenm.201802269
10.1002/pssr.201600043
10.1039/D0TA06356H
10.1016/j.scriptamat.2017.05.022
10.1016/j.jeurceramsoc.2018.04.063
10.1557/mrc.2018.184
10.1016/j.actamat.2017.06.027
10.1016/j.scriptamat.2020.05.019
10.1002/anie.202009002
10.1016/j.ceramint.2020.04.060
10.1038/nature17981
10.1021/acsmaterialslett.9b00414
10.1111/jace.14756
10.1038/ncomms9485
10.1016/j.apcatb.2020.119155
10.1007/s10853-020-04482-0
10.1002/adma.201707512
10.1016/j.scriptamat.2020.06.017
10.1063/1.5133710
10.1063/1.5126652
10.1016/j.matlet.2018.01.111
10.1021/jacs.8b05206
10.1038/s41598-017-03644-6
10.1016/j.ensm.2019.02.030
10.1021/acs.chemmater.9b01244
10.1039/C9RA03254A
10.1016/j.jallcom.2018.11.049
10.1021/jacs.0c04807
10.1039/D0SC02351E
10.1126/science.aan5412
10.3139/146.111874
10.1021/acsenergylett.9b00531
10.1021/acscatal.9b04343
10.1021/acs.inorgchem.8b02379
10.1039/D0TA04844E
10.1002/adma.201401946
10.1080/21663831.2016.1220433
10.1016/j.scriptamat.2019.05.039
10.3390/nano9030461
10.1016/j.jpowsour.2019.05.030
10.1016/j.tsf.2017.06.029
10.1016/j.electacta.2014.02.076
10.1002/smll.201904180
10.1039/C8TA01772G
10.1016/j.jpowsour.2019.226927
10.1021/acscatal.0c03617
10.1016/j.chempr.2019.02.015
10.1007/s10853-018-2168-9
10.1002/adem.200300567
10.1021/jacs.9b12377
10.1002/aenm.201702599
10.1039/D0TA09578H
10.1039/C6TA03249D
10.1039/C9TA00505F
10.1016/j.actamat.2016.08.081
10.1016/j.matt.2020.07.027
10.1021/acs.langmuir.9b03392
10.1002/adfm.201905933
10.1021/acs.nanolett.9b01523
10.1016/j.jallcom.2020.156838
10.1038/s41467-019-11848-9
10.1038/s41586-018-0685-y
10.1016/j.jallcom.2020.153642
10.1126/science.1254581
10.1038/s41578-019-0121-4
10.3390/nano9020248
10.1080/21870764.2019.1595931
10.1126/sciadv.aaz0510
10.1039/D0RA00255K
10.1016/j.jcat.2020.01.024
10.1021/acscatal.9b04302
10.1002/admi.201900015
10.1016/j.jmmm.2019.165884
10.1016/j.electacta.2018.05.035
10.1016/j.actamat.2020.09.034
10.1038/s41467-019-10303-z
10.1016/j.mattod.2015.11.026
10.1039/D0TA05176D
10.1039/C9TA08740K
10.1021/acs.chemmater.9b00624
10.1002/cssc.201902705
10.1016/j.matlet.2017.12.148
10.1038/s41586-019-1617-1
10.1063/1.5091787
10.1063/5.0007944
10.1039/C8EE00050F
10.1002/anie.201912171
10.1126/science.aaz1598
10.1038/s41467-018-07160-7
10.1016/j.scriptamat.2019.03.038
10.1002/anie.201914666
10.1016/j.apsusc.2019.144517
10.1039/C9RA05508H
10.1016/j.jeurceramsoc.2016.09.018
10.1111/jace.17184
10.1016/j.scriptamat.2019.12.027
10.1016/j.jallcom.2017.02.070
10.1021/acsmaterialslett.9b00064
10.1016/j.jeurceramsoc.2020.01.018
10.1002/cssc.202000173
10.1038/s41467-020-15934-1
10.1016/j.pmatsci.2018.12.003
10.1016/j.jpowsour.2014.09.076
10.1016/j.elecom.2019.02.001
10.1073/pnas.1903721117
10.1016/j.scriptamat.2020.07.002
10.1016/j.jeurceramsoc.2019.11.030
10.1039/C9EE00368A
10.1039/D0TA02125C
10.1038/srep34213
10.1038/s41467-018-05774-5
10.1016/j.msea.2003.10.257
10.1021/acs.jpclett.0c00602
10.1038/s41578-019-0170-8
10.1002/cssc.202000448
10.1002/anie.202003530
10.1016/j.jallcom.2008.12.055
10.1016/j.joule.2018.12.015
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2021.102177
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_85d9e229f30b4b06b3ebea29512af4ef
PMC7921604
33718829
10_1016_j_isci_2021_102177
S2589004221001450
Genre Journal Article
Review
GroupedDBID 0R~
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ABMAC
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c587t-f8fb7ae0197428fdd40974cf0bd2c7f8a96c1361a50c7cd3971c44bc301f32d3
IEDL.DBID DOA
ISICitedReferencesCount 224
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631646000050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:22:54 EDT 2025
Tue Sep 30 16:56:13 EDT 2025
Fri Jul 11 08:16:03 EDT 2025
Mon Jul 21 06:01:56 EDT 2025
Sat Nov 29 02:13:30 EST 2025
Tue Nov 18 21:55:00 EST 2025
Sat Nov 16 15:58:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Energy Materials
Materials Science
Physics
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-f8fb7ae0197428fdd40974cf0bd2c7f8a96c1361a50c7cd3971c44bc301f32d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/85d9e229f30b4b06b3ebea29512af4ef
PMID 33718829
PQID 2501485659
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_85d9e229f30b4b06b3ebea29512af4ef
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7921604
proquest_miscellaneous_2501485659
pubmed_primary_33718829
crossref_primary_10_1016_j_isci_2021_102177
crossref_citationtrail_10_1016_j_isci_2021_102177
elsevier_sciencedirect_doi_10_1016_j_isci_2021_102177
PublicationCentury 2000
PublicationDate 2021-03-19
PublicationDateYYYYMMDD 2021-03-19
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Dai, Lu, Pan (bib21) 2019; 430
Dragoe, Bérardan (bib24) 2019; 366
Zhang, Ming, Kang, Huang, Zhang, Zheng, Bi (bib121) 2018; 279
Wang, Xin (bib99) 2019; 5
Bérardan, Franger, Meena, Dragoe (bib4) 2016; 4
Yuan, Liang, Wu, Cao, Ai, Feng, Yang (bib117) 2014; 26
Liu, Zhang, Okejiri, Yang, Zhou, Dai (bib53) 2019; 6
Rost, Rak, Brenner, Maria (bib79) 2017; 100
Okejiri, Zhang, Liu, Liu, Yang, Dai (bib67) 2020; 13
Stygar, Dąbrowa, Moździerz, Zajusz, Skubida, Mroczka, Berent, Świerczek, Danielewski (bib88) 2020; 40
Bérardan, Franger, Dragoe, Meena, Dragoe, Berardan, Franger, Dragoe, Meena, Dragoe (bib3) 2016; 10
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib116) 2004; 6
Berardan, Meena, Franger, Herrero, Dragoe (bib5) 2017; 704
Yao, Huang, Li, Wang, Liu, Stein, Mao, Gao, Jiao, Dong (bib111) 2020; 117
Sarker, Harrington, Toher, Oses, Samiee, Maria, Brenner, Vecchio, Curtarolo (bib85) 2018; 9
Lökçü, Toparli, Anik (bib57) 2020; 7
Sarkar, Velasco, Wang, Wang, Talasila, de Biasi, Kübel, Brezesinski, Bhattacharya, Hahn, Breitung (bib84) 2018; 9
Shen, Zhang, Hu, Zhang, Mao, Xiao, Zhou, Zu (bib87) 2019; 9
Yusenko, Riva, Carvalho, Yusenko, Arnaboldi, Sukhikh, Hanfland, Gromilov (bib118) 2017; 138
Djenadic, Sarkar, Clemens, Loho, Botros, Chakravadhanula, Kübel, Bhattacharya, Gandhi, Hahn (bib23) 2017; 5
Wu, Kusada, Yamamoto, Toriyama, Matsumura, Gueye, Seo, Kim, Hiroi, Sakata (bib101) 2020
Löffler, Savan, Meyer, Meischein, Strotkötter, Ludwig, Schuhmann (bib56) 2020; 59
Chen, Qiu, Wu, Yang, Sun, Wang (bib15) 2019; 9
Jin, Lv, Jia, Liu, Li, Chen, Lin, Xie, Liu, Sun, Qiu (bib41) 2019; 15
Sathiya, Jacquet, Doublet, Karakulina, Hadermann, Tarascon (bib86) 2018; 8
Yang, Song, Ke, Xu, Bozhilov, Hu, Shahbazian-Yassar, Zachariah (bib110) 2020; 36
Batchelor, Pedersen, Winther, Castelli, Jacobsen, Rossmeisl (bib2) 2019; 3
Dąbrowa, Stygar, Mikuła, Knapik, Mroczka, Tejchman, Danielewski, Martin (bib19) 2018; 216
Zhang, Yan, Calder, Zheng, McGuire, Abernathy, Ren, Lapidus, Page, Zheng (bib122) 2019; 31
Lun, Ouyang, Kwon, Ha, Foley, Huang, Cai, Kim, Balasubramanian, Sun (bib58) 2020
Tsai, Yeh, Wu, Hsieh, Lin (bib91) 2009; 478
Ye, Wang, Lu, Liu, Yang (bib115) 2016
Zhai, Rojas, Ahlborg, Lim, Toney, Jin, Chueh, Majumdar (bib119) 2018; 11
Yan, Zhang (bib109) 2020; 187
Dąbrowa, Olszewska, Falkenstein, Schwab, Szymczak, Zajusz, Moździerz, Mikuła, Zielińska, Berent (bib18) 2020; 8
Hu, Shen, Jiang, Gong, Xiao, Liu, Sun, Zu (bib36) 2019; 9
Wang, Sarkar, Wang, Velasco, Azmi, Bhattacharya, Bergfeldt, Düvel, Heitjans, Brezesinski (bib98) 2019; 12
Qiu, Chen, Yang, Sun, Wang, Cui (bib77) 2019; 777
Tomboc, Kwon, Joo, Lee (bib90) 2020; 8
Zhao, Ding, Lu, Chen, Hu (bib125) 2020; 59
Meisenheimer, Kratofil, Heron (bib61) 2017; 7
Chen, Fu, Zhang, Peng, Abney, Jie, Liu, Chi, Dai (bib11) 2018; 6
Biesuz, Spiridigliozzi, Dell’Agli, Bortolotti, Sglavo (bib7) 2018; 53
Chen, Jie, Jafta, Yang, Yao, Liu, Zhang, Liu, Chi, Fu, Dai (bib12) 2020; 276
Nguyen, Patra, Chang, Ting (bib65) 2020; 8
Zheng, Yi, Fan, Liu, Li, Zhang, Li, Qiao (bib127) 2019; 23
Miracle, Senkov (bib62) 2017; 122
Sarkar, Djenadic, Usharani, Sanghvi, Chakravadhanula, Gandhi, Hahn, Bhattacharya (bib82) 2017; 37
Cantor, Chang, Knight, Vincent (bib10) 2004; 375–377
Yan, Wang, Zhang, Li, Du, Liu, Zhang, Qi (bib108) 2020; 55
Nellaiappan, Katiyar, Kumar, Parui, Malviya, Pradeep, Singh, Sharma, Tiwary, Biswas (bib64) 2020; 10
Chen, Si, Gao, Frenzel, Sun, Eggeler, Zhang (bib17) 2015; 273
Yao, Huang, Xie, Lacey, Jacob, Xie, Chen, Nie, Pu, Rehwoldt (bib112) 2018; 359
Lacey, Dong, Huang, Luo, Xie, Lin, Kirsch, Vattipalli, Povinelli, Fan (bib45) 2019; 19
Wang, Sarkar, Li, Lu, Velasco, Bhattacharya, Brezesinski, Hahn, Breitung (bib97) 2019; 100
Li, Zhao, Ritchie, Meyers (bib50) 2019; 102
Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib34) 2014; 345
Oses, Toher, Curtarolo (bib68) 2020; 5
Rost, Sachet, Borman, Moballegh, Dickey, Hou, Jones, Curtarolo, Maria (bib80) 2015; 6
Zhao, Xue, Chen, Wang, Mu (bib126) 2020; 13
Zhang, Zhao, Wu, Deng, Wang, Han, Li, Shi, Chen, Li (bib120) 2020
Sure, Sri Maha Vishnu, Kim, Schwandt (bib89) 2020; 59
Waag, Li, Ziefuß, Bertin, Kamp, Duppel, Marzun, Kienle, Barcikowski, Gökce (bib93) 2019; 9
Bondesgaard, Broge, Mamakhel, Bremholm, Iversen (bib8) 2019; 29
Parida, Karati, Guruvidyathri, Murty, Markandeyulu (bib70) 2020; 178
Katiyar, Nellaiappan, Kumar, Malviya, Pradeep, Singh, Sharma, Tiwary, Biswas (bib42) 2020; 16
Chen, Lin, Zhang, Jie, Mullins, Sang, Yang, Jafta, Bridges, Hu (bib13) 2019; 1
Gild, Kaufmann, Vecchio, Luo (bib31) 2019; 170
Lv, Liu, Jia, Wang, Wu, Lu (bib59) 2016; 6
Qiu, Fang, Wen, Liu, Xie, Liu, Sun (bib76) 2019; 7
Zhang, Gucci, Zhu, Chen, Reece (bib123) 2018; 57
Gorsse, Miracle, Senkov (bib35) 2017; 135
Park, Ahn (bib71) 2020; 504
Ding, Zhang, Chen, Fu, Chen, Chen, Gu, Wei, Bei, Gao (bib22) 2019; 574
Zhang, Yang, Hu, Xu, Peng, Liu, Thapaliya, Jie, Zhao, Liu (bib124) 2019; 31
Xie, Yao, Huang, Liu, Zhang, Li, Wang, Shahbazian-Yassar, Hu, Wang (bib104) 2019; 10
Jin, Sang, Unocic, Kinch, Liu, Hu, Liu, Dai (bib40) 2018; 30
Yao, Liu, Xie, Huang, Li, Morris, Finfrock, Zhou, Jiao, Gao (bib113) 2020; 6
Li, Pradeep, Deng, Raabe, Tasan (bib49) 2016; 534
Kotsonis, Rost, Harris, Maria (bib44) 2018; 8
Löffler, Meyer, Savan, Wilde, Garzón Manjón, Chen, Ventosa, Scheu, Ludwig, Schuhmann (bib54) 2018; 8
Glasscott, Pendergast, Goines, Bishop, Hoang, Renault, Dick (bib33) 2019; 10
Gild, Zhang, Harrington, Jiang, Hu, Quinn, Mellor, Zhou, Vecchio, Luo (bib32) 2016; 6
Huang, Zhang, Wu, Zhang, Peng, Cao, Zhang, Li, Huang (bib37) 2020; 8
Lei, Liu, Wu, Wang, Jiang, Wang, Hui, Wu, Gault, Kontis (bib46) 2018; 563
Feng, Chen, Pikhitsa, Jung, Yang, Choi (bib26) 2020; 3
Löffler, Savan, Garzón-Manjón, Meischein, Scheu, Ludwig, Schuhmann (bib55) 2019; 4
Pedersen, Batchelor, Bagger, Rossmeisl (bib73) 2020; 10
Wang, Liu, Du, Zhang, Li, Xiao, Chen, Chen, Wang, Zou, Wang (bib95) 2019; 7
Sarkar, Eggert, Velasco, Mu, Lill, Ollefs, Bhattacharya, Wende, Kruk, Brand, Hahn (bib83) 2020; 8
Xin, Li, Qian, Zhu, Yuan, Jiang, Guo, Wang (bib105) 2020
Gao, Hao, Huang, Yuan, Han, Lei, Zhang, Shahbazian-Yassar, Lu (bib29) 2020; 11
Wang, Chen, Yang, Liang, Dai (bib100) 2020; 142
Jiang, Guo, Kim, Whitten, Wood, Kani, Rowan, Henzie, Yamauchi (bib38) 2018; 140
Niu, Zhang, Ping, Li, Zhou, Lei, Xie, Zhang, Wang, Fu (bib66) 2017; 7
Ostovari Moghaddam, Trofimov (bib69) 2021; 851
Rák, Maria, Brenner (bib78) 2018; 217
Amiri, Shahbazian-Yassar (bib1) 2021
Broge, Bondesgaard, Sondergaard-Pedersen, Roelsgaard, Iversen (bib9) 2020; 59
Wang, Wan, Xu, Tong, Li (bib94) 2014; 127
Ye, Fan, Han, Ma, Chu (bib114) 2020; 103
Chen, Pei, Tang, Cheng, Li, Li, Zhang, An (bib16) 2018; 38
Xu, Du, Wang, Guo, Zou, Zhou, Zeng, Liu, Li (bib106) 2020; 822
Biesuz, Fu, Dong, Jiang, Ke, Xu, Zhu, Bortolotti, Reece, Hu, Grasso (bib6) 2019; 7
Dai (bib20) 2020; 13
Pu, Zhang, Li, Chen, Du, Zhou (bib74) 2019; 115
Miracle, Senkov (bib63) 2017
Li, Tang, Jia, Li, Xie, Liu, Lin, Qiu (bib48) 2020; 383
Sarkar, Breitung, Hahn (bib81) 2020; 187
Qiu, Fang, Gao, Wen, Lv, Li, Xie, Liu, Sun (bib75) 2019; 1
Fracchia, Manzoli, Anselmi-Tamburini, Ghigna (bib28) 2020; 188
Wang, Ma, Li, Xie, Sun, Liu, Liu, An (bib96) 2020; 46
Fracchia, Ghigna, Pozzi, Anselmi Tamburini, Colombo, Braglia, Torelli (bib27) 2020; 11
Chen, Qiu, Wu, Yang, Sun, Wang (bib14) 2020; 10
George, Raabe, Ritchie (bib30) 2019; 4
Yalamanchili, Wang, Schramm, Andersson, Johansson Jöesaar, Tasnádi, Mücklich, Ghafoor, Odén (bib107) 2017; 636
Liu, Wen, Ye, Chu (bib52) 2019; 167
Jimenez-Segura, Takayama, Bérardan, Hoser, Reehuis, Takagi, Dragoe (bib39) 2019; 114
Kong, Hyun, Kim, Kim, Kim (bib43) 2019; 437
Liu, Peng, Liu, Chen, Yang, An (bib51) 2020; 40
Wu, Kusada, Yamamoto, Toriyama, Matsumura, Kawaguchi, Kubota, Kitagawa (bib102) 2020; 142
Usharani, Bhandarkar, Subramanian, Bhattacharya (bib92) 2020; 200
Xiang, Xie, Mao, Jia, Si (bib103) 2020; 111
Feng, Dong, Zhang, Ge, Zhang, Dai, Qiao (bib25) 2020; 59
Li, Han, Zhao, Qi, Zhang, Yu, Cai, Li, Lai, Huang, Wang (bib47) 2020; 11
Mao, Xiang, Zhang, Kuramoto, Zhang, Jia (bib60) 2020; 497
Patel, Ojha, Kumar, Saha, Mandal, Freeland, Middey (bib72) 2020; 116
Li (10.1016/j.isci.2021.102177_bib50) 2019; 102
Waag (10.1016/j.isci.2021.102177_bib93) 2019; 9
Zhang (10.1016/j.isci.2021.102177_bib120) 2020
Dai (10.1016/j.isci.2021.102177_bib20) 2020; 13
Liu (10.1016/j.isci.2021.102177_bib53) 2019; 6
Rost (10.1016/j.isci.2021.102177_bib80) 2015; 6
Bondesgaard (10.1016/j.isci.2021.102177_bib8) 2019; 29
Gild (10.1016/j.isci.2021.102177_bib32) 2016; 6
Qiu (10.1016/j.isci.2021.102177_bib76) 2019; 7
Chen (10.1016/j.isci.2021.102177_bib15) 2019; 9
Dai (10.1016/j.isci.2021.102177_bib21) 2019; 430
Chen (10.1016/j.isci.2021.102177_bib14) 2020; 10
Yan (10.1016/j.isci.2021.102177_bib109) 2020; 187
Jimenez-Segura (10.1016/j.isci.2021.102177_bib39) 2019; 114
Tsai (10.1016/j.isci.2021.102177_bib91) 2009; 478
Qiu (10.1016/j.isci.2021.102177_bib77) 2019; 777
Rák (10.1016/j.isci.2021.102177_bib78) 2018; 217
Wang (10.1016/j.isci.2021.102177_bib97) 2019; 100
Wang (10.1016/j.isci.2021.102177_bib96) 2020; 46
Gild (10.1016/j.isci.2021.102177_bib31) 2019; 170
Niu (10.1016/j.isci.2021.102177_bib66) 2017; 7
Sarkar (10.1016/j.isci.2021.102177_bib83) 2020; 8
Qiu (10.1016/j.isci.2021.102177_bib75) 2019; 1
Zhang (10.1016/j.isci.2021.102177_bib121) 2018; 279
Miracle (10.1016/j.isci.2021.102177_bib62) 2017; 122
Oses (10.1016/j.isci.2021.102177_bib68) 2020; 5
Yao (10.1016/j.isci.2021.102177_bib113) 2020; 6
George (10.1016/j.isci.2021.102177_bib30) 2019; 4
Stygar (10.1016/j.isci.2021.102177_bib88) 2020; 40
Chen (10.1016/j.isci.2021.102177_bib12) 2020; 276
Dąbrowa (10.1016/j.isci.2021.102177_bib19) 2018; 216
Sarkar (10.1016/j.isci.2021.102177_bib81) 2020; 187
Hu (10.1016/j.isci.2021.102177_bib36) 2019; 9
Liu (10.1016/j.isci.2021.102177_bib51) 2020; 40
Wang (10.1016/j.isci.2021.102177_bib95) 2019; 7
Sarkar (10.1016/j.isci.2021.102177_bib82) 2017; 37
Wu (10.1016/j.isci.2021.102177_bib102) 2020; 142
Li (10.1016/j.isci.2021.102177_bib48) 2020; 383
Fracchia (10.1016/j.isci.2021.102177_bib28) 2020; 188
Zhang (10.1016/j.isci.2021.102177_bib122) 2019; 31
Gorsse (10.1016/j.isci.2021.102177_bib35) 2017; 135
Li (10.1016/j.isci.2021.102177_bib49) 2016; 534
Pedersen (10.1016/j.isci.2021.102177_bib73) 2020; 10
Wang (10.1016/j.isci.2021.102177_bib94) 2014; 127
Löffler (10.1016/j.isci.2021.102177_bib56) 2020; 59
Bérardan (10.1016/j.isci.2021.102177_bib3) 2016; 10
Broge (10.1016/j.isci.2021.102177_bib9) 2020; 59
Lacey (10.1016/j.isci.2021.102177_bib45) 2019; 19
Dąbrowa (10.1016/j.isci.2021.102177_bib18) 2020; 8
Yao (10.1016/j.isci.2021.102177_bib112) 2018; 359
Biesuz (10.1016/j.isci.2021.102177_bib7) 2018; 53
Parida (10.1016/j.isci.2021.102177_bib70) 2020; 178
Park (10.1016/j.isci.2021.102177_bib71) 2020; 504
Zhao (10.1016/j.isci.2021.102177_bib126) 2020; 13
Zhang (10.1016/j.isci.2021.102177_bib124) 2019; 31
Yang (10.1016/j.isci.2021.102177_bib110) 2020; 36
Tomboc (10.1016/j.isci.2021.102177_bib90) 2020; 8
Sure (10.1016/j.isci.2021.102177_bib89) 2020; 59
Ding (10.1016/j.isci.2021.102177_bib22) 2019; 574
Okejiri (10.1016/j.isci.2021.102177_bib67) 2020; 13
Glasscott (10.1016/j.isci.2021.102177_bib33) 2019; 10
Xiang (10.1016/j.isci.2021.102177_bib103) 2020; 111
Yalamanchili (10.1016/j.isci.2021.102177_bib107) 2017; 636
Yan (10.1016/j.isci.2021.102177_bib108) 2020; 55
Xie (10.1016/j.isci.2021.102177_bib104) 2019; 10
Ye (10.1016/j.isci.2021.102177_bib114) 2020; 103
Yusenko (10.1016/j.isci.2021.102177_bib118) 2017; 138
Liu (10.1016/j.isci.2021.102177_bib52) 2019; 167
Yuan (10.1016/j.isci.2021.102177_bib117) 2014; 26
Zhai (10.1016/j.isci.2021.102177_bib119) 2018; 11
Zhao (10.1016/j.isci.2021.102177_bib125) 2020; 59
Yeh (10.1016/j.isci.2021.102177_bib116) 2004; 6
Jin (10.1016/j.isci.2021.102177_bib40) 2018; 30
Löffler (10.1016/j.isci.2021.102177_bib54) 2018; 8
Yao (10.1016/j.isci.2021.102177_bib111) 2020; 117
Dragoe (10.1016/j.isci.2021.102177_bib24) 2019; 366
Sathiya (10.1016/j.isci.2021.102177_bib86) 2018; 8
Zhang (10.1016/j.isci.2021.102177_bib123) 2018; 57
Sarkar (10.1016/j.isci.2021.102177_bib84) 2018; 9
Amiri (10.1016/j.isci.2021.102177_bib1) 2021
Nguyen (10.1016/j.isci.2021.102177_bib65) 2020; 8
Chen (10.1016/j.isci.2021.102177_bib17) 2015; 273
Jin (10.1016/j.isci.2021.102177_bib41) 2019; 15
Wang (10.1016/j.isci.2021.102177_bib99) 2019; 5
Patel (10.1016/j.isci.2021.102177_bib72) 2020; 116
Feng (10.1016/j.isci.2021.102177_bib26) 2020; 3
Wang (10.1016/j.isci.2021.102177_bib100) 2020; 142
Kong (10.1016/j.isci.2021.102177_bib43) 2019; 437
Usharani (10.1016/j.isci.2021.102177_bib92) 2020; 200
Djenadic (10.1016/j.isci.2021.102177_bib23) 2017; 5
Fracchia (10.1016/j.isci.2021.102177_bib27) 2020; 11
Xu (10.1016/j.isci.2021.102177_bib106) 2020; 822
Berardan (10.1016/j.isci.2021.102177_bib5) 2017; 704
Gao (10.1016/j.isci.2021.102177_bib29) 2020; 11
Chen (10.1016/j.isci.2021.102177_bib11) 2018; 6
Nellaiappan (10.1016/j.isci.2021.102177_bib64) 2020; 10
Lun (10.1016/j.isci.2021.102177_bib58) 2020
Lv (10.1016/j.isci.2021.102177_bib59) 2016; 6
Feng (10.1016/j.isci.2021.102177_bib25) 2020; 59
Meisenheimer (10.1016/j.isci.2021.102177_bib61) 2017; 7
Pu (10.1016/j.isci.2021.102177_bib74) 2019; 115
Cantor (10.1016/j.isci.2021.102177_bib10) 2004; 375–377
Chen (10.1016/j.isci.2021.102177_bib13) 2019; 1
Sarker (10.1016/j.isci.2021.102177_bib85) 2018; 9
Rost (10.1016/j.isci.2021.102177_bib79) 2017; 100
Biesuz (10.1016/j.isci.2021.102177_bib6) 2019; 7
Batchelor (10.1016/j.isci.2021.102177_bib2) 2019; 3
Chen (10.1016/j.isci.2021.102177_bib16) 2018; 38
Xin (10.1016/j.isci.2021.102177_bib105) 2020
Ye (10.1016/j.isci.2021.102177_bib115) 2016
Bérardan (10.1016/j.isci.2021.102177_bib4) 2016; 4
Lei (10.1016/j.isci.2021.102177_bib46) 2018; 563
Mao (10.1016/j.isci.2021.102177_bib60) 2020; 497
Miracle (10.1016/j.isci.2021.102177_bib63) 2017
Gludovatz (10.1016/j.isci.2021.102177_bib34) 2014; 345
Kotsonis (10.1016/j.isci.2021.102177_bib44) 2018; 8
Shen (10.1016/j.isci.2021.102177_bib87) 2019; 9
Löffler (10.1016/j.isci.2021.102177_bib55) 2019; 4
Wu (10.1016/j.isci.2021.102177_bib101) 2020
Li (10.1016/j.isci.2021.102177_bib47) 2020; 11
Lökçü (10.1016/j.isci.2021.102177_bib57) 2020; 7
Jiang (10.1016/j.isci.2021.102177_bib38) 2018; 140
Katiyar (10.1016/j.isci.2021.102177_bib42) 2020; 16
Zheng (10.1016/j.isci.2021.102177_bib127) 2019; 23
Ostovari Moghaddam (10.1016/j.isci.2021.102177_bib69) 2021; 851
Wang (10.1016/j.isci.2021.102177_bib98) 2019; 12
Huang (10.1016/j.isci.2021.102177_bib37) 2020; 8
References_xml – volume: 478
  start-page: 868
  year: 2009
  end-page: 871
  ident: bib91
  article-title: Effect of platinum present in multi-element nanoparticles on methanol oxidation
  publication-title: J. Alloys Compd.
– volume: 188
  start-page: 26
  year: 2020
  end-page: 31
  ident: bib28
  article-title: A new eight-cation inverse high entropy spinel with large configurational entropy in both tetrahedral and octahedral sites: synthesis and cation distribution by X-ray absorption spectroscopy
  publication-title: Scr. Mater.
– volume: 15
  start-page: 1904180
  year: 2019
  ident: bib41
  article-title: Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments
  publication-title: Small
– volume: 102
  start-page: 296
  year: 2019
  end-page: 345
  ident: bib50
  article-title: Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys
  publication-title: Prog. Mater. Sci.
– volume: 7
  start-page: 127
  year: 2019
  end-page: 132
  ident: bib6
  article-title: High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering
  publication-title: J. Asian Ceram. Soc.
– volume: 11
  start-page: 2016
  year: 2020
  ident: bib29
  article-title: Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis
  publication-title: Nat. Commun.
– volume: 7
  start-page: 24211
  year: 2019
  end-page: 24216
  ident: bib95
  article-title: Low-temperature synthesis of small-sized high-entropy oxides for water oxidation
  publication-title: J. Mater. Chem. A.
– volume: 383
  start-page: 164
  year: 2020
  end-page: 171
  ident: bib48
  article-title: Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction
  publication-title: J. Catal.
– volume: 16
  year: 2020
  ident: bib42
  article-title: Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst
  publication-title: Mater. Today Energy
– year: 2017
  ident: bib63
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 142
  start-page: 13833
  year: 2020
  end-page: 13838
  ident: bib102
  article-title: Platinum-group-metal high-entropy-alloy nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 1985
  year: 2020
  end-page: 1992
  ident: bib110
  article-title: Aerosol synthesis of high entropy alloy nanoparticles
  publication-title: Langmuir
– volume: 12
  start-page: 2433
  year: 2019
  end-page: 2442
  ident: bib98
  article-title: Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 117
  start-page: 6316
  year: 2020
  end-page: 6322
  ident: bib111
  article-title: High-throughput, combinatorial synthesis of multimetallic nanoclusters
  publication-title: Proc. Natl. Acad. Sci. U S A.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib116
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 138
  start-page: 22
  year: 2017
  end-page: 27
  ident: bib118
  article-title: First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation
  publication-title: Scr. Mater.
– volume: 6
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib113
  article-title: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts
  publication-title: Sci. Adv.
– volume: 9
  start-page: 3400
  year: 2018
  ident: bib84
  article-title: High entropy oxides for reversible energy storage
  publication-title: Nat. Commun.
– volume: 13
  start-page: 111
  year: 2020
  end-page: 115
  ident: bib67
  article-title: Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method
  publication-title: ChemSusChem
– volume: 13
  start-page: 2038
  year: 2020
  end-page: 2042
  ident: bib126
  article-title: Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting
  publication-title: ChemSusChem
– volume: 777
  start-page: 767
  year: 2019
  end-page: 774
  ident: bib77
  article-title: A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance
  publication-title: J. Alloys Compd.
– volume: 8
  start-page: 1802269
  year: 2018
  ident: bib54
  article-title: Discovery of a multinary noble metal-free oxygen reduction catalyst
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 3658
  year: 2020
  end-page: 3663
  ident: bib64
  article-title: High-entropy alloys as catalysts for the CO 2 and CO reduction reactions: experimental realization
  publication-title: ACS Catal.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib104
  article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts
  publication-title: Nat. Commun.
– year: 2021
  ident: bib1
  article-title: Recent progress of high-entropy materials for energy storage and conversion
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 13344
  year: 2017
  ident: bib61
  article-title: Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures
  publication-title: Sci. Rep.
– volume: 59
  start-page: 5844
  year: 2020
  end-page: 5850
  ident: bib56
  article-title: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves
  publication-title: Angew. Chem. Int. Ed.
– year: 2020
  ident: bib101
  article-title: On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles
  publication-title: Chem. Sci.
– year: 2016
  ident: bib115
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
– volume: 430
  start-page: 104
  year: 2019
  end-page: 111
  ident: bib21
  article-title: Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy
  publication-title: J. Power Sourc.
– volume: 9
  start-page: 28908
  year: 2019
  end-page: 28915
  ident: bib15
  article-title: Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 )O solid solutions to achieve superior lithium-storage properties
  publication-title: RSC Adv.
– volume: 8
  start-page: 051111
  year: 2020
  ident: bib83
  article-title: Role of intermediate 4 f states in tuning the band structure of high entropy oxides
  publication-title: APL Mater.
– volume: 9
  start-page: 4980
  year: 2018
  ident: bib85
  article-title: High-entropy high-hardness metal carbides discovered by entropy descriptors
  publication-title: Nat. Commun.
– volume: 822
  start-page: 153642
  year: 2020
  ident: bib106
  article-title: High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 9536
  year: 2016
  end-page: 9541
  ident: bib4
  article-title: Room temperature lithium superionic conductivity in high entropy oxides
  publication-title: J. Mater. Chem. A.
– volume: 504
  year: 2020
  ident: bib71
  article-title: Electrochemical synthesis of multimetallic nanoparticles and their application in alkaline oxygen reduction catalysis
  publication-title: Appl. Surf. Sci.
– volume: 142
  start-page: 4550
  year: 2020
  end-page: 4554
  ident: bib100
  article-title: High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 177
  year: 2017
  end-page: 187
  ident: bib35
  article-title: Mapping the world of complex concentrated alloys
  publication-title: Acta Mater.
– volume: 100
  start-page: 2732
  year: 2017
  end-page: 2738
  ident: bib79
  article-title: Local structure of the Mg x Ni x Co x Cu x Zn x O( x =0.2) entropy-stabilized oxide: an EXAFS study
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib53
  article-title: Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions
  publication-title: Adv. Mater. Inter.
– volume: 574
  start-page: 223
  year: 2019
  end-page: 227
  ident: bib22
  article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys
  publication-title: Nature
– volume: 40
  start-page: 2504
  year: 2020
  end-page: 2508
  ident: bib51
  article-title: Ultrafast synthesis of entropy-stabilized oxide at room temperature
  publication-title: J. Eur. Ceram. Soc.
– volume: 7
  start-page: 3421
  year: 2017
  ident: bib66
  article-title: Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys
  publication-title: Sci. Rep.
– volume: 3
  start-page: 1646
  year: 2020
  end-page: 1663
  ident: bib26
  article-title: Unconventional alloys confined in nanoparticles: building blocks for new matter
  publication-title: Matter
– volume: 46
  start-page: 18358
  year: 2020
  end-page: 18361
  ident: bib96
  article-title: Fabrication of high-entropy perovskite oxide by reactive flash sintering
  publication-title: Ceram. Int.
– volume: 1
  start-page: 83
  year: 2019
  end-page: 88
  ident: bib13
  article-title: Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization
  publication-title: ACS Mater. Lett.
– volume: 636
  start-page: 346
  year: 2017
  end-page: 352
  ident: bib107
  article-title: Exploring the high entropy alloy concept in (AlTiVNbCr)N
  publication-title: Thin Solid Films
– volume: 5
  start-page: 295
  year: 2020
  end-page: 309
  ident: bib68
  article-title: High-entropy ceramics
  publication-title: Nat. Rev. Mater.
– volume: 127
  start-page: 448
  year: 2014
  end-page: 453
  ident: bib94
  article-title: Quinary PdNiCoCuFe alloy nanotube Arrays as efficient electrocatalysts for methanol oxidation
  publication-title: Electrochim. Acta
– volume: 217
  start-page: 300
  year: 2018
  end-page: 303
  ident: bib78
  article-title: Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: a DFT study
  publication-title: Mater. Lett.
– volume: 187
  start-page: 188
  year: 2020
  end-page: 193
  ident: bib109
  article-title: Functional properties and promising applications of high entropy alloys
  publication-title: Scr. Mater.
– volume: 8
  start-page: 1371
  year: 2018
  end-page: 1377
  ident: bib44
  article-title: Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment
  publication-title: MRS Commun.
– volume: 4
  start-page: 515
  year: 2019
  end-page: 534
  ident: bib30
  article-title: High-entropy alloys
  publication-title: Nat. Rev. Mater.
– volume: 563
  start-page: 546
  year: 2018
  end-page: 550
  ident: bib46
  article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
  publication-title: Nature
– volume: 59
  start-page: 11830
  year: 2020
  end-page: 11835
  ident: bib89
  article-title: Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide
  publication-title: Powder. Angew. Chem. Int. Ed.
– volume: 345
  start-page: 1153
  year: 2014
  end-page: 1158
  ident: bib34
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 11
  start-page: 5437
  year: 2020
  ident: bib47
  article-title: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis
  publication-title: Nat. Commun.
– volume: 57
  start-page: 13027
  year: 2018
  end-page: 13033
  ident: bib123
  article-title: Data-driven design of ecofriendly thermoelectric high-entropy sulfides
  publication-title: Inorg. Chem.
– volume: 30
  start-page: 1707512
  year: 2018
  ident: bib40
  article-title: Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy
  publication-title: Adv. Mater.
– volume: 167
  start-page: 110
  year: 2019
  end-page: 114
  ident: bib52
  article-title: Synthesis of superfine high-entropy metal diboride powders
  publication-title: Scr. Mater.
– volume: 8
  year: 2018
  ident: bib86
  article-title: A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 678
  year: 2019
  end-page: 683
  ident: bib127
  article-title: A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries
  publication-title: Energy Storage Mater
– volume: 170
  start-page: 106
  year: 2019
  end-page: 110
  ident: bib31
  article-title: Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics
  publication-title: Scr. Mater.
– volume: 8
  start-page: 18963
  year: 2020
  end-page: 18973
  ident: bib65
  article-title: High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance
  publication-title: J. Mater. Chem. A.
– volume: 40
  start-page: 1644
  year: 2020
  end-page: 1650
  ident: bib88
  article-title: Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels
  publication-title: J. Eur. Ceram. Soc.
– year: 2020
  ident: bib58
  article-title: Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries
  publication-title: Nat. Mater.
– volume: 19
  start-page: 5149
  year: 2019
  end-page: 5158
  ident: bib45
  article-title: Stable multimetallic nanoparticles for oxygen electrocatalysis
  publication-title: Nano Lett.
– volume: 59
  start-page: 2
  year: 2020
  end-page: 9
  ident: bib25
  article-title: Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol
  publication-title: Angew. Chem. Int. Ed.
– volume: 187
  start-page: 43
  year: 2020
  end-page: 48
  ident: bib81
  article-title: High entropy oxides: the role of entropy, enthalpy and synergy
  publication-title: Scr. Mater.
– year: 2020
  ident: bib120
  article-title: Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 6499
  year: 2019
  end-page: 6506
  ident: bib76
  article-title: Nanoporous high-entropy alloys for highly stable and efficient catalysts
  publication-title: J. Mater. Chem. A.
– volume: 8
  start-page: 24455
  year: 2020
  end-page: 24468
  ident: bib18
  article-title: An innovative approach to design SOFC air electrode materials: high entropy La 1−x Sr x (Co,Cr,Fe,Mn,Ni)O 3−δ ( x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method
  publication-title: J. Mater. Chem. A.
– volume: 10
  start-page: 2650
  year: 2019
  ident: bib33
  article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis
  publication-title: Nat. Commun.
– volume: 3
  start-page: 834
  year: 2019
  end-page: 845
  ident: bib2
  article-title: High-entropy alloys as a discovery platform for electrocatalysis
  publication-title: Joule
– volume: 111
  start-page: 246
  year: 2020
  end-page: 249
  ident: bib103
  article-title: Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis
  publication-title: Int. J. Mater. Res.
– volume: 375–377
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib10
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A.
– volume: 704
  start-page: 693
  year: 2017
  end-page: 700
  ident: bib5
  article-title: Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides
  publication-title: J. Alloys Compd.
– start-page: 11280
  year: 2020
  end-page: 11306
  ident: bib105
  article-title: High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities
  publication-title: ACS Catal.
– volume: 10
  start-page: 2169
  year: 2020
  end-page: 2176
  ident: bib73
  article-title: High-entropy alloys as catalysts for the CO 2 and CO reduction reactions
  publication-title: ACS Catal.
– volume: 11
  start-page: 2172
  year: 2018
  end-page: 2178
  ident: bib119
  article-title: The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1905933
  year: 2019
  ident: bib8
  article-title: General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 502
  year: 2019
  end-page: 504
  ident: bib99
  article-title: Predicting catalytic activity of high-entropy alloys for electrocatalysis
  publication-title: Chem
– volume: 26
  start-page: 6301
  year: 2014
  end-page: 6306
  ident: bib117
  article-title: A honeycomb-layered Na 3 Ni 2 SbO 6 : a high-rate and cycle-stable cathode for sodium-ion batteries
  publication-title: Adv. Mater.
– volume: 9
  start-page: 18547
  year: 2019
  end-page: 18558
  ident: bib93
  article-title: Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles
  publication-title: RSC Adv.
– volume: 7
  start-page: 0c03562
  year: 2020
  ident: bib57
  article-title: Electrochemical performance of (MgCoNiZn) 1– x Li x O high-entropy oxides in lithium-ion batteries
  publication-title: ACS Appl. Mater. Inter.
– volume: 37
  start-page: 747
  year: 2017
  end-page: 754
  ident: bib82
  article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides
  publication-title: J. Eur. Ceram. Soc.
– volume: 116
  start-page: 071601
  year: 2020
  ident: bib72
  article-title: Epitaxial stabilization of ultra thin films of high entropy perovskite
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 14844
  year: 2020
  end-page: 14862
  ident: bib90
  article-title: High entropy alloy electrocatalysts: a critical assessment of fabrication and performance
  publication-title: J. Mater. Chem. A.
– volume: 59
  start-page: 21920
  year: 2020
  end-page: 21924
  ident: bib9
  article-title: Autocatalytic formation of high-entropy alloy nanoparticles
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib87
  article-title: A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage
  publication-title: Nanomaterials
– volume: 11
  start-page: 3589
  year: 2020
  end-page: 3593
  ident: bib27
  article-title: Stabilization by configurational entropy of the Cu(II) active site during CO oxidation on Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 O
  publication-title: J. Phys. Chem. Lett.
– volume: 279
  start-page: 19
  year: 2018
  end-page: 23
  ident: bib121
  article-title: High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction
  publication-title: Electrochim. Acta
– volume: 38
  start-page: 4161
  year: 2018
  end-page: 4164
  ident: bib16
  article-title: A five-component entropy-stabilized fluorite oxide
  publication-title: J. Eur. Ceram. Soc.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib59
  article-title: Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions
  publication-title: Sci. Rep.
– volume: 497
  start-page: 1
  year: 2020
  end-page: 5
  ident: bib60
  article-title: A new class of spinel high-entropy oxides with controllable magnetic properties
  publication-title: J. Magn. Magn. Mater.
– volume: 140
  start-page: 12434
  year: 2018
  end-page: 12441
  ident: bib38
  article-title: Mesoporous metallic iridium nanosheets
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 264
  year: 2020
  end-page: 269
  ident: bib125
  article-title: High-entropy layered oxide cathodes for sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 2
  year: 2016
  end-page: 11
  ident: bib32
  article-title: High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics
  publication-title: Sci. Rep.
– volume: 4
  start-page: 1206
  year: 2019
  end-page: 1214
  ident: bib55
  article-title: Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles
  publication-title: ACS Energy Lett.
– volume: 100
  start-page: 121
  year: 2019
  end-page: 125
  ident: bib97
  article-title: High entropy oxides as anode material for Li-ion battery applications: a practical approach
  publication-title: Electrochem. Commun.
– volume: 1
  start-page: 526
  year: 2019
  end-page: 533
  ident: bib75
  article-title: Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: ACS Mater. Lett.
– volume: 216
  start-page: 32
  year: 2018
  end-page: 36
  ident: bib19
  article-title: Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure
  publication-title: Mater. Lett.
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib62
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: ACTA Mater.
– volume: 115
  start-page: 0
  year: 2019
  end-page: 5
  ident: bib74
  article-title: Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic
  publication-title: Appl. Phys. Lett.
– volume: 114
  start-page: 122401
  year: 2019
  ident: bib39
  article-title: Long-range magnetic ordering in rocksalt-type high-entropy oxides
  publication-title: Appl. Phys. Lett.
– volume: 55
  start-page: 6942
  year: 2020
  end-page: 6951
  ident: bib108
  article-title: A high-entropy perovskite titanate lithium-ion battery anode
  publication-title: J. Mater. Sci.
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: bib49
  article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
  publication-title: Nature
– volume: 103
  start-page: 4738
  year: 2020
  end-page: 4741
  ident: bib114
  article-title: Synthesis of high-entropy diboride nanopowders via molten salt-mediated magnesiothermic reduction
  publication-title: J. Am. Ceram. Soc.
– volume: 359
  start-page: 1489
  year: 2018
  end-page: 1494
  ident: bib112
  article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles
  publication-title: Science
– volume: 9
  start-page: 461
  year: 2019
  ident: bib36
  article-title: A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo
  publication-title: Nanomater
– volume: 178
  start-page: 513
  year: 2020
  end-page: 517
  ident: bib70
  article-title: Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure
  publication-title: Scr. Mater.
– volume: 6
  start-page: 8485
  year: 2015
  ident: bib80
  article-title: Entropy-stabilized oxides
  publication-title: Nat. Commun.
– volume: 31
  start-page: 5529
  year: 2019
  end-page: 5536
  ident: bib124
  article-title: Mechanochemical nonhydrolytic sol-gel-strategy for the production of mesoporous multimetallic oxides
  publication-title: Chem. Mater.
– volume: 5
  start-page: 102
  year: 2017
  end-page: 109
  ident: bib23
  article-title: Multicomponent equiatomic rare earth oxides
  publication-title: Mater. Res. Lett.
– volume: 13
  start-page: 1915
  year: 2020
  end-page: 1917
  ident: bib20
  article-title: Across the board: sheng Dai on catalyst design by entropic factors
  publication-title: ChemSusChem
– volume: 10
  start-page: 328
  year: 2016
  end-page: 333
  ident: bib3
  article-title: Colossal dielectric constant in high entropy oxides
  publication-title: Phys. Status Solidi - Rapid Res. Lett.
– volume: 53
  start-page: 8074
  year: 2018
  end-page: 8085
  ident: bib7
  article-title: Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods
  publication-title: J. Mater. Sci.
– volume: 851
  start-page: 156838
  year: 2021
  ident: bib69
  article-title: Toward expanding the realm of high entropy materials to platinum group metals: a review
  publication-title: J. Alloys Compd.
– volume: 366
  start-page: 573
  year: 2019
  end-page: 574
  ident: bib24
  article-title: Order emerging from disorder
  publication-title: Science
– volume: 31
  start-page: 3705
  year: 2019
  end-page: 3711
  ident: bib122
  article-title: Long-range antiferromagnetic order in a rocksalt high entropy oxide
  publication-title: Chem. Mater.
– volume: 437
  start-page: 226927
  year: 2019
  ident: bib43
  article-title: Nanoporous structure synthesized by selective phase dissolution of AlCoCrFeNi high entropy alloy and its electrochemical properties as supercapacitor electrode
  publication-title: J. Power Sourc.
– volume: 10
  start-page: 9736
  year: 2020
  end-page: 9744
  ident: bib14
  article-title: A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries
  publication-title: RSC Adv.
– volume: 276
  start-page: 119155
  year: 2020
  ident: bib12
  article-title: An ultrastable heterostructured oxide catalyst based on high-entropy materials: a new strategy toward catalyst stabilization via synergistic interfacial interaction
  publication-title: Appl. Catal. B Environ.
– volume: 273
  start-page: 324
  year: 2015
  end-page: 332
  ident: bib17
  article-title: Multi-component nanoporous platinum–ruthenium–copper–osmium–iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction
  publication-title: J. Power Sourc.
– volume: 200
  start-page: 526
  year: 2020
  end-page: 536
  ident: bib92
  article-title: Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: magnetic constituents and surface anisotropy leading to lattice distortion
  publication-title: Acta Mater.
– volume: 8
  start-page: 11938
  year: 2020
  end-page: 11947
  ident: bib37
  article-title: Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst
  publication-title: J. Mater. Chem. A.
– volume: 6
  start-page: 11129
  year: 2018
  end-page: 11133
  ident: bib11
  article-title: Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability
  publication-title: J. Mater. Chem. A.
– volume: 59
  start-page: 2
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib25
  article-title: Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202004892
– volume: 7
  start-page: 13344
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib61
  article-title: Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13810-5
– volume: 6
  start-page: 2
  year: 2016
  ident: 10.1016/j.isci.2021.102177_bib32
  article-title: High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics
  publication-title: Sci. Rep.
  doi: 10.1038/srep37946
– volume: 11
  start-page: 5437
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib47
  article-title: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19277-9
– volume: 8
  start-page: 1802269
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib54
  article-title: Discovery of a multinary noble metal-free oxygen reduction catalyst
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802269
– volume: 10
  start-page: 328
  year: 2016
  ident: 10.1016/j.isci.2021.102177_bib3
  article-title: Colossal dielectric constant in high entropy oxides
  publication-title: Phys. Status Solidi - Rapid Res. Lett.
  doi: 10.1002/pssr.201600043
– volume: 8
  start-page: 24455
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib18
  article-title: An innovative approach to design SOFC air electrode materials: high entropy La 1−x Sr x (Co,Cr,Fe,Mn,Ni)O 3−δ ( x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA06356H
– volume: 138
  start-page: 22
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib118
  article-title: First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.05.022
– volume: 38
  start-page: 4161
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib16
  article-title: A five-component entropy-stabilized fluorite oxide
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.04.063
– volume: 8
  start-page: 1371
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib44
  article-title: Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2018.184
– volume: 135
  start-page: 177
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib35
  article-title: Mapping the world of complex concentrated alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.027
– volume: 187
  start-page: 43
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib81
  article-title: High entropy oxides: the role of entropy, enthalpy and synergy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.05.019
– volume: 59
  start-page: 21920
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib9
  article-title: Autocatalytic formation of high-entropy alloy nanoparticles
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202009002
– volume: 46
  start-page: 18358
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib96
  article-title: Fabrication of high-entropy perovskite oxide by reactive flash sintering
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.060
– volume: 534
  start-page: 227
  year: 2016
  ident: 10.1016/j.isci.2021.102177_bib49
  article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 1
  start-page: 526
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib75
  article-title: Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00414
– volume: 100
  start-page: 2732
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib79
  article-title: Local structure of the Mg x Ni x Co x Cu x Zn x O( x =0.2) entropy-stabilized oxide: an EXAFS study
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14756
– volume: 6
  start-page: 8485
  year: 2015
  ident: 10.1016/j.isci.2021.102177_bib80
  article-title: Entropy-stabilized oxides
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9485
– volume: 276
  start-page: 119155
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib12
  article-title: An ultrastable heterostructured oxide catalyst based on high-entropy materials: a new strategy toward catalyst stabilization via synergistic interfacial interaction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119155
– volume: 55
  start-page: 6942
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib108
  article-title: A high-entropy perovskite titanate lithium-ion battery anode
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-04482-0
– volume: 30
  start-page: 1707512
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib40
  article-title: Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707512
– volume: 187
  start-page: 188
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib109
  article-title: Functional properties and promising applications of high entropy alloys
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.06.017
– volume: 116
  start-page: 071601
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib72
  article-title: Epitaxial stabilization of ultra thin films of high entropy perovskite
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5133710
– volume: 115
  start-page: 0
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib74
  article-title: Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5126652
– volume: 217
  start-page: 300
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib78
  article-title: Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: a DFT study
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.01.111
– volume: 140
  start-page: 12434
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib38
  article-title: Mesoporous metallic iridium nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05206
– volume: 7
  start-page: 3421
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib66
  article-title: Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03644-6
– volume: 23
  start-page: 678
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib127
  article-title: A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2019.02.030
– volume: 31
  start-page: 5529
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib124
  article-title: Mechanochemical nonhydrolytic sol-gel-strategy for the production of mesoporous multimetallic oxides
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01244
– volume: 9
  start-page: 18547
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib93
  article-title: Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C9RA03254A
– volume: 777
  start-page: 767
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib77
  article-title: A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.11.049
– volume: 142
  start-page: 13833
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib102
  article-title: Platinum-group-metal high-entropy-alloy nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04807
– year: 2020
  ident: 10.1016/j.isci.2021.102177_bib101
  article-title: On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02351E
– volume: 359
  start-page: 1489
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib112
  article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles
  publication-title: Science
  doi: 10.1126/science.aan5412
– volume: 111
  start-page: 246
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib103
  article-title: Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.111874
– volume: 4
  start-page: 1206
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib55
  article-title: Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00531
– volume: 10
  start-page: 2169
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib73
  article-title: High-entropy alloys as catalysts for the CO 2 and CO reduction reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04343
– volume: 57
  start-page: 13027
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib123
  article-title: Data-driven design of ecofriendly thermoelectric high-entropy sulfides
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b02379
– volume: 8
  start-page: 18963
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib65
  article-title: High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA04844E
– volume: 26
  start-page: 6301
  year: 2014
  ident: 10.1016/j.isci.2021.102177_bib117
  article-title: A honeycomb-layered Na 3 Ni 2 SbO 6 : a high-rate and cycle-stable cathode for sodium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401946
– volume: 5
  start-page: 102
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib23
  article-title: Multicomponent equiatomic rare earth oxides
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1220433
– year: 2020
  ident: 10.1016/j.isci.2021.102177_bib58
  article-title: Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries
  publication-title: Nat. Mater.
– volume: 170
  start-page: 106
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib31
  article-title: Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.05.039
– volume: 9
  start-page: 461
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib36
  article-title: A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo
  publication-title: Nanomater
  doi: 10.3390/nano9030461
– volume: 430
  start-page: 104
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib21
  article-title: Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2019.05.030
– volume: 636
  start-page: 346
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib107
  article-title: Exploring the high entropy alloy concept in (AlTiVNbCr)N
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2017.06.029
– volume: 127
  start-page: 448
  year: 2014
  ident: 10.1016/j.isci.2021.102177_bib94
  article-title: Quinary PdNiCoCuFe alloy nanotube Arrays as efficient electrocatalysts for methanol oxidation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.02.076
– volume: 15
  start-page: 1904180
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib41
  article-title: Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments
  publication-title: Small
  doi: 10.1002/smll.201904180
– volume: 6
  start-page: 11129
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib11
  article-title: Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA01772G
– volume: 437
  start-page: 226927
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib43
  article-title: Nanoporous structure synthesized by selective phase dissolution of AlCoCrFeNi high entropy alloy and its electrochemical properties as supercapacitor electrode
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2019.226927
– start-page: 11280
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib105
  article-title: High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03617
– volume: 5
  start-page: 502
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib99
  article-title: Predicting catalytic activity of high-entropy alloys for electrocatalysis
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.02.015
– volume: 53
  start-page: 8074
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib7
  article-title: Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2168-9
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.isci.2021.102177_bib116
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 142
  start-page: 4550
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib100
  article-title: High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12377
– volume: 8
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib86
  article-title: A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702599
– year: 2021
  ident: 10.1016/j.isci.2021.102177_bib1
  article-title: Recent progress of high-entropy materials for energy storage and conversion
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09578H
– volume: 4
  start-page: 9536
  year: 2016
  ident: 10.1016/j.isci.2021.102177_bib4
  article-title: Room temperature lithium superionic conductivity in high entropy oxides
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA03249D
– volume: 7
  start-page: 6499
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib76
  article-title: Nanoporous high-entropy alloys for highly stable and efficient catalysts
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA00505F
– year: 2017
  ident: 10.1016/j.isci.2021.102177_bib63
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 3
  start-page: 1646
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib26
  article-title: Unconventional alloys confined in nanoparticles: building blocks for new matter
  publication-title: Matter
  doi: 10.1016/j.matt.2020.07.027
– volume: 36
  start-page: 1985
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib110
  article-title: Aerosol synthesis of high entropy alloy nanoparticles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b03392
– volume: 29
  start-page: 1905933
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib8
  article-title: General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905933
– volume: 19
  start-page: 5149
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib45
  article-title: Stable multimetallic nanoparticles for oxygen electrocatalysis
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01523
– volume: 7
  start-page: 0c03562
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib57
  article-title: Electrochemical performance of (MgCoNiZn) 1– x Li x O high-entropy oxides in lithium-ion batteries
  publication-title: ACS Appl. Mater. Inter.
– volume: 851
  start-page: 156838
  year: 2021
  ident: 10.1016/j.isci.2021.102177_bib69
  article-title: Toward expanding the realm of high entropy materials to platinum group metals: a review
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.156838
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib104
  article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11848-9
– volume: 563
  start-page: 546
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib46
  article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
  publication-title: Nature
  doi: 10.1038/s41586-018-0685-y
– volume: 822
  start-page: 153642
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib106
  article-title: High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.153642
– volume: 345
  start-page: 1153
  year: 2014
  ident: 10.1016/j.isci.2021.102177_bib34
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 16
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib42
  article-title: Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst
  publication-title: Mater. Today Energy
– volume: 4
  start-page: 515
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib30
  article-title: High-entropy alloys
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0121-4
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib87
  article-title: A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage
  publication-title: Nanomaterials
  doi: 10.3390/nano9020248
– volume: 7
  start-page: 127
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib6
  article-title: High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering
  publication-title: J. Asian Ceram. Soc.
  doi: 10.1080/21870764.2019.1595931
– volume: 6
  start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib113
  article-title: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz0510
– volume: 10
  start-page: 9736
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib14
  article-title: A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/D0RA00255K
– volume: 383
  start-page: 164
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib48
  article-title: Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.01.024
– volume: 10
  start-page: 3658
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib64
  article-title: High-entropy alloys as catalysts for the CO 2 and CO reduction reactions: experimental realization
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04302
– volume: 6
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib53
  article-title: Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions
  publication-title: Adv. Mater. Inter.
  doi: 10.1002/admi.201900015
– volume: 497
  start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib60
  article-title: A new class of spinel high-entropy oxides with controllable magnetic properties
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165884
– volume: 279
  start-page: 19
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib121
  article-title: High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.05.035
– volume: 200
  start-page: 526
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib92
  article-title: Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: magnetic constituents and surface anisotropy leading to lattice distortion
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.09.034
– volume: 10
  start-page: 2650
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib33
  article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10303-z
– year: 2016
  ident: 10.1016/j.isci.2021.102177_bib115
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.11.026
– volume: 8
  start-page: 14844
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib90
  article-title: High entropy alloy electrocatalysts: a critical assessment of fabrication and performance
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA05176D
– volume: 7
  start-page: 24211
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib95
  article-title: Low-temperature synthesis of small-sized high-entropy oxides for water oxidation
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA08740K
– volume: 31
  start-page: 3705
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib122
  article-title: Long-range antiferromagnetic order in a rocksalt high entropy oxide
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00624
– volume: 13
  start-page: 111
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib67
  article-title: Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201902705
– volume: 216
  start-page: 32
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib19
  article-title: Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.12.148
– volume: 574
  start-page: 223
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib22
  article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys
  publication-title: Nature
  doi: 10.1038/s41586-019-1617-1
– volume: 114
  start-page: 122401
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib39
  article-title: Long-range magnetic ordering in rocksalt-type high-entropy oxides
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5091787
– volume: 8
  start-page: 051111
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib83
  article-title: Role of intermediate 4 f states in tuning the band structure of high entropy oxides
  publication-title: APL Mater.
  doi: 10.1063/5.0007944
– volume: 11
  start-page: 2172
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib119
  article-title: The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00050F
– volume: 59
  start-page: 264
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib125
  article-title: High-entropy layered oxide cathodes for sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912171
– volume: 366
  start-page: 573
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib24
  article-title: Order emerging from disorder
  publication-title: Science
  doi: 10.1126/science.aaz1598
– volume: 9
  start-page: 4980
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib85
  article-title: High-entropy high-hardness metal carbides discovered by entropy descriptors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07160-7
– volume: 167
  start-page: 110
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib52
  article-title: Synthesis of superfine high-entropy metal diboride powders
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.03.038
– volume: 59
  start-page: 5844
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib56
  article-title: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914666
– volume: 504
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib71
  article-title: Electrochemical synthesis of multimetallic nanoparticles and their application in alkaline oxygen reduction catalysis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144517
– volume: 9
  start-page: 28908
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib15
  article-title: Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 )O solid solutions to achieve superior lithium-storage properties
  publication-title: RSC Adv.
  doi: 10.1039/C9RA05508H
– volume: 37
  start-page: 747
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib82
  article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.09.018
– volume: 103
  start-page: 4738
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib114
  article-title: Synthesis of high-entropy diboride nanopowders via molten salt-mediated magnesiothermic reduction
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.17184
– volume: 178
  start-page: 513
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib70
  article-title: Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.12.027
– volume: 704
  start-page: 693
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib5
  article-title: Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.02.070
– volume: 1
  start-page: 83
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib13
  article-title: Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00064
– volume: 40
  start-page: 2504
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib51
  article-title: Ultrafast synthesis of entropy-stabilized oxide at room temperature
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.01.018
– volume: 13
  start-page: 2038
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib126
  article-title: Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000173
– volume: 11
  start-page: 2016
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib29
  article-title: Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15934-1
– volume: 102
  start-page: 296
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib50
  article-title: Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.12.003
– volume: 273
  start-page: 324
  year: 2015
  ident: 10.1016/j.isci.2021.102177_bib17
  article-title: Multi-component nanoporous platinum–ruthenium–copper–osmium–iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2014.09.076
– volume: 100
  start-page: 121
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib97
  article-title: High entropy oxides as anode material for Li-ion battery applications: a practical approach
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2019.02.001
– volume: 117
  start-page: 6316
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib111
  article-title: High-throughput, combinatorial synthesis of multimetallic nanoclusters
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.1903721117
– volume: 188
  start-page: 26
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib28
  article-title: A new eight-cation inverse high entropy spinel with large configurational entropy in both tetrahedral and octahedral sites: synthesis and cation distribution by X-ray absorption spectroscopy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.07.002
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.isci.2021.102177_bib62
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: ACTA Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 40
  start-page: 1644
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib88
  article-title: Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.11.030
– volume: 12
  start-page: 2433
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib98
  article-title: Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00368A
– volume: 8
  start-page: 11938
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib37
  article-title: Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA02125C
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.isci.2021.102177_bib59
  article-title: Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions
  publication-title: Sci. Rep.
  doi: 10.1038/srep34213
– volume: 9
  start-page: 3400
  year: 2018
  ident: 10.1016/j.isci.2021.102177_bib84
  article-title: High entropy oxides for reversible energy storage
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05774-5
– volume: 375–377
  start-page: 213
  year: 2004
  ident: 10.1016/j.isci.2021.102177_bib10
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A.
  doi: 10.1016/j.msea.2003.10.257
– year: 2020
  ident: 10.1016/j.isci.2021.102177_bib120
  article-title: Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3589
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib27
  article-title: Stabilization by configurational entropy of the Cu(II) active site during CO oxidation on Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 O
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00602
– volume: 5
  start-page: 295
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib68
  article-title: High-entropy ceramics
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0170-8
– volume: 13
  start-page: 1915
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib20
  article-title: Across the board: sheng Dai on catalyst design by entropic factors
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000448
– volume: 59
  start-page: 11830
  year: 2020
  ident: 10.1016/j.isci.2021.102177_bib89
  article-title: Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide
  publication-title: Powder. Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003530
– volume: 478
  start-page: 868
  year: 2009
  ident: 10.1016/j.isci.2021.102177_bib91
  article-title: Effect of platinum present in multi-element nanoparticles on methanol oxidation
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.12.055
– volume: 3
  start-page: 834
  year: 2019
  ident: 10.1016/j.isci.2021.102177_bib2
  article-title: High-entropy alloys as a discovery platform for electrocatalysis
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.015
SSID ssj0002002496
Score 2.577885
SecondaryResourceType review_article
Snippet High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102177
SubjectTerms Energy Materials
Materials Science
Physics
Review
Title High-entropy materials for energy-related applications
URI https://dx.doi.org/10.1016/j.isci.2021.102177
https://www.ncbi.nlm.nih.gov/pubmed/33718829
https://www.proquest.com/docview/2501485659
https://pubmed.ncbi.nlm.nih.gov/PMC7921604
https://doaj.org/article/85d9e229f30b4b06b3ebea29512af4ef
Volume 24
WOSCitedRecordID wos000631646000050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RRCUuiFfb5aUgcUNRYzuJnSMgEAeEOHDYmxW_1EVVFrFLJf49M3Z2tWkluPQa23FmPBN_I4-_ATjjleVMSIeeJk1e1tHnWp4XQlKxF1tLF3lm7-T9vRqPm4eVUl-UE5bogZPifqrKNZ7zJojClKaojcBpW47AgLeh9IH-voh6VoKpp3i8RlR4sbJcRTlBaJr9jZmU3EU3XjE45IyoC5iUg10pkvcPNqd_weffOZQrm9LNNmz1aDK7SFLswJrvduFrzOq0sz2oKYsjp6HT57cMsWkytwyBaubjpb883mXxLls9yN6Hx5vrx6vbvC-UkNtKyXkeVDCy9YjWMNBVwTkisSptKIzjVgbVotKZqFlbFVZahxCE2bI0Fp07CO7EN1jvpp3_AZnDACNYh1ENhn3W-sY33CiPuK6tbBHMCNhCT9r2JOJUy-K3XmSLPWnSrSbd6qTbEZwvxzwnCo0Pe1-S-pc9if46PkCj0L1R6M-MYgTVYvF0jyQSQsBXTT6c_HSx0hrdjM5O2s5PX2ea0_mrQvTbjOB7WvnlJwqBG7zi2CIHNjGQYdjSTX5FKm_ZcFYX5cH_EPoQNkkUSpBjzRGsz19e_TFs2D_zyezlBL7IsTqJXvIOYIMUdQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-entropy+materials+for+energy-related+applications&rft.jtitle=iScience&rft.au=Fu%2C+Maosen&rft.au=Ma%2C+Xiao&rft.au=Zhao%2C+Kangning&rft.au=Li%2C+Xiao&rft.date=2021-03-19&rft.eissn=2589-0042&rft.volume=24&rft.issue=3&rft.spage=102177&rft_id=info:doi/10.1016%2Fj.isci.2021.102177&rft_id=info%3Apmid%2F33718829&rft.externalDocID=33718829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon