High-entropy materials for energy-related applications
High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which...
Uloženo v:
| Vydáno v: | iScience Ročník 24; číslo 3; s. 102177 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
19.03.2021
Elsevier |
| Témata: | |
| ISSN: | 2589-0042, 2589-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs.
[Display omitted]
Physics; Materials Science; Energy Materials |
|---|---|
| AbstractList | High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs.
[Display omitted]
Physics; Materials Science; Energy Materials High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs.High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs. High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs. High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant interests over the past years. These materials have unique structures with the coexistence of antisite disordering and crystal periodicity, which were originally investigated as structural materials. Recently, they have emerged for energy-related applications, such as catalysis, energy storage, etc. In this work, we review the research progress of energy-related applications of HEMs. After an introduction on the background, theory, and syntheses of HEMs, we survey their applications including electrocatalysis, batteries, and others, aiming to retrieve the correlations between their structures and performances. In the end, we discussed the challenges and future directions for developing HEMs. Physics; Materials Science; Energy Materials |
| ArticleNumber | 102177 |
| Author | Zhao, Kangning Li, Xiao Su, Dong Fu, Maosen Ma, Xiao |
| Author_xml | – sequence: 1 givenname: Maosen surname: Fu fullname: Fu, Maosen email: msfu@nwpu.edu.cn organization: Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China – sequence: 2 givenname: Xiao surname: Ma fullname: Ma, Xiao email: maxiaonpu@nwpu.edu.cn organization: Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China – sequence: 3 givenname: Kangning surname: Zhao fullname: Zhao, Kangning organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 4 givenname: Xiao surname: Li fullname: Li, Xiao organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 5 givenname: Dong surname: Su fullname: Su, Dong email: dongsu@iphy.ac.cn organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33718829$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV9rHCEUxaWkNGmaL9CHso99me31z4wKpVBC2wQCfcm7OHrduMyOU50N7Levm0lD0oeAoFzPOVfv7z05GdOIhHyksKZAuy_bdSwurhkwWguMSvmGnLFW6QZAsJNn51NyUcoWAFhdQnfvyCnnkirF9BnpruLmrsFxzmk6rHZ2xhztUFYh5RWOmDeHJuNQy35lp2mIzs4xjeUDeRuqDC8e93Ny-_PH7eVVc_P71_Xl95vGtUrOTVChlxaBaimYCt4LqCcXoPfMyaCs7hzlHbUtOOk815I6IXrHgQbOPD8n10usT3Zrphx3Nh9MstE8FFLeGJvn6AY0qvUaGdOBQy966HqOPVqmW8psEBhq1rcla9r3O_Tu-Gc7vAh9eTPGO7NJ90ZqRjsQNeDzY0BOf_ZYZrOrCHAY7IhpXwxrgQrVdq2u0k_Pez01-Tf3KmCLwOVUSsbwJKFgjnzN1hz5miNfs_CtJvWfycX5gUd9bxxet35drFhh3UfMpipwdOhjRjfXccbX7H8BkMvAqQ |
| CitedBy_id | crossref_primary_10_1016_j_ceramint_2023_11_051 crossref_primary_10_1016_j_watres_2025_123957 crossref_primary_10_1002_adma_202411426 crossref_primary_10_1002_smll_202311631 crossref_primary_10_1016_j_jeurceramsoc_2024_05_041 crossref_primary_10_1038_s41529_023_00409_7 crossref_primary_10_1002_aesr_202500201 crossref_primary_10_1016_j_jallcom_2022_164724 crossref_primary_10_1002_adma_202413202 crossref_primary_10_1039_D5TA03392F crossref_primary_10_1016_j_ijhydene_2024_02_344 crossref_primary_10_1016_j_materresbull_2024_113225 crossref_primary_10_1016_j_energy_2024_131307 crossref_primary_10_1016_j_pmatsci_2024_101382 crossref_primary_10_1039_D3MH02181E crossref_primary_10_1016_j_pes_2025_100105 crossref_primary_10_1016_j_ijhydene_2023_06_121 crossref_primary_10_1016_j_jallcom_2023_172633 crossref_primary_10_1016_j_pmatsci_2024_101300 crossref_primary_10_1002_adfm_202413115 crossref_primary_10_1002_celc_202300606 crossref_primary_10_1063_5_0206316 crossref_primary_10_1002_ange_202505890 crossref_primary_10_1016_j_mtener_2024_101785 crossref_primary_10_1016_j_est_2023_108969 crossref_primary_10_1002_adsu_202300192 crossref_primary_10_1016_j_mtcomm_2025_113264 crossref_primary_10_1039_D4NR00474D crossref_primary_10_1016_j_nanoen_2021_106261 crossref_primary_10_1002_eom2_12261 crossref_primary_10_1016_j_nanoms_2024_09_002 crossref_primary_10_1039_D4EE04442H crossref_primary_10_1111_jace_19349 crossref_primary_10_1002_adma_202202943 crossref_primary_10_3390_coatings13111822 crossref_primary_10_1007_s11661_025_07928_9 crossref_primary_10_1016_j_electacta_2024_144601 crossref_primary_10_1016_j_jelechem_2024_118191 crossref_primary_10_1002_adma_202510911 crossref_primary_10_1007_s40820_024_01504_3 crossref_primary_10_1002_ange_202413826 crossref_primary_10_1016_j_ceramint_2023_12_095 crossref_primary_10_1016_j_coelec_2022_101010 crossref_primary_10_1016_j_jallcom_2023_171039 crossref_primary_10_1007_s40964_024_00840_5 crossref_primary_10_1016_j_nanoen_2022_108027 crossref_primary_10_1002_adfm_202110992 crossref_primary_10_1007_s12598_024_02749_y crossref_primary_10_1002_advs_202401034 crossref_primary_10_1002_smtd_202300754 crossref_primary_10_1016_j_jpowsour_2025_236665 crossref_primary_10_1016_j_jmapro_2022_04_014 crossref_primary_10_1016_j_cej_2024_157197 crossref_primary_10_1016_j_jechem_2021_12_026 crossref_primary_10_1039_D3MH00360D crossref_primary_10_1134_S0036029524701520 crossref_primary_10_1016_j_mtnano_2024_100485 crossref_primary_10_1016_j_coelec_2023_101264 crossref_primary_10_1111_jace_20156 crossref_primary_10_1088_1361_6528_acec4f crossref_primary_10_1021_acsnano_5c05602 crossref_primary_10_1002_adfm_202204643 crossref_primary_10_1002_adfm_202310179 crossref_primary_10_3390_met13071177 crossref_primary_10_1002_smll_202400538 crossref_primary_10_1038_s41566_024_01468_1 crossref_primary_10_1016_j_est_2023_107419 crossref_primary_10_3390_met13050883 crossref_primary_10_1002_adma_202512274 crossref_primary_10_1039_D5DT01153A crossref_primary_10_1111_ffe_14576 crossref_primary_10_1016_j_ijhydene_2022_02_113 crossref_primary_10_1016_j_est_2025_116952 crossref_primary_10_1002_smll_202405148 crossref_primary_10_1063_5_0123728 crossref_primary_10_1016_j_ceramint_2025_06_196 crossref_primary_10_1080_21663831_2023_2292079 crossref_primary_10_3390_met15010079 crossref_primary_10_1007_s12274_021_3860_7 crossref_primary_10_1021_acs_langmuir_5c01415 crossref_primary_10_1002_adfm_202204755 crossref_primary_10_1002_adfm_202206531 crossref_primary_10_1016_j_cap_2024_11_001 crossref_primary_10_1007_s42452_021_04724_z crossref_primary_10_1016_j_jallcom_2025_181806 crossref_primary_10_1016_j_cej_2023_144134 crossref_primary_10_1016_j_jallcom_2025_180210 crossref_primary_10_3390_ma16165579 crossref_primary_10_1088_2053_1591_ad36b4 crossref_primary_10_1007_s40962_022_00891_w crossref_primary_10_1016_j_elecom_2022_107392 crossref_primary_10_1016_j_mseb_2023_116454 crossref_primary_10_1039_D4MR00102H crossref_primary_10_1016_j_jallcom_2023_172945 crossref_primary_10_1016_j_ccr_2025_216435 crossref_primary_10_1002_advs_202303078 crossref_primary_10_1016_j_cej_2022_138659 crossref_primary_10_1007_s41918_024_00216_x crossref_primary_10_1016_j_ceramint_2024_09_152 crossref_primary_10_1016_j_ijhydene_2021_10_260 crossref_primary_10_3390_en15197130 crossref_primary_10_1002_sstr_202500237 crossref_primary_10_1002_smll_202304585 crossref_primary_10_1016_j_est_2021_103405 crossref_primary_10_1038_s41578_024_00654_5 crossref_primary_10_3389_frcdi_2024_1417527 crossref_primary_10_1002_smll_202104339 crossref_primary_10_1016_j_powtec_2022_117491 crossref_primary_10_1002_adsu_202500201 crossref_primary_10_1016_j_trechm_2022_03_010 crossref_primary_10_1016_j_decarb_2025_100110 crossref_primary_10_1002_cplu_202400691 crossref_primary_10_1039_D3SE01535A crossref_primary_10_1007_s41403_024_00466_7 crossref_primary_10_1016_j_rser_2025_115903 crossref_primary_10_1039_D5YA00091B crossref_primary_10_1002_smll_202200524 crossref_primary_10_1016_j_cej_2022_139510 crossref_primary_10_1002_nano_202200081 crossref_primary_10_1016_j_est_2023_110325 crossref_primary_10_1016_j_cej_2024_155302 crossref_primary_10_1002_anie_202505890 crossref_primary_10_4150_jpm_2024_00297 crossref_primary_10_1016_j_ijthermalsci_2024_109565 crossref_primary_10_1002_ppsc_202100094 crossref_primary_10_1039_D4MR00084F crossref_primary_10_1016_j_ijhydene_2024_08_221 crossref_primary_10_1002_adfm_202300509 crossref_primary_10_1016_j_scriptamat_2023_115668 crossref_primary_10_1088_1361_6528_ac8060 crossref_primary_10_1016_j_commatsci_2023_112456 crossref_primary_10_1007_s12666_023_03075_0 crossref_primary_10_3103_S096709122110003X crossref_primary_10_1002_cssc_202300927 crossref_primary_10_1016_j_jallcom_2025_183222 crossref_primary_10_1063_5_0194976 crossref_primary_10_3390_molecules29051064 crossref_primary_10_1002_cnma_202200384 crossref_primary_10_1107_S1600576724004497 crossref_primary_10_1007_s43207_023_00360_y crossref_primary_10_1038_s43246_023_00341_y crossref_primary_10_1002_aesr_202300297 crossref_primary_10_1002_cctc_202200699 crossref_primary_10_1002_ece2_91 crossref_primary_10_3389_fenrg_2022_862551 crossref_primary_10_1016_j_jpcs_2025_112778 crossref_primary_10_1016_j_msea_2025_148999 crossref_primary_10_1039_D4CY00467A crossref_primary_10_1016_j_jece_2025_118132 crossref_primary_10_1002_adem_202300585 crossref_primary_10_1016_j_jallcom_2024_177585 crossref_primary_10_1016_j_cej_2025_166438 crossref_primary_10_1007_s00339_024_07507_6 crossref_primary_10_1016_j_ceramint_2024_12_400 crossref_primary_10_1016_j_ceramint_2023_08_061 crossref_primary_10_1021_acsnano_5c02374 crossref_primary_10_1002_anie_202413826 crossref_primary_10_1016_j_checat_2022_05_003 crossref_primary_10_1016_j_jssc_2025_125565 crossref_primary_10_1002_eem2_70057 crossref_primary_10_1016_j_matlet_2022_132628 crossref_primary_10_1039_D5NR01562F crossref_primary_10_1016_j_surfin_2025_107290 crossref_primary_10_1007_s00339_022_05836_y crossref_primary_10_1088_1742_6596_2368_1_012010 crossref_primary_10_1016_j_est_2024_113078 crossref_primary_10_1016_j_cej_2024_153743 crossref_primary_10_1021_acs_cgd_5c00549 crossref_primary_10_1002_adfm_202202892 crossref_primary_10_1021_acsnano_4c18277 crossref_primary_10_1007_s11666_022_01520_y crossref_primary_10_1016_j_jpcs_2024_112345 crossref_primary_10_1016_j_intermet_2025_108756 crossref_primary_10_1016_j_susmat_2025_e01316 crossref_primary_10_3390_met11121980 crossref_primary_10_1016_j_matpr_2022_06_384 |
| Cites_doi | 10.1002/anie.202004892 10.1038/s41598-017-13810-5 10.1038/srep37946 10.1038/s41467-020-19277-9 10.1002/aenm.201802269 10.1002/pssr.201600043 10.1039/D0TA06356H 10.1016/j.scriptamat.2017.05.022 10.1016/j.jeurceramsoc.2018.04.063 10.1557/mrc.2018.184 10.1016/j.actamat.2017.06.027 10.1016/j.scriptamat.2020.05.019 10.1002/anie.202009002 10.1016/j.ceramint.2020.04.060 10.1038/nature17981 10.1021/acsmaterialslett.9b00414 10.1111/jace.14756 10.1038/ncomms9485 10.1016/j.apcatb.2020.119155 10.1007/s10853-020-04482-0 10.1002/adma.201707512 10.1016/j.scriptamat.2020.06.017 10.1063/1.5133710 10.1063/1.5126652 10.1016/j.matlet.2018.01.111 10.1021/jacs.8b05206 10.1038/s41598-017-03644-6 10.1016/j.ensm.2019.02.030 10.1021/acs.chemmater.9b01244 10.1039/C9RA03254A 10.1016/j.jallcom.2018.11.049 10.1021/jacs.0c04807 10.1039/D0SC02351E 10.1126/science.aan5412 10.3139/146.111874 10.1021/acsenergylett.9b00531 10.1021/acscatal.9b04343 10.1021/acs.inorgchem.8b02379 10.1039/D0TA04844E 10.1002/adma.201401946 10.1080/21663831.2016.1220433 10.1016/j.scriptamat.2019.05.039 10.3390/nano9030461 10.1016/j.jpowsour.2019.05.030 10.1016/j.tsf.2017.06.029 10.1016/j.electacta.2014.02.076 10.1002/smll.201904180 10.1039/C8TA01772G 10.1016/j.jpowsour.2019.226927 10.1021/acscatal.0c03617 10.1016/j.chempr.2019.02.015 10.1007/s10853-018-2168-9 10.1002/adem.200300567 10.1021/jacs.9b12377 10.1002/aenm.201702599 10.1039/D0TA09578H 10.1039/C6TA03249D 10.1039/C9TA00505F 10.1016/j.actamat.2016.08.081 10.1016/j.matt.2020.07.027 10.1021/acs.langmuir.9b03392 10.1002/adfm.201905933 10.1021/acs.nanolett.9b01523 10.1016/j.jallcom.2020.156838 10.1038/s41467-019-11848-9 10.1038/s41586-018-0685-y 10.1016/j.jallcom.2020.153642 10.1126/science.1254581 10.1038/s41578-019-0121-4 10.3390/nano9020248 10.1080/21870764.2019.1595931 10.1126/sciadv.aaz0510 10.1039/D0RA00255K 10.1016/j.jcat.2020.01.024 10.1021/acscatal.9b04302 10.1002/admi.201900015 10.1016/j.jmmm.2019.165884 10.1016/j.electacta.2018.05.035 10.1016/j.actamat.2020.09.034 10.1038/s41467-019-10303-z 10.1016/j.mattod.2015.11.026 10.1039/D0TA05176D 10.1039/C9TA08740K 10.1021/acs.chemmater.9b00624 10.1002/cssc.201902705 10.1016/j.matlet.2017.12.148 10.1038/s41586-019-1617-1 10.1063/1.5091787 10.1063/5.0007944 10.1039/C8EE00050F 10.1002/anie.201912171 10.1126/science.aaz1598 10.1038/s41467-018-07160-7 10.1016/j.scriptamat.2019.03.038 10.1002/anie.201914666 10.1016/j.apsusc.2019.144517 10.1039/C9RA05508H 10.1016/j.jeurceramsoc.2016.09.018 10.1111/jace.17184 10.1016/j.scriptamat.2019.12.027 10.1016/j.jallcom.2017.02.070 10.1021/acsmaterialslett.9b00064 10.1016/j.jeurceramsoc.2020.01.018 10.1002/cssc.202000173 10.1038/s41467-020-15934-1 10.1016/j.pmatsci.2018.12.003 10.1016/j.jpowsour.2014.09.076 10.1016/j.elecom.2019.02.001 10.1073/pnas.1903721117 10.1016/j.scriptamat.2020.07.002 10.1016/j.jeurceramsoc.2019.11.030 10.1039/C9EE00368A 10.1039/D0TA02125C 10.1038/srep34213 10.1038/s41467-018-05774-5 10.1016/j.msea.2003.10.257 10.1021/acs.jpclett.0c00602 10.1038/s41578-019-0170-8 10.1002/cssc.202000448 10.1002/anie.202003530 10.1016/j.jallcom.2008.12.055 10.1016/j.joule.2018.12.015 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) 2021 The Author(s). 2021 The Author(s) 2021 |
| Copyright_xml | – notice: 2021 The Author(s) – notice: 2021 The Author(s). – notice: 2021 The Author(s) 2021 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.isci.2021.102177 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2589-0042 |
| ExternalDocumentID | oai_doaj_org_article_85d9e229f30b4b06b3ebea29512af4ef PMC7921604 33718829 10_1016_j_isci_2021_102177 S2589004221001450 |
| Genre | Journal Article Review |
| GroupedDBID | 0R~ 53G 6I. AACTN AAEDW AAFTH AALRI AAMRU AAXUO ABMAC ADBBV ADVLN AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c587t-f8fb7ae0197428fdd40974cf0bd2c7f8a96c1361a50c7cd3971c44bc301f32d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 224 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631646000050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:22:54 EDT 2025 Tue Sep 30 16:56:13 EDT 2025 Fri Jul 11 08:16:03 EDT 2025 Mon Jul 21 06:01:56 EDT 2025 Sat Nov 29 02:13:30 EST 2025 Tue Nov 18 21:55:00 EST 2025 Sat Nov 16 15:58:52 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Energy Materials Materials Science Physics |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2021 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c587t-f8fb7ae0197428fdd40974cf0bd2c7f8a96c1361a50c7cd3971c44bc301f32d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://doaj.org/article/85d9e229f30b4b06b3ebea29512af4ef |
| PMID | 33718829 |
| PQID | 2501485659 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_85d9e229f30b4b06b3ebea29512af4ef pubmedcentral_primary_oai_pubmedcentral_nih_gov_7921604 proquest_miscellaneous_2501485659 pubmed_primary_33718829 crossref_primary_10_1016_j_isci_2021_102177 crossref_citationtrail_10_1016_j_isci_2021_102177 elsevier_sciencedirect_doi_10_1016_j_isci_2021_102177 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-19 |
| PublicationDateYYYYMMDD | 2021-03-19 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | iScience |
| PublicationTitleAlternate | iScience |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Dai, Lu, Pan (bib21) 2019; 430 Dragoe, Bérardan (bib24) 2019; 366 Zhang, Ming, Kang, Huang, Zhang, Zheng, Bi (bib121) 2018; 279 Wang, Xin (bib99) 2019; 5 Bérardan, Franger, Meena, Dragoe (bib4) 2016; 4 Yuan, Liang, Wu, Cao, Ai, Feng, Yang (bib117) 2014; 26 Liu, Zhang, Okejiri, Yang, Zhou, Dai (bib53) 2019; 6 Rost, Rak, Brenner, Maria (bib79) 2017; 100 Okejiri, Zhang, Liu, Liu, Yang, Dai (bib67) 2020; 13 Stygar, Dąbrowa, Moździerz, Zajusz, Skubida, Mroczka, Berent, Świerczek, Danielewski (bib88) 2020; 40 Bérardan, Franger, Dragoe, Meena, Dragoe, Berardan, Franger, Dragoe, Meena, Dragoe (bib3) 2016; 10 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib116) 2004; 6 Berardan, Meena, Franger, Herrero, Dragoe (bib5) 2017; 704 Yao, Huang, Li, Wang, Liu, Stein, Mao, Gao, Jiao, Dong (bib111) 2020; 117 Sarker, Harrington, Toher, Oses, Samiee, Maria, Brenner, Vecchio, Curtarolo (bib85) 2018; 9 Lökçü, Toparli, Anik (bib57) 2020; 7 Sarkar, Velasco, Wang, Wang, Talasila, de Biasi, Kübel, Brezesinski, Bhattacharya, Hahn, Breitung (bib84) 2018; 9 Shen, Zhang, Hu, Zhang, Mao, Xiao, Zhou, Zu (bib87) 2019; 9 Yusenko, Riva, Carvalho, Yusenko, Arnaboldi, Sukhikh, Hanfland, Gromilov (bib118) 2017; 138 Djenadic, Sarkar, Clemens, Loho, Botros, Chakravadhanula, Kübel, Bhattacharya, Gandhi, Hahn (bib23) 2017; 5 Wu, Kusada, Yamamoto, Toriyama, Matsumura, Gueye, Seo, Kim, Hiroi, Sakata (bib101) 2020 Löffler, Savan, Meyer, Meischein, Strotkötter, Ludwig, Schuhmann (bib56) 2020; 59 Chen, Qiu, Wu, Yang, Sun, Wang (bib15) 2019; 9 Jin, Lv, Jia, Liu, Li, Chen, Lin, Xie, Liu, Sun, Qiu (bib41) 2019; 15 Sathiya, Jacquet, Doublet, Karakulina, Hadermann, Tarascon (bib86) 2018; 8 Yang, Song, Ke, Xu, Bozhilov, Hu, Shahbazian-Yassar, Zachariah (bib110) 2020; 36 Batchelor, Pedersen, Winther, Castelli, Jacobsen, Rossmeisl (bib2) 2019; 3 Dąbrowa, Stygar, Mikuła, Knapik, Mroczka, Tejchman, Danielewski, Martin (bib19) 2018; 216 Zhang, Yan, Calder, Zheng, McGuire, Abernathy, Ren, Lapidus, Page, Zheng (bib122) 2019; 31 Lun, Ouyang, Kwon, Ha, Foley, Huang, Cai, Kim, Balasubramanian, Sun (bib58) 2020 Tsai, Yeh, Wu, Hsieh, Lin (bib91) 2009; 478 Ye, Wang, Lu, Liu, Yang (bib115) 2016 Zhai, Rojas, Ahlborg, Lim, Toney, Jin, Chueh, Majumdar (bib119) 2018; 11 Yan, Zhang (bib109) 2020; 187 Dąbrowa, Olszewska, Falkenstein, Schwab, Szymczak, Zajusz, Moździerz, Mikuła, Zielińska, Berent (bib18) 2020; 8 Hu, Shen, Jiang, Gong, Xiao, Liu, Sun, Zu (bib36) 2019; 9 Wang, Sarkar, Wang, Velasco, Azmi, Bhattacharya, Bergfeldt, Düvel, Heitjans, Brezesinski (bib98) 2019; 12 Qiu, Chen, Yang, Sun, Wang, Cui (bib77) 2019; 777 Tomboc, Kwon, Joo, Lee (bib90) 2020; 8 Zhao, Ding, Lu, Chen, Hu (bib125) 2020; 59 Meisenheimer, Kratofil, Heron (bib61) 2017; 7 Chen, Fu, Zhang, Peng, Abney, Jie, Liu, Chi, Dai (bib11) 2018; 6 Biesuz, Spiridigliozzi, Dell’Agli, Bortolotti, Sglavo (bib7) 2018; 53 Chen, Jie, Jafta, Yang, Yao, Liu, Zhang, Liu, Chi, Fu, Dai (bib12) 2020; 276 Nguyen, Patra, Chang, Ting (bib65) 2020; 8 Zheng, Yi, Fan, Liu, Li, Zhang, Li, Qiao (bib127) 2019; 23 Miracle, Senkov (bib62) 2017; 122 Sarkar, Djenadic, Usharani, Sanghvi, Chakravadhanula, Gandhi, Hahn, Bhattacharya (bib82) 2017; 37 Cantor, Chang, Knight, Vincent (bib10) 2004; 375–377 Yan, Wang, Zhang, Li, Du, Liu, Zhang, Qi (bib108) 2020; 55 Nellaiappan, Katiyar, Kumar, Parui, Malviya, Pradeep, Singh, Sharma, Tiwary, Biswas (bib64) 2020; 10 Chen, Si, Gao, Frenzel, Sun, Eggeler, Zhang (bib17) 2015; 273 Yao, Huang, Xie, Lacey, Jacob, Xie, Chen, Nie, Pu, Rehwoldt (bib112) 2018; 359 Lacey, Dong, Huang, Luo, Xie, Lin, Kirsch, Vattipalli, Povinelli, Fan (bib45) 2019; 19 Wang, Sarkar, Li, Lu, Velasco, Bhattacharya, Brezesinski, Hahn, Breitung (bib97) 2019; 100 Li, Zhao, Ritchie, Meyers (bib50) 2019; 102 Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib34) 2014; 345 Oses, Toher, Curtarolo (bib68) 2020; 5 Rost, Sachet, Borman, Moballegh, Dickey, Hou, Jones, Curtarolo, Maria (bib80) 2015; 6 Zhao, Xue, Chen, Wang, Mu (bib126) 2020; 13 Zhang, Zhao, Wu, Deng, Wang, Han, Li, Shi, Chen, Li (bib120) 2020 Sure, Sri Maha Vishnu, Kim, Schwandt (bib89) 2020; 59 Waag, Li, Ziefuß, Bertin, Kamp, Duppel, Marzun, Kienle, Barcikowski, Gökce (bib93) 2019; 9 Bondesgaard, Broge, Mamakhel, Bremholm, Iversen (bib8) 2019; 29 Parida, Karati, Guruvidyathri, Murty, Markandeyulu (bib70) 2020; 178 Katiyar, Nellaiappan, Kumar, Malviya, Pradeep, Singh, Sharma, Tiwary, Biswas (bib42) 2020; 16 Chen, Lin, Zhang, Jie, Mullins, Sang, Yang, Jafta, Bridges, Hu (bib13) 2019; 1 Gild, Kaufmann, Vecchio, Luo (bib31) 2019; 170 Lv, Liu, Jia, Wang, Wu, Lu (bib59) 2016; 6 Qiu, Fang, Wen, Liu, Xie, Liu, Sun (bib76) 2019; 7 Zhang, Gucci, Zhu, Chen, Reece (bib123) 2018; 57 Gorsse, Miracle, Senkov (bib35) 2017; 135 Park, Ahn (bib71) 2020; 504 Ding, Zhang, Chen, Fu, Chen, Chen, Gu, Wei, Bei, Gao (bib22) 2019; 574 Zhang, Yang, Hu, Xu, Peng, Liu, Thapaliya, Jie, Zhao, Liu (bib124) 2019; 31 Xie, Yao, Huang, Liu, Zhang, Li, Wang, Shahbazian-Yassar, Hu, Wang (bib104) 2019; 10 Jin, Sang, Unocic, Kinch, Liu, Hu, Liu, Dai (bib40) 2018; 30 Yao, Liu, Xie, Huang, Li, Morris, Finfrock, Zhou, Jiao, Gao (bib113) 2020; 6 Li, Pradeep, Deng, Raabe, Tasan (bib49) 2016; 534 Kotsonis, Rost, Harris, Maria (bib44) 2018; 8 Löffler, Meyer, Savan, Wilde, Garzón Manjón, Chen, Ventosa, Scheu, Ludwig, Schuhmann (bib54) 2018; 8 Glasscott, Pendergast, Goines, Bishop, Hoang, Renault, Dick (bib33) 2019; 10 Gild, Zhang, Harrington, Jiang, Hu, Quinn, Mellor, Zhou, Vecchio, Luo (bib32) 2016; 6 Huang, Zhang, Wu, Zhang, Peng, Cao, Zhang, Li, Huang (bib37) 2020; 8 Lei, Liu, Wu, Wang, Jiang, Wang, Hui, Wu, Gault, Kontis (bib46) 2018; 563 Feng, Chen, Pikhitsa, Jung, Yang, Choi (bib26) 2020; 3 Löffler, Savan, Garzón-Manjón, Meischein, Scheu, Ludwig, Schuhmann (bib55) 2019; 4 Pedersen, Batchelor, Bagger, Rossmeisl (bib73) 2020; 10 Wang, Liu, Du, Zhang, Li, Xiao, Chen, Chen, Wang, Zou, Wang (bib95) 2019; 7 Sarkar, Eggert, Velasco, Mu, Lill, Ollefs, Bhattacharya, Wende, Kruk, Brand, Hahn (bib83) 2020; 8 Xin, Li, Qian, Zhu, Yuan, Jiang, Guo, Wang (bib105) 2020 Gao, Hao, Huang, Yuan, Han, Lei, Zhang, Shahbazian-Yassar, Lu (bib29) 2020; 11 Wang, Chen, Yang, Liang, Dai (bib100) 2020; 142 Jiang, Guo, Kim, Whitten, Wood, Kani, Rowan, Henzie, Yamauchi (bib38) 2018; 140 Niu, Zhang, Ping, Li, Zhou, Lei, Xie, Zhang, Wang, Fu (bib66) 2017; 7 Ostovari Moghaddam, Trofimov (bib69) 2021; 851 Rák, Maria, Brenner (bib78) 2018; 217 Amiri, Shahbazian-Yassar (bib1) 2021 Broge, Bondesgaard, Sondergaard-Pedersen, Roelsgaard, Iversen (bib9) 2020; 59 Wang, Wan, Xu, Tong, Li (bib94) 2014; 127 Ye, Fan, Han, Ma, Chu (bib114) 2020; 103 Chen, Pei, Tang, Cheng, Li, Li, Zhang, An (bib16) 2018; 38 Xu, Du, Wang, Guo, Zou, Zhou, Zeng, Liu, Li (bib106) 2020; 822 Biesuz, Fu, Dong, Jiang, Ke, Xu, Zhu, Bortolotti, Reece, Hu, Grasso (bib6) 2019; 7 Dai (bib20) 2020; 13 Pu, Zhang, Li, Chen, Du, Zhou (bib74) 2019; 115 Miracle, Senkov (bib63) 2017 Li, Tang, Jia, Li, Xie, Liu, Lin, Qiu (bib48) 2020; 383 Sarkar, Breitung, Hahn (bib81) 2020; 187 Qiu, Fang, Gao, Wen, Lv, Li, Xie, Liu, Sun (bib75) 2019; 1 Fracchia, Manzoli, Anselmi-Tamburini, Ghigna (bib28) 2020; 188 Wang, Ma, Li, Xie, Sun, Liu, Liu, An (bib96) 2020; 46 Fracchia, Ghigna, Pozzi, Anselmi Tamburini, Colombo, Braglia, Torelli (bib27) 2020; 11 Chen, Qiu, Wu, Yang, Sun, Wang (bib14) 2020; 10 George, Raabe, Ritchie (bib30) 2019; 4 Yalamanchili, Wang, Schramm, Andersson, Johansson Jöesaar, Tasnádi, Mücklich, Ghafoor, Odén (bib107) 2017; 636 Liu, Wen, Ye, Chu (bib52) 2019; 167 Jimenez-Segura, Takayama, Bérardan, Hoser, Reehuis, Takagi, Dragoe (bib39) 2019; 114 Kong, Hyun, Kim, Kim, Kim (bib43) 2019; 437 Liu, Peng, Liu, Chen, Yang, An (bib51) 2020; 40 Wu, Kusada, Yamamoto, Toriyama, Matsumura, Kawaguchi, Kubota, Kitagawa (bib102) 2020; 142 Usharani, Bhandarkar, Subramanian, Bhattacharya (bib92) 2020; 200 Xiang, Xie, Mao, Jia, Si (bib103) 2020; 111 Feng, Dong, Zhang, Ge, Zhang, Dai, Qiao (bib25) 2020; 59 Li, Han, Zhao, Qi, Zhang, Yu, Cai, Li, Lai, Huang, Wang (bib47) 2020; 11 Mao, Xiang, Zhang, Kuramoto, Zhang, Jia (bib60) 2020; 497 Patel, Ojha, Kumar, Saha, Mandal, Freeland, Middey (bib72) 2020; 116 Li (10.1016/j.isci.2021.102177_bib50) 2019; 102 Waag (10.1016/j.isci.2021.102177_bib93) 2019; 9 Zhang (10.1016/j.isci.2021.102177_bib120) 2020 Dai (10.1016/j.isci.2021.102177_bib20) 2020; 13 Liu (10.1016/j.isci.2021.102177_bib53) 2019; 6 Rost (10.1016/j.isci.2021.102177_bib80) 2015; 6 Bondesgaard (10.1016/j.isci.2021.102177_bib8) 2019; 29 Gild (10.1016/j.isci.2021.102177_bib32) 2016; 6 Qiu (10.1016/j.isci.2021.102177_bib76) 2019; 7 Chen (10.1016/j.isci.2021.102177_bib15) 2019; 9 Dai (10.1016/j.isci.2021.102177_bib21) 2019; 430 Chen (10.1016/j.isci.2021.102177_bib14) 2020; 10 Yan (10.1016/j.isci.2021.102177_bib109) 2020; 187 Jimenez-Segura (10.1016/j.isci.2021.102177_bib39) 2019; 114 Tsai (10.1016/j.isci.2021.102177_bib91) 2009; 478 Qiu (10.1016/j.isci.2021.102177_bib77) 2019; 777 Rák (10.1016/j.isci.2021.102177_bib78) 2018; 217 Wang (10.1016/j.isci.2021.102177_bib97) 2019; 100 Wang (10.1016/j.isci.2021.102177_bib96) 2020; 46 Gild (10.1016/j.isci.2021.102177_bib31) 2019; 170 Niu (10.1016/j.isci.2021.102177_bib66) 2017; 7 Sarkar (10.1016/j.isci.2021.102177_bib83) 2020; 8 Qiu (10.1016/j.isci.2021.102177_bib75) 2019; 1 Zhang (10.1016/j.isci.2021.102177_bib121) 2018; 279 Miracle (10.1016/j.isci.2021.102177_bib62) 2017; 122 Oses (10.1016/j.isci.2021.102177_bib68) 2020; 5 Yao (10.1016/j.isci.2021.102177_bib113) 2020; 6 George (10.1016/j.isci.2021.102177_bib30) 2019; 4 Stygar (10.1016/j.isci.2021.102177_bib88) 2020; 40 Chen (10.1016/j.isci.2021.102177_bib12) 2020; 276 Dąbrowa (10.1016/j.isci.2021.102177_bib19) 2018; 216 Sarkar (10.1016/j.isci.2021.102177_bib81) 2020; 187 Hu (10.1016/j.isci.2021.102177_bib36) 2019; 9 Liu (10.1016/j.isci.2021.102177_bib51) 2020; 40 Wang (10.1016/j.isci.2021.102177_bib95) 2019; 7 Sarkar (10.1016/j.isci.2021.102177_bib82) 2017; 37 Wu (10.1016/j.isci.2021.102177_bib102) 2020; 142 Li (10.1016/j.isci.2021.102177_bib48) 2020; 383 Fracchia (10.1016/j.isci.2021.102177_bib28) 2020; 188 Zhang (10.1016/j.isci.2021.102177_bib122) 2019; 31 Gorsse (10.1016/j.isci.2021.102177_bib35) 2017; 135 Li (10.1016/j.isci.2021.102177_bib49) 2016; 534 Pedersen (10.1016/j.isci.2021.102177_bib73) 2020; 10 Wang (10.1016/j.isci.2021.102177_bib94) 2014; 127 Löffler (10.1016/j.isci.2021.102177_bib56) 2020; 59 Bérardan (10.1016/j.isci.2021.102177_bib3) 2016; 10 Broge (10.1016/j.isci.2021.102177_bib9) 2020; 59 Lacey (10.1016/j.isci.2021.102177_bib45) 2019; 19 Dąbrowa (10.1016/j.isci.2021.102177_bib18) 2020; 8 Yao (10.1016/j.isci.2021.102177_bib112) 2018; 359 Biesuz (10.1016/j.isci.2021.102177_bib7) 2018; 53 Parida (10.1016/j.isci.2021.102177_bib70) 2020; 178 Park (10.1016/j.isci.2021.102177_bib71) 2020; 504 Zhao (10.1016/j.isci.2021.102177_bib126) 2020; 13 Zhang (10.1016/j.isci.2021.102177_bib124) 2019; 31 Yang (10.1016/j.isci.2021.102177_bib110) 2020; 36 Tomboc (10.1016/j.isci.2021.102177_bib90) 2020; 8 Sure (10.1016/j.isci.2021.102177_bib89) 2020; 59 Ding (10.1016/j.isci.2021.102177_bib22) 2019; 574 Okejiri (10.1016/j.isci.2021.102177_bib67) 2020; 13 Glasscott (10.1016/j.isci.2021.102177_bib33) 2019; 10 Xiang (10.1016/j.isci.2021.102177_bib103) 2020; 111 Yalamanchili (10.1016/j.isci.2021.102177_bib107) 2017; 636 Yan (10.1016/j.isci.2021.102177_bib108) 2020; 55 Xie (10.1016/j.isci.2021.102177_bib104) 2019; 10 Ye (10.1016/j.isci.2021.102177_bib114) 2020; 103 Yusenko (10.1016/j.isci.2021.102177_bib118) 2017; 138 Liu (10.1016/j.isci.2021.102177_bib52) 2019; 167 Yuan (10.1016/j.isci.2021.102177_bib117) 2014; 26 Zhai (10.1016/j.isci.2021.102177_bib119) 2018; 11 Zhao (10.1016/j.isci.2021.102177_bib125) 2020; 59 Yeh (10.1016/j.isci.2021.102177_bib116) 2004; 6 Jin (10.1016/j.isci.2021.102177_bib40) 2018; 30 Löffler (10.1016/j.isci.2021.102177_bib54) 2018; 8 Yao (10.1016/j.isci.2021.102177_bib111) 2020; 117 Dragoe (10.1016/j.isci.2021.102177_bib24) 2019; 366 Sathiya (10.1016/j.isci.2021.102177_bib86) 2018; 8 Zhang (10.1016/j.isci.2021.102177_bib123) 2018; 57 Sarkar (10.1016/j.isci.2021.102177_bib84) 2018; 9 Amiri (10.1016/j.isci.2021.102177_bib1) 2021 Nguyen (10.1016/j.isci.2021.102177_bib65) 2020; 8 Chen (10.1016/j.isci.2021.102177_bib17) 2015; 273 Jin (10.1016/j.isci.2021.102177_bib41) 2019; 15 Wang (10.1016/j.isci.2021.102177_bib99) 2019; 5 Patel (10.1016/j.isci.2021.102177_bib72) 2020; 116 Feng (10.1016/j.isci.2021.102177_bib26) 2020; 3 Wang (10.1016/j.isci.2021.102177_bib100) 2020; 142 Kong (10.1016/j.isci.2021.102177_bib43) 2019; 437 Usharani (10.1016/j.isci.2021.102177_bib92) 2020; 200 Djenadic (10.1016/j.isci.2021.102177_bib23) 2017; 5 Fracchia (10.1016/j.isci.2021.102177_bib27) 2020; 11 Xu (10.1016/j.isci.2021.102177_bib106) 2020; 822 Berardan (10.1016/j.isci.2021.102177_bib5) 2017; 704 Gao (10.1016/j.isci.2021.102177_bib29) 2020; 11 Chen (10.1016/j.isci.2021.102177_bib11) 2018; 6 Nellaiappan (10.1016/j.isci.2021.102177_bib64) 2020; 10 Lun (10.1016/j.isci.2021.102177_bib58) 2020 Lv (10.1016/j.isci.2021.102177_bib59) 2016; 6 Feng (10.1016/j.isci.2021.102177_bib25) 2020; 59 Meisenheimer (10.1016/j.isci.2021.102177_bib61) 2017; 7 Pu (10.1016/j.isci.2021.102177_bib74) 2019; 115 Cantor (10.1016/j.isci.2021.102177_bib10) 2004; 375–377 Chen (10.1016/j.isci.2021.102177_bib13) 2019; 1 Sarker (10.1016/j.isci.2021.102177_bib85) 2018; 9 Rost (10.1016/j.isci.2021.102177_bib79) 2017; 100 Biesuz (10.1016/j.isci.2021.102177_bib6) 2019; 7 Batchelor (10.1016/j.isci.2021.102177_bib2) 2019; 3 Chen (10.1016/j.isci.2021.102177_bib16) 2018; 38 Xin (10.1016/j.isci.2021.102177_bib105) 2020 Ye (10.1016/j.isci.2021.102177_bib115) 2016 Bérardan (10.1016/j.isci.2021.102177_bib4) 2016; 4 Lei (10.1016/j.isci.2021.102177_bib46) 2018; 563 Mao (10.1016/j.isci.2021.102177_bib60) 2020; 497 Miracle (10.1016/j.isci.2021.102177_bib63) 2017 Gludovatz (10.1016/j.isci.2021.102177_bib34) 2014; 345 Kotsonis (10.1016/j.isci.2021.102177_bib44) 2018; 8 Shen (10.1016/j.isci.2021.102177_bib87) 2019; 9 Löffler (10.1016/j.isci.2021.102177_bib55) 2019; 4 Wu (10.1016/j.isci.2021.102177_bib101) 2020 Li (10.1016/j.isci.2021.102177_bib47) 2020; 11 Lökçü (10.1016/j.isci.2021.102177_bib57) 2020; 7 Jiang (10.1016/j.isci.2021.102177_bib38) 2018; 140 Katiyar (10.1016/j.isci.2021.102177_bib42) 2020; 16 Zheng (10.1016/j.isci.2021.102177_bib127) 2019; 23 Ostovari Moghaddam (10.1016/j.isci.2021.102177_bib69) 2021; 851 Wang (10.1016/j.isci.2021.102177_bib98) 2019; 12 Huang (10.1016/j.isci.2021.102177_bib37) 2020; 8 |
| References_xml | – volume: 478 start-page: 868 year: 2009 end-page: 871 ident: bib91 article-title: Effect of platinum present in multi-element nanoparticles on methanol oxidation publication-title: J. Alloys Compd. – volume: 188 start-page: 26 year: 2020 end-page: 31 ident: bib28 article-title: A new eight-cation inverse high entropy spinel with large configurational entropy in both tetrahedral and octahedral sites: synthesis and cation distribution by X-ray absorption spectroscopy publication-title: Scr. Mater. – volume: 15 start-page: 1904180 year: 2019 ident: bib41 article-title: Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments publication-title: Small – volume: 102 start-page: 296 year: 2019 end-page: 345 ident: bib50 article-title: Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys publication-title: Prog. Mater. Sci. – volume: 7 start-page: 127 year: 2019 end-page: 132 ident: bib6 article-title: High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering publication-title: J. Asian Ceram. Soc. – volume: 11 start-page: 2016 year: 2020 ident: bib29 article-title: Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis publication-title: Nat. Commun. – volume: 7 start-page: 24211 year: 2019 end-page: 24216 ident: bib95 article-title: Low-temperature synthesis of small-sized high-entropy oxides for water oxidation publication-title: J. Mater. Chem. A. – volume: 383 start-page: 164 year: 2020 end-page: 171 ident: bib48 article-title: Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction publication-title: J. Catal. – volume: 16 year: 2020 ident: bib42 article-title: Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst publication-title: Mater. Today Energy – year: 2017 ident: bib63 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 142 start-page: 13833 year: 2020 end-page: 13838 ident: bib102 article-title: Platinum-group-metal high-entropy-alloy nanoparticles publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 1985 year: 2020 end-page: 1992 ident: bib110 article-title: Aerosol synthesis of high entropy alloy nanoparticles publication-title: Langmuir – volume: 12 start-page: 2433 year: 2019 end-page: 2442 ident: bib98 article-title: Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries publication-title: Energy Environ. Sci. – volume: 117 start-page: 6316 year: 2020 end-page: 6322 ident: bib111 article-title: High-throughput, combinatorial synthesis of multimetallic nanoclusters publication-title: Proc. Natl. Acad. Sci. U S A. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib116 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 138 start-page: 22 year: 2017 end-page: 27 ident: bib118 article-title: First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation publication-title: Scr. Mater. – volume: 6 start-page: 1 year: 2020 end-page: 12 ident: bib113 article-title: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts publication-title: Sci. Adv. – volume: 9 start-page: 3400 year: 2018 ident: bib84 article-title: High entropy oxides for reversible energy storage publication-title: Nat. Commun. – volume: 13 start-page: 111 year: 2020 end-page: 115 ident: bib67 article-title: Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method publication-title: ChemSusChem – volume: 13 start-page: 2038 year: 2020 end-page: 2042 ident: bib126 article-title: Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting publication-title: ChemSusChem – volume: 777 start-page: 767 year: 2019 end-page: 774 ident: bib77 article-title: A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance publication-title: J. Alloys Compd. – volume: 8 start-page: 1802269 year: 2018 ident: bib54 article-title: Discovery of a multinary noble metal-free oxygen reduction catalyst publication-title: Adv. Energy Mater. – volume: 10 start-page: 3658 year: 2020 end-page: 3663 ident: bib64 article-title: High-entropy alloys as catalysts for the CO 2 and CO reduction reactions: experimental realization publication-title: ACS Catal. – volume: 10 start-page: 1 year: 2019 end-page: 12 ident: bib104 article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts publication-title: Nat. Commun. – year: 2021 ident: bib1 article-title: Recent progress of high-entropy materials for energy storage and conversion publication-title: J. Mater. Chem. A – volume: 7 start-page: 13344 year: 2017 ident: bib61 article-title: Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures publication-title: Sci. Rep. – volume: 59 start-page: 5844 year: 2020 end-page: 5850 ident: bib56 article-title: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves publication-title: Angew. Chem. Int. Ed. – year: 2020 ident: bib101 article-title: On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles publication-title: Chem. Sci. – year: 2016 ident: bib115 article-title: High-entropy alloy: challenges and prospects publication-title: Mater. Today – volume: 430 start-page: 104 year: 2019 end-page: 111 ident: bib21 article-title: Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy publication-title: J. Power Sourc. – volume: 9 start-page: 28908 year: 2019 end-page: 28915 ident: bib15 article-title: Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 )O solid solutions to achieve superior lithium-storage properties publication-title: RSC Adv. – volume: 8 start-page: 051111 year: 2020 ident: bib83 article-title: Role of intermediate 4 f states in tuning the band structure of high entropy oxides publication-title: APL Mater. – volume: 9 start-page: 4980 year: 2018 ident: bib85 article-title: High-entropy high-hardness metal carbides discovered by entropy descriptors publication-title: Nat. Commun. – volume: 822 start-page: 153642 year: 2020 ident: bib106 article-title: High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors publication-title: J. Alloys Compd. – volume: 4 start-page: 9536 year: 2016 end-page: 9541 ident: bib4 article-title: Room temperature lithium superionic conductivity in high entropy oxides publication-title: J. Mater. Chem. A. – volume: 504 year: 2020 ident: bib71 article-title: Electrochemical synthesis of multimetallic nanoparticles and their application in alkaline oxygen reduction catalysis publication-title: Appl. Surf. Sci. – volume: 142 start-page: 4550 year: 2020 end-page: 4554 ident: bib100 article-title: High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 177 year: 2017 end-page: 187 ident: bib35 article-title: Mapping the world of complex concentrated alloys publication-title: Acta Mater. – volume: 100 start-page: 2732 year: 2017 end-page: 2738 ident: bib79 article-title: Local structure of the Mg x Ni x Co x Cu x Zn x O( x =0.2) entropy-stabilized oxide: an EXAFS study publication-title: J. Am. Ceram. Soc. – volume: 6 start-page: 1 year: 2019 end-page: 6 ident: bib53 article-title: Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions publication-title: Adv. Mater. Inter. – volume: 574 start-page: 223 year: 2019 end-page: 227 ident: bib22 article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys publication-title: Nature – volume: 40 start-page: 2504 year: 2020 end-page: 2508 ident: bib51 article-title: Ultrafast synthesis of entropy-stabilized oxide at room temperature publication-title: J. Eur. Ceram. Soc. – volume: 7 start-page: 3421 year: 2017 ident: bib66 article-title: Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys publication-title: Sci. Rep. – volume: 3 start-page: 1646 year: 2020 end-page: 1663 ident: bib26 article-title: Unconventional alloys confined in nanoparticles: building blocks for new matter publication-title: Matter – volume: 46 start-page: 18358 year: 2020 end-page: 18361 ident: bib96 article-title: Fabrication of high-entropy perovskite oxide by reactive flash sintering publication-title: Ceram. Int. – volume: 1 start-page: 83 year: 2019 end-page: 88 ident: bib13 article-title: Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization publication-title: ACS Mater. Lett. – volume: 636 start-page: 346 year: 2017 end-page: 352 ident: bib107 article-title: Exploring the high entropy alloy concept in (AlTiVNbCr)N publication-title: Thin Solid Films – volume: 5 start-page: 295 year: 2020 end-page: 309 ident: bib68 article-title: High-entropy ceramics publication-title: Nat. Rev. Mater. – volume: 127 start-page: 448 year: 2014 end-page: 453 ident: bib94 article-title: Quinary PdNiCoCuFe alloy nanotube Arrays as efficient electrocatalysts for methanol oxidation publication-title: Electrochim. Acta – volume: 217 start-page: 300 year: 2018 end-page: 303 ident: bib78 article-title: Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: a DFT study publication-title: Mater. Lett. – volume: 187 start-page: 188 year: 2020 end-page: 193 ident: bib109 article-title: Functional properties and promising applications of high entropy alloys publication-title: Scr. Mater. – volume: 8 start-page: 1371 year: 2018 end-page: 1377 ident: bib44 article-title: Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment publication-title: MRS Commun. – volume: 4 start-page: 515 year: 2019 end-page: 534 ident: bib30 article-title: High-entropy alloys publication-title: Nat. Rev. Mater. – volume: 563 start-page: 546 year: 2018 end-page: 550 ident: bib46 article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes publication-title: Nature – volume: 59 start-page: 11830 year: 2020 end-page: 11835 ident: bib89 article-title: Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide publication-title: Powder. Angew. Chem. Int. Ed. – volume: 345 start-page: 1153 year: 2014 end-page: 1158 ident: bib34 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 11 start-page: 5437 year: 2020 ident: bib47 article-title: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis publication-title: Nat. Commun. – volume: 57 start-page: 13027 year: 2018 end-page: 13033 ident: bib123 article-title: Data-driven design of ecofriendly thermoelectric high-entropy sulfides publication-title: Inorg. Chem. – volume: 30 start-page: 1707512 year: 2018 ident: bib40 article-title: Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy publication-title: Adv. Mater. – volume: 167 start-page: 110 year: 2019 end-page: 114 ident: bib52 article-title: Synthesis of superfine high-entropy metal diboride powders publication-title: Scr. Mater. – volume: 8 year: 2018 ident: bib86 article-title: A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes publication-title: Adv. Energy Mater. – volume: 23 start-page: 678 year: 2019 end-page: 683 ident: bib127 article-title: A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries publication-title: Energy Storage Mater – volume: 170 start-page: 106 year: 2019 end-page: 110 ident: bib31 article-title: Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics publication-title: Scr. Mater. – volume: 8 start-page: 18963 year: 2020 end-page: 18973 ident: bib65 article-title: High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance publication-title: J. Mater. Chem. A. – volume: 40 start-page: 1644 year: 2020 end-page: 1650 ident: bib88 article-title: Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels publication-title: J. Eur. Ceram. Soc. – year: 2020 ident: bib58 article-title: Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries publication-title: Nat. Mater. – volume: 19 start-page: 5149 year: 2019 end-page: 5158 ident: bib45 article-title: Stable multimetallic nanoparticles for oxygen electrocatalysis publication-title: Nano Lett. – volume: 59 start-page: 2 year: 2020 end-page: 9 ident: bib25 article-title: Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol publication-title: Angew. Chem. Int. Ed. – volume: 187 start-page: 43 year: 2020 end-page: 48 ident: bib81 article-title: High entropy oxides: the role of entropy, enthalpy and synergy publication-title: Scr. Mater. – year: 2020 ident: bib120 article-title: Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys publication-title: Adv. Funct. Mater. – volume: 7 start-page: 6499 year: 2019 end-page: 6506 ident: bib76 article-title: Nanoporous high-entropy alloys for highly stable and efficient catalysts publication-title: J. Mater. Chem. A. – volume: 8 start-page: 24455 year: 2020 end-page: 24468 ident: bib18 article-title: An innovative approach to design SOFC air electrode materials: high entropy La 1−x Sr x (Co,Cr,Fe,Mn,Ni)O 3−δ ( x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method publication-title: J. Mater. Chem. A. – volume: 10 start-page: 2650 year: 2019 ident: bib33 article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis publication-title: Nat. Commun. – volume: 3 start-page: 834 year: 2019 end-page: 845 ident: bib2 article-title: High-entropy alloys as a discovery platform for electrocatalysis publication-title: Joule – volume: 111 start-page: 246 year: 2020 end-page: 249 ident: bib103 article-title: Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis publication-title: Int. J. Mater. Res. – volume: 375–377 start-page: 213 year: 2004 end-page: 218 ident: bib10 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A. – volume: 704 start-page: 693 year: 2017 end-page: 700 ident: bib5 article-title: Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides publication-title: J. Alloys Compd. – start-page: 11280 year: 2020 end-page: 11306 ident: bib105 article-title: High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities publication-title: ACS Catal. – volume: 10 start-page: 2169 year: 2020 end-page: 2176 ident: bib73 article-title: High-entropy alloys as catalysts for the CO 2 and CO reduction reactions publication-title: ACS Catal. – volume: 11 start-page: 2172 year: 2018 end-page: 2178 ident: bib119 article-title: The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting publication-title: Energy Environ. Sci. – volume: 29 start-page: 1905933 year: 2019 ident: bib8 article-title: General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts publication-title: Adv. Funct. Mater. – volume: 5 start-page: 502 year: 2019 end-page: 504 ident: bib99 article-title: Predicting catalytic activity of high-entropy alloys for electrocatalysis publication-title: Chem – volume: 26 start-page: 6301 year: 2014 end-page: 6306 ident: bib117 article-title: A honeycomb-layered Na 3 Ni 2 SbO 6 : a high-rate and cycle-stable cathode for sodium-ion batteries publication-title: Adv. Mater. – volume: 9 start-page: 18547 year: 2019 end-page: 18558 ident: bib93 article-title: Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles publication-title: RSC Adv. – volume: 7 start-page: 0c03562 year: 2020 ident: bib57 article-title: Electrochemical performance of (MgCoNiZn) 1– x Li x O high-entropy oxides in lithium-ion batteries publication-title: ACS Appl. Mater. Inter. – volume: 37 start-page: 747 year: 2017 end-page: 754 ident: bib82 article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides publication-title: J. Eur. Ceram. Soc. – volume: 116 start-page: 071601 year: 2020 ident: bib72 article-title: Epitaxial stabilization of ultra thin films of high entropy perovskite publication-title: Appl. Phys. Lett. – volume: 8 start-page: 14844 year: 2020 end-page: 14862 ident: bib90 article-title: High entropy alloy electrocatalysts: a critical assessment of fabrication and performance publication-title: J. Mater. Chem. A. – volume: 59 start-page: 21920 year: 2020 end-page: 21924 ident: bib9 article-title: Autocatalytic formation of high-entropy alloy nanoparticles publication-title: Angew. Chem. Int. Ed. Engl. – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: bib87 article-title: A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage publication-title: Nanomaterials – volume: 11 start-page: 3589 year: 2020 end-page: 3593 ident: bib27 article-title: Stabilization by configurational entropy of the Cu(II) active site during CO oxidation on Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 O publication-title: J. Phys. Chem. Lett. – volume: 279 start-page: 19 year: 2018 end-page: 23 ident: bib121 article-title: High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction publication-title: Electrochim. Acta – volume: 38 start-page: 4161 year: 2018 end-page: 4164 ident: bib16 article-title: A five-component entropy-stabilized fluorite oxide publication-title: J. Eur. Ceram. Soc. – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: bib59 article-title: Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions publication-title: Sci. Rep. – volume: 497 start-page: 1 year: 2020 end-page: 5 ident: bib60 article-title: A new class of spinel high-entropy oxides with controllable magnetic properties publication-title: J. Magn. Magn. Mater. – volume: 140 start-page: 12434 year: 2018 end-page: 12441 ident: bib38 article-title: Mesoporous metallic iridium nanosheets publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 264 year: 2020 end-page: 269 ident: bib125 article-title: High-entropy layered oxide cathodes for sodium-ion batteries publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 2 year: 2016 end-page: 11 ident: bib32 article-title: High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics publication-title: Sci. Rep. – volume: 4 start-page: 1206 year: 2019 end-page: 1214 ident: bib55 article-title: Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles publication-title: ACS Energy Lett. – volume: 100 start-page: 121 year: 2019 end-page: 125 ident: bib97 article-title: High entropy oxides as anode material for Li-ion battery applications: a practical approach publication-title: Electrochem. Commun. – volume: 1 start-page: 526 year: 2019 end-page: 533 ident: bib75 article-title: Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction publication-title: ACS Mater. Lett. – volume: 216 start-page: 32 year: 2018 end-page: 36 ident: bib19 article-title: Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure publication-title: Mater. Lett. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib62 article-title: A critical review of high entropy alloys and related concepts publication-title: ACTA Mater. – volume: 115 start-page: 0 year: 2019 end-page: 5 ident: bib74 article-title: Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic publication-title: Appl. Phys. Lett. – volume: 114 start-page: 122401 year: 2019 ident: bib39 article-title: Long-range magnetic ordering in rocksalt-type high-entropy oxides publication-title: Appl. Phys. Lett. – volume: 55 start-page: 6942 year: 2020 end-page: 6951 ident: bib108 article-title: A high-entropy perovskite titanate lithium-ion battery anode publication-title: J. Mater. Sci. – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: bib49 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature – volume: 103 start-page: 4738 year: 2020 end-page: 4741 ident: bib114 article-title: Synthesis of high-entropy diboride nanopowders via molten salt-mediated magnesiothermic reduction publication-title: J. Am. Ceram. Soc. – volume: 359 start-page: 1489 year: 2018 end-page: 1494 ident: bib112 article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles publication-title: Science – volume: 9 start-page: 461 year: 2019 ident: bib36 article-title: A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo publication-title: Nanomater – volume: 178 start-page: 513 year: 2020 end-page: 517 ident: bib70 article-title: Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure publication-title: Scr. Mater. – volume: 6 start-page: 8485 year: 2015 ident: bib80 article-title: Entropy-stabilized oxides publication-title: Nat. Commun. – volume: 31 start-page: 5529 year: 2019 end-page: 5536 ident: bib124 article-title: Mechanochemical nonhydrolytic sol-gel-strategy for the production of mesoporous multimetallic oxides publication-title: Chem. Mater. – volume: 5 start-page: 102 year: 2017 end-page: 109 ident: bib23 article-title: Multicomponent equiatomic rare earth oxides publication-title: Mater. Res. Lett. – volume: 13 start-page: 1915 year: 2020 end-page: 1917 ident: bib20 article-title: Across the board: sheng Dai on catalyst design by entropic factors publication-title: ChemSusChem – volume: 10 start-page: 328 year: 2016 end-page: 333 ident: bib3 article-title: Colossal dielectric constant in high entropy oxides publication-title: Phys. Status Solidi - Rapid Res. Lett. – volume: 53 start-page: 8074 year: 2018 end-page: 8085 ident: bib7 article-title: Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods publication-title: J. Mater. Sci. – volume: 851 start-page: 156838 year: 2021 ident: bib69 article-title: Toward expanding the realm of high entropy materials to platinum group metals: a review publication-title: J. Alloys Compd. – volume: 366 start-page: 573 year: 2019 end-page: 574 ident: bib24 article-title: Order emerging from disorder publication-title: Science – volume: 31 start-page: 3705 year: 2019 end-page: 3711 ident: bib122 article-title: Long-range antiferromagnetic order in a rocksalt high entropy oxide publication-title: Chem. Mater. – volume: 437 start-page: 226927 year: 2019 ident: bib43 article-title: Nanoporous structure synthesized by selective phase dissolution of AlCoCrFeNi high entropy alloy and its electrochemical properties as supercapacitor electrode publication-title: J. Power Sourc. – volume: 10 start-page: 9736 year: 2020 end-page: 9744 ident: bib14 article-title: A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries publication-title: RSC Adv. – volume: 276 start-page: 119155 year: 2020 ident: bib12 article-title: An ultrastable heterostructured oxide catalyst based on high-entropy materials: a new strategy toward catalyst stabilization via synergistic interfacial interaction publication-title: Appl. Catal. B Environ. – volume: 273 start-page: 324 year: 2015 end-page: 332 ident: bib17 article-title: Multi-component nanoporous platinum–ruthenium–copper–osmium–iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction publication-title: J. Power Sourc. – volume: 200 start-page: 526 year: 2020 end-page: 536 ident: bib92 article-title: Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: magnetic constituents and surface anisotropy leading to lattice distortion publication-title: Acta Mater. – volume: 8 start-page: 11938 year: 2020 end-page: 11947 ident: bib37 article-title: Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst publication-title: J. Mater. Chem. A. – volume: 6 start-page: 11129 year: 2018 end-page: 11133 ident: bib11 article-title: Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability publication-title: J. Mater. Chem. A. – volume: 59 start-page: 2 year: 2020 ident: 10.1016/j.isci.2021.102177_bib25 article-title: Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202004892 – volume: 7 start-page: 13344 year: 2017 ident: 10.1016/j.isci.2021.102177_bib61 article-title: Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures publication-title: Sci. Rep. doi: 10.1038/s41598-017-13810-5 – volume: 6 start-page: 2 year: 2016 ident: 10.1016/j.isci.2021.102177_bib32 article-title: High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics publication-title: Sci. Rep. doi: 10.1038/srep37946 – volume: 11 start-page: 5437 year: 2020 ident: 10.1016/j.isci.2021.102177_bib47 article-title: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-020-19277-9 – volume: 8 start-page: 1802269 year: 2018 ident: 10.1016/j.isci.2021.102177_bib54 article-title: Discovery of a multinary noble metal-free oxygen reduction catalyst publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802269 – volume: 10 start-page: 328 year: 2016 ident: 10.1016/j.isci.2021.102177_bib3 article-title: Colossal dielectric constant in high entropy oxides publication-title: Phys. Status Solidi - Rapid Res. Lett. doi: 10.1002/pssr.201600043 – volume: 8 start-page: 24455 year: 2020 ident: 10.1016/j.isci.2021.102177_bib18 article-title: An innovative approach to design SOFC air electrode materials: high entropy La 1−x Sr x (Co,Cr,Fe,Mn,Ni)O 3−δ ( x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA06356H – volume: 138 start-page: 22 year: 2017 ident: 10.1016/j.isci.2021.102177_bib118 article-title: First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.05.022 – volume: 38 start-page: 4161 year: 2018 ident: 10.1016/j.isci.2021.102177_bib16 article-title: A five-component entropy-stabilized fluorite oxide publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.04.063 – volume: 8 start-page: 1371 year: 2018 ident: 10.1016/j.isci.2021.102177_bib44 article-title: Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment publication-title: MRS Commun. doi: 10.1557/mrc.2018.184 – volume: 135 start-page: 177 year: 2017 ident: 10.1016/j.isci.2021.102177_bib35 article-title: Mapping the world of complex concentrated alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.027 – volume: 187 start-page: 43 year: 2020 ident: 10.1016/j.isci.2021.102177_bib81 article-title: High entropy oxides: the role of entropy, enthalpy and synergy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.05.019 – volume: 59 start-page: 21920 year: 2020 ident: 10.1016/j.isci.2021.102177_bib9 article-title: Autocatalytic formation of high-entropy alloy nanoparticles publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202009002 – volume: 46 start-page: 18358 year: 2020 ident: 10.1016/j.isci.2021.102177_bib96 article-title: Fabrication of high-entropy perovskite oxide by reactive flash sintering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.060 – volume: 534 start-page: 227 year: 2016 ident: 10.1016/j.isci.2021.102177_bib49 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 1 start-page: 526 year: 2019 ident: 10.1016/j.isci.2021.102177_bib75 article-title: Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00414 – volume: 100 start-page: 2732 year: 2017 ident: 10.1016/j.isci.2021.102177_bib79 article-title: Local structure of the Mg x Ni x Co x Cu x Zn x O( x =0.2) entropy-stabilized oxide: an EXAFS study publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14756 – volume: 6 start-page: 8485 year: 2015 ident: 10.1016/j.isci.2021.102177_bib80 article-title: Entropy-stabilized oxides publication-title: Nat. Commun. doi: 10.1038/ncomms9485 – volume: 276 start-page: 119155 year: 2020 ident: 10.1016/j.isci.2021.102177_bib12 article-title: An ultrastable heterostructured oxide catalyst based on high-entropy materials: a new strategy toward catalyst stabilization via synergistic interfacial interaction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119155 – volume: 55 start-page: 6942 year: 2020 ident: 10.1016/j.isci.2021.102177_bib108 article-title: A high-entropy perovskite titanate lithium-ion battery anode publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04482-0 – volume: 30 start-page: 1707512 year: 2018 ident: 10.1016/j.isci.2021.102177_bib40 article-title: Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy publication-title: Adv. Mater. doi: 10.1002/adma.201707512 – volume: 187 start-page: 188 year: 2020 ident: 10.1016/j.isci.2021.102177_bib109 article-title: Functional properties and promising applications of high entropy alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.06.017 – volume: 116 start-page: 071601 year: 2020 ident: 10.1016/j.isci.2021.102177_bib72 article-title: Epitaxial stabilization of ultra thin films of high entropy perovskite publication-title: Appl. Phys. Lett. doi: 10.1063/1.5133710 – volume: 115 start-page: 0 year: 2019 ident: 10.1016/j.isci.2021.102177_bib74 article-title: Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic publication-title: Appl. Phys. Lett. doi: 10.1063/1.5126652 – volume: 217 start-page: 300 year: 2018 ident: 10.1016/j.isci.2021.102177_bib78 article-title: Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: a DFT study publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.01.111 – volume: 140 start-page: 12434 year: 2018 ident: 10.1016/j.isci.2021.102177_bib38 article-title: Mesoporous metallic iridium nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05206 – volume: 7 start-page: 3421 year: 2017 ident: 10.1016/j.isci.2021.102177_bib66 article-title: Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys publication-title: Sci. Rep. doi: 10.1038/s41598-017-03644-6 – volume: 23 start-page: 678 year: 2019 ident: 10.1016/j.isci.2021.102177_bib127 article-title: A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2019.02.030 – volume: 31 start-page: 5529 year: 2019 ident: 10.1016/j.isci.2021.102177_bib124 article-title: Mechanochemical nonhydrolytic sol-gel-strategy for the production of mesoporous multimetallic oxides publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01244 – volume: 9 start-page: 18547 year: 2019 ident: 10.1016/j.isci.2021.102177_bib93 article-title: Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles publication-title: RSC Adv. doi: 10.1039/C9RA03254A – volume: 777 start-page: 767 year: 2019 ident: 10.1016/j.isci.2021.102177_bib77 article-title: A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.11.049 – volume: 142 start-page: 13833 year: 2020 ident: 10.1016/j.isci.2021.102177_bib102 article-title: Platinum-group-metal high-entropy-alloy nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04807 – year: 2020 ident: 10.1016/j.isci.2021.102177_bib101 article-title: On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles publication-title: Chem. Sci. doi: 10.1039/D0SC02351E – volume: 359 start-page: 1489 year: 2018 ident: 10.1016/j.isci.2021.102177_bib112 article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles publication-title: Science doi: 10.1126/science.aan5412 – volume: 111 start-page: 246 year: 2020 ident: 10.1016/j.isci.2021.102177_bib103 article-title: Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis publication-title: Int. J. Mater. Res. doi: 10.3139/146.111874 – volume: 4 start-page: 1206 year: 2019 ident: 10.1016/j.isci.2021.102177_bib55 article-title: Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00531 – volume: 10 start-page: 2169 year: 2020 ident: 10.1016/j.isci.2021.102177_bib73 article-title: High-entropy alloys as catalysts for the CO 2 and CO reduction reactions publication-title: ACS Catal. doi: 10.1021/acscatal.9b04343 – volume: 57 start-page: 13027 year: 2018 ident: 10.1016/j.isci.2021.102177_bib123 article-title: Data-driven design of ecofriendly thermoelectric high-entropy sulfides publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02379 – volume: 8 start-page: 18963 year: 2020 ident: 10.1016/j.isci.2021.102177_bib65 article-title: High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA04844E – volume: 26 start-page: 6301 year: 2014 ident: 10.1016/j.isci.2021.102177_bib117 article-title: A honeycomb-layered Na 3 Ni 2 SbO 6 : a high-rate and cycle-stable cathode for sodium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201401946 – volume: 5 start-page: 102 year: 2017 ident: 10.1016/j.isci.2021.102177_bib23 article-title: Multicomponent equiatomic rare earth oxides publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2016.1220433 – year: 2020 ident: 10.1016/j.isci.2021.102177_bib58 article-title: Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries publication-title: Nat. Mater. – volume: 170 start-page: 106 year: 2019 ident: 10.1016/j.isci.2021.102177_bib31 article-title: Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.05.039 – volume: 9 start-page: 461 year: 2019 ident: 10.1016/j.isci.2021.102177_bib36 article-title: A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo publication-title: Nanomater doi: 10.3390/nano9030461 – volume: 430 start-page: 104 year: 2019 ident: 10.1016/j.isci.2021.102177_bib21 article-title: Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2019.05.030 – volume: 636 start-page: 346 year: 2017 ident: 10.1016/j.isci.2021.102177_bib107 article-title: Exploring the high entropy alloy concept in (AlTiVNbCr)N publication-title: Thin Solid Films doi: 10.1016/j.tsf.2017.06.029 – volume: 127 start-page: 448 year: 2014 ident: 10.1016/j.isci.2021.102177_bib94 article-title: Quinary PdNiCoCuFe alloy nanotube Arrays as efficient electrocatalysts for methanol oxidation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.02.076 – volume: 15 start-page: 1904180 year: 2019 ident: 10.1016/j.isci.2021.102177_bib41 article-title: Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments publication-title: Small doi: 10.1002/smll.201904180 – volume: 6 start-page: 11129 year: 2018 ident: 10.1016/j.isci.2021.102177_bib11 article-title: Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA01772G – volume: 437 start-page: 226927 year: 2019 ident: 10.1016/j.isci.2021.102177_bib43 article-title: Nanoporous structure synthesized by selective phase dissolution of AlCoCrFeNi high entropy alloy and its electrochemical properties as supercapacitor electrode publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2019.226927 – start-page: 11280 year: 2020 ident: 10.1016/j.isci.2021.102177_bib105 article-title: High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities publication-title: ACS Catal. doi: 10.1021/acscatal.0c03617 – volume: 5 start-page: 502 year: 2019 ident: 10.1016/j.isci.2021.102177_bib99 article-title: Predicting catalytic activity of high-entropy alloys for electrocatalysis publication-title: Chem doi: 10.1016/j.chempr.2019.02.015 – volume: 53 start-page: 8074 year: 2018 ident: 10.1016/j.isci.2021.102177_bib7 article-title: Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2168-9 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.isci.2021.102177_bib116 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 142 start-page: 4550 year: 2020 ident: 10.1016/j.isci.2021.102177_bib100 article-title: High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12377 – volume: 8 year: 2018 ident: 10.1016/j.isci.2021.102177_bib86 article-title: A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702599 – year: 2021 ident: 10.1016/j.isci.2021.102177_bib1 article-title: Recent progress of high-entropy materials for energy storage and conversion publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09578H – volume: 4 start-page: 9536 year: 2016 ident: 10.1016/j.isci.2021.102177_bib4 article-title: Room temperature lithium superionic conductivity in high entropy oxides publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA03249D – volume: 7 start-page: 6499 year: 2019 ident: 10.1016/j.isci.2021.102177_bib76 article-title: Nanoporous high-entropy alloys for highly stable and efficient catalysts publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA00505F – year: 2017 ident: 10.1016/j.isci.2021.102177_bib63 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 3 start-page: 1646 year: 2020 ident: 10.1016/j.isci.2021.102177_bib26 article-title: Unconventional alloys confined in nanoparticles: building blocks for new matter publication-title: Matter doi: 10.1016/j.matt.2020.07.027 – volume: 36 start-page: 1985 year: 2020 ident: 10.1016/j.isci.2021.102177_bib110 article-title: Aerosol synthesis of high entropy alloy nanoparticles publication-title: Langmuir doi: 10.1021/acs.langmuir.9b03392 – volume: 29 start-page: 1905933 year: 2019 ident: 10.1016/j.isci.2021.102177_bib8 article-title: General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905933 – volume: 19 start-page: 5149 year: 2019 ident: 10.1016/j.isci.2021.102177_bib45 article-title: Stable multimetallic nanoparticles for oxygen electrocatalysis publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01523 – volume: 7 start-page: 0c03562 year: 2020 ident: 10.1016/j.isci.2021.102177_bib57 article-title: Electrochemical performance of (MgCoNiZn) 1– x Li x O high-entropy oxides in lithium-ion batteries publication-title: ACS Appl. Mater. Inter. – volume: 851 start-page: 156838 year: 2021 ident: 10.1016/j.isci.2021.102177_bib69 article-title: Toward expanding the realm of high entropy materials to platinum group metals: a review publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156838 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.isci.2021.102177_bib104 article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-11848-9 – volume: 563 start-page: 546 year: 2018 ident: 10.1016/j.isci.2021.102177_bib46 article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes publication-title: Nature doi: 10.1038/s41586-018-0685-y – volume: 822 start-page: 153642 year: 2020 ident: 10.1016/j.isci.2021.102177_bib106 article-title: High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.153642 – volume: 345 start-page: 1153 year: 2014 ident: 10.1016/j.isci.2021.102177_bib34 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 16 year: 2020 ident: 10.1016/j.isci.2021.102177_bib42 article-title: Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst publication-title: Mater. Today Energy – volume: 4 start-page: 515 year: 2019 ident: 10.1016/j.isci.2021.102177_bib30 article-title: High-entropy alloys publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0121-4 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.isci.2021.102177_bib87 article-title: A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage publication-title: Nanomaterials doi: 10.3390/nano9020248 – volume: 7 start-page: 127 year: 2019 ident: 10.1016/j.isci.2021.102177_bib6 article-title: High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering publication-title: J. Asian Ceram. Soc. doi: 10.1080/21870764.2019.1595931 – volume: 6 start-page: 1 year: 2020 ident: 10.1016/j.isci.2021.102177_bib113 article-title: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz0510 – volume: 10 start-page: 9736 year: 2020 ident: 10.1016/j.isci.2021.102177_bib14 article-title: A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries publication-title: RSC Adv. doi: 10.1039/D0RA00255K – volume: 383 start-page: 164 year: 2020 ident: 10.1016/j.isci.2021.102177_bib48 article-title: Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction publication-title: J. Catal. doi: 10.1016/j.jcat.2020.01.024 – volume: 10 start-page: 3658 year: 2020 ident: 10.1016/j.isci.2021.102177_bib64 article-title: High-entropy alloys as catalysts for the CO 2 and CO reduction reactions: experimental realization publication-title: ACS Catal. doi: 10.1021/acscatal.9b04302 – volume: 6 start-page: 1 year: 2019 ident: 10.1016/j.isci.2021.102177_bib53 article-title: Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions publication-title: Adv. Mater. Inter. doi: 10.1002/admi.201900015 – volume: 497 start-page: 1 year: 2020 ident: 10.1016/j.isci.2021.102177_bib60 article-title: A new class of spinel high-entropy oxides with controllable magnetic properties publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165884 – volume: 279 start-page: 19 year: 2018 ident: 10.1016/j.isci.2021.102177_bib121 article-title: High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.05.035 – volume: 200 start-page: 526 year: 2020 ident: 10.1016/j.isci.2021.102177_bib92 article-title: Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: magnetic constituents and surface anisotropy leading to lattice distortion publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.09.034 – volume: 10 start-page: 2650 year: 2019 ident: 10.1016/j.isci.2021.102177_bib33 article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-10303-z – year: 2016 ident: 10.1016/j.isci.2021.102177_bib115 article-title: High-entropy alloy: challenges and prospects publication-title: Mater. Today doi: 10.1016/j.mattod.2015.11.026 – volume: 8 start-page: 14844 year: 2020 ident: 10.1016/j.isci.2021.102177_bib90 article-title: High entropy alloy electrocatalysts: a critical assessment of fabrication and performance publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA05176D – volume: 7 start-page: 24211 year: 2019 ident: 10.1016/j.isci.2021.102177_bib95 article-title: Low-temperature synthesis of small-sized high-entropy oxides for water oxidation publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA08740K – volume: 31 start-page: 3705 year: 2019 ident: 10.1016/j.isci.2021.102177_bib122 article-title: Long-range antiferromagnetic order in a rocksalt high entropy oxide publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00624 – volume: 13 start-page: 111 year: 2020 ident: 10.1016/j.isci.2021.102177_bib67 article-title: Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method publication-title: ChemSusChem doi: 10.1002/cssc.201902705 – volume: 216 start-page: 32 year: 2018 ident: 10.1016/j.isci.2021.102177_bib19 article-title: Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.12.148 – volume: 574 start-page: 223 year: 2019 ident: 10.1016/j.isci.2021.102177_bib22 article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys publication-title: Nature doi: 10.1038/s41586-019-1617-1 – volume: 114 start-page: 122401 year: 2019 ident: 10.1016/j.isci.2021.102177_bib39 article-title: Long-range magnetic ordering in rocksalt-type high-entropy oxides publication-title: Appl. Phys. Lett. doi: 10.1063/1.5091787 – volume: 8 start-page: 051111 year: 2020 ident: 10.1016/j.isci.2021.102177_bib83 article-title: Role of intermediate 4 f states in tuning the band structure of high entropy oxides publication-title: APL Mater. doi: 10.1063/5.0007944 – volume: 11 start-page: 2172 year: 2018 ident: 10.1016/j.isci.2021.102177_bib119 article-title: The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00050F – volume: 59 start-page: 264 year: 2020 ident: 10.1016/j.isci.2021.102177_bib125 article-title: High-entropy layered oxide cathodes for sodium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912171 – volume: 366 start-page: 573 year: 2019 ident: 10.1016/j.isci.2021.102177_bib24 article-title: Order emerging from disorder publication-title: Science doi: 10.1126/science.aaz1598 – volume: 9 start-page: 4980 year: 2018 ident: 10.1016/j.isci.2021.102177_bib85 article-title: High-entropy high-hardness metal carbides discovered by entropy descriptors publication-title: Nat. Commun. doi: 10.1038/s41467-018-07160-7 – volume: 167 start-page: 110 year: 2019 ident: 10.1016/j.isci.2021.102177_bib52 article-title: Synthesis of superfine high-entropy metal diboride powders publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.03.038 – volume: 59 start-page: 5844 year: 2020 ident: 10.1016/j.isci.2021.102177_bib56 article-title: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914666 – volume: 504 year: 2020 ident: 10.1016/j.isci.2021.102177_bib71 article-title: Electrochemical synthesis of multimetallic nanoparticles and their application in alkaline oxygen reduction catalysis publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144517 – volume: 9 start-page: 28908 year: 2019 ident: 10.1016/j.isci.2021.102177_bib15 article-title: Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 )O solid solutions to achieve superior lithium-storage properties publication-title: RSC Adv. doi: 10.1039/C9RA05508H – volume: 37 start-page: 747 year: 2017 ident: 10.1016/j.isci.2021.102177_bib82 article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.09.018 – volume: 103 start-page: 4738 year: 2020 ident: 10.1016/j.isci.2021.102177_bib114 article-title: Synthesis of high-entropy diboride nanopowders via molten salt-mediated magnesiothermic reduction publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.17184 – volume: 178 start-page: 513 year: 2020 ident: 10.1016/j.isci.2021.102177_bib70 article-title: Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.12.027 – volume: 704 start-page: 693 year: 2017 ident: 10.1016/j.isci.2021.102177_bib5 article-title: Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.02.070 – volume: 1 start-page: 83 year: 2019 ident: 10.1016/j.isci.2021.102177_bib13 article-title: Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00064 – volume: 40 start-page: 2504 year: 2020 ident: 10.1016/j.isci.2021.102177_bib51 article-title: Ultrafast synthesis of entropy-stabilized oxide at room temperature publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.01.018 – volume: 13 start-page: 2038 year: 2020 ident: 10.1016/j.isci.2021.102177_bib126 article-title: Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting publication-title: ChemSusChem doi: 10.1002/cssc.202000173 – volume: 11 start-page: 2016 year: 2020 ident: 10.1016/j.isci.2021.102177_bib29 article-title: Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-020-15934-1 – volume: 102 start-page: 296 year: 2019 ident: 10.1016/j.isci.2021.102177_bib50 article-title: Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.12.003 – volume: 273 start-page: 324 year: 2015 ident: 10.1016/j.isci.2021.102177_bib17 article-title: Multi-component nanoporous platinum–ruthenium–copper–osmium–iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2014.09.076 – volume: 100 start-page: 121 year: 2019 ident: 10.1016/j.isci.2021.102177_bib97 article-title: High entropy oxides as anode material for Li-ion battery applications: a practical approach publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2019.02.001 – volume: 117 start-page: 6316 year: 2020 ident: 10.1016/j.isci.2021.102177_bib111 article-title: High-throughput, combinatorial synthesis of multimetallic nanoclusters publication-title: Proc. Natl. Acad. Sci. U S A. doi: 10.1073/pnas.1903721117 – volume: 188 start-page: 26 year: 2020 ident: 10.1016/j.isci.2021.102177_bib28 article-title: A new eight-cation inverse high entropy spinel with large configurational entropy in both tetrahedral and octahedral sites: synthesis and cation distribution by X-ray absorption spectroscopy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.07.002 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.isci.2021.102177_bib62 article-title: A critical review of high entropy alloys and related concepts publication-title: ACTA Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 40 start-page: 1644 year: 2020 ident: 10.1016/j.isci.2021.102177_bib88 article-title: Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.11.030 – volume: 12 start-page: 2433 year: 2019 ident: 10.1016/j.isci.2021.102177_bib98 article-title: Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00368A – volume: 8 start-page: 11938 year: 2020 ident: 10.1016/j.isci.2021.102177_bib37 article-title: Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA02125C – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.isci.2021.102177_bib59 article-title: Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions publication-title: Sci. Rep. doi: 10.1038/srep34213 – volume: 9 start-page: 3400 year: 2018 ident: 10.1016/j.isci.2021.102177_bib84 article-title: High entropy oxides for reversible energy storage publication-title: Nat. Commun. doi: 10.1038/s41467-018-05774-5 – volume: 375–377 start-page: 213 year: 2004 ident: 10.1016/j.isci.2021.102177_bib10 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2003.10.257 – year: 2020 ident: 10.1016/j.isci.2021.102177_bib120 article-title: Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3589 year: 2020 ident: 10.1016/j.isci.2021.102177_bib27 article-title: Stabilization by configurational entropy of the Cu(II) active site during CO oxidation on Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 O publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00602 – volume: 5 start-page: 295 year: 2020 ident: 10.1016/j.isci.2021.102177_bib68 article-title: High-entropy ceramics publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0170-8 – volume: 13 start-page: 1915 year: 2020 ident: 10.1016/j.isci.2021.102177_bib20 article-title: Across the board: sheng Dai on catalyst design by entropic factors publication-title: ChemSusChem doi: 10.1002/cssc.202000448 – volume: 59 start-page: 11830 year: 2020 ident: 10.1016/j.isci.2021.102177_bib89 article-title: Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide publication-title: Powder. Angew. Chem. Int. Ed. doi: 10.1002/anie.202003530 – volume: 478 start-page: 868 year: 2009 ident: 10.1016/j.isci.2021.102177_bib91 article-title: Effect of platinum present in multi-element nanoparticles on methanol oxidation publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.12.055 – volume: 3 start-page: 834 year: 2019 ident: 10.1016/j.isci.2021.102177_bib2 article-title: High-entropy alloys as a discovery platform for electrocatalysis publication-title: Joule doi: 10.1016/j.joule.2018.12.015 |
| SSID | ssj0002002496 |
| Score | 2.577885 |
| SecondaryResourceType | review_article |
| Snippet | High-entropy materials (HEMs), including high-entropy alloys (HEAs), high-entropy oxides (HEOs), and other high-entropy compounds, have gained significant... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 102177 |
| SubjectTerms | Energy Materials Materials Science Physics Review |
| Title | High-entropy materials for energy-related applications |
| URI | https://dx.doi.org/10.1016/j.isci.2021.102177 https://www.ncbi.nlm.nih.gov/pubmed/33718829 https://www.proquest.com/docview/2501485659 https://pubmed.ncbi.nlm.nih.gov/PMC7921604 https://doaj.org/article/85d9e229f30b4b06b3ebea29512af4ef |
| Volume | 24 |
| WOSCitedRecordID | wos000631646000050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : directory of open access journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6a0EAvoa-0m7bBhd6KiSXLlnxsS0MPJfSQw96EnmSX4l32Uei_74zkXdYJpJdcrfc8PJ_Q6BPAJ4cgHEGbKGXrYiki-pyJ0pbBN95FI70wicT1p7y-VtNp9-vgqS_KCcv0wFlwl6rxXeC8i3Vlha1aW-OwhiMw4CaKEOnvi6jnYDM1T8drRIWXXpZrKCcITXO4MZOTu-jGK24OOSPqApzsKCol8v5RcLoPPu_mUB4EpavncDqgyeJLXsULeBL6l3CSsjrd-hW0lMVRUtPF8m-B2DSbW4FAtQjp0l-Z7rIEXxweZL-Gm6vvN99-lMNDCaVrlNyUUUUrTUC0hhtdFb0nEivhYmU9dzIq07WO1S0zTeWk8whBmBPCOnTuWHNfn8Fxv-jDWyiwC2s9ixi0GGqpUT46iRCpMqyqYyMmwHZy0m4gEae3LH7rXbbYXJNsNclWZ9lO4PO-zTJTaDxY-yuJf1-T6K_TBzQKPRiF_p9RTKDZKU8PSCIjBOxq9uDgH3ea1uhmdHZi-rDYrjWn81eF6LebwJus-f0U6xoDvOJYIkc2MVrDuKSf3SYqb9lx1lbi_DEW_Q6e0VIoQY517-F4s9qGD_DU_dnM1qsLOJJTdZG85B_CyRVJ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-entropy+materials+for+energy-related+applications&rft.jtitle=iScience&rft.au=Fu%2C+Maosen&rft.au=Ma%2C+Xiao&rft.au=Zhao%2C+Kangning&rft.au=Li%2C+Xiao&rft.date=2021-03-19&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1016%2Fj.isci.2021.102177&rft.externalDocID=S2589004221001450 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |