COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients

We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers in biology and medicine Ročník 145; s. 105467
Hlavní autoři: Shiri, Isaac, Salimi, Yazdan, Pakbin, Masoumeh, Hajianfar, Ghasem, Avval, Atlas Haddadi, Sanaat, Amirhossein, Mostafaei, Shayan, Akhavanallaf, Azadeh, Saberi, Abdollah, Mansouri, Zahra, Askari, Dariush, Ghasemian, Mohammadreza, Sharifipour, Ehsan, Sandoughdaran, Saleh, Sohrabi, Ahmad, Sadati, Elham, Livani, Somayeh, Iranpour, Pooya, Kolahi, Shahriar, Khateri, Maziar, Bijari, Salar, Atashzar, Mohammad Reza, Shayesteh, Sajad P., Khosravi, Bardia, Babaei, Mohammad Reza, Jenabi, Elnaz, Hasanian, Mohammad, Shahhamzeh, Alireza, Foroghi Ghomi, Seyaed Yaser, Mozafari, Abolfazl, Teimouri, Arash, Movaseghi, Fatemeh, Ahmari, Azin, Goharpey, Neda, Bozorgmehr, Rama, Shirzad-Aski, Hesamaddin, Mortazavi, Roozbeh, Karimi, Jalal, Mortazavi, Nazanin, Besharat, Sima, Afsharpad, Mandana, Abdollahi, Hamid, Geramifar, Parham, Radmard, Amir Reza, Arabi, Hossein, Rezaei-Kalantari, Kiara, Oveisi, Mehrdad, Rahmim, Arman, Zaidi, Habib
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.06.2022
Elsevier Limited
The Authors. Published by Elsevier Ltd
Témata:
ISSN:0010-4825, 1879-0534, 1879-0534
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.