COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients
We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and...
Saved in:
| Published in: | Computers in biology and medicine Vol. 145; p. 105467 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.06.2022
Elsevier Limited The Authors. Published by Elsevier Ltd |
| Subjects: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.
Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported.
In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance.
Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.
[Display omitted]
•CT images of 14′339 COVID-19 patients with known outcome from 19 centers were enrolled.•28 combinations of feature selection and classification approaches were implemented.•The models were evaluated using 10 different splitting and cross-validation strategies.•Lung CT radiomics features are promising for generalizable prognostic modeling. |
|---|---|
| AbstractList | Image 1 We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.BACKGROUNDWe aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported.METHODSWhole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported.In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81-0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance.RESULTSIn the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81-0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance.Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.CONCLUSIONLung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients. BackgroundWe aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.MethodsWhole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported.ResultsIn the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance.ConclusionLung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients. We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81-0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients. We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients. [Display omitted] •CT images of 14′339 COVID-19 patients with known outcome from 19 centers were enrolled.•28 combinations of feature selection and classification approaches were implemented.•The models were evaluated using 10 different splitting and cross-validation strategies.•Lung CT radiomics features are promising for generalizable prognostic modeling. AbstractBackgroundWe aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. MethodsWhole lung segmentations were performed automatically using a deep learning-based model to extract 105 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. ResultsIn the test dataset (4301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. ConclusionLung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients. |
| ArticleNumber | 105467 |
| Author | Mostafaei, Shayan Sharifipour, Ehsan Kolahi, Shahriar Saberi, Abdollah Radmard, Amir Reza Movaseghi, Fatemeh Besharat, Sima Jenabi, Elnaz Pakbin, Masoumeh Mansouri, Zahra Ahmari, Azin Sadati, Elham Shahhamzeh, Alireza Ghasemian, Mohammadreza Livani, Somayeh Bijari, Salar Bozorgmehr, Rama Salimi, Yazdan Shirzad-Aski, Hesamaddin Mortazavi, Nazanin Shayesteh, Sajad P. Khateri, Maziar Zaidi, Habib Shiri, Isaac Akhavanallaf, Azadeh Goharpey, Neda Afsharpad, Mandana Hajianfar, Ghasem Mortazavi, Roozbeh Geramifar, Parham Karimi, Jalal Teimouri, Arash Arabi, Hossein Khosravi, Bardia Sohrabi, Ahmad Rahmim, Arman Babaei, Mohammad Reza Hasanian, Mohammad Sanaat, Amirhossein Abdollahi, Hamid Atashzar, Mohammad Reza Askari, Dariush Foroghi Ghomi, Seyaed Yaser Iranpour, Pooya Avval, Atlas Haddadi Oveisi, Mehrdad Sandoughdaran, Saleh Rezaei-Kalantari, Kiara Mozafari, Abolfazl |
| Author_xml | – sequence: 1 givenname: Isaac surname: Shiri fullname: Shiri, Isaac organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland – sequence: 2 givenname: Yazdan surname: Salimi fullname: Salimi, Yazdan organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland – sequence: 3 givenname: Masoumeh surname: Pakbin fullname: Pakbin, Masoumeh organization: Imaging Department, Qom University of Medical Sciences, Qum, Iran – sequence: 4 givenname: Ghasem surname: Hajianfar fullname: Hajianfar, Ghasem organization: Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Science, Tehran, Iran – sequence: 5 givenname: Atlas Haddadi surname: Avval fullname: Avval, Atlas Haddadi organization: School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran – sequence: 6 givenname: Amirhossein surname: Sanaat fullname: Sanaat, Amirhossein organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland – sequence: 7 givenname: Shayan surname: Mostafaei fullname: Mostafaei, Shayan organization: Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden – sequence: 8 givenname: Azadeh surname: Akhavanallaf fullname: Akhavanallaf, Azadeh organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland – sequence: 9 givenname: Abdollah surname: Saberi fullname: Saberi, Abdollah organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland – sequence: 10 givenname: Zahra surname: Mansouri fullname: Mansouri, Zahra organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland – sequence: 11 givenname: Dariush surname: Askari fullname: Askari, Dariush organization: Department of Radiology Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 12 givenname: Mohammadreza surname: Ghasemian fullname: Ghasemian, Mohammadreza organization: Department of Radiology, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qum, Iran – sequence: 13 givenname: Ehsan surname: Sharifipour fullname: Sharifipour, Ehsan organization: Neuroscience Research Center, Qom University of Medical Sciences, Qum, Iran – sequence: 14 givenname: Saleh surname: Sandoughdaran fullname: Sandoughdaran, Saleh organization: Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 15 givenname: Ahmad surname: Sohrabi fullname: Sohrabi, Ahmad organization: Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran – sequence: 16 givenname: Elham surname: Sadati fullname: Sadati, Elham organization: Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran – sequence: 17 givenname: Somayeh surname: Livani fullname: Livani, Somayeh organization: Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran – sequence: 18 givenname: Pooya surname: Iranpour fullname: Iranpour, Pooya organization: Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran – sequence: 19 givenname: Shahriar surname: Kolahi fullname: Kolahi, Shahriar organization: Department of Radiology, School of Medicine, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran – sequence: 20 givenname: Maziar surname: Khateri fullname: Khateri, Maziar organization: Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Tehran, Iran – sequence: 21 givenname: Salar surname: Bijari fullname: Bijari, Salar organization: Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran – sequence: 22 givenname: Mohammad Reza surname: Atashzar fullname: Atashzar, Mohammad Reza organization: Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran – sequence: 23 givenname: Sajad P. surname: Shayesteh fullname: Shayesteh, Sajad P. organization: Department of Physiology, Pharmacology and Medical Physics, Alborz University of Medical Sciences, Karaj, Iran – sequence: 24 givenname: Bardia surname: Khosravi fullname: Khosravi, Bardia organization: Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran – sequence: 25 givenname: Mohammad Reza surname: Babaei fullname: Babaei, Mohammad Reza organization: Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran – sequence: 26 givenname: Elnaz surname: Jenabi fullname: Jenabi, Elnaz organization: Research Centre for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran – sequence: 27 givenname: Mohammad surname: Hasanian fullname: Hasanian, Mohammad organization: Department of Radiology, Arak University of Medical Sciences, Arak, Iran – sequence: 28 givenname: Alireza surname: Shahhamzeh fullname: Shahhamzeh, Alireza organization: Clinical Research Development Center, Qom University of Medical Sciences, Qum, Iran – sequence: 29 givenname: Seyaed Yaser surname: Foroghi Ghomi fullname: Foroghi Ghomi, Seyaed Yaser organization: Clinical Research Development Center, Shahid Beheshti Hospital, Qom University Of Medical Sciences, Qom, Iran – sequence: 30 givenname: Abolfazl surname: Mozafari fullname: Mozafari, Abolfazl organization: Department of Medical Sciences, Qom Branch, Islamic Azad University, Qum, Iran – sequence: 31 givenname: Arash surname: Teimouri fullname: Teimouri, Arash organization: Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran – sequence: 32 givenname: Fatemeh surname: Movaseghi fullname: Movaseghi, Fatemeh organization: Department of Medical Sciences, Qom Branch, Islamic Azad University, Qum, Iran – sequence: 33 givenname: Azin surname: Ahmari fullname: Ahmari, Azin organization: Ayatolah Khansary Hospital, Arak University of Medical Sciences, Arak, Iran – sequence: 34 givenname: Neda surname: Goharpey fullname: Goharpey, Neda organization: Department of Radiation Oncology, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 35 givenname: Rama surname: Bozorgmehr fullname: Bozorgmehr, Rama organization: Clinical Research Development Unit, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 36 givenname: Hesamaddin surname: Shirzad-Aski fullname: Shirzad-Aski, Hesamaddin organization: Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran – sequence: 37 givenname: Roozbeh surname: Mortazavi fullname: Mortazavi, Roozbeh organization: Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran – sequence: 38 givenname: Jalal surname: Karimi fullname: Karimi, Jalal organization: Department of Infectious Disease, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran – sequence: 39 givenname: Nazanin surname: Mortazavi fullname: Mortazavi, Nazanin organization: Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran – sequence: 40 givenname: Sima surname: Besharat fullname: Besharat, Sima organization: Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran – sequence: 41 givenname: Mandana surname: Afsharpad fullname: Afsharpad, Mandana organization: Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran – sequence: 42 givenname: Hamid surname: Abdollahi fullname: Abdollahi, Hamid organization: Department of Radiologic Technology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran – sequence: 43 givenname: Parham surname: Geramifar fullname: Geramifar, Parham organization: Research Centre for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran – sequence: 44 givenname: Amir Reza surname: Radmard fullname: Radmard, Amir Reza organization: Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran – sequence: 45 givenname: Hossein surname: Arabi fullname: Arabi, Hossein organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland – sequence: 46 givenname: Kiara surname: Rezaei-Kalantari fullname: Rezaei-Kalantari, Kiara organization: Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Science, Tehran, Iran – sequence: 47 givenname: Mehrdad surname: Oveisi fullname: Oveisi, Mehrdad organization: Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom – sequence: 48 givenname: Arman surname: Rahmim fullname: Rahmim, Arman organization: Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada – sequence: 49 givenname: Habib orcidid: 0000-0001-7559-5297 surname: Zaidi fullname: Zaidi, Habib email: habib.zaidi@hcuge.ch organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35378436$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:154655386$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNqVkstu1DAUhiNURKeFV0CW2LAgg6-5sECU4VapUhcUtpbjnMx4mthT2ymaB-F9cTTDlCIhlSyc6JzPf377_CfZkXUWsgwRPCeYFK_Xc-2GTWPcAO2cYkpTWfCifJTNSFXWORaMH2UzjAnOeUXFcXYSwhpjzDHDT7JjJlhZcVbMsp-Ly-_nH3JSo413S-tCNBoNroXe2CUaw7QurpBXbfpZanWg4ughIGVbNCi9MhZQD8rbiVT90nkTV0N4g86s6rfBBOQ6pNAw9tHkxib9OEbjUhO1KqoAcQIIf8VY8qCiARvD0-xxp_oAz_bv0-zbp49Xiy_5xeXn88XZRa5FVca8aaBjGMq2ZrpRoiSUU61pKRgrmOqapta6rZuSdDWIhgkKpVB116a6Sg-w0yzf6YYfsBkbufFmUH4rnTJyX7pOXyC54IzwxL_d8amTrl4nr17197bd71izkkt3K6u64JiIJPByL-DdzQghysEEDX2vLLgxSFrwkhJaswl98Re6dqNP9zZRBcN1WspEPf_T0cHK7wknoNoB2rsQPHQHhGA5hUmu5V2Y5BQmuQvT3WkPW7WJahpeOpvpHyLwficAaYa3BrwMOs1XQ2s86ChbZ_7DxUFEp2warfpr2EI4XAqRgUosv06hnzJPKcZU1CQJvPu3wMM8_AINvRqy |
| CitedBy_id | crossref_primary_10_1007_s11831_024_10081_y crossref_primary_10_1053_j_semnuclmed_2025_01_004 crossref_primary_10_3389_fmed_2023_1170331 crossref_primary_10_3390_sym15101834 crossref_primary_10_1007_s10278_023_00820_1 crossref_primary_10_1088_2057_1976_ad9157 crossref_primary_10_3390_biomedinformatics5020021 crossref_primary_10_1002_ima_23028 crossref_primary_10_1016_j_neucom_2025_131192 crossref_primary_10_1007_s13246_024_01402_3 crossref_primary_10_1007_s00330_023_10243_9 crossref_primary_10_3390_diagnostics12081853 crossref_primary_10_1186_s12911_025_02983_z crossref_primary_10_3389_fpubh_2022_978237 crossref_primary_10_3390_life14060681 crossref_primary_10_3390_ijerph19095099 crossref_primary_10_1016_j_arbres_2024_12_004 crossref_primary_10_1097_RLU_0000000000005400 crossref_primary_10_3389_fmed_2025_1606771 crossref_primary_10_1109_ACCESS_2023_3327808 crossref_primary_10_3390_electronics13061005 crossref_primary_10_1007_s12530_023_09554_5 crossref_primary_10_1002_mp_17076 crossref_primary_10_1016_j_clon_2023_08_003 crossref_primary_10_1016_j_ejrad_2022_110602 crossref_primary_10_3389_fmed_2023_1125530 crossref_primary_10_1002_mp_16964 crossref_primary_10_3390_bioengineering12040368 crossref_primary_10_47360_1995_4484_2025_24_36 crossref_primary_10_1186_s12890_023_02827_4 crossref_primary_10_3390_jcm12227164 crossref_primary_10_1109_ACCESS_2024_3383781 crossref_primary_10_1007_s00330_023_10487_5 crossref_primary_10_1007_s12194_024_00803_z crossref_primary_10_1038_s41598_022_18994_z crossref_primary_10_1016_j_compbiomed_2022_106165 crossref_primary_10_3390_diagnostics13162623 |
| Cites_doi | 10.1001/jama.2011.1992 10.1038/nrclinonc.2017.141 10.1148/radiol.2020204226 10.1038/s41551-020-00633-5 10.1038/s41591-020-0931-3 10.3389/fmed.2020.00485 10.1186/s12880-020-00521-z 10.1016/j.compbiomed.2021.104304 10.1016/j.acra.2020.04.016 10.1097/RLI.0000000000000672 10.1088/1361-6560/ac287d 10.1097/RTI.0000000000000544 10.1148/radiol.2020191145 10.1002/mp.14896 10.1016/j.compbiomed.2021.104665 10.1016/j.acra.2020.09.004 10.1148/radiol.2020201473 10.1016/j.jare.2020.08.002 10.1038/s42256-021-00307-0 10.1038/s41467-020-17971-2 10.1016/j.cell.2020.04.045 10.1038/s41467-020-18786-x 10.1007/s11307-020-01487-8 10.1016/j.ijantimicag.2020.106024 10.1016/j.clon.2021.11.014 10.7150/thno.46428 10.7150/ijms.50007 10.1007/s00330-020-07033-y 10.1186/1471-2105-12-77 10.1088/1361-6560/aba798 10.1158/0008-5472.CAN-17-0339 10.1007/s10278-021-00500-y 10.1007/s00330-020-07453-w 10.1016/j.media.2020.101860 10.1016/j.compbiomed.2021.105145 10.21037/atm-20-3026 10.1016/j.ijantimicag.2020.105924 10.1016/j.compbiomed.2022.105230 10.1016/j.compbiomed.2021.104752 10.1001/jama.2020.24865 10.1093/biostatistics/kxj037 10.1038/s41467-020-20657-4 10.2214/AJR.20.22976 10.1097/RCT.0000000000001094 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. 2022. The Authors 2022 The Authors 2022 |
| Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2022. The Authors – notice: 2022 The Authors 2022 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTPV AOWAS D8T ZZAVC |
| DOI | 10.1016/j.compbiomed.2022.105467 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 105467 |
| ExternalDocumentID | oai_swepub_ki_se_454314 PMC8964015 35378436 10_1016_j_compbiomed_2022_105467 S0010482522002591 1_s2_0_S0010482522002591 |
| Genre | Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG 6I. AAFTH AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR 9DU AAYXX AFFHD CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADTPV AOWAS D8T ZZAVC |
| ID | FETCH-LOGICAL-c587t-bbef30e7d93cba571242cc2753363afbb9ccd9b71f9e5b352e75a9fdb9caaaae3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001135403900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Tue Nov 25 03:37:42 EST 2025 Tue Nov 04 01:57:19 EST 2025 Sun Sep 28 09:35:17 EDT 2025 Sat Nov 29 14:22:22 EST 2025 Mon Jul 21 06:01:28 EDT 2025 Tue Nov 18 22:37:51 EST 2025 Sat Nov 29 07:28:40 EST 2025 Fri Feb 23 02:39:54 EST 2024 Tue Feb 25 20:10:54 EST 2025 Tue Oct 14 19:33:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | COVID-19 X-ray CT Prognosis Machine learning Radiomics |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c587t-bbef30e7d93cba571242cc2753363afbb9ccd9b71f9e5b352e75a9fdb9caaaae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7559-5297 |
| OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:154655386 |
| PMID | 35378436 |
| PQID | 2663096637 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_454314 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8964015 proquest_miscellaneous_2647212935 proquest_journals_2663096637 pubmed_primary_35378436 crossref_primary_10_1016_j_compbiomed_2022_105467 crossref_citationtrail_10_1016_j_compbiomed_2022_105467 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105467 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522002591 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105467 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Limited The Authors. Published by Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited – name: The Authors. Published by Elsevier Ltd |
| References | Cai, Liu, Xue, Luo, Wang, Shen, Fang, Sheng, Chen, Liang (bib16) 2020; 27 Gill (bib5) 2012; 307 Johnson, Li, Rabinovic (bib46) 2006; 8 Lai, Shih, Ko, Tang, Hsueh (bib2) 2020; 55 Woolf, Chapman, Lee (bib1) 2021; 325 Ning, Lei, Yang, Cao, Jiang, Yang, Zhang, Wang, Chen, Geng, Xiong, Zhou, Guo, Zeng, Shi, Wang, Xue, Wang (bib41) 2020; 4 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib48) 2011; 12 Qiu, Peng, Yin, Wang, Jiang, Li, Song, Zhang (bib59) 2021 Shiri, Sorouri, Geramifar, Nazari, Abdollahi, Salimi, Khosravi, Askari, Aghaghazvini, Hajianfar, Kasaeian, Abdollahi, Arabi, Rahmim, Radmard, Zaidi (bib63) 2021 Summers (bib37) 2021; 298 Homayounieh, Babaei, Karimi Mobin, Arru, Sharifian, Mohseni, Zhang, Digumarthy, Kalra (bib31) 2020; 44 Lessmann, Sánchez, Beenen, Boulogne, Brink, Calli, Charbonnier, Dofferhoff, van Everdingen, Gerke, Geurts, Gietema, Groeneveld, van Harten, Hendrix, Hendrix, Huisman, Išgum, Jacobs, Kluge, Kok, Krdzalic, Lassen-Schmidt, van Leeuwen, Meakin, Overkamp, van Rees Vellinga, van Rikxoort, Samperna, Schaefer-Prokop, Schalekamp, Scholten, Sital, Stöger, Teuwen, Vaidhya Venkadesh, de Vente, Vermaat, Xie, de Wilde, Prokop, van Ginneken (bib17) 2020 Tang, Zhao, Xie, Zhong, Shi, Liu, Shen (bib60) 2020 Lassau, Ammari, Chouzenoux, Gortais, Herent, Devilder, Soliman, Meyrignac, Talabard, Lamarque (bib64) 2021; 12 Li, Dong, Li, Gong, Li, Bai, Wang, Hu, Zha, Tian (bib32) 2020 Zhou, Qin, Hu, Lu, Pan (bib7) 2020; 17 Shayesteh, Nazari, Salahshour, Sandoughdaran, Hajianfar, Khateri, Yaghobi Joybari, Jozian, Fatehi Feyzabad, Arabi, Shiri, Zaidi (bib55) 2021; 48 Da-Ano, Visvikis, Hatt (bib56) 2020; 65 Bouchareb, Moradi Khaniabadi, Al Kindi, Al Dhuhli, Shiri, Zaidi, Rahmim (bib28) 2021; 136 Wang, Wang, Lee, Zheng, Zhang, Halabi, Liu, Deng, Song, Yeom (bib22) 2020 Shiri, Amini, Nazari, Hajianfar, Haddadi Avval, Abdollahi, Oveisi, Arabi, Rahmim, Zaidi (bib25) 2022; 142 Lai, Ko, Lee, Jean, Hsueh (bib3) 2020; 56 Amini, Nazari, Shiri, Hajianfar, Deevband, Abdollahi, Arabi, Rahmim, Zaidi (bib26) 2021; 66 Mongan, Moy, Kahn (bib39) 2020; 2 Prokop, van Everdingen, van Rees Vellinga, Quarles van Ufford, Stöger, Beenen, Geurts, Gietema, Krdzalic, Schaefer-Prokop, van Ginneken, Brink, Co-Rads (bib40) 2020; 296 Fang, He, Li, Dong, Yang, Li, Meng, Zhong, Li, Li (bib20) 2020; 63 Edalat-Javid, Shiri, Hajianfar, Abdollahi, Arabi, Oveisi, Javadian, Shamsaei Zafarghandi, Malek, Bitarafan-Rajabi, Oveisi, Zaidi (bib27) 2020 Cai, Du, Gao, Huang, Zhang, Li, Wang, Li, Lv, Hou, Zhang (bib33) 2020; 20 Zhao, Zhong, Xie, Yu, Liu (bib11) 2020; 214 Chassagnon, Vakalopoulou, Battistella, Christodoulidis, Hoang-Thi, Dangeard, Deutsch, Andre, Guillo, Halm (bib67) 2021; 67 Feng, Yu, Yao, Luo, Zhou, Mao, Li, Duan, Yan, Yang, Tan, Ma, Li, Yi, Mi, Zhao, Jiang, He, Li, Nie, Liu, Zhao, Luo, Liu, Rong, Wang (bib65) 2020; 11 Xu, Zhan, Zhou, Li, Xie, Zhang, Li, Yu, Zhou, Zhang (bib66) 2020 Mei, Lee, Diao, Huang, Lin, Liu, Xie, Ma, Robson, Chung, Bernheim, Mani, Calcagno, Li, Li, Shan, Lv, Zhao, Xia, Long, Steinberger, Jacobi, Deyer, Luksza, Liu, Little, Fayad, Yang (bib15) 2020; 26 Rahmim, Toosi, Salmanpour, Dubljevic, Janzen, Shiri, Ramezani, Yuan, Ho, Zaidi (bib24) 2022 Shiri, Salimi, Saberi, Pakbin, Hajianfar, Avval, Sanaat, Akhavanallaf, Mostafaei, Mansouri (bib23) 2021 Shiri, Maleki, Hajianfar, Abdollahi, Ashrafinia, Hatt, Zaidi, Oveisi, Rahmim (bib51) 2020; 22 Zwanenburg, Vallières, Abdalah, Aerts, Andrearczyk, Apte, Ashrafinia, Bakas, Beukinga, Boellaard (bib44) 2020; 295 Wu, Wang, Li, Wu, Qian, Hu, Li, Zhou, Ma, Li, Wang, Qiu, Zha, Tian (bib61) 2020; 10 Du, Feng, Lv, Ashrafinia, Yuan, Wang, Yang, Feng, Chen, Rahmim (bib49) 2019 Avard, Shiri, Hajianfar, Abdollahi, Kalantari, Houshmand, Kasani, Bitarafan-Rajabi, Deevband, Oveisi, Zaidi (bib52) 2022; 141 Harmon, Sanford, Xu, Turkbey, Roth, Xu, Yang, Myronenko, Anderson, Amalou, Blain, Kassin, Long, Varble, Walker, Bagci, Ierardi, Stellato, Plensich, Franceschelli, Girlando, Irmici, Labella, Hammoud, Malayeri, Jones, Summers, Choyke, Xu, Flores, Tamura, Obinata, Mori, Patella, Cariati, Carrafiello, An, Wood, Turkbey (bib14) 2020; 11 Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, Müller (bib47) 2011; 12 Khodabakhshi, Mostafaei, Arabi, Oveisi, Shiri, Zaidi (bib54) 2021; 136 Yang, Li, Liu, Zhen, Zhang, Xiong, Luo, Gao, Zeng (bib9) 2020; 2 Francone, Iafrate, Masci, Coco, Cilia, Manganaro, Panebianco, Andreoli, Colaiacomo, Zingaropoli, Ciardi, Mastroianni, Pugliese, Alessandri, Turriziani, Ricci, Catalano (bib10) 2020; 30 Shiri, Arabi, Salimi, Sanaat, Akhavanallaf, Hajianfar, Askari, Moradi, Mansouri, Pakbin, Sandoughdaran, Abdollahi, Radmard, Rezaei-Kalantari, Ghelich Oghli, Zaidi, Coli-Net (bib43) 2021 Abdollahi, Shiri, Heydari (bib29) 2019; 48 Bae, Kapse, Singh, Phatak, Green, Madan, Prasanna (bib35) 2020 Afzal (bib4) 2020; 26 Meng, Dong, Li, Niu, Bai, Wang, Qiu, Zha, Tian (bib18) 2020 van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (bib45) 2017; 77 Ning, Lei, Yang, Cao, Jiang, Yang, Zhang, Wang, Chen, Geng, Xiong, Zhou, Guo, Zeng, Shi, Wang, Xue, Wang (bib19) 2020 Radpour, Bahrami-Motlagh, Taaghi, Sedaghat, Karimi, Hekmatnia, Haghighatkhah, Sanei-Taheri, Arab-Ahmadi, Azhideh (bib42) 2020; 27 Homayounieh, Ebrahimian, Babaei, Mobin, Zhang, Bizzo, Mohseni, Digumarthy, Kalra (bib62) 2020; 2 Fu, Li, Cheng, Pang, Shu (bib30) 2020 Yue, Yu, Liu, Huang, Jiang, Shao, Zhang, Ma, Wang, Xie, Zhang, Li, Kang, Meng, Huang, Xu, Lei, Huang, Yang, Ji, Pan, Zou, Ju, Qi (bib34) 2020; 8 Li, Wu, Wu, Guo, Chen, Fang, Li (bib12) 2020; 55 Chao, Fang, Zhang, Homayounieh, Arru, Digumarthy, Babaei, Mobin, Mohseni, Saba, Carriero, Falaschi, Pasche, Wang, Kalra, Yan (bib58) 2020; 67 Tizhoosh, Fratesi (bib36) 2021; 31 Pontone, Scafuri, Mancini, Agalbato, Guglielmo, Baggiano, Muscogiuri, Fusini, Andreini, Mushtaq (bib8) 2020 Yan, Han, Peng, Fan, Fang, Long, Xie, Zhu, Chen, Lin, Zhu (bib6) 2020; 7 Homayounieh, Ebrahimian, Babaei, Karimi Mobin, Zhang, Bizzo, Mohseni, Digumarthy, Kalra (bib21) 2020; 2 Amini, Hajianfar, Hadadi Avval, Nazari, Deevband, Oveisi, Shiri, Zaidi (bib50) 2022; 34 Lambin, Leijenaar, Deist, Peerlings, de Jong, van Timmeren, Sanduleanu, Larue, Even, Jochems, van Wijk, Woodruff, van Soest, Lustberg, Roelofs, van Elmpt, Dekker, Mottaghy, Wildberger, Walsh (bib38) 2017; 14 Zhang, Liu, Shen, Li, Sang, Wu, Zha, Liang, Wang, Wang, Ye, Gao, Zhou, Li, Wang, Yang, Cai, Xu, Yang, Cai, Xu, Wu, Zhang, Jiang, Zheng, Zhang, Wang, Lu, Li, Yin, Wang, Li, Zhang, Liang, Wu, Deng, Wei, Zhou, Chen, Lau, Fok, He, Lin, Li, Wang (bib57) 2020; 181 Roberts, Driggs, Thorpe, Gilbey, Yeung, Ursprung, Aviles-Rivero, Etmann, McCague, Beer, Weir-McCall, Teng, Gkrania-Klotsas, Ruggiero, Korhonen, Jefferson, Ako, Langs, Gozaliasl, Yang, Prosch, Preller, Stanczuk, Tang, Hofmanninger, Babar, Sánchez, Thillai, Gonzalez, Teare, Zhu, Patel, Cafolla, Azadbakht, Jacob, Lowe, Zhang, Bradley, Wassin, Holzer, Ji, Ortet, Ai, Walton, Lio, Stranks, Shadbahr, Lin, Zha, Niu, Rudd, Sala, Schönlieb, Aix (bib13) 2021; 3 Khodabakhshi, Amini, Mostafaei, Haddadi Avval, Nazari, Oveisi, Shiri, Zaidi (bib53) 2021; 34 Radpour (10.1016/j.compbiomed.2022.105467_bib42) 2020; 27 Lai (10.1016/j.compbiomed.2022.105467_bib3) 2020; 56 Mongan (10.1016/j.compbiomed.2022.105467_bib39) 2020; 2 Amini (10.1016/j.compbiomed.2022.105467_bib50) 2022; 34 Roberts (10.1016/j.compbiomed.2022.105467_bib13) 2021; 3 Homayounieh (10.1016/j.compbiomed.2022.105467_bib31) 2020; 44 Woolf (10.1016/j.compbiomed.2022.105467_bib1) 2021; 325 van Griethuysen (10.1016/j.compbiomed.2022.105467_bib45) 2017; 77 Bae (10.1016/j.compbiomed.2022.105467_bib35) 2020 Wu (10.1016/j.compbiomed.2022.105467_bib61) 2020; 10 Shiri (10.1016/j.compbiomed.2022.105467_bib23) 2021 Da-Ano (10.1016/j.compbiomed.2022.105467_bib56) 2020; 65 Avard (10.1016/j.compbiomed.2022.105467_bib52) 2022; 141 Zwanenburg (10.1016/j.compbiomed.2022.105467_bib44) 2020; 295 Khodabakhshi (10.1016/j.compbiomed.2022.105467_bib54) 2021; 136 Shiri (10.1016/j.compbiomed.2022.105467_bib51) 2020; 22 Homayounieh (10.1016/j.compbiomed.2022.105467_bib21) 2020; 2 Shiri (10.1016/j.compbiomed.2022.105467_bib43) 2021 Tizhoosh (10.1016/j.compbiomed.2022.105467_bib36) 2021; 31 Shiri (10.1016/j.compbiomed.2022.105467_bib63) 2021 Johnson (10.1016/j.compbiomed.2022.105467_bib46) 2006; 8 Ning (10.1016/j.compbiomed.2022.105467_bib19) 2020 Zhang (10.1016/j.compbiomed.2022.105467_bib57) 2020; 181 Harmon (10.1016/j.compbiomed.2022.105467_bib14) 2020; 11 Lai (10.1016/j.compbiomed.2022.105467_bib2) 2020; 55 Cai (10.1016/j.compbiomed.2022.105467_bib16) 2020; 27 Cai (10.1016/j.compbiomed.2022.105467_bib33) 2020; 20 Mei (10.1016/j.compbiomed.2022.105467_bib15) 2020; 26 Du (10.1016/j.compbiomed.2022.105467_bib49) 2019 Zhou (10.1016/j.compbiomed.2022.105467_bib7) 2020; 17 Yang (10.1016/j.compbiomed.2022.105467_bib9) 2020; 2 Amini (10.1016/j.compbiomed.2022.105467_bib26) 2021; 66 Afzal (10.1016/j.compbiomed.2022.105467_bib4) 2020; 26 Li (10.1016/j.compbiomed.2022.105467_bib12) 2020; 55 Robin (10.1016/j.compbiomed.2022.105467_bib47) 2011; 12 Shayesteh (10.1016/j.compbiomed.2022.105467_bib55) 2021; 48 Pontone (10.1016/j.compbiomed.2022.105467_bib8) 2020 Meng (10.1016/j.compbiomed.2022.105467_bib18) 2020 Pedregosa (10.1016/j.compbiomed.2022.105467_bib48) 2011; 12 Bouchareb (10.1016/j.compbiomed.2022.105467_bib28) 2021; 136 Francone (10.1016/j.compbiomed.2022.105467_bib10) 2020; 30 Lambin (10.1016/j.compbiomed.2022.105467_bib38) 2017; 14 Homayounieh (10.1016/j.compbiomed.2022.105467_bib62) 2020; 2 Feng (10.1016/j.compbiomed.2022.105467_bib65) 2020; 11 Xu (10.1016/j.compbiomed.2022.105467_bib66) 2020 Ning (10.1016/j.compbiomed.2022.105467_bib41) 2020; 4 Rahmim (10.1016/j.compbiomed.2022.105467_bib24) 2022 Tang (10.1016/j.compbiomed.2022.105467_bib60) 2020 Prokop (10.1016/j.compbiomed.2022.105467_bib40) 2020; 296 Chao (10.1016/j.compbiomed.2022.105467_bib58) 2020; 67 Shiri (10.1016/j.compbiomed.2022.105467_bib25) 2022; 142 Gill (10.1016/j.compbiomed.2022.105467_bib5) 2012; 307 Chassagnon (10.1016/j.compbiomed.2022.105467_bib67) 2021; 67 Yan (10.1016/j.compbiomed.2022.105467_bib6) 2020; 7 Edalat-Javid (10.1016/j.compbiomed.2022.105467_bib27) 2020 Summers (10.1016/j.compbiomed.2022.105467_bib37) 2021; 298 Abdollahi (10.1016/j.compbiomed.2022.105467_bib29) 2019; 48 Qiu (10.1016/j.compbiomed.2022.105467_bib59) 2021 Yue (10.1016/j.compbiomed.2022.105467_bib34) 2020; 8 Khodabakhshi (10.1016/j.compbiomed.2022.105467_bib53) 2021; 34 Lassau (10.1016/j.compbiomed.2022.105467_bib64) 2021; 12 Fang (10.1016/j.compbiomed.2022.105467_bib20) 2020; 63 Wang (10.1016/j.compbiomed.2022.105467_bib22) 2020 Zhao (10.1016/j.compbiomed.2022.105467_bib11) 2020; 214 Li (10.1016/j.compbiomed.2022.105467_bib32) 2020 Lessmann (10.1016/j.compbiomed.2022.105467_bib17) 2020 Fu (10.1016/j.compbiomed.2022.105467_bib30) 2020 |
| References_xml | – volume: 8 start-page: 118 year: 2006 end-page: 127 ident: bib46 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics – volume: 48 start-page: 3691 year: 2021 end-page: 3701 ident: bib55 article-title: Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer publication-title: Med. Phys. – volume: 55 start-page: 327 year: 2020 end-page: 331 ident: bib12 article-title: The clinical and chest CT features associated with severe and critical COVID-19 pneumonia publication-title: Invest. Radiol. – volume: 20 start-page: 118 year: 2020 ident: bib33 article-title: A model based on CT radiomic features for predicting RT-PCR becoming negative in coronavirus disease 2019 (COVID-19) patients publication-title: BMC Med. Imag. – volume: 307 start-page: 199 year: 2012 end-page: 200 ident: bib5 article-title: The central role of prognosis in clinical decision making publication-title: JAMA – volume: 63 start-page: 1 year: 2020 end-page: 8 ident: bib20 article-title: CT radiomics can help screen the coronavirus disease 2019 (COVID-19): a preliminary study publication-title: Sci. China Life Sci. – volume: 2 year: 2020 ident: bib9 article-title: Chest CT severity score: an imaging tool for assessing severe COVID-19 publication-title: Radiology: Cardioth. Imag. – volume: 298 start-page: E162 year: 2021 end-page: e164 ident: bib37 article-title: Artificial intelligence of COVID-19 imaging: a hammer in search of a nail publication-title: Radiology – volume: 296 start-page: E97 year: 2020 end-page: e104 ident: bib40 article-title: A categorical CT assessment scheme for patients suspected of having COVID-19-definition and evaluation publication-title: Radiology – year: 2020 ident: bib8 article-title: Role of Computed Tomography in COVID-19 – volume: 214 start-page: 1072 year: 2020 end-page: 1077 ident: bib11 article-title: Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study publication-title: AJR Am. J. Roentgenol. – year: 2021 ident: bib43 article-title: Deep learning-assisted fully automated COVID-19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images publication-title: Int. J. Imag. Syst. Technol. – start-page: 1 year: 2020 end-page: 9 ident: bib22 article-title: Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures publication-title: Eur. J. Nucl. Med. Mol. Imag. – volume: 44 start-page: 640 year: 2020 end-page: 646 ident: bib31 article-title: Computed tomography radiomics can predict disease severity and outcome in coronavirus disease 2019 pneumonia publication-title: J. Comput. Assist. Tomogr. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib48 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – year: 2020 ident: bib18 article-title: A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-Center Study – volume: 2 year: 2020 ident: bib21 article-title: CT radiomics, radiologists and clinical information in predicting outcome of patients with COVID-19 pneumonia publication-title: Radiology: Cardioth. Imag. – volume: 65 start-page: 24tr02 year: 2020 ident: bib56 article-title: Harmonization strategies for multicenter radiomics investigations publication-title: Phys. Med. Biol. – volume: 34 start-page: 1086 year: 2021 end-page: 1098 ident: bib53 article-title: Overall survival prediction in renal cell carcinoma patients using computed tomography radiomic and clinical information publication-title: J. Digit. Imag. – volume: 55 year: 2020 ident: bib2 article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges publication-title: Int. J. Antimicrob. Agents – volume: 27 start-page: 901 year: 2020 ident: bib42 article-title: COVID-19 evaluation by low-dose high resolution CT scans protocol publication-title: Acad. Radiol. – volume: 26 start-page: 1224 year: 2020 end-page: 1228 ident: bib15 article-title: Artificial intelligence-enabled rapid diagnosis of patients with COVID-19 publication-title: Nat. Med. – volume: 12 start-page: 1 year: 2011 end-page: 8 ident: bib47 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinf. – volume: 142 start-page: 105230 year: 2022 ident: bib25 article-title: Impact of feature harmonization on radiogenomics analysis: prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images publication-title: Comput. Biol. Med. – volume: 56 year: 2020 ident: bib3 article-title: Extra-respiratory manifestations of COVID-19 publication-title: Int. J. Antimicrob. Agents – volume: 17 start-page: 2257 year: 2020 end-page: 2263 ident: bib7 article-title: Prognosis models for severe and critical COVID-19 based on the Charlson and Elixhauser comorbidity indices publication-title: Int. J. Med. Sci. – volume: 4 start-page: 1197 year: 2020 end-page: 1207 ident: bib41 article-title: Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning publication-title: Nat. Biomed. Eng. – volume: 295 start-page: 328 year: 2020 end-page: 338 ident: bib44 article-title: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping publication-title: Radiology – start-page: 1 year: 2021 end-page: 12 ident: bib59 article-title: A radiomics signature to quantitatively analyze COVID-19-infected pulmonary lesions publication-title: Interdiscipl. Sci. Comput. Life Sci. – volume: 14 start-page: 749 year: 2017 end-page: 762 ident: bib38 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat. Rev. Clin. Oncol. – volume: 136 start-page: 104752 year: 2021 ident: bib54 article-title: Non-small cell lung carcinoma histopathological subtype phenotyping using high-dimensional multinomial multiclass CT radiomics signature publication-title: Comput. Biol. Med. – year: 2020 ident: bib66 article-title: CT-based Rapid Triage of COVID-19 Patients: Risk Prediction and Progression Estimation of ICU Admission, Mechanical Ventilation, and Death of Hospitalized Patients, medRxiv : the Preprint Server for Health Sciences – volume: 8 start-page: 859 year: 2020 ident: bib34 article-title: Machine learning-based CT radiomics method for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: a multicenter study publication-title: Ann. Transl. Med. – year: 2020 ident: bib19 article-title: Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning publication-title: Nat. Biomed. Eng. – volume: 48 start-page: 184 year: 2019 end-page: 186 ident: bib29 article-title: Medical imaging technologists in radiomics era: an alice in wonderland problem publication-title: Iran. J. Public Health – volume: 2 year: 2020 ident: bib39 article-title: Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers publication-title: Radiology: Artif. Intell. – volume: 26 start-page: 149 year: 2020 end-page: 159 ident: bib4 article-title: Molecular diagnostic technologies for COVID-19: limitations and challenges publication-title: J. Adv. Res. – year: 2020 ident: bib27 article-title: Cardiac SPECT Radiomic Features Repeatability and Reproducibility: A Multi-Scanner Phantom Study – volume: 325 start-page: 123 year: 2021 end-page: 124 ident: bib1 article-title: COVID-19 as the leading cause of death in the United States publication-title: JAMA – volume: 27 start-page: 1665 year: 2020 end-page: 1678 ident: bib16 article-title: CT quantification and machine-learning models for assessment of disease severity and prognosis of COVID-19 patients publication-title: Acad. Radiol. – volume: 22 start-page: 1132 year: 2020 end-page: 1148 ident: bib51 article-title: Next-generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using multimodal imaging and machine learning algorithms publication-title: Mol. Imag. Biol. – volume: 66 year: 2021 ident: bib26 article-title: Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma publication-title: Phys. Med. Biol. – volume: 2 year: 2020 ident: bib62 article-title: CT radiomics, radiologists, and clinical information in predicting outcome of patients with COVID-19 pneumonia publication-title: Radiology: Cardioth. Imag. – volume: 67 year: 2021 ident: bib67 article-title: AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia publication-title: Med. Image Anal. – volume: 136 start-page: 104665 year: 2021 ident: bib28 article-title: Artificial intelligence-driven assessment of radiological images for COVID-19 publication-title: Comput. Biol. Med. – volume: 10 start-page: 7231 year: 2020 end-page: 7244 ident: bib61 article-title: Radiomics Analysis of Computed Tomography helps predict poor prognostic outcome in COVID-19 publication-title: Theranostics – volume: 34 start-page: 114 year: 2022 end-page: 127 ident: bib50 article-title: Overall survival prognostic modelling of non-small cell lung cancer patients using positron emission tomography/computed tomography harmonised radiomics features: the quest for the optimal machine learning algorithm publication-title: Clin. Oncol. – volume: 30 start-page: 6808 year: 2020 end-page: 6817 ident: bib10 article-title: Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis publication-title: Eur. Radiol. – volume: 31 start-page: 3553 year: 2021 end-page: 3554 ident: bib36 article-title: COVID-19, AI enthusiasts, and toy datasets: radiology without radiologists publication-title: Eur. Radiol. – volume: 11 start-page: 4080 year: 2020 ident: bib14 article-title: Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets publication-title: Nat. Commun. – start-page: 1 year: 2019 end-page: 9 ident: bib49 article-title: Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation: application to nasopharyngeal carcinoma post-therapy PET/CT images publication-title: Mol. Imag. Biol. – year: 2022 ident: bib24 article-title: Tensor Radiomics: Paradigm for Systematic Incorporation of Multi-Flavoured Radiomics Features – year: 2020 ident: bib32 article-title: Classification of Severe and Critical COVID-19 Using Deep Learning and Radiomics – year: 2020 ident: bib30 article-title: A novel machine learning-derived radiomic signature of the whole lung differentiates stable from progressive COVID-19 infection: a retrospective cohort study publication-title: J. Thorac. Imag. – volume: 11 start-page: 4968 year: 2020 ident: bib65 article-title: Early prediction of disease progression in COVID-19 pneumonia patients with chest CT and clinical characteristics publication-title: Nat. Commun. – year: 2020 ident: bib60 article-title: Severity assessment of COVID-19 using CT image features and laboratory indices publication-title: Phys. Med. Biol. – volume: 7 year: 2020 ident: bib6 article-title: Clinical characteristics and prognosis of 218 patients with COVID-19: a retrospective study based on clinical classification publication-title: Front. Med. – year: 2020 ident: bib35 article-title: Predicting Mechanical Ventilation Requirement and Mortality in COVID-19 Using Radiomics and Deep Learning on Chest Radiographs: A Multi-Institutional Study – year: 2020 ident: bib17 article-title: Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence, Radiology – year: 2021 ident: bib63 article-title: Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients publication-title: Comput. Biol. Med. – volume: 181 start-page: 1423 year: 2020 end-page: 1433 ident: bib57 article-title: Clinically applicable AI System for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography publication-title: Cell – volume: 3 start-page: 199 year: 2021 end-page: 217 ident: bib13 article-title: Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans publication-title: Nat. Mach. Intell. – volume: 67 year: 2020 ident: bib58 article-title: Integrative analysis for COVID-19 patient outcome prediction publication-title: Med. Image Anal. – volume: 77 start-page: e104 year: 2017 end-page: e107 ident: bib45 article-title: Computational radiomics System to decode the radiographic phenotype publication-title: Cancer Res. – year: 2021 ident: bib23 article-title: Diagnosis of COVID-19 Using CT Image Radiomics Features: A Comprehensive Machine Learning Study Involving 26,307 Patients – volume: 141 start-page: 105145 year: 2022 ident: bib52 article-title: Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection publication-title: Comput. Biol. Med. – volume: 12 start-page: 1 year: 2021 end-page: 11 ident: bib64 article-title: Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients publication-title: Nat. Commun. – volume: 307 start-page: 199 year: 2012 ident: 10.1016/j.compbiomed.2022.105467_bib5 article-title: The central role of prognosis in clinical decision making publication-title: JAMA doi: 10.1001/jama.2011.1992 – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib32 – volume: 14 start-page: 749 year: 2017 ident: 10.1016/j.compbiomed.2022.105467_bib38 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.141 – volume: 298 start-page: E162 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib37 article-title: Artificial intelligence of COVID-19 imaging: a hammer in search of a nail publication-title: Radiology doi: 10.1148/radiol.2020204226 – volume: 4 start-page: 1197 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib41 article-title: Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00633-5 – volume: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib62 article-title: CT radiomics, radiologists, and clinical information in predicting outcome of patients with COVID-19 pneumonia publication-title: Radiology: Cardioth. Imag. – volume: 26 start-page: 1224 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib15 article-title: Artificial intelligence-enabled rapid diagnosis of patients with COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0931-3 – volume: 7 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib6 article-title: Clinical characteristics and prognosis of 218 patients with COVID-19: a retrospective study based on clinical classification publication-title: Front. Med. doi: 10.3389/fmed.2020.00485 – volume: 20 start-page: 118 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib33 article-title: A model based on CT radiomic features for predicting RT-PCR becoming negative in coronavirus disease 2019 (COVID-19) patients publication-title: BMC Med. Imag. doi: 10.1186/s12880-020-00521-z – year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib63 article-title: Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104304 – volume: 27 start-page: 901 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib42 article-title: COVID-19 evaluation by low-dose high resolution CT scans protocol publication-title: Acad. Radiol. doi: 10.1016/j.acra.2020.04.016 – volume: 55 start-page: 327 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib12 article-title: The clinical and chest CT features associated with severe and critical COVID-19 pneumonia publication-title: Invest. Radiol. doi: 10.1097/RLI.0000000000000672 – volume: 66 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib26 article-title: Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ac287d – volume: 48 start-page: 184 year: 2019 ident: 10.1016/j.compbiomed.2022.105467_bib29 article-title: Medical imaging technologists in radiomics era: an alice in wonderland problem publication-title: Iran. J. Public Health – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib18 – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib30 article-title: A novel machine learning-derived radiomic signature of the whole lung differentiates stable from progressive COVID-19 infection: a retrospective cohort study publication-title: J. Thorac. Imag. doi: 10.1097/RTI.0000000000000544 – volume: 295 start-page: 328 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib44 article-title: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping publication-title: Radiology doi: 10.1148/radiol.2020191145 – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib17 – volume: 48 start-page: 3691 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib55 article-title: Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer publication-title: Med. Phys. doi: 10.1002/mp.14896 – volume: 136 start-page: 104665 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib28 article-title: Artificial intelligence-driven assessment of radiological images for COVID-19 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104665 – year: 2022 ident: 10.1016/j.compbiomed.2022.105467_bib24 – volume: 27 start-page: 1665 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib16 article-title: CT quantification and machine-learning models for assessment of disease severity and prognosis of COVID-19 patients publication-title: Acad. Radiol. doi: 10.1016/j.acra.2020.09.004 – volume: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib21 article-title: CT radiomics, radiologists and clinical information in predicting outcome of patients with COVID-19 pneumonia publication-title: Radiology: Cardioth. Imag. – year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib23 – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib60 article-title: Severity assessment of COVID-19 using CT image features and laboratory indices publication-title: Phys. Med. Biol. – volume: 296 start-page: E97 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib40 article-title: A categorical CT assessment scheme for patients suspected of having COVID-19-definition and evaluation publication-title: Radiology doi: 10.1148/radiol.2020201473 – volume: 26 start-page: 149 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib4 article-title: Molecular diagnostic technologies for COVID-19: limitations and challenges publication-title: J. Adv. Res. doi: 10.1016/j.jare.2020.08.002 – volume: 3 start-page: 199 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib13 article-title: Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00307-0 – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib8 – volume: 11 start-page: 4080 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib14 article-title: Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets publication-title: Nat. Commun. doi: 10.1038/s41467-020-17971-2 – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib27 – volume: 63 start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib20 article-title: CT radiomics can help screen the coronavirus disease 2019 (COVID-19): a preliminary study publication-title: Sci. China Life Sci. – volume: 181 start-page: 1423 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib57 article-title: Clinically applicable AI System for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography publication-title: Cell doi: 10.1016/j.cell.2020.04.045 – volume: 11 start-page: 4968 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib65 article-title: Early prediction of disease progression in COVID-19 pneumonia patients with chest CT and clinical characteristics publication-title: Nat. Commun. doi: 10.1038/s41467-020-18786-x – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib19 article-title: Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00633-5 – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib35 – volume: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib39 article-title: Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers publication-title: Radiology: Artif. Intell. – year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib66 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.compbiomed.2022.105467_bib48 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 1132 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib51 article-title: Next-generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using multimodal imaging and machine learning algorithms publication-title: Mol. Imag. Biol. doi: 10.1007/s11307-020-01487-8 – volume: 56 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib3 article-title: Extra-respiratory manifestations of COVID-19 publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2020.106024 – volume: 34 start-page: 114 year: 2022 ident: 10.1016/j.compbiomed.2022.105467_bib50 article-title: Overall survival prognostic modelling of non-small cell lung cancer patients using positron emission tomography/computed tomography harmonised radiomics features: the quest for the optimal machine learning algorithm publication-title: Clin. Oncol. doi: 10.1016/j.clon.2021.11.014 – volume: 10 start-page: 7231 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib61 article-title: Radiomics Analysis of Computed Tomography helps predict poor prognostic outcome in COVID-19 publication-title: Theranostics doi: 10.7150/thno.46428 – volume: 17 start-page: 2257 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib7 article-title: Prognosis models for severe and critical COVID-19 based on the Charlson and Elixhauser comorbidity indices publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.50007 – volume: 30 start-page: 6808 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib10 article-title: Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07033-y – volume: 12 start-page: 1 year: 2011 ident: 10.1016/j.compbiomed.2022.105467_bib47 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinf. doi: 10.1186/1471-2105-12-77 – volume: 65 start-page: 24tr02 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib56 article-title: Harmonization strategies for multicenter radiomics investigations publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aba798 – volume: 77 start-page: e104 year: 2017 ident: 10.1016/j.compbiomed.2022.105467_bib45 article-title: Computational radiomics System to decode the radiographic phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – volume: 34 start-page: 1086 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib53 article-title: Overall survival prediction in renal cell carcinoma patients using computed tomography radiomic and clinical information publication-title: J. Digit. Imag. doi: 10.1007/s10278-021-00500-y – volume: 31 start-page: 3553 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib36 article-title: COVID-19, AI enthusiasts, and toy datasets: radiology without radiologists publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07453-w – volume: 67 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib58 article-title: Integrative analysis for COVID-19 patient outcome prediction publication-title: Med. Image Anal. – volume: 67 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib67 article-title: AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101860 – volume: 141 start-page: 105145 year: 2022 ident: 10.1016/j.compbiomed.2022.105467_bib52 article-title: Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105145 – volume: 8 start-page: 859 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib34 article-title: Machine learning-based CT radiomics method for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: a multicenter study publication-title: Ann. Transl. Med. doi: 10.21037/atm-20-3026 – volume: 55 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib2 article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2020.105924 – start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib59 article-title: A radiomics signature to quantitatively analyze COVID-19-infected pulmonary lesions publication-title: Interdiscipl. Sci. Comput. Life Sci. – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib22 article-title: Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures publication-title: Eur. J. Nucl. Med. Mol. Imag. – volume: 142 start-page: 105230 year: 2022 ident: 10.1016/j.compbiomed.2022.105467_bib25 article-title: Impact of feature harmonization on radiogenomics analysis: prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105230 – volume: 136 start-page: 104752 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib54 article-title: Non-small cell lung carcinoma histopathological subtype phenotyping using high-dimensional multinomial multiclass CT radiomics signature publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104752 – volume: 325 start-page: 123 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib1 article-title: COVID-19 as the leading cause of death in the United States publication-title: JAMA doi: 10.1001/jama.2020.24865 – volume: 8 start-page: 118 year: 2006 ident: 10.1016/j.compbiomed.2022.105467_bib46 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib43 article-title: Deep learning-assisted fully automated COVID-19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images publication-title: Int. J. Imag. Syst. Technol. – start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2022.105467_bib49 article-title: Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation: application to nasopharyngeal carcinoma post-therapy PET/CT images publication-title: Mol. Imag. Biol. – volume: 12 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105467_bib64 article-title: Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients publication-title: Nat. Commun. doi: 10.1038/s41467-020-20657-4 – volume: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib9 article-title: Chest CT severity score: an imaging tool for assessing severe COVID-19 publication-title: Radiology: Cardioth. Imag. – volume: 214 start-page: 1072 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib11 article-title: Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study publication-title: AJR Am. J. Roentgenol. doi: 10.2214/AJR.20.22976 – volume: 44 start-page: 640 year: 2020 ident: 10.1016/j.compbiomed.2022.105467_bib31 article-title: Computed tomography radiomics can predict disease severity and outcome in coronavirus disease 2019 pneumonia publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/RCT.0000000000001094 |
| SSID | ssj0004030 |
| Score | 2.4936368 |
| Snippet | We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.
Whole lung segmentations were performed... AbstractBackgroundWe aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. MethodsWhole lung segmentations... BackgroundWe aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.MethodsWhole lung segmentations were... We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.BACKGROUNDWe aimed to analyze the prognostic power... Image 1 |
| SourceID | swepub pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105467 |
| SubjectTerms | Algorithms Artificial intelligence Classifiers Coronaviruses COVID-19 COVID-19 - diagnostic imaging Datasets Deep learning Feature extraction Humans Internal Medicine Lung Neoplasms Lungs Machine Learning Medical prognosis Modelling Other Patients Polymerase chain reaction Prognosis Radiomics Retrospective Studies Sensitivity Statistical analysis Tomography, X-Ray Computed - methods Variance analysis X-ray CT |
| Title | COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522002591 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522002591 https://dx.doi.org/10.1016/j.compbiomed.2022.105467 https://www.ncbi.nlm.nih.gov/pubmed/35378436 https://www.proquest.com/docview/2663096637 https://www.proquest.com/docview/2647212935 https://pubmed.ncbi.nlm.nih.gov/PMC8964015 http://kipublications.ki.se/Default.aspx?queryparsed=id:154655386 |
| Volume | 145 |
| WOSCitedRecordID | wos001135403900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: P5Z dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: K7- dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7RV dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfH8UxmQkxBMRTRzHMTwgKJtAsK4ao6r2YjmO0xW2ZDQd_wn_L3exk6rahCrRB6tNcomdns9n-3e_I-RFCINMwosMqS_jAGOWAx1pHuhUGssML3QTITf-KobDdDKRI7_gVntYZWsTG0OdVwbXyF_DQMLA3U6YeHf-K8CsUbi76lNobJAtZCoDPd_6sDscHS4jI_vMBaGAtYlhMuSxPA7hhaBtF-QO88QowpS3Lt_8lQPUZQf0Mo5yhW20GaH2bv9v2-6QW943pe-dMt0l12x5j9zY97vv98mfwcH488cglBRRXWWFFM-0SaUD4x9FBP2UDo7oXOczjHWmhW1YQ2uqy5yeNahNS32aiinVp1Oow-LkrH5DW2oUWhVU0wbkGMw8jKFZq6SIZK3tAi8I41eMQR0cI2z9gHzf2z0afAp8WofA8FQsgiyzBetbkUtmMs0FeBiRMRHMm1jCdJFl0phcZiIspOUZOIhWcC2LHI5r-Fj2kGyWVWkfE2pSaVNRiMhkMuZ5kSYgGEZaYAYRbnmPiPa_VMZznmPqjVPVgtt-qKUWKNQC5bSgR8JO8tzxfqwhI1t1UW1cK1hiBYPTGrLiKllbe5NSq1DVkeqrbw2jEqhyhPAaLsMeedtJeq_JeUNrPne7VUnVPWqpjz3yvDsNdgc3k3Rpqwu8JhYROovwkh-5btC9KMaZSGOWQKNWOkh3AXKar54pZycNt3kqE5jxwz1fuq60IuIP_YRvVsXI4hA_-Xf9n5Kb2FiH7dsmm4v5hX1Grpvfi1k93yEb4nCM5UQ0Zbrj7Qf8-iICKPejAyzFCMoRP_4LLNZ-2w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQMAL90thgJGAJyIaO4ljEEKoY1q1rkxiTHszjuN0hS0dTQfih_A3-I2cYyepqk2oL3ugT1Xi08TuuTn5zncIeRZCkEniIkPqyyjAmuVAMx0HOpXGchMX2lXI7Q3EcJju78udFfKnqYVBWGXjE52jzicGn5G_gkDCId1OuHh3_D3ArlH4drVpoeHVYsv--glbtuptfx3-3-eMbXzY7W0GdVeBwMSpmAVZZgvetSKX3GQ6FhDgmDEM0naecF1kmTQml5kIC2njDPITK2ItixyOa_hYDr97gVyENIJ1HVRwZ16H2eW-5AV8WwRbrxo55PFkCBH3JfWwK2UMG-z67vZnhsPT6e5p1OYCt6mLhxvX_7eVvEGu1Zk3fe9N5SZZseUtcnm7xhbcJr97H_f660EoKWLWygkSWFPXKAiiO8X6gBHt7dKpzsdYyU0L6zhRK6rLnB45TKqldROOEdWHI5jz7OCoek0b4hc6KaimDsIZjGuQhnsSSxGnW9kZDgijl5zDPXi-2-oO-Xwui3KXrJaT0t4n1KTSpqIQzGQyivMiTUAwZFpgf5TYxh0iGt1RpmZ0x8Yih6qB7n1Vc61TqHXKa12HhK3ksWc1WUJGNuqpmqpdiDMKQu8SsuIsWVvVDrNSoaqY6qpPji8KTIcheCiWYYe8aSXrnNDnekted60xAdVeaq7_HfK0PQ1eFV-V6dJOTnBMJBimwrDI97zZtQvFYy7SiCcwqQWDbAcgY_vimXJ84JjbU5lEkH93yAtvugsi9aFv8M2qCDkqogf_vv8n5Mrm7vZADfrDrYfkKk7coxjXyOpsemIfkUvmx2xcTR87P0XJl_M257-LRdi1 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQBMv3C-FAUYCnojW2HEcgxBCLRXVtm4SY9qb5zhOV9jS0XQgfgh_hl_HOXHSqtqE-rIH-lQlPk3snpuT73yHkBchBJlY5ClSX0YB1iwHhhkRmERZx63ITVUht78lB4Pk4EDtrpA_TS0Mwiobn1g56mxs8Rn5BgQSDul2zOVGXsMidru996ffA-wghW9am3YaXkU23a-fsH0r3_W78F-_ZKz3ca_zKag7DARWJHIapKnLedvJTHGbGiEh2DFrGaTwPOYmT1NlbaZSGebKiRRyFSeFUXkGxw18HIffvUKuykhEaF3bbGdek9nmvvwF_FwE27AaReSxZQgX9-X1sENlDJvt-k73F4bG86nveQTnAs9pFRt7N__nVb1FbtQZOf3gTeg2WXHFHbK2XWMO7pLfnZ39fjcIFUUsWzFGYmtaNRCCqE-xbmBIO3t0YrIRVnjT3FVcqSU1RUZPKqyqo3VzjiE1x0OY8_TopHxDG0IYOs6poRW0MxjV4I3qCS1F_G7ppjggjF5zDvfgeXDLe-TLpSzKfbJajAv3kFCbKJfIXDKbqkhkeRKDYMiMxL4pwokWkY0eaVszvWPDkWPdQPq-6rkGatRA7TWwRcKZ5KlnO1lCRjWqqptqXog_GkLyErLyIllX1o601KEumW7rzxWPFJgRQ1CRUGGLvJ1J1rmizwGXvO56Yw56dqm5LbTI89lp8Lb4Cs0UbnyGYyLJMEWGRX7gTXC2UFxwmUQ8hkktGOdsADK5L54pRkcVo3ui4gjy8hZ55c14QaQ-9A2-OR0hd0X06N_3_4ysgRXrrf5g8zG5jvP24MZ1sjqdnLkn5Jr9MR2Vk6eVy6Lk8LKt-S9oWuF2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+prognostic+modeling+using+CT+radiomic+features+and+machine+learning+algorithms%3A+Analysis+of+a+multi-institutional+dataset+of+14%2C339+patients&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Shiri%2C+Isaac&rft.au=Salimi%2C+Yazdan&rft.au=Pakbin%2C+Masoumeh&rft.au=Hajianfar%2C+Ghasem&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=145&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105467&rft.externalDocID=S0010482522002591 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |