Discovering gene expression patterns in time course microarray experiments by ANOVA–SCA

Motivation: Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics Jg. 23; H. 14; S. 1792 - 1800
Hauptverfasser: Nueda, María José, Conesa, Ana, Westerhuis, Johan A., Hoefsloot, Huub C. J., Smilde, Age K., Talón, Manuel, Ferrer, Alberto
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Oxford University Press 15.07.2007
Oxford Publishing Limited (England)
Schlagworte:
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Motivation: Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account. Results: In this work, we develop the application of the Analysis of variance–simultaneous component analysis (ANOVA–SCA) Smilde et al. Bioinformatics, (2005) to the analysis of multiple series time course microarray data as an example of multifactorial gene expression profiling experiments. We denoted this implementation as ASCA-genes. We show how the combination of ANOVA-modeling and a dimension reduction technique is effective in extracting targeted signals from data by-passing structural noise. The methodology is valuable for identifying main and secondary responses associated with the experimental factors and spotting relevant experimental conditions. We additionally propose a novel approach for gene selection in the context of the relation of individual transcriptional patterns to global gene expression signals. We demonstrate the methodology on both real and synthetic datasets. Availability: ASCA-genes has been implemented in the statistical language R and is available at http://www.ivia.es/centrodegenomica/bioinformatics.htm. Contact: mj.nueda@ua.es and aconesa@cipf.es Supplementary information: Supplementary data are available at Bioinformatics online.
AbstractList MOTIVATION: Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account. RESULTS: In this work, we develop the application of the Analysis of variance-simultaneous component analysis (ANOVA-SCA) Smilde et al. Bioinformatics, (2005) to the analysis of multiple series time course microarray data as an example of multifactorial gene expression profiling experiments. We denoted this implementation as ASCA-genes. We show how the combination of ANOVA-modeling and a dimension reduction technique is effective in extracting targeted signals from data by-passing structural noise. The methodology is valuable for identifying main and secondary responses associated with the experimental factors and spotting relevant experimental conditions. We additionally propose a novel approach for gene selection in the context of the relation of individual transcriptional patterns to global gene expression signals. We demonstrate the methodology on both real and synthetic datasets. AVAILABILITY: ASCA-genes has been implemented in the statistical language R and is available at http://www.ivia.es/centrodegenomica/bioinformatics.htm. Supplementary information: Supplementary data are available at Bioinformatics online.
Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account.MOTIVATIONDesigned microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account.In this work, we develop the application of the Analysis of variance-simultaneous component analysis (ANOVA-SCA) Smilde et al. Bioinformatics, (2005) to the analysis of multiple series time course microarray data as an example of multifactorial gene expression profiling experiments. We denoted this implementation as ASCA-genes. We show how the combination of ANOVA-modeling and a dimension reduction technique is effective in extracting targeted signals from data by-passing structural noise. The methodology is valuable for identifying main and secondary responses associated with the experimental factors and spotting relevant experimental conditions. We additionally propose a novel approach for gene selection in the context of the relation of individual transcriptional patterns to global gene expression signals. We demonstrate the methodology on both real and synthetic datasets.RESULTSIn this work, we develop the application of the Analysis of variance-simultaneous component analysis (ANOVA-SCA) Smilde et al. Bioinformatics, (2005) to the analysis of multiple series time course microarray data as an example of multifactorial gene expression profiling experiments. We denoted this implementation as ASCA-genes. We show how the combination of ANOVA-modeling and a dimension reduction technique is effective in extracting targeted signals from data by-passing structural noise. The methodology is valuable for identifying main and secondary responses associated with the experimental factors and spotting relevant experimental conditions. We additionally propose a novel approach for gene selection in the context of the relation of individual transcriptional patterns to global gene expression signals. We demonstrate the methodology on both real and synthetic datasets.ASCA-genes has been implemented in the statistical language R and is available at http://www.ivia.es/centrodegenomica/bioinformatics.htm.AVAILABILITYASCA-genes has been implemented in the statistical language R and is available at http://www.ivia.es/centrodegenomica/bioinformatics.htm.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Motivation: Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account. Results: In this work, we develop the application of the Analysis of variance–simultaneous component analysis (ANOVA–SCA) Smilde et al. Bioinformatics, (2005) to the analysis of multiple series time course microarray data as an example of multifactorial gene expression profiling experiments. We denoted this implementation as ASCA-genes. We show how the combination of ANOVA-modeling and a dimension reduction technique is effective in extracting targeted signals from data by-passing structural noise. The methodology is valuable for identifying main and secondary responses associated with the experimental factors and spotting relevant experimental conditions. We additionally propose a novel approach for gene selection in the context of the relation of individual transcriptional patterns to global gene expression signals. We demonstrate the methodology on both real and synthetic datasets. Availability: ASCA-genes has been implemented in the statistical language R and is available at http://www.ivia.es/centrodegenomica/bioinformatics.htm. Contact:  mj.nueda@ua.es and aconesa@cipf.es Supplementary information: Supplementary data are available at Bioinformatics online.
Motivation: Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account. Results: In this work, we develop the application of the Analysis of variance-simultaneous component analysis (ANOVA-SCA) Smilde et al. Bioinformatics , (2005) to the analysis of multiple series time course microarray data as an example of multifactorial gene expression profiling experiments. We denoted this implementation as ASCA-genes . We show how the combination of ANOVA-modeling and a dimension reduction technique is effective in extracting targeted signals from data by-passing structural noise. The methodology is valuable for identifying main and secondary responses associated with the experimental factors and spotting relevant experimental conditions. We additionally propose a novel approach for gene selection in the context of the relation of individual transcriptional patterns to global gene expression signals. We demonstrate the methodology on both real and synthetic datasets. Availability: ASCA-genes has been implemented in the statistical language R and is available at http://www.ivia.es/centrodegenomica/bioinformatics.htm. Contact: mj.nueda@ua.es and aconesa@cipf.es Supplementary information: Supplementary data are available at Bioinformatics online.
Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account. In this work, we develop the application of the Analysis of variance-simultaneous component analysis (ANOVA-SCA) Smilde et al. Bioinformatics, (2005) to the analysis of multiple series time course microarray data as an example of multifactorial gene expression profiling experiments. We denoted this implementation as ASCA-genes. We show how the combination of ANOVA-modeling and a dimension reduction technique is effective in extracting targeted signals from data by-passing structural noise. The methodology is valuable for identifying main and secondary responses associated with the experimental factors and spotting relevant experimental conditions. We additionally propose a novel approach for gene selection in the context of the relation of individual transcriptional patterns to global gene expression signals. We demonstrate the methodology on both real and synthetic datasets. ASCA-genes has been implemented in the statistical language R and is available at http://www.ivia.es/centrodegenomica/bioinformatics.htm. Supplementary data are available at Bioinformatics online.
Motivation: Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account. Results: In this work, we develop the application of the Analysis of variance-simultaneous component analysis (ANOVA-SCA) Smilde et al. Bioinformatics, (2005) to the analysis of multiple series time course microarray data as an example of multifactorial gene expression profiling experiments. We denoted this implementation as ASCA-genes. We show how the combination of ANOVA-modeling and a dimension reduction technique is effective in extracting targeted signals from data by-passing structural noise. The methodology is valuable for identifying main and secondary responses associated with the experimental factors and spotting relevant experimental conditions. We additionally propose a novel approach for gene selection in the context of the relation of individual transcriptional patterns to global gene expression signals. We demonstrate the methodology on both real and synthetic datasets. Availability: ASCA-genes has been implemented in the statistical language R and is available at http://www.ivia.es/centrodegenomica/bioinformatics.htm. Contact: mj.nueda@ua.es and aconesa@cipf.es Supplementary information: Supplementary data are available at Bioinformatics online.
Author Conesa, Ana
Hoefsloot, Huub C. J.
Talón, Manuel
Nueda, María José
Smilde, Age K.
Westerhuis, Johan A.
Ferrer, Alberto
Author_xml – sequence: 1
  givenname: María José
  surname: Nueda
  fullname: Nueda, María José
  organization: Departamento de Estadística e Investigación Operativa, Universidad de Alicante, Apartado 03080, Alicante, Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Apartado Oficial 46113, Moncada, Spain, Biosystems Data Analysis, University of Amsterdam, Nieuwe Achtergracht 166, 1018 W V, Amsterdam, TNO Quality of life, PO Box 360 AJ Zeist, The Netherlands, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universidad Politécnica de Valencia, Cno. Vera s/n, Edificio I-3, Apartado 46022 and Bioinformatics Department, Centro de Investigación Príncipe Felipe, Autopista del Saler, 16, E46013, Valencia, Spain
– sequence: 2
  givenname: Ana
  surname: Conesa
  fullname: Conesa, Ana
  organization: Departamento de Estadística e Investigación Operativa, Universidad de Alicante, Apartado 03080, Alicante, Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Apartado Oficial 46113, Moncada, Spain, Biosystems Data Analysis, University of Amsterdam, Nieuwe Achtergracht 166, 1018 W V, Amsterdam, TNO Quality of life, PO Box 360 AJ Zeist, The Netherlands, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universidad Politécnica de Valencia, Cno. Vera s/n, Edificio I-3, Apartado 46022 and Bioinformatics Department, Centro de Investigación Príncipe Felipe, Autopista del Saler, 16, E46013, Valencia, Spain
– sequence: 3
  givenname: Johan A.
  surname: Westerhuis
  fullname: Westerhuis, Johan A.
  organization: Departamento de Estadística e Investigación Operativa, Universidad de Alicante, Apartado 03080, Alicante, Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Apartado Oficial 46113, Moncada, Spain, Biosystems Data Analysis, University of Amsterdam, Nieuwe Achtergracht 166, 1018 W V, Amsterdam, TNO Quality of life, PO Box 360 AJ Zeist, The Netherlands, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universidad Politécnica de Valencia, Cno. Vera s/n, Edificio I-3, Apartado 46022 and Bioinformatics Department, Centro de Investigación Príncipe Felipe, Autopista del Saler, 16, E46013, Valencia, Spain
– sequence: 4
  givenname: Huub C. J.
  surname: Hoefsloot
  fullname: Hoefsloot, Huub C. J.
  organization: Departamento de Estadística e Investigación Operativa, Universidad de Alicante, Apartado 03080, Alicante, Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Apartado Oficial 46113, Moncada, Spain, Biosystems Data Analysis, University of Amsterdam, Nieuwe Achtergracht 166, 1018 W V, Amsterdam, TNO Quality of life, PO Box 360 AJ Zeist, The Netherlands, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universidad Politécnica de Valencia, Cno. Vera s/n, Edificio I-3, Apartado 46022 and Bioinformatics Department, Centro de Investigación Príncipe Felipe, Autopista del Saler, 16, E46013, Valencia, Spain
– sequence: 5
  givenname: Age K.
  surname: Smilde
  fullname: Smilde, Age K.
  organization: Departamento de Estadística e Investigación Operativa, Universidad de Alicante, Apartado 03080, Alicante, Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Apartado Oficial 46113, Moncada, Spain, Biosystems Data Analysis, University of Amsterdam, Nieuwe Achtergracht 166, 1018 W V, Amsterdam, TNO Quality of life, PO Box 360 AJ Zeist, The Netherlands, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universidad Politécnica de Valencia, Cno. Vera s/n, Edificio I-3, Apartado 46022 and Bioinformatics Department, Centro de Investigación Príncipe Felipe, Autopista del Saler, 16, E46013, Valencia, Spain
– sequence: 6
  givenname: Manuel
  surname: Talón
  fullname: Talón, Manuel
  organization: Departamento de Estadística e Investigación Operativa, Universidad de Alicante, Apartado 03080, Alicante, Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Apartado Oficial 46113, Moncada, Spain, Biosystems Data Analysis, University of Amsterdam, Nieuwe Achtergracht 166, 1018 W V, Amsterdam, TNO Quality of life, PO Box 360 AJ Zeist, The Netherlands, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universidad Politécnica de Valencia, Cno. Vera s/n, Edificio I-3, Apartado 46022 and Bioinformatics Department, Centro de Investigación Príncipe Felipe, Autopista del Saler, 16, E46013, Valencia, Spain
– sequence: 7
  givenname: Alberto
  surname: Ferrer
  fullname: Ferrer, Alberto
  organization: Departamento de Estadística e Investigación Operativa, Universidad de Alicante, Apartado 03080, Alicante, Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Apartado Oficial 46113, Moncada, Spain, Biosystems Data Analysis, University of Amsterdam, Nieuwe Achtergracht 166, 1018 W V, Amsterdam, TNO Quality of life, PO Box 360 AJ Zeist, The Netherlands, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universidad Politécnica de Valencia, Cno. Vera s/n, Edificio I-3, Apartado 46022 and Bioinformatics Department, Centro de Investigación Príncipe Felipe, Autopista del Saler, 16, E46013, Valencia, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19000143$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17519250$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtuFDEQhi0URB5wBFALCXZN_O62WA0TIEiBLAYQsLHcnprIYdpubDfK7LgDN-QkeNQDEdmElb34vqr6qw7Rng8eEHpI8DOCFTvuXHB-FWJvsrPpuMs9FeQOOiBc4ppiofbKn8mm5i1m--gwpUuMBeGc30P7pBFEUYEP0OcTl2z4DtH5i-oCPFRwNURIyQVfDSZniD5VzlfZ9VDZMMYEVe9sDCZGs9nSxe3B51R1m2r27vzj7NePn4v57D66uzLrBA927xH68Orl-_lpfXb--s18dlZb0Ta5VkS2hDHeEkGxpZgxsrSNLaMrMAxMidKobkmtUNY2mC8FpbQlIKQQUknOjtDTqe4Qw7cRUtZ9iQTrtfEQxqRLeS4Fa28FKcZEYMEK-PgGeFly-xJCE9VKKcvIBXq0g8auh6UeyhZM3Og_qy3Akx1gkjXrVTTeunTNKVz68W03MXFlpylFWF0jWG9Prf89tZ5OXbznNzzrciGCz9G49a02nuwwDv_dsJ4UlzJc_ZVM_KplwxqhTz990S8UPlm0bxe6Yb8BzyvVmw
CODEN BOINFP
CitedBy_id crossref_primary_10_1016_j_foodres_2020_109126
crossref_primary_10_1007_s42952_022_00198_w
crossref_primary_10_1007_s00180_023_01440_7
crossref_primary_10_1038_s41598_021_92672_4
crossref_primary_10_1186_1471_2105_10_S6_S9
crossref_primary_10_1016_j_chemosphere_2019_124469
crossref_primary_10_1016_j_foodres_2013_07_003
crossref_primary_10_1093_nar_gkq488
crossref_primary_10_3390_ijms19010135
crossref_primary_10_3390_metabo14100533
crossref_primary_10_1016_j_talanta_2010_10_029
crossref_primary_10_1002_etc_4381
crossref_primary_10_1002_cem_1175
crossref_primary_10_1038_srep20942
crossref_primary_10_1002_sam_10047
crossref_primary_10_1097_FPC_0b013e32832c484b
crossref_primary_10_1371_journal_pone_0205968
crossref_primary_10_1016_j_annepidem_2012_04_017
crossref_primary_10_1255_ejms_1050
crossref_primary_10_3389_fmolb_2022_962431
crossref_primary_10_1371_journal_pone_0270403
crossref_primary_10_3390_w13223311
crossref_primary_10_1016_j_csda_2013_04_001
crossref_primary_10_1155_2008_619832
crossref_primary_10_1177_0962280220907365
crossref_primary_10_1016_j_chemolab_2011_10_012
crossref_primary_10_1016_j_ygeno_2008_05_015
crossref_primary_10_1038_s41598_019_41205_1
crossref_primary_10_1093_hmg_ddr431
crossref_primary_10_1016_j_cca_2016_12_010
crossref_primary_10_1007_s00425_023_04105_3
crossref_primary_10_1007_s11306_009_0191_1
crossref_primary_10_3390_toxins12030192
crossref_primary_10_1093_biostatistics_kxr042
crossref_primary_10_1016_j_jbi_2011_03_002
crossref_primary_10_1186_1471_2229_11_159
crossref_primary_10_1111_j_1462_2920_2011_02607_x
crossref_primary_10_1016_j_aquaculture_2024_741045
crossref_primary_10_1371_journal_pone_0227577
crossref_primary_10_1186_1471_2105_11_296
crossref_primary_10_1007_s11306_015_0823_6
crossref_primary_10_1186_s12864_015_1853_1
crossref_primary_10_1016_j_csbr_2025_100052
crossref_primary_10_1016_j_exger_2017_08_021
crossref_primary_10_1038_srep32448
crossref_primary_10_3390_metabo12030224
crossref_primary_10_1038_srep35479
crossref_primary_10_1007_s10142_008_0107_6
crossref_primary_10_1016_j_chemolab_2010_06_004
crossref_primary_10_1002_cem_3402
crossref_primary_10_3390_metabo11070460
crossref_primary_10_1007_s11306_011_0358_4
crossref_primary_10_1016_j_brainresbull_2011_10_002
crossref_primary_10_1021_jasms_0c00054
crossref_primary_10_1093_bib_bbr071
Cites_doi 10.1126/science.282.5389.699
10.1038/35076576
10.2202/1544-6115.1147
10.1093/bioinformatics/btl056
10.1093/bioinformatics/17.9.763
10.2307/2346830
10.1016/S0006-2952(02)01613-1
10.1093/bioinformatics/17.5.405
10.1093/bioinformatics/17.2.126
10.1093/jnci/91.5.453
10.1002/cem.952
10.1186/1471-2105-7-194
10.1073/pnas.1732547100
10.1186/gb-2002-3-4-research0019
10.1016/j.lfs.2005.11.010
10.1093/bioinformatics/bti476
10.1073/pnas.0504609102
10.1007/BF02296656
10.1214/aoms/1177728786
10.1093/bioinformatics/bti610
10.1093/bioinformatics/18.1.39
10.1091/mbc.9.12.3273
ContentType Journal Article
Copyright 2007 The Author(s) 2007
2008 INIST-CNRS
2007 The Author(s)
Copyright_xml – notice: 2007 The Author(s) 2007
– notice: 2008 INIST-CNRS
– notice: 2007 The Author(s)
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bioinformatics/btm251
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
CrossRef
Materials Research Database
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1800
ExternalDocumentID 1328093281
17519250
19000143
10_1093_bioinformatics_btm251
10.1093/bioinformatics/btm251
ark_67375_HXZ_B90DS8MS_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABGNP
ABJNI
ABPTD
ACGFS
ACUFI
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROZ
RXO
TLC
TN5
TOX
WH7
~91
53G
6.Y
AAIMJ
AAJKP
AAKPC
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABNKS
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACMRT
ACPQN
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AFXEN
AGINJ
AGKRT
AGQXC
AI.
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BCRHZ
BHONS
CXTWN
DFGAJ
ELUNK
FEDTE
HVGLF
KOP
MBTAY
MVM
PB-
Q1.
QBD
RIG
ROL
ROX
TCN
TR2
VH1
XJT
ZGI
---
-E4
.DC
0R~
1TH
23N
2WC
4.4
5WA
70D
AAIJN
AAJQQ
AAMDB
AAOGV
AAUQX
AAVLN
AAYXX
ABEJV
ABEUO
ABIXL
ABNGD
ABPQP
ABQLI
ACIWK
ACPRK
ACUKT
ACUXJ
ADBBV
ADEZT
ADGKP
ADHZD
ADMLS
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGQPQ
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
AMNDL
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
.-4
.GJ
IQODW
O~Y
RNI
RZF
RZO
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c587t-9168133481520c20331dc7c1369ea3ea20579bd2c59cc704d522281e565569643
IEDL.DBID TOX
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000249248300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Sep 04 17:52:23 EDT 2025
Tue Oct 07 11:17:57 EDT 2025
Fri Oct 03 11:10:48 EDT 2025
Mon Jul 21 05:33:02 EDT 2025
Mon Jul 21 09:13:32 EDT 2025
Tue Nov 18 21:48:58 EST 2025
Sat Nov 29 05:33:32 EST 2025
Wed Aug 28 03:24:14 EDT 2024
Sat Sep 20 11:02:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Transcription
Noise
DNA chip
Synthetic test
Gene expression
Microarray
Variance analysis
Response
Original document
Signal
Computer program
Environment
Extraction
Bioinformatics
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-9168133481520c20331dc7c1369ea3ea20579bd2c59cc704d522281e565569643
Notes istex:CA5736B827166095A49CDA2BEAA8B83C05111F4B
To whom correspondence should be addressed.
ark:/67375/HXZ-B90DS8MS-7
Associate Editor: Joaquin Dopazo
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/23/14/1792/16858499/btm251.pdf
PMID 17519250
PQID 198666168
PQPubID 36124
PageCount 9
ParticipantIDs proquest_miscellaneous_68146538
proquest_miscellaneous_20015053
proquest_journals_198666168
pubmed_primary_17519250
pascalfrancis_primary_19000143
crossref_primary_10_1093_bioinformatics_btm251
crossref_citationtrail_10_1093_bioinformatics_btm251
oup_primary_10_1093_bioinformatics_btm251
istex_primary_ark_67375_HXZ_B90DS8MS_7
PublicationCentury 2000
PublicationDate 2007-07-15
PublicationDateYYYYMMDD 2007-07-15
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2007
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Hilsenbeck (2023041105223224000_) 1999; 91
Conesa (2023041105223224000_) 2005; 21
Lukashin (2023041105223224000_) 2001; 17
Smilde (2023041105223224000_) 2005; 21
Spellman (2023041105223224000_) 1998; 9
Conesa (2023041105223224000_) 2006; 22
Heijne (2023041105223224000_) 2003; 65
Bar-Joseph (2023041105223224000_) 2003; 100
Nguyen (2023041105223224000_) 2002; 18
Timmerman (2023041105223224000_) 2003; 86
Quackenbush (2023041105223224000_) 2001; 2
Box (2023041105223224000_) 1954; 25
Jansen (2023041105223224000_) 2005; 19
Martens (2023041105223224000_) 1989
Hartigan (2023041105223224000_) 1979; 28
Roden (2023041105223224000_) 2006; 7
Raychaudhuri (2023041105223224000_) 2000; 5
Yeung (2023041105223224000_) 2001; 17
Chu (2023041105223224000_) 1998; 282
Landgrebe (2023041105223224000_) 2002; 3
Herrero (2023041105223224000_) 2001; 17
Dai (2023041105223224000_) 2006; 5
Storey (2023041105223224000_) 2005; 102
Takashima (2023041105223224000_) 2006; 78
Tai (2023041105223224000_) 2004
References_xml – volume: 5
  start-page: 452
  year: 2000
  ident: 2023041105223224000_
  article-title: Principal components analysis to summarize microarray experiments: application to sporulation time series
  publication-title: Pac. Symp. Biocomput.
– volume: 282
  start-page: 699
  year: 1998
  ident: 2023041105223224000_
  article-title: The transcriptional program of sporulation in budding yeast
  publication-title: Science
  doi: 10.1126/science.282.5389.699
– volume: 2
  start-page: 418
  year: 2001
  ident: 2023041105223224000_
  article-title: Computational analysis of microarray data
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/35076576
– volume: 5
  year: 2006
  ident: 2023041105223224000_
  article-title: Dimension reduction for classification with gene expression microarray data
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1147
– volume: 22
  start-page: 1096
  year: 2006
  ident: 2023041105223224000_
  article-title: maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl056
– volume: 17
  start-page: 763
  year: 2001
  ident: 2023041105223224000_
  article-title: Principal component analysis for clustering gene expresión data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.9.763
– volume: 28
  start-page: 100
  year: 1979
  ident: 2023041105223224000_
  article-title: A k-means clustering algorithm
  publication-title: Appl. Stat.
  doi: 10.2307/2346830
– volume: 65
  start-page: 857
  year: 2003
  ident: 2023041105223224000_
  article-title: Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(02)01613-1
– volume: 17
  start-page: 405
  year: 2001
  ident: 2023041105223224000_
  article-title: Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.5.405
– volume: 17
  start-page: 126
  year: 2001
  ident: 2023041105223224000_
  article-title: A hierarchical unsupervised growing neural network for clustering gene expression patterns
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.2.126
– volume: 91
  start-page: 453
  year: 1999
  ident: 2023041105223224000_
  article-title: Statistical analysis of array expresion data as applied to the problem of tamoxifen resistance
  publication-title: J. Natl Cancer I.
  doi: 10.1093/jnci/91.5.453
– volume: 19
  start-page: 469
  year: 2005
  ident: 2023041105223224000_
  article-title: ASCA: analysis of multivariate data obtained from an experimental design
  publication-title: J. Chemometr.
  doi: 10.1002/cem.952
– volume: 7
  start-page: 194
  year: 2006
  ident: 2023041105223224000_
  article-title: Mining gene expression data by interpreting principal components
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-194
– volume: 100
  start-page: 10146
  year: 2003
  ident: 2023041105223224000_
  article-title: Comparing the continuous representation of time series expression profiles to identify differentially expressed genes
  publication-title: PNAS
  doi: 10.1073/pnas.1732547100
– volume-title: Technical report
  year: 2004
  ident: 2023041105223224000_
  article-title: A multivariate empirical Bayes statistic for replicated microarray time course data
– volume: 3
  start-page: 19.1
  year: 2002
  ident: 2023041105223224000_
  article-title: Permutation-validated principal components analysis of microarray data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2002-3-4-research0019
– volume: 78
  start-page: 2787
  year: 2006
  ident: 2023041105223224000_
  article-title: Effect of the difference in vehicles on gene expression in the rat liver–analysis of the control data in the Toxicogenomics Project Database
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2005.11.010
– volume: 21
  start-page: 3043
  year: 2005
  ident: 2023041105223224000_
  article-title: ANOVA-Simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti476
– volume: 102
  start-page: 12837
  year: 2005
  ident: 2023041105223224000_
  article-title: Significance analysis of time course microarray experiments
  publication-title: PNAS
  doi: 10.1073/pnas.0504609102
– volume: 86
  start-page: 105
  year: 2003
  ident: 2023041105223224000_
  article-title: Four simultaneous component models of multivariate time series from more than one subject to model intraindividual and interindividual differences
  publication-title: Psychometrika
  doi: 10.1007/BF02296656
– volume: 25
  start-page: 290
  year: 1954
  ident: 2023041105223224000_
  article-title: Some theorems on quadratic forms applied in the study of analysis of variance problems: effect of inequality of variance in one-way classification
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177728786
– volume: 21
  start-page: 3674
  year: 2005
  ident: 2023041105223224000_
  article-title: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti610
– volume: 18
  start-page: 39
  year: 2002
  ident: 2023041105223224000_
  article-title: Tumor classification by partial least squares using microarray gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.1.39
– volume: 9
  start-page: 3273
  year: 1998
  ident: 2023041105223224000_
  article-title: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.9.12.3273
– volume-title: Multivariate Calibration
  year: 1989
  ident: 2023041105223224000_
SSID ssj0051444
ssj0005056
Score 2.1707456
Snippet Motivation: Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about...
Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the...
MOTIVATION: Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about...
SourceID proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1792
SubjectTerms Algorithms
Analysis of Variance
Bioinformatics
Biological and medical sciences
Computational Biology - methods
Computer Simulation
Data Interpretation, Statistical
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Genetic
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
Principal Component Analysis
Time Factors
Transcription, Genetic
Variance analysis
Title Discovering gene expression patterns in time course microarray experiments by ANOVA–SCA
URI https://api.istex.fr/ark:/67375/HXZ-B90DS8MS-7/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17519250
https://www.proquest.com/docview/198666168
https://www.proquest.com/docview/20015053
https://www.proquest.com/docview/68146538
Volume 23
WOSCitedRecordID wos000249248300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8x2CQkNPYFZLDOD9OkPQQSO47tx_IlHrYyqYxFe4kcx5GqQVolBdH_HjtOWhWp2niM_BH5fPad7bvfD-BLJjTPmVA-K7DwI1JgX5BM-BnTOmZRQVgDPH_9nQ0GPEnEzzUIulyYp0_4ghxlo3ELImqBi4-y6S1ucqZDyi1lwdVlsojpCCwyjPswnkDkKG0tsjcPSJe_s6rLJcu0YYX80GW9bU1kbURWOK6L1c5oY5TOt58_nDfwunVAUd9pzFtY0-U7eOUoKWfv4ffpqFY2rNOYNGSUSyP90MbKlmjSgHGWNRqVyJLSIzW2MSDo1kb1yaqSM7RgDKhRNkP9weV13x-e9D_Ar_Ozq5MLvyVf8BXlbGo2wZiHTZouxYHCASFhrpgy0hRaEi2xzWLNcqyoUIoFUU7tXVKojYNIYwvytQPr5bjUe4Byrs2higU4j0UkpcxEkccFzgstY6oK4UHUCT5VLTK5Jci4Sd0LOUmXZZY6mXlwOG82cdAc_2rwtZnVeW1Z_bVxbYymF8mf9FgEp0P-Y5gyD76Zaf_fTntLyrFoJZrzJ_Fgv9OWtN0falPIzbnRiNiDz_NSs7Dta40s9fiutvygxlmnZHWN2F7fGoPlwa5TwsW_mXHMjXP78RkD2YfN7t46pAewPq3u9Cd4qe6no7rqwQuW8F6z2h4B0LEtXw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+gene+expression+patterns+in+time+course+microarray+experiments+by+ANOVA-SCA&rft.jtitle=Bioinformatics&rft.au=Nueda%2C+Maria+Jose&rft.au=Conesa%2C+Ana&rft.au=Westerhuis%2C+Johan+A&rft.au=Hoefsloot%2C+Huub+CJ&rft.date=2007-07-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=23&rft.issue=14&rft.spage=1792&rft.epage=1800&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtm251&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon