Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach
The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [ 1 ]. Recently, Ghosh and Basu [ 5 ] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observati...
Uloženo v:
| Vydáno v: | Journal of applied statistics Ročník 42; číslo 9; s. 2056 - 2072 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
02.09.2015
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0266-4763, 1360-0532 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [
1
]. Recently, Ghosh and Basu [
5
] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data. |
|---|---|
| AbstractList | The density power divergence (DPD) measure, defined in terms of a single parameter alpha , has proved to be a popular tool in the area of robust estimation [1]. Recently, Ghosh and Basu [5] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data. The density power divergence (DPD) measure, defined in terms of a single parameter a, has proved to be a popular tool in the area of robust estimation [1]. Recently, Ghosh and Basu [5] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data. The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [ 1 ]. Recently, Ghosh and Basu [ 5 ] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data. |
| Author | Basu, Ayanendranath Ghosh, Abhik |
| Author_xml | – sequence: 1 givenname: Abhik surname: Ghosh fullname: Ghosh, Abhik organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute – sequence: 2 givenname: Ayanendranath surname: Basu fullname: Basu, Ayanendranath email: ayanbasu@isical.ac.in organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute |
| BookMark | eNqFkUtv1DAUhS3USkwLPwHJEhs2ae3EjwQ2oAooUiWkCtaWY990XCV2sJ1Ws-aP42TKpgtYWbr-zn2cc4ZOfPCA0BtKLihpySWphWBSNBc1obyUqOgIfYF2tBGkIrypT9BuZaoVeonOUronhLSUNzv0-zb0S8oYUnaTzi54PISIy4RqH6ZwBx7CkrDVWWPtLc57wAlGMBsahq0Q5lU84rx45-_wrKOeIEN8v_1a8MnlA57DI0Rs3QPE0tYA1vMcgzb7V-h00GOC10_vOfr55fOPq-vq5vvXb1efbirDW5krwY1mTc9kL621nTHatIIYaaU1YDT0klndyAF6KjnvLaOWD5YRxoRsxSCac_Tu2LeM_bWUi9XkkoFx1NuRikradpLVHSno22fofViiL9up4q6UXc3blfpwpEwMKUUYlHF5MzFH7UZFiVoDUn8DUmtA6imgoubP1HMsNsbDf3UfjzrnS1STfgxxtCrrwxjiELU3Lqnm3y3-AJzWrG8 |
| CitedBy_id | crossref_primary_10_1109_TIT_2019_2903244 crossref_primary_10_1109_TIT_2022_3187063 crossref_primary_10_1080_03610926_2020_1746342 crossref_primary_10_1007_s13171_025_00382_0 crossref_primary_10_1016_j_cam_2025_116502 crossref_primary_10_1080_02664763_2021_1891527 crossref_primary_10_1007_s42519_020_00162_z crossref_primary_10_1080_03610926_2019_1615093 crossref_primary_10_1093_jrsssc_qlae026 crossref_primary_10_1002_sim_8377 crossref_primary_10_1007_s11634_020_00430_7 crossref_primary_10_1002_asmb_2854 crossref_primary_10_1515_ijb_2017_0023 crossref_primary_10_1007_s00184_018_0653_4 crossref_primary_10_1111_biom_12890 crossref_primary_10_1080_03610926_2017_1307405 crossref_primary_10_1007_s10260_018_00444_8 crossref_primary_10_1177_0962280217738142 crossref_primary_10_1007_s00362_015_0701_3 crossref_primary_10_1007_s11749_015_0445_3 crossref_primary_10_1093_biomtc_ujae125 crossref_primary_10_1007_s00362_022_01389_7 crossref_primary_10_1080_02331888_2024_2347329 crossref_primary_10_1080_02664763_2020_1763271 crossref_primary_10_1080_00949655_2020_1787410 crossref_primary_10_1016_j_cam_2022_114676 crossref_primary_10_1214_24_BA1502 crossref_primary_10_1016_j_jmva_2016_01_004 crossref_primary_10_3390_e25101422 crossref_primary_10_1007_s10182_015_0252_x crossref_primary_10_1007_s11749_023_00866_x crossref_primary_10_1007_s00362_024_01637_y crossref_primary_10_1109_TR_2019_2954385 crossref_primary_10_1080_02664763_2020_1736524 crossref_primary_10_1177_09622802211017299 crossref_primary_10_1109_TIT_2020_3013015 crossref_primary_10_1007_s13571_025_00384_w crossref_primary_10_1080_03610926_2022_2155788 crossref_primary_10_1002_csc2_21430 crossref_primary_10_1007_s10463_024_00922_9 crossref_primary_10_1007_s00362_019_01122_x crossref_primary_10_3390_e22040399 crossref_primary_10_1007_s10182_017_0311_6 |
| Cites_doi | 10.1002/0471725382 10.1201/b10956 10.1198/004017001316975880 10.1214/aoms/1177703732 10.1214/13-EJS847 10.1093/biomet/85.3.549 10.1080/00949650412331299120 10.1080/01621459.1980.10477560 10.15388/Informatica.2011.313 |
| ContentType | Journal Article |
| Copyright | 2015 Taylor & Francis 2015 Copyright Taylor & Francis Ltd. 2015 |
| Copyright_xml | – notice: 2015 Taylor & Francis 2015 – notice: Copyright Taylor & Francis Ltd. 2015 |
| DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
| DOI | 10.1080/02664763.2015.1016901 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1360-0532 |
| EndPage | 2072 |
| ExternalDocumentID | 3750325091 10_1080_02664763_2015_1016901 1016901 |
| Genre | Article Feature |
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBE EBO EBR EBS EBU ECR EJD EMK EPL E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G K60 K6~ KYCEM M4Z NA5 NY~ O9- P2P PQBIZ QWB RIG RNANH ROSJB RPM RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TH9 TN5 TOXWX TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 8FD ALIPV H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c587t-65ca43b47b7ddd9ccac860c7d7dcecaeb74da37feb1755bd41d5fd40446786f63 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358144600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-4763 |
| IngestDate | Thu Oct 02 06:32:52 EDT 2025 Wed Aug 13 06:43:56 EDT 2025 Sat Nov 29 03:43:17 EST 2025 Tue Nov 18 21:48:01 EST 2025 Mon Oct 20 23:46:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c587t-65ca43b47b7ddd9ccac860c7d7dcecaeb74da37feb1755bd41d5fd40446786f63 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Robust_estimation_for_non_homogeneous_data_and_the_selection_of_the_optimal_tuning_parameter_the_density_power_divergence_approach/1335969 |
| PQID | 1697792580 |
| PQPubID | 32901 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1080_02664763_2015_1016901 proquest_miscellaneous_1718974290 crossref_citationtrail_10_1080_02664763_2015_1016901 proquest_journals_1697792580 informaworld_taylorfrancis_310_1080_02664763_2015_1016901 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-02 |
| PublicationDateYYYYMMDD | 2015-09-02 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Journal of applied statistics |
| PublicationYear | 2015 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0001 CIT0012 CIT0011 Hong C. (CIT0008) 2001; 30 Pardo L. (CIT0010) 2006 Durio A. (CIT0004) 2011; 22 Hampel F.R. (CIT0007) 1986 Basu A. (CIT0002) 2011 Vajda I. (CIT0013) 1989 CIT0003 CIT0014 CIT0005 CIT0009 |
| References_xml | – ident: CIT0011 doi: 10.1002/0471725382 – volume-title: Theory of Statistical Inference and Information year: 1989 ident: CIT0013 – volume-title: Statistical Inference: The Minimum Distance Approach year: 2011 ident: CIT0002 doi: 10.1201/b10956 – ident: CIT0012 doi: 10.1198/004017001316975880 – volume: 30 start-page: 453 year: 2001 ident: CIT0008 publication-title: J Korean Statist. Soc. – ident: CIT0009 doi: 10.1214/aoms/1177703732 – ident: CIT0005 doi: 10.1214/13-EJS847 – ident: CIT0001 doi: 10.1093/biomet/85.3.549 – ident: CIT0014 doi: 10.1080/00949650412331299120 – volume-title: Robust Statistics: The Approach Based on Influence Functions year: 1986 ident: CIT0007 – ident: CIT0003 doi: 10.1080/01621459.1980.10477560 – volume: 22 start-page: 43 year: 2011 ident: CIT0004 publication-title: Informatica doi: 10.15388/Informatica.2011.313 – volume-title: Statistical Inference Based on Divergences year: 2006 ident: CIT0010 |
| SSID | ssj0008153 |
| Score | 2.275951 |
| Snippet | The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [
1
].... The density power divergence (DPD) measure, defined in terms of a single parameter a, has proved to be a popular tool in the area of robust estimation [1].... The density power divergence (DPD) measure, defined in terms of a single parameter alpha , has proved to be a popular tool in the area of robust estimation... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2056 |
| SubjectTerms | Asymptotic methods Density density power divergence Divergence linear regressionmodel Mathematical models non-homogeneous data Optimization Parameter estimation Parameter optimization Primary: 62F35 Regression Regression analysis Robustness Secondary: 62J05 Studies Tuning tuning parameter |
| Title | Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach |
| URI | https://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1016901 https://www.proquest.com/docview/1697792580 https://www.proquest.com/docview/1718974290 |
| Volume | 42 |
| WOSCitedRecordID | wos000358144600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1360-0532 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008153 issn: 0266-4763 databaseCode: TFW dateStart: 19840101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYQ2oEdxsZAFAoyElePNI1je7dpWsVlFUIguFn-qR3apiIpEmf-cd5zkgqEEAd2TOznOPaz37P9-XuEnOYjLzNnDAtBBVYYlzEZg2ReSWe8CMoXbbAJMZ3K21t10aEJ6w5WiWvo2BJFpLkaB7exdY-IO4NlQ1nAuEBgFk_LT5VucIHpxxgGV5Ob9VwsRy0PJUgwFOnv8LxVygvr9IK79NVcnQzQZPs_VP0r-dJ5n_RXqy7fyEZY7JDPf9fUrfUO2UL3s2Vv_k4eLyu7qhuKVBztHUcKdaWLasH-VfMKlC9Uq5oizJRCnSiUQ-sUWQezVjG9qJYoPKPNCvdgKJKNzxGE8zOlekTQNw90ieHaqEeYSOIHpT3b-S65nvy5-n3OurANzHEpGlZyZ4qxLYQV3nsFKuJkmTnhhXfBmWBF4c1YRLASgnMLyuB59AWeLAtZxnK8RzbhP8I-odybkufOKRsNZIjWhghm1_gAXqgNdkCKvru06zjNMbTGTI966tOuwTU2uO4afEB-rMWWLanHewLquS7oJu2mxDb0iR6_IzvsFUd380OtIUUIlXOZDcjJOhlGNh7XmNR3egRuA6z2cpUdfODzh2QLHxMsLh-SzeZuFY7IJ3cPqnR3nEbLE9WcFI8 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFoly4FFALC1gJK6GbDaO7d4qxKqIdg9oEb1ZfopDu1k1WSTO_HFmnGTVCqEe4JrJOI494_HYM98AvC2nQRXeWh6jjryyvuAqRcWDVt4GGXWo-mITcrFQ5-f6ei4MhVWSD516oIi8VpNy02H0GBL3Hv2GukLFoMgskf1PTSlcuwJtLUn5cv5tuxqraY9EiSyceMYsnr81c8M-3UAv_WO1ziZo_vB_dP4RPBg2oOy4l5jHcCeu9uH-2Ra9td2HPdqB9gDOT-DXl8Zt2o4RGkef5siws2zVrPj35rJB-YvNpmUUacqwUwzbYW0urkOvNik_aNbEfMG6DR3DMMIbv6Q4nKNMDRRE3_1ka6rYxgJFimSIUDYCnj-Fr_OPyw8nfKjcwL1QsuO18LaauUo6GULQKCVe1YWXQQYfvY1OVsHOZEJDIYVwKA9BpFDR5bJUdapnz2AH_yM-ByaCrUXpvXbJ4gvJuZjQ8toQcSPqoptANc6X8QOsOVXXuDDTEf10GHBDA26GAZ_Auy3busf1uI1BXxcG0-UDldRXPzGzW3gPR8kxwxLRGqRIqUuhigm82ZJRuenGxua5M1PcOaDDV-rixT98_jXcO1menZrTT4vPB7BHpBwlVx7CTne1iS_hrv-BYnX1KqvOb0hXGLo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQQagcKBQQ2xYwEldDNhvHNreqsAIBqwoV0Ztle2z10G5WTRaJMz_eGSdZUSHUA1wzGcexx_aM_fyGsVflFHQRnBMxmigqFwqhU9QCjA4OVDRQ9ckm1GKhT0_N8YAmbAdYJcXQqSeKyHM1De4VpBER9wbDhrrCcUHALJnDT0M3uG6j61xT_HUy_76ZjPW0J6JEFUE64yWevxVzbXm6Rl76x2SdV6D5zn-o-wN2f3A_-WFvLw_ZrbjcZfe-bLhb2122Tf5nT9_8iP362vh123Hi4ugvOXKsK182S3HWXDRofbFZt5xwphzrxLEc3ubUOvRqk_KDZkXK57xb0yYMJ7bxC0LhvM1SIAh995OvKF8bB8KJZIJQPtKdP2bf5u9Pjj6IIW-DCFKrTtQyuGrmK-UVABi0kaDrIihQEGJw0asK3EwlXCaUlB6tAWSCio6Wla5TPXvCtvA_4lPGJbhaliEYnxy-kLyPCdddBxHdUB_9hFVjd9kwkJpTbo1zOx25T4cGt9TgdmjwCXu9UVv1rB43KZjfbcF2eTsl9blP7OwG3YPRcOwwQbQWJUqZUupiwl5uxDi06bzG5b6zU_QbMNwrTbH3D59_we4ev5vbzx8Xn_bZNkkyRK48YFvd5To-Y3fCD7Sqy-d54FwB5igXaw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+estimation+for+non-homogeneous+data+and+the+selection+of+the+optimal+tuning+parameter%3A+the+density+power+divergence+approach&rft.jtitle=Journal+of+applied+statistics&rft.au=Ghosh%2C+Abhik&rft.au=Basu%2C+Ayanendranath&rft.date=2015-09-02&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=42&rft.issue=9&rft.spage=2056&rft.epage=2072&rft_id=info:doi/10.1080%2F02664763.2015.1016901&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |