Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach

The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [ 1 ]. Recently, Ghosh and Basu [ 5 ] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied statistics Ročník 42; číslo 9; s. 2056 - 2072
Hlavní autoři: Ghosh, Abhik, Basu, Ayanendranath
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 02.09.2015
Taylor & Francis Ltd
Témata:
ISSN:0266-4763, 1360-0532
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [ 1 ]. Recently, Ghosh and Basu [ 5 ] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data.
AbstractList The density power divergence (DPD) measure, defined in terms of a single parameter alpha , has proved to be a popular tool in the area of robust estimation [1]. Recently, Ghosh and Basu [5] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data.
The density power divergence (DPD) measure, defined in terms of a single parameter a, has proved to be a popular tool in the area of robust estimation [1]. Recently, Ghosh and Basu [5] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data.
The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [ 1 ]. Recently, Ghosh and Basu [ 5 ] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data.
Author Basu, Ayanendranath
Ghosh, Abhik
Author_xml – sequence: 1
  givenname: Abhik
  surname: Ghosh
  fullname: Ghosh, Abhik
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
– sequence: 2
  givenname: Ayanendranath
  surname: Basu
  fullname: Basu, Ayanendranath
  email: ayanbasu@isical.ac.in
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
BookMark eNqFkUtv1DAUhS3USkwLPwHJEhs2ae3EjwQ2oAooUiWkCtaWY990XCV2sJ1Ws-aP42TKpgtYWbr-zn2cc4ZOfPCA0BtKLihpySWphWBSNBc1obyUqOgIfYF2tBGkIrypT9BuZaoVeonOUronhLSUNzv0-zb0S8oYUnaTzi54PISIy4RqH6ZwBx7CkrDVWWPtLc57wAlGMBsahq0Q5lU84rx45-_wrKOeIEN8v_1a8MnlA57DI0Rs3QPE0tYA1vMcgzb7V-h00GOC10_vOfr55fOPq-vq5vvXb1efbirDW5krwY1mTc9kL621nTHatIIYaaU1YDT0klndyAF6KjnvLaOWD5YRxoRsxSCac_Tu2LeM_bWUi9XkkoFx1NuRikradpLVHSno22fofViiL9up4q6UXc3blfpwpEwMKUUYlHF5MzFH7UZFiVoDUn8DUmtA6imgoubP1HMsNsbDf3UfjzrnS1STfgxxtCrrwxjiELU3Lqnm3y3-AJzWrG8
CitedBy_id crossref_primary_10_1109_TIT_2019_2903244
crossref_primary_10_1109_TIT_2022_3187063
crossref_primary_10_1080_03610926_2020_1746342
crossref_primary_10_1007_s13171_025_00382_0
crossref_primary_10_1016_j_cam_2025_116502
crossref_primary_10_1080_02664763_2021_1891527
crossref_primary_10_1007_s42519_020_00162_z
crossref_primary_10_1080_03610926_2019_1615093
crossref_primary_10_1093_jrsssc_qlae026
crossref_primary_10_1002_sim_8377
crossref_primary_10_1007_s11634_020_00430_7
crossref_primary_10_1002_asmb_2854
crossref_primary_10_1515_ijb_2017_0023
crossref_primary_10_1007_s00184_018_0653_4
crossref_primary_10_1111_biom_12890
crossref_primary_10_1080_03610926_2017_1307405
crossref_primary_10_1007_s10260_018_00444_8
crossref_primary_10_1177_0962280217738142
crossref_primary_10_1007_s00362_015_0701_3
crossref_primary_10_1007_s11749_015_0445_3
crossref_primary_10_1093_biomtc_ujae125
crossref_primary_10_1007_s00362_022_01389_7
crossref_primary_10_1080_02331888_2024_2347329
crossref_primary_10_1080_02664763_2020_1763271
crossref_primary_10_1080_00949655_2020_1787410
crossref_primary_10_1016_j_cam_2022_114676
crossref_primary_10_1214_24_BA1502
crossref_primary_10_1016_j_jmva_2016_01_004
crossref_primary_10_3390_e25101422
crossref_primary_10_1007_s10182_015_0252_x
crossref_primary_10_1007_s11749_023_00866_x
crossref_primary_10_1007_s00362_024_01637_y
crossref_primary_10_1109_TR_2019_2954385
crossref_primary_10_1080_02664763_2020_1736524
crossref_primary_10_1177_09622802211017299
crossref_primary_10_1109_TIT_2020_3013015
crossref_primary_10_1007_s13571_025_00384_w
crossref_primary_10_1080_03610926_2022_2155788
crossref_primary_10_1002_csc2_21430
crossref_primary_10_1007_s10463_024_00922_9
crossref_primary_10_1007_s00362_019_01122_x
crossref_primary_10_3390_e22040399
crossref_primary_10_1007_s10182_017_0311_6
Cites_doi 10.1002/0471725382
10.1201/b10956
10.1198/004017001316975880
10.1214/aoms/1177703732
10.1214/13-EJS847
10.1093/biomet/85.3.549
10.1080/00949650412331299120
10.1080/01621459.1980.10477560
10.15388/Informatica.2011.313
ContentType Journal Article
Copyright 2015 Taylor & Francis 2015
Copyright Taylor & Francis Ltd. 2015
Copyright_xml – notice: 2015 Taylor & Francis 2015
– notice: Copyright Taylor & Francis Ltd. 2015
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02664763.2015.1016901
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1360-0532
EndPage 2072
ExternalDocumentID 3750325091
10_1080_02664763_2015_1016901
1016901
Genre Article
Feature
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBE
EBO
EBR
EBS
EBU
ECR
EJD
EMK
EPL
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
K60
K6~
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQBIZ
QWB
RIG
RNANH
ROSJB
RPM
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
ALIPV
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c587t-65ca43b47b7ddd9ccac860c7d7dcecaeb74da37feb1755bd41d5fd40446786f63
IEDL.DBID TFW
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358144600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4763
IngestDate Thu Oct 02 06:32:52 EDT 2025
Wed Aug 13 06:43:56 EDT 2025
Sat Nov 29 03:43:17 EST 2025
Tue Nov 18 21:48:01 EST 2025
Mon Oct 20 23:46:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-65ca43b47b7ddd9ccac860c7d7dcecaeb74da37feb1755bd41d5fd40446786f63
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://figshare.com/articles/journal_contribution/Robust_estimation_for_non_homogeneous_data_and_the_selection_of_the_optimal_tuning_parameter_the_density_power_divergence_approach/1335969
PQID 1697792580
PQPubID 32901
PageCount 17
ParticipantIDs crossref_primary_10_1080_02664763_2015_1016901
proquest_miscellaneous_1718974290
crossref_citationtrail_10_1080_02664763_2015_1016901
proquest_journals_1697792580
informaworld_taylorfrancis_310_1080_02664763_2015_1016901
PublicationCentury 2000
PublicationDate 2015-09-02
PublicationDateYYYYMMDD 2015-09-02
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of applied statistics
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0001
CIT0012
CIT0011
Hong C. (CIT0008) 2001; 30
Pardo L. (CIT0010) 2006
Durio A. (CIT0004) 2011; 22
Hampel F.R. (CIT0007) 1986
Basu A. (CIT0002) 2011
Vajda I. (CIT0013) 1989
CIT0003
CIT0014
CIT0005
CIT0009
References_xml – ident: CIT0011
  doi: 10.1002/0471725382
– volume-title: Theory of Statistical Inference and Information
  year: 1989
  ident: CIT0013
– volume-title: Statistical Inference: The Minimum Distance Approach
  year: 2011
  ident: CIT0002
  doi: 10.1201/b10956
– ident: CIT0012
  doi: 10.1198/004017001316975880
– volume: 30
  start-page: 453
  year: 2001
  ident: CIT0008
  publication-title: J Korean Statist. Soc.
– ident: CIT0009
  doi: 10.1214/aoms/1177703732
– ident: CIT0005
  doi: 10.1214/13-EJS847
– ident: CIT0001
  doi: 10.1093/biomet/85.3.549
– ident: CIT0014
  doi: 10.1080/00949650412331299120
– volume-title: Robust Statistics: The Approach Based on Influence Functions
  year: 1986
  ident: CIT0007
– ident: CIT0003
  doi: 10.1080/01621459.1980.10477560
– volume: 22
  start-page: 43
  year: 2011
  ident: CIT0004
  publication-title: Informatica
  doi: 10.15388/Informatica.2011.313
– volume-title: Statistical Inference Based on Divergences
  year: 2006
  ident: CIT0010
SSID ssj0008153
Score 2.275951
Snippet The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [ 1 ]....
The density power divergence (DPD) measure, defined in terms of a single parameter a, has proved to be a popular tool in the area of robust estimation [1]....
The density power divergence (DPD) measure, defined in terms of a single parameter alpha , has proved to be a popular tool in the area of robust estimation...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2056
SubjectTerms Asymptotic methods
Density
density power divergence
Divergence
linear regressionmodel
Mathematical models
non-homogeneous data
Optimization
Parameter estimation
Parameter optimization
Primary: 62F35
Regression
Regression analysis
Robustness
Secondary: 62J05
Studies
Tuning
tuning parameter
Title Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach
URI https://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1016901
https://www.proquest.com/docview/1697792580
https://www.proquest.com/docview/1718974290
Volume 42
WOSCitedRecordID wos000358144600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1360-0532
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008153
  issn: 0266-4763
  databaseCode: TFW
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYQ2oEdxsZAFAoyElePNI1je7dpWsVlFUIguFn-qR3apiIpEmf-cd5zkgqEEAd2TOznOPaz37P9-XuEnOYjLzNnDAtBBVYYlzEZg2ReSWe8CMoXbbAJMZ3K21t10aEJ6w5WiWvo2BJFpLkaB7exdY-IO4NlQ1nAuEBgFk_LT5VucIHpxxgGV5Ob9VwsRy0PJUgwFOnv8LxVygvr9IK79NVcnQzQZPs_VP0r-dJ5n_RXqy7fyEZY7JDPf9fUrfUO2UL3s2Vv_k4eLyu7qhuKVBztHUcKdaWLasH-VfMKlC9Uq5oizJRCnSiUQ-sUWQezVjG9qJYoPKPNCvdgKJKNzxGE8zOlekTQNw90ieHaqEeYSOIHpT3b-S65nvy5-n3OurANzHEpGlZyZ4qxLYQV3nsFKuJkmTnhhXfBmWBF4c1YRLASgnMLyuB59AWeLAtZxnK8RzbhP8I-odybkufOKRsNZIjWhghm1_gAXqgNdkCKvru06zjNMbTGTI966tOuwTU2uO4afEB-rMWWLanHewLquS7oJu2mxDb0iR6_IzvsFUd380OtIUUIlXOZDcjJOhlGNh7XmNR3egRuA6z2cpUdfODzh2QLHxMsLh-SzeZuFY7IJ3cPqnR3nEbLE9WcFI8
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFoly4FFALC1gJK6GbDaO7d4qxKqIdg9oEb1ZfopDu1k1WSTO_HFmnGTVCqEe4JrJOI494_HYM98AvC2nQRXeWh6jjryyvuAqRcWDVt4GGXWo-mITcrFQ5-f6ei4MhVWSD516oIi8VpNy02H0GBL3Hv2GukLFoMgskf1PTSlcuwJtLUn5cv5tuxqraY9EiSyceMYsnr81c8M-3UAv_WO1ziZo_vB_dP4RPBg2oOy4l5jHcCeu9uH-2Ra9td2HPdqB9gDOT-DXl8Zt2o4RGkef5siws2zVrPj35rJB-YvNpmUUacqwUwzbYW0urkOvNik_aNbEfMG6DR3DMMIbv6Q4nKNMDRRE3_1ka6rYxgJFimSIUDYCnj-Fr_OPyw8nfKjcwL1QsuO18LaauUo6GULQKCVe1YWXQQYfvY1OVsHOZEJDIYVwKA9BpFDR5bJUdapnz2AH_yM-ByaCrUXpvXbJ4gvJuZjQ8toQcSPqoptANc6X8QOsOVXXuDDTEf10GHBDA26GAZ_Auy3busf1uI1BXxcG0-UDldRXPzGzW3gPR8kxwxLRGqRIqUuhigm82ZJRuenGxua5M1PcOaDDV-rixT98_jXcO1menZrTT4vPB7BHpBwlVx7CTne1iS_hrv-BYnX1KqvOb0hXGLo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQQagcKBQQ2xYwEldDNhvHNreqsAIBqwoV0Ztle2z10G5WTRaJMz_eGSdZUSHUA1wzGcexx_aM_fyGsVflFHQRnBMxmigqFwqhU9QCjA4OVDRQ9ckm1GKhT0_N8YAmbAdYJcXQqSeKyHM1De4VpBER9wbDhrrCcUHALJnDT0M3uG6j61xT_HUy_76ZjPW0J6JEFUE64yWevxVzbXm6Rl76x2SdV6D5zn-o-wN2f3A_-WFvLw_ZrbjcZfe-bLhb2122Tf5nT9_8iP362vh123Hi4ugvOXKsK182S3HWXDRofbFZt5xwphzrxLEc3ubUOvRqk_KDZkXK57xb0yYMJ7bxC0LhvM1SIAh995OvKF8bB8KJZIJQPtKdP2bf5u9Pjj6IIW-DCFKrTtQyuGrmK-UVABi0kaDrIihQEGJw0asK3EwlXCaUlB6tAWSCio6Wla5TPXvCtvA_4lPGJbhaliEYnxy-kLyPCdddBxHdUB_9hFVjd9kwkJpTbo1zOx25T4cGt9TgdmjwCXu9UVv1rB43KZjfbcF2eTsl9blP7OwG3YPRcOwwQbQWJUqZUupiwl5uxDi06bzG5b6zU_QbMNwrTbH3D59_we4ev5vbzx8Xn_bZNkkyRK48YFvd5To-Y3fCD7Sqy-d54FwB5igXaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+estimation+for+non-homogeneous+data+and+the+selection+of+the+optimal+tuning+parameter%3A+the+density+power+divergence+approach&rft.jtitle=Journal+of+applied+statistics&rft.au=Ghosh%2C+Abhik&rft.au=Basu%2C+Ayanendranath&rft.date=2015-09-02&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=42&rft.issue=9&rft.spage=2056&rft.epage=2072&rft_id=info:doi/10.1080%2F02664763.2015.1016901&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon