An open-source human-in-the-loop BCI research framework: method and design
Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in several applied areas, ranging from medical applications to entertainment industry, and creates new conditions for basic research in cognitiv...
Uloženo v:
| Vydáno v: | Frontiers in human neuroscience Ročník 17; s. 1129362 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Research Foundation
27.06.2023
Frontiers Media S.A |
| Témata: | |
| ISSN: | 1662-5161, 1662-5161 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in several applied areas, ranging from medical applications to entertainment industry, and creates new conditions for basic research in cognitive neuroscience. The BCIs of today, however, offer only crude online classification of the user's current state of mind, and more sophisticated decoding of mental states depends on time-consuming offline data analysis. The present paper addresses this limitation directly by leveraging a set of improvements to the analytical pipeline to pave the way for the next generation of online BCIs. Specifically, we introduce an open-source research framework that features a modular and customizable hardware-independent design. This framework facilitates human-in-the-loop (HIL) model training and retraining, real-time stimulus control, and enables transfer learning and cloud computing for the online classification of electroencephalography (EEG) data. Stimuli for the subject and diagnostics for the researcher are shown on separate displays using web browser technologies. Messages are sent using the Lab Streaming Layer standard and websockets. Real-time signal processing and classification, as well as training of machine learning models, is facilitated by the open-source Python package Timeflux. The framework runs on Linux, MacOS, and Windows. While online analysis is the main target of the BCI-HIL framework, offline analysis of the EEG data can be performed with Python, MATLAB, and Julia through packages like MNE, EEGLAB, or FieldTrip. The paper describes and discusses desirable properties of a human-in-the-loop BCI research platform. The BCI-HIL framework is released under MIT license with examples at:
bci.lu.se/bci-hil
(or at:
github.com/bci-hil/bci-hil
). |
|---|---|
| AbstractList | Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in several applied areas, ranging from medical applications to entertainment industry, and creates new conditions for basic research in cognitive neuroscience. The BCIs of today, however, offer only crude online classification of the user's current state of mind, and more sophisticated decoding of mental states depends on time-consuming offline data analysis. The present paper addresses this limitation directly by leveraging a set of improvements to the analytical pipeline to pave the way for the next generation of online BCIs. Specifically, we introduce an open-source research framework that features a modular and customizable hardware-independent design. This framework facilitates human-in-the-loop (HIL) model training and retraining, real-time stimulus control, and enables transfer learning and cloud computing for the online classification of electroencephalography (EEG) data. Stimuli for the subject and diagnostics for the researcher are shown on separate displays using web browser technologies. Messages are sent using the Lab Streaming Layer standard and websockets. Real-time signal processing and classification, as well as training of machine learning models, is facilitated by the open-source Python package Timeflux. The framework runs on Linux, MacOS, and Windows. While online analysis is the main target of the BCI-HIL framework, offline analysis of the EEG data can be performed with Python, MATLAB, and Julia through packages like MNE, EEGLAB, or FieldTrip. The paper describes and discusses desirable properties of a human-in-the-loop BCI research platform. The BCI-HIL framework is released under MIT license with examples at: bci.lu.se/bci-hil (or at: github.com/bci-hil/bci-hil).Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in several applied areas, ranging from medical applications to entertainment industry, and creates new conditions for basic research in cognitive neuroscience. The BCIs of today, however, offer only crude online classification of the user's current state of mind, and more sophisticated decoding of mental states depends on time-consuming offline data analysis. The present paper addresses this limitation directly by leveraging a set of improvements to the analytical pipeline to pave the way for the next generation of online BCIs. Specifically, we introduce an open-source research framework that features a modular and customizable hardware-independent design. This framework facilitates human-in-the-loop (HIL) model training and retraining, real-time stimulus control, and enables transfer learning and cloud computing for the online classification of electroencephalography (EEG) data. Stimuli for the subject and diagnostics for the researcher are shown on separate displays using web browser technologies. Messages are sent using the Lab Streaming Layer standard and websockets. Real-time signal processing and classification, as well as training of machine learning models, is facilitated by the open-source Python package Timeflux. The framework runs on Linux, MacOS, and Windows. While online analysis is the main target of the BCI-HIL framework, offline analysis of the EEG data can be performed with Python, MATLAB, and Julia through packages like MNE, EEGLAB, or FieldTrip. The paper describes and discusses desirable properties of a human-in-the-loop BCI research platform. The BCI-HIL framework is released under MIT license with examples at: bci.lu.se/bci-hil (or at: github.com/bci-hil/bci-hil). Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in several applied areas, ranging from medical applications to entertainment industry, and creates new conditions for basic research in cognitive neuroscience. The BCIs of today, however, offer only crude online classification of the user's current state of mind, and more sophisticated decoding of mental states depends on time-consuming offline data analysis. The present paper addresses this limitation directly by leveraging a set of improvements to the analytical pipeline to pave the way for the next generation of online BCIs. Specifically, we introduce an open-source research framework that features a modular and customizable hardware-independent design. This framework facilitates human-in-the-loop (HIL) model training and retraining, real-time stimulus control, and enables transfer learning and cloud computing for the online classification of electroencephalography (EEG) data. Stimuli for the subject and diagnostics for the researcher are shown on separate displays using web browser technologies. Messages are sent using the Lab Streaming Layer standard and websockets. Real-time signal processing and classification, as well as training of machine learning models, is facilitated by the open-source Python package Timeflux. The framework runs on Linux, MacOS, and Windows. While online analysis is the main target of the BCI-HIL framework, offline analysis of the EEG data can be performed with Python, MATLAB, and Julia through packages like MNE, EEGLAB, or FieldTrip. The paper describes and discusses desirable properties of a human-in-the-loop BCI research platform. The BCI-HIL framework is released under MIT license with examples at: bci.lu.se/bci-hil (or at: github.com/bci-hil/bci-hil). Brain computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in several applied areas, ranging from medical applications to entertainment industry, and creates entirely new conditions for basic research in cognitive neuroscience. The BCIs of today, however, offer only crude online classification of the user’s current state of mind, and more sophisticated decoding of mental states depends on time-consuming offline data analysis. The present paper addresses this limitation directly by leveraging a set of improvements to the analytical pipeline to pave the way for the next generation of online BCIs. Specifically, we present an open-source framework with a modular and customizable hardware-independent design, comprising a human-in-the-loop (HIL) model training and retraining, real-time stimulus control, transfer learning, and cloud computing to enable a distributed BCI-HIL research framework for online classification of electroencephalography (EEG) data. Stimuli for the subject and diagnostics for the researcher are shown on separate displays using web browser technologies. Messages are sent using the Lab Streaming Layer standard and websockets. Real-time signal processing and classification, as well as training of machine learning models, is facilitated by the open-source Python package Timeflux. The framework runs on Linux, MacOS, and Windows. While online analysis is the main target of the BCI-HIL framework, offline analysis of the EEG data can be performed with Python, MATLAB, and Julia through packages like MNE, EEGLAB, or FieldTrip. The paper describes and discusses desirable properties of a human-in-the-loop BCI research platform. The BCI-HIL framework is released under MIT license with examples at bci.lu.se/bci-hil Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in several applied areas, ranging from medical applications to entertainment industry, and creates new conditions for basic research in cognitive neuroscience. The BCIs of today, however, offer only crude online classification of the user's current state of mind, and more sophisticated decoding of mental states depends on time-consuming offline data analysis. The present paper addresses this limitation directly by leveraging a set of improvements to the analytical pipeline to pave the way for the next generation of online BCIs. Specifically, we introduce an open-source research framework that features a modular and customizable hardware-independent design. This framework facilitates human-in-the-loop (HIL) model training and retraining, real-time stimulus control, and enables transfer learning and cloud computing for the online classification of electroencephalography (EEG) data. Stimuli for the subject and diagnostics for the researcher are shown on separate displays using web browser technologies. Messages are sent using the Lab Streaming Layer standard and websockets. Real-time signal processing and classification, as well as training of machine learning models, is facilitated by the open-source Python package Timeflux. The framework runs on Linux, MacOS, and Windows. While online analysis is the main target of the BCI-HIL framework, offline analysis of the EEG data can be performed with Python, MATLAB, and Julia through packages like MNE, EEGLAB, or FieldTrip. The paper describes and discusses desirable properties of a human-in-the-loop BCI research platform. The BCI-HIL framework is released under MIT license with examples at: bci.lu.se/bci-hil (or at: github.com/bci-hil/bci-hil ). |
| Author | Gemborn Nilsson, Martin Tufvesson, Pex Heskebeck, Frida Johansson, Mikael |
| AuthorAffiliation | 1 Department of Automatic Control, Lund University , Lund , Sweden 3 Department of Psychology, Lund University , Lund , Sweden 2 Ericsson Research , Lund , Sweden |
| AuthorAffiliation_xml | – name: 2 Ericsson Research , Lund , Sweden – name: 3 Department of Psychology, Lund University , Lund , Sweden – name: 1 Department of Automatic Control, Lund University , Lund , Sweden |
| Author_xml | – sequence: 1 givenname: Martin surname: Gemborn Nilsson fullname: Gemborn Nilsson, Martin – sequence: 2 givenname: Pex surname: Tufvesson fullname: Tufvesson, Pex – sequence: 3 givenname: Frida surname: Heskebeck fullname: Heskebeck, Frida – sequence: 4 givenname: Mikael surname: Johansson fullname: Johansson, Mikael |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37441434$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v1DAUjFARbRf-AAcUiQuXLP6OwwWVVQuLKnGBs-U4z7teEnuxk1b8e7wfrbo9cLJlz5t5895cFmc-eCiKtxjNKZXNR-vX0zAniNA5xqShgrwoLrAQpOJY4LMn9_PiMqUNQoIIjl8V57RmDDPKLorvV74MW_BVClM0UGZG7Svnq3ENVR_CtvyyWJYREuho1qWNeoD7EH9_KgcY16Erte_KDpJb-dfFS6v7BG-O56z4dXP9c_Gtuv3xdbm4uq0Ml_VY0Vq2SFtCW0sw56SxpDPATY00kwQbiggRtqai4a1hkjJuLAHRGa2xRdzQWbE88HZBb9Q2ukHHvypop_YPIa6UjqMzPahG1rWQXCBmEQMmdcs4ZiSTEopNLTOXPnCle9hO7QnbNsRR9-rBu-onlUBlVO-MHl3wSXUcSZOnrAhmrWIghWoEA2Ub3OAWpNScZo3PB41cOkD26seYeU-kTn68W6tVuFMYUcplXu-s-HBkiOHPBGlUg0sG-l57CFNS2ZAkjNRoJ_b-GXSTF-vzPjKKNFwKxEVGvXva0mMvD7nIAHIAmBhSimAfIRipXfjUPnxqFz51DF8uks-KjBv3k8q2XP-_0n8DHt6H |
| CitedBy_id | crossref_primary_10_1016_j_ifacol_2023_10_1612 crossref_primary_10_1371_journal_pone_0327791 |
| Cites_doi | 10.1371/journal.pbio.2003787 10.1126/science.161.3843.784 10.1136/bmj.2.5055.1238-a 10.1126/science.929199 10.1111/j.1469-8986.2012.01471.x 10.1016/0013-4694(91)90163-X 10.1109/TBME.2007.897815 10.1088/1741-2552/aa620b 10.1088/1741-2552/aaf12e 10.3389/fnins.2013.00267 10.1007/BF01797193 10.1146/annurev.bb.02.060173.001105 10.1126/science.1948051 10.3390/s19050987 10.1088/1741-2560/1/2/001 10.15412/J.BCN.03070208 10.1109/TBME.2010.2047259 10.1093/jlb/lsaa051 10.1109/TBME.2009.2012869 10.1088/1741-2552/aae186 10.1016/s1388-2457(02)00057-3 10.1007/978-3-319-74295-3_8 10.1088/1741-2552/abca17 10.1109/EMBC48229.2022.9871064 10.3389/fpsyg.2011.00365 10.1016/j.jneumeth.2003.10.009 10.3389/fnins.2010.00179 10.1088/1741-2552/aa7526 10.1038/2031155a0 10.1162/pres.19.1.35 10.1016/j.ifacol.2023.10.1612 10.1155/2011/156869 10.1073/pnas.87.24.9868 10.3389/fpsyg.2012.00131 10.1109/MSMC.2019.2958200 10.5281/zenodo.3228861 10.1109/TBME.2004.827072 10.1016/0013-4694(88)90149-6 10.1088/1741-2560/10/5/056014 10.1007/978-0-387-87708-2 10.1038/s41592-019-0686-2 10.1016/j.bandl.2012.12.014 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Gemborn Nilsson, Tufvesson, Heskebeck and Johansson. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Gemborn Nilsson, Tufvesson, Heskebeck and Johansson. 2023 Gemborn Nilsson, Tufvesson, Heskebeck and Johansson |
| Copyright_xml | – notice: Copyright © 2023 Gemborn Nilsson, Tufvesson, Heskebeck and Johansson. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Gemborn Nilsson, Tufvesson, Heskebeck and Johansson. 2023 Gemborn Nilsson, Tufvesson, Heskebeck and Johansson |
| CorporateAuthor | Institutioner vid LTH Departments of Administrative, Economic and Social Sciences Institutionen för psykologi Departments at LTH Lunds universitets profilområden Faculty of Social Sciences Samhällsvetenskapliga fakulteten Profile areas and other strong research environments Lunds universitet LU profilområde: Naturlig och artificiell kognition Faculty of Engineering, LTH Lunds Tekniska Högskola Lund University LU Profile Area: Natural and Artificial Cognition Department of Psychology ELLIIT: the Linköping-Lund initiative on IT and mobile communication Lund University Profile areas Strategiska forskningsområden (SFO) Department of Automatic Control Institutionen för reglerteknik Strategic research areas (SRA) Samhällsvetenskapliga institutioner och centrumbildningar Profilområden och andra starka forskningsmiljöer |
| CorporateAuthor_xml | – name: ELLIIT: the Linköping-Lund initiative on IT and mobile communication – name: Strategiska forskningsområden (SFO) – name: Institutionen för psykologi – name: Department of Psychology – name: LU Profile Area: Natural and Artificial Cognition – name: Samhällsvetenskapliga institutioner och centrumbildningar – name: Strategic research areas (SRA) – name: Lunds Tekniska Högskola – name: Lunds universitet – name: Departments at LTH – name: Lunds universitets profilområden – name: Lund University Profile areas – name: Faculty of Engineering, LTH – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Institutionen för reglerteknik – name: LU profilområde: Naturlig och artificiell kognition – name: Profile areas and other strong research environments – name: Department of Automatic Control – name: Institutioner vid LTH – name: Samhällsvetenskapliga fakulteten – name: Faculty of Social Sciences – name: Departments of Administrative, Economic and Social Sciences |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC DOA |
| DOI | 10.3389/fnhum.2023.1129362 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5161 |
| ExternalDocumentID | oai_doaj_org_article_9877685604f04e48ab45142834231c78 oai_portal_research_lu_se_publications_d508c166_214b_4e86_964e_f9191be88a53 PMC10335802 37441434 10_3389_fnhum_2023_1129362 |
| Genre | Journal Article |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A IAO IEA IHR IHW IPNFZ IPY ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI Q9U 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| ID | FETCH-LOGICAL-c587t-378b0af23bf215529f2dce5c70a4821c30226f73695bc48345cf2e6dcaa1f05c3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001026312900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5161 |
| IngestDate | Fri Oct 03 12:46:09 EDT 2025 Tue Dec 02 03:10:46 EST 2025 Tue Nov 04 02:06:51 EST 2025 Sun Nov 09 10:16:37 EST 2025 Fri Jul 25 11:45:25 EDT 2025 Thu Jan 02 22:50:55 EST 2025 Sat Nov 29 04:01:41 EST 2025 Tue Nov 18 22:15:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | online real-time research framework EEG brain-computer interface |
| Language | English |
| License | Copyright © 2023 Gemborn Nilsson, Tufvesson, Heskebeck and Johansson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c587t-378b0af23bf215529f2dce5c70a4821c30226f73695bc48345cf2e6dcaa1f05c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Ines Chihi, University of Luxembourg, Luxembourg These authors have contributed equally to this work and share first authorship Reviewed by: Sheng-Fu Liang, National Cheng Kung University, Taiwan; Yaqi Chu, Chinese Academy of Sciences, China; Sergio José Rodríguez Méndez, Australian National University, Australia |
| OpenAccessLink | https://www.proquest.com/docview/2829586056?pq-origsite=%requestingapplication% |
| PMID | 37441434 |
| PQID | 2829586056 |
| PQPubID | 4424408 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9877685604f04e48ab45142834231c78 swepub_primary_oai_portal_research_lu_se_publications_d508c166_214b_4e86_964e_f9191be88a53 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10335802 proquest_miscellaneous_2838242703 proquest_journals_2829586056 pubmed_primary_37441434 crossref_primary_10_3389_fnhum_2023_1129362 crossref_citationtrail_10_3389_fnhum_2023_1129362 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-27 |
| PublicationDateYYYYMMDD | 2023-06-27 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in human neuroscience |
| PublicationTitleAlternate | Front Hum Neurosci |
| PublicationYear | 2023 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Perdikis (B29) 2020; 6 Wilson (B47) 2010; 57 Wolpaw (B48) 2002; 113 Delorme (B11) 2004; 134 Müller (B22) 2017; 14 Perdikis (B30) 2018; 16 B28 VanRullen (B43) 2011; 2 Roc (B35) 2021; 18 Abiri (B1) 2019; 16 Rousselet (B36) 2012; 3 Berger (B4) 1929 Teversham (B40) 2022 Tayeb (B39) 2018; 15 Belliveau (B3) 1991; 254 Rivet (B34) 2009; 56 Tufvesson (B42) 2023 Ciliberti (B7) 2017; 14 Clisson (B8) 2019 Renard (B33) 2010; 19 Nam (B24) 2018 Debener (B10) 2012; 49 Venthur (B44) 2010; 4 Jöbsis (B16) 1977; 198 Browne (B5) 1957; 2 Marzbani (B21) 2016; 7 Oostenveld (B27) 2011; 2011 Neuper (B25) 2010 B38 Koles (B17) 1991; 79 Luck (B20) 2014 Vidal (B45) 1973; 2 Barachant (B2) 2019 Jiang (B15) 2019; 19 Gramfort (B14) 2013; 7 Virtanen (B46) 2020; 17 Chapman (B6) 1964; 203 Farwell (B13) 1988; 70 Muller-Putz (B23) 2008; 55 Tierney (B41) 2013; 124 Cohen (B9) 1968; 161 Schalk (B37) 2004; 51 Leuthardt (B19) 2004; 1 Przegalinska (B31) 2018 Ermentrout (B12) 2010 Kothe (B18) 2013; 10 Ogawa (B26) 1990; 87 Rainey (B32) 2020 |
| References_xml | – volume: 16 start-page: 1 year: 2018 ident: B30 article-title: The cybathlon BCI race: successful longitudinal mutual learning with two tetraplegic users publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2003787 – volume: 161 start-page: 784 year: 1968 ident: B9 article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents publication-title: Science doi: 10.1126/science.161.3843.784 – volume: 2 start-page: 1238 year: 1957 ident: B5 article-title: Preparation of skin for electrocardiography publication-title: Br. Med. J. doi: 10.1136/bmj.2.5055.1238-a – volume: 198 start-page: 1264 year: 1977 ident: B16 article-title: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters publication-title: Science doi: 10.1126/science.929199 – volume: 49 start-page: 1617 year: 2012 ident: B10 article-title: How about taking a low-cost, small, and wireless EEG for a walk? publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2012.01471.x – volume: 79 start-page: 440 year: 1991 ident: B17 article-title: The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG publication-title: Electroencephal. Clin. Neurophysiol. doi: 10.1016/0013-4694(91)90163-X – volume: 55 start-page: 361 year: 2008 ident: B23 article-title: Control of an electrical prosthesis with an SSVEP-based BCI publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.897815 – volume: 14 start-page: e036005 year: 2017 ident: B22 article-title: A mathematical model for the two-learners problem publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa620b – volume: 16 start-page: e011001 year: 2019 ident: B1 article-title: A comprehensive review of EEG-based brain-computer interface paradigms publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf12e – volume: 7 start-page: 1 year: 2013 ident: B14 article-title: MEG and EEG data analysis with MNE-Python publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00267 – year: 1929 ident: B4 article-title: Über das Elektrenkephalogramm des Menschen publication-title: Archiv für Psychiatrie und Nervenkrankheiten doi: 10.1007/BF01797193 – volume: 2 start-page: 157 year: 1973 ident: B45 article-title: Toward direct brain-computer communication publication-title: Ann. Rev. Biophys. Bioeng. doi: 10.1146/annurev.bb.02.060173.001105 – volume: 254 start-page: 716 year: 1991 ident: B3 article-title: Functional mapping of the human visual cortex by magnetic resonance imaging publication-title: Science doi: 10.1126/science.1948051 – volume: 19 start-page: 50987 year: 2019 ident: B15 article-title: Removal of artifacts from EEG signals: a review publication-title: Sensors doi: 10.3390/s19050987 – volume: 1 start-page: 63 year: 2004 ident: B19 article-title: A brain–computer interface using electrocorticographic signals in humans publication-title: J. Neural Eng. doi: 10.1088/1741-2560/1/2/001 – volume: 7 start-page: 3070208 year: 2016 ident: B21 article-title: Methodological note: neurofeedback: a comprehensive review on system design, methodology and clinical applications publication-title: Basic Clin. Neurosci. J. doi: 10.15412/J.BCN.03070208 – volume: 57 start-page: 1785 year: 2010 ident: B47 article-title: A procedure for measuring latencies in brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2047259 – year: 2020 ident: B32 article-title: Is the european data protection regulation sufficient to deal with emerging data concerns relating to neurotechnology? publication-title: J. Law biosci. doi: 10.1093/jlb/lsaa051 – volume: 56 start-page: 2035 year: 2009 ident: B34 article-title: xDAWN algorithm to enhance evoked potentials: application to brain-computer interface publication-title: IEEE Trans. Bio-med. Eng. doi: 10.1109/TBME.2009.2012869 – volume: 15 start-page: e065003 year: 2018 ident: B39 article-title: Gumpy: a python toolbox suitable for hybrid brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aae186 – volume: 113 start-page: 767 year: 2002 ident: B48 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/s1388-2457(02)00057-3 – start-page: 93 year: 2018 ident: B31 article-title: “Muse headband: Measuring tool or a collaborative gadget,” publication-title: Collaborative Innovation Networks: Building Adaptive and Resilient Organizations doi: 10.1007/978-3-319-74295-3_8 – volume: 18 start-page: e011002 year: 2021 ident: B35 article-title: A review of user training methods in brain computer interfaces based on mental tasks publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abca17 – start-page: 208 year: 2022 ident: B40 doi: 10.1109/EMBC48229.2022.9871064 – volume: 2 start-page: 365 year: 2011 ident: B43 article-title: Four common conceptual fallacies in mapping the time course of recognition publication-title: Front. Psychol. doi: 10.3389/fpsyg.2011.00365 – volume: 134 start-page: 9 year: 2004 ident: B11 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – start-page: 12 year: 2018 ident: B24 publication-title: Brain–Computer Interfaces Handbook: Technological and Theoretical Advances – volume: 4 start-page: 179 year: 2010 ident: B44 article-title: PYFF—a Pythonic framework for feedback applications and stimulus presentation in neuroscience publication-title: Front. Neurosci. doi: 10.3389/fnins.2010.00179 – ident: B28 – volume: 14 start-page: e045004 year: 2017 ident: B7 article-title: Falcon: a highly flexible open-source software for closed-loop neuroscience publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa7526 – volume: 203 start-page: 1155 year: 1964 ident: B6 article-title: Evoked responses to numerical and non-numerical visual stimuli while problem solving publication-title: Nature doi: 10.1038/2031155a0 – volume: 19 start-page: 35 year: 2010 ident: B33 article-title: OpenViBE: an open-source software platform to design, test and use brain-computer interfaces in real and virtual environments publication-title: Presence Teleoperat. Virt. Environ. doi: 10.1162/pres.19.1.35 – year: 2023 ident: B42 article-title: “Real-time bayesian control of reactive brain computer interfaces,” publication-title: IFAC Proceedings Volumes (IFAC-PapersOnline) doi: 10.1016/j.ifacol.2023.10.1612 – start-page: 65 year: 2010 ident: B25 publication-title: Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction – volume: 2011 start-page: 156869 year: 2011 ident: B27 article-title: FieldTrip: open source software for advanced analysis of meg, eeg, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/156869 – start-page: 88 year: 2019 ident: B8 – volume: 87 start-page: 9868 year: 1990 ident: B26 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.87.24.9868 – volume: 3 start-page: 131 year: 2012 ident: B36 article-title: Does filtering preclude us from studying ERP time-courses? publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00131 – volume: 6 start-page: 12 year: 2020 ident: B29 article-title: Brain-machine interfaces: a tale of two learners publication-title: IEEE Syst. Man Cybernet. Magazine doi: 10.1109/MSMC.2019.2958200 – year: 2014 ident: B20 publication-title: An Introduction to the Event-Related Potential Technique, 2nd Edn – year: 2019 ident: B2 article-title: muse-lsl, v2.0.2 publication-title: Zenodo doi: 10.5281/zenodo.3228861 – volume: 51 start-page: 1034 year: 2004 ident: B37 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827072 – volume: 70 start-page: 510 year: 1988 ident: B13 article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephal. Clin. Neurophysiol. doi: 10.1016/0013-4694(88)90149-6 – volume: 10 start-page: e056014 year: 2013 ident: B18 article-title: BCILAB: a platform for brain–computer interface development publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/5/056014 – year: 2010 ident: B12 publication-title: Mathematical Foundations of Neuroscience doi: 10.1007/978-0-387-87708-2 – volume: 17 start-page: 261 year: 2020 ident: B46 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 124 start-page: 225 year: 2013 ident: B41 article-title: The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills publication-title: Brain Lang. doi: 10.1016/j.bandl.2012.12.014 – ident: B38 |
| SSID | ssj0062651 |
| Score | 2.3955157 |
| Snippet | Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in... Brain computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in... |
| SourceID | doaj swepub pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1129362 |
| SubjectTerms | Algorithms Brain research brain-computer interface Classification Cognitive ability Control Engineering Data processing EEG Electrical Engineering, Electronic Engineering, Information Engineering Electroencephalography Elektroteknik och elektronik Engineering and Technology Experiments Human Neuroscience Machine learning Medical imaging Nervous system Neural networks Neuroimaging Neurosciences online Paradigms real-time Reglerteknik research framework Signal processing Software Stimulus control Teknik Transfer learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yePAi6vrodZUI4kWa7Tw78Ta7uKiHxYPC4iUkmYQZGDPDzozgv7eSdA_bKHrx2qlAulJJfZVUvkLotcybnvS61SrYFoyCtnZOQ2sV6azzhInoS7GJ_upKXV_rz7dKfeWcsEoPXBV3BjExIGLwyzx2PHBlHReFJQxwAPF9eebb9XoMpuoeDChdkPpEBkIwfRbTYp-fnVOWn8xoJunEDRW2_j9BzN8zJSd8osUHXT5A9wfwiGd10A_RnZAeoeNZgsD5-0_8Bpd0znJOfow-zRLOpbHaejyPSzG-dplaQHztar3e4POLj3jg-lngOCZpvcO1qDS2aY7nJb_jMfp6-f7LxYd2KJzQeqH6HWwaynU2UuYizRRrOlL4A-H7znJFiWfguGXsmdTC-XyaKHykQc69tSR2wrMn6CitU3iGMNGWZxI674TjOhIQEI7SQGyUrgu6QWTUo_EDq3gubrEyEF1k3Zuie5N1bwbdN-jtoc-mcmr8Vfo8T89BMvNhlw9gJWawEvMvK2nQ6Ti5ZlikW5MvkYWCeE426NWhGZZXvjOxKaz3WYYpQDGwLzboabWFw0hYD1iSM94gNbGSyVCnLWm5KBTepGP5_hl-7ls1qGmfEnmZ0QTMam-2wWxuneOaOQBrT6Q0lHBneFDSaMmDiRoCcBeUsoKd_A_NPUf38mzk7Djan6Kj3c0-vEB3_Y_dcnvzsqy6X5V8L0E priority: 102 providerName: Directory of Open Access Journals |
| Title | An open-source human-in-the-loop BCI research framework: method and design |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37441434 https://www.proquest.com/docview/2829586056 https://www.proquest.com/docview/2838242703 https://pubmed.ncbi.nlm.nih.gov/PMC10335802 https://doaj.org/article/9877685604f04e48ab45142834231c78 |
| Volume | 17 |
| WOSCitedRecordID | wos001026312900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: PIMPY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZolwMXXuWRUlZGQlxQ1PgZmwvarVpRpK5WCKSFi-U4dnelJdnuA4l_j-0kCxGoFy4-JI5kZ8bjb8bjbwB4zYPR40amUlideqXAqS6xTbVAmS4MIsyZWGwin0zEbCanbcBt06ZVdjYxGuqyNiFGfhpO_Jjw4Ju_X92koWpUOF1tS2gcgIFHNiikdF3haWeJPVZnqLko4x0xeeqq-S5cPsckXJyRhOPeZhQ5-_8FNP_Ol-yxisad6OLB_87hIbjfYlA4apTmEbhjq8fgaFR5__v7T_gGxqzQGG4_Ah9HFQwVttImyg9jTb90UaUeOKbLul7B8dklbCmD5tB1uV7vYFObGuqqhGVME3kCvlycfz77kLb1F1LDRL71tkcUmXaYFA4HpjbpsP8FzOSZpgIjQ_z-z11OuGSFCUFJZhy2vDRaI5cxQ56Cw6qu7HMAkdQ0cNmZghVUOuQ7sAJji7TjRWZlAlAnCGVacvJQI2OpvJMShKei8FQQnmqFl4C3-29WDTXHrb3HQb77noFWOz6o19eqXaVKity7Xx4EUpdRS4UuKIuUdB50IpOLBJx0glXtWt-o31JNwKv9a79Kw9GLrmy9C32I8GDIm9cEPGuUaT8SkntISglNgOipWW-o_TfVYh6ZwFFGwjG2n9y3RiP730QHTnUqoJY7tbFq9Uc4WJUenxvEucKIFopawZXk1ConvR9fWCE0I8e3T_oFuBf-c0ifw_kJONyud_YluGt-bBeb9RAc5DMxBIPx-WT6aRgjHsO4SEOb-3Ywvbyafv0FMwBF7w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQYINr_IIFDASsEFR42dsJISmhapDy6iLIlVsjOPYzEhDMswD1J_iG7GdZCACddcF28SJYuf4-l7f63MAeMaD0eNGplJYnXpQ4FSX2KZaoEwXBhHmTBSbyEcjcXoqjzfAz-4sTCir7GxiNNRlbcIe-U7I-DHhnW_-ZvYtDapRIbvaSWg0sDi0Zz98yLZ4PXzr_-9zjPffnewdpK2qQGqYyJd-Roki0w6TwuHAPyYdLo1lJs80FRgZ4lc17nLCJStM2GpjxmHLS6M1chkzxL_3ErhMA7NYKBXEx53l97EBQ83BHB_4yR1XjVfhsDsm4aCOJBz3Fr-oEfAvx_bv-swei2lc-fZv_G9jdhNcb31sOGgmxS2wYavbYGtQ6WX99Qy-gLHqNaYTtsD7QQWDgljaZDFg1CxMJ1XqHeN0WtczuLs3hC0l0hi6rpbtFWy0t6GuSljGMpg74OOF9Oou2Kzqyt4HEElNA1efKVhBpUO-ASswtkg7XmRWJgB1P16Zlnw9aIBMlQ_CAlhUBIsKYFEtWBLwcv3MrKEeObf1bsDTumWgDY8X6vkX1VohJUXuw0vv5FKXUUuFLiiLlHveqUYmFwnY7oCkWlu2UL9RlICn69veCoXUkq5svQptiPDOnl8-EnCvAe_6S0juXW5KaAJED9a9T-3fqSbjyHSOMhLS9L5zn5oZ0H8mBqiqg4CartTCqtkf292q9PGHQZwrjGihqBVcSU6tchJJVFghNCMPzu_0E3D14OTDkToajg4fgmthzEOpIM63weZyvrKPwBXzfTlZzB9HYwDB54ueSb8AqnGcSg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLaGDkJc2IYlMICRgAuKGm-JjYRQZ4aKMlD1ANLAxTiOTSuVpHQBzV_j12E7SSECzW0OXBMnip3vbX7P7wPgceqVXqpFLLhRsQMFjlWBTaw4SlSuEWFWB7KJbDzmJydisgN-tmdhfFllqxODoi4q7ffI-z7jx7hzvtO-bcoiJkfDl4tvsWeQ8pnWlk6jhsixOf3hwrfVi9GR-9dPMB6-en_4Om4YBmLNeLZ20sXzRFlMcot9LzJhcaEN01miKMdIE2fhUpuRVLBc-203pi02aaGVQjZhmrj3XgC7ziWnuAd2J6N3k4-tHXCRAkP1MR0XBoq-Lacbf_QdE39sR5AUd0xhYAz4l5v7d7Vmp6dpsIPDq__zCl4DVxrvGw5qcbkOdkx5A-wNSrWuvp7CpzDUw4ZEwx54Myih5xaL6_wGDGyG8ayMncscz6tqAQ8OR7BpljSFtq1yew5rVm6oygIWoUDmJvhwLrO6BXplVZo7ACKhqO_ip3OWU2GRG8ByjA1SNs0TIyKAWhBI3bRl9-wgc-nCMw8cGYAjPXBkA5wIPNs-s6ibkpw5-sBjazvSNxQPF6rlF9noJyl45gJP5_5Sm1BDucopC834nLuNdMYjsN-CSjZabiV_IyoCj7a3nX7ySSdVmmrjxxDu3EBnWCJwuwby9ktI5pxxSmgEeAfinU_t3iln09ADHSXEJ_Dd5D7V0tB9JoSusoWAnG_kysjFHxvhsnCRiUZpKjGiuaSGp1Kk1EgrkEC54VwxcvfsST8El5wAybej8fE9cNkvua8hxNk-6K2XG3MfXNTf17PV8kGjGSD4fN6i9Aug0aaT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+open-source+human-in-the-loop+BCI+research+framework%3A+method+and+design&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Gemborn+Nilsson%2C+Martin&rft.au=Tufvesson%2C+Pex&rft.au=Heskebeck%2C+Frida&rft.au=Johansson%2C+Mikael&rft.date=2023-06-27&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5161&rft_id=info:doi/10.3389%2Ffnhum.2023.1129362&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |