Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions

1. Climate change-driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and stimulation of nutrient availability. However, the extent to which shrubs may benefit from these conditions may be strongly dependent on the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of ecology Jg. 106; H. 2; S. 599 - 612
Hauptverfasser: Krab, Eveline J., Roennefarth, Jonas, Becher, Marina, Keuper, Frida, Klaminder, Jonatan, Blume-Werry, Gesche, Kreyling, Juergen, Makoto, Kobayashi, Milbau, Ann, Dorrepaal, Ellen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford John Wiley & Sons Ltd 01.03.2018
Blackwell Publishing Ltd
Wiley
Schlagworte:
ISSN:0022-0477, 1365-2745, 1365-2745
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract 1. Climate change-driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and stimulation of nutrient availability. However, the extent to which shrubs may benefit from these conditions may be strongly dependent on the following spring climate. Species-specific differences in phenology and spring frost sensitivity likely affect shrub growth responses to warming. Additionally, effects of changes in winter and spring climate may differ over small spatial scales, as shrub growth may be dependent on natural variation in snow cover, shrub density and cryoturbation. 2. We investigated the effects of winter warming and altered spring climate on growing-season performance of three common and widespread shrub species in cryoturbated non-sorted circle arctic tundra. By insulating sparsely vegetated non-sorted circles and parts of the surrounding heath with additional snow or gardening fleeces, we created two climate change scenarios: snow addition increased soil temperatures in autumn and winter and delayed snowmelt timing without increasing spring temperatures, whereas fleeces increased soil temperature similarly in autumn and winter, but created warmer spring conditions without altering snowmelt timing. 3. Winter warming affected shrub performance, but the direction and magnitude were species-specific and dependent on spring conditions. Spring warming advanced, and later snowmelt delayed canopy green-up. The fleece treatment did not affect shoot growth and biomass in any shrub species despite decreasing leaf frost damage in Empetrum nigrum. Snow addition decreased frost damage and stimulated growth of Vaccinium vitis-idaea by c. 50%, while decreasing Betula nana growth (p < .1). All of these effects were consistent the mostly barren circles and surrounding heath. 4. Synthesis. In cryoturbated arctic tundra, growth of Vaccinium vitis-idaea may substantially increase when a thicker snow cover delays snowmelt, whereas in longer term, warmer winters and springs may favour E. nigrum instead. This may affect shrub community composition and cover, with potentially far-reaching effects on arctic ecosystem functioning via its effects on cryoturbation, carbon cycling and trophic cascading. Our results highlight the importance of disentangling effects of winter and spring climate change timing and nature, as spring conditions are a crucial factor in determining the impact of winter warming on plant performance.
AbstractList Climate change-driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and stimulation of nutrient availability. However, the extent to which shrubs may benefit from these conditions may be strongly dependent on the following spring climate. Species-specific differences in phenology and spring frost sensitivity likely affect shrub growth responses to warming. Additionally, effects of changes in winter and spring climate may differ over small spatial scales, as shrub growth may be dependent on natural variation in snow cover, shrub density and cryoturbation. We investigated the effects of winter warming and altered spring climate on growing-season performance of three common and widespread shrub species in cryoturbated non-sorted circle arctic tundra. By insulating sparsely vegetated non-sorted circles and parts of the surrounding heath with additional snow or gardening fleeces, we created two climate change scenarios: snow addition increased soil temperatures in autumn and winter and delayed snowmelt timing without increasing spring temperatures, whereas fleeces increased soil temperature similarly in autumn and winter, but created warmer spring conditions without altering snowmelt timing. Winter warming affected shrub performance, but the direction and magnitude were species-specific and dependent on spring conditions. Spring warming advanced, and later snowmelt delayed canopy green-up. The fleece treatment did not affect shoot growth and biomass in any shrub species despite decreasing leaf frost damage in Empetrum nigrum. Snow addition decreased frost damage and stimulated growth of Vaccinium vitis-idaea by c. 50%, while decreasing Betula nana growth (p &lt; .1). All of these effects were consistent the mostly barren circles and surrounding heath. Synthesis. In cryoturbated arctic tundra, growth of Vaccinium vitis-idaea may substantially increase when a thicker snow cover delays snowmelt, whereas in longer term, warmer winters and springs may favour E. nigrum instead. This may affect shrub community composition and cover, with potentially far-reaching effects on arctic ecosystem functioning via its effects on cryoturbation, carbon cycling and trophic cascading. Our results highlight the importance of disentangling effects of winter and spring climate change timing and nature, as spring conditions are a crucial factor in determining the impact of winter warming on plant performance.
Climate change-driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and stimulation of nutrient availability. However, the extent to which shrubs may benefit from these conditions may be strongly dependent on the following spring climate. Species-specific differences in phenology and spring frost sensitivity likely affect shrub growth responses to warming. Additionally, effects of changes in winter and spring climate may differ over small spatial scales, as shrub growth may be dependent on natural variation in snow cover, shrub density and cryoturbation. We investigated the effects of winter warming and altered spring climate on growing-season performance of three common and widespread shrub species in cryoturbated non-sorted circle arctic tundra. By insulating sparsely vegetated non-sorted circles and parts of the surrounding heath with additional snow or gardening fleeces, we created two climate change scenarios: snow addition increased soil temperatures in autumn and winter and delayed snowmelt timing without increasing spring temperatures, whereas fleeces increased soil temperature similarly in autumn and winter, but created warmer spring conditions without altering snowmelt timing. Winter warming affected shrub performance, but the direction and magnitude were species-specific and dependent on spring conditions. Spring warming advanced, and later snowmelt delayed canopy green-up. The fleece treatment did not affect shoot growth and biomass in any shrub species despite decreasing leaf frost damage in Empetrum nigrum. Snow addition decreased frost damage and stimulated growth of Vaccinium vitis-idaea by c. 50%, while decreasing Betula nana growth (p < .1). All of these effects were consistent the mostly barren circles and surrounding heath. Synthesis. In cryoturbated arctic tundra, growth of Vaccinium vitis-idaea may substantially increase when a thicker snow cover delays snowmelt, whereas in longer term, warmer winters and springs may favour E. nigrum instead. This may affect shrub community composition and cover, with potentially far-reaching effects on arctic ecosystem functioning via its effects on cryoturbation, carbon cycling and trophic cascading. Our results highlight the importance of disentangling effects of winter and spring climate change timing and nature, as spring conditions are a crucial factor in determining the impact of winter warming on plant performance.
Climate change‐driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and stimulation of nutrient availability. However, the extent to which shrubs may benefit from these conditions may be strongly dependent on the following spring climate. Species‐specific differences in phenology and spring frost sensitivity likely affect shrub growth responses to warming. Additionally, effects of changes in winter and spring climate may differ over small spatial scales, as shrub growth may be dependent on natural variation in snow cover, shrub density and cryoturbation. We investigated the effects of winter warming and altered spring climate on growing‐season performance of three common and widespread shrub species in cryoturbated non‐sorted circle arctic tundra. By insulating sparsely vegetated non‐sorted circles and parts of the surrounding heath with additional snow or gardening fleeces, we created two climate change scenarios: snow addition increased soil temperatures in autumn and winter and delayed snowmelt timing without increasing spring temperatures, whereas fleeces increased soil temperature similarly in autumn and winter, but created warmer spring conditions without altering snowmelt timing. Winter warming affected shrub performance, but the direction and magnitude were species‐specific and dependent on spring conditions. Spring warming advanced, and later snowmelt delayed canopy green‐up. The fleece treatment did not affect shoot growth and biomass in any shrub species despite decreasing leaf frost damage in Empetrum nigrum . Snow addition decreased frost damage and stimulated growth of Vaccinium vitis‐idaea by c . 50%, while decreasing Betula nana growth ( p  < .1). All of these effects were consistent the mostly barren circles and surrounding heath. Synthesis . In cryoturbated arctic tundra, growth of Vaccinium vitis‐idaea may substantially increase when a thicker snow cover delays snowmelt, whereas in longer term, warmer winters and springs may favour E. nigrum instead. This may affect shrub community composition and cover, with potentially far‐reaching effects on arctic ecosystem functioning via its effects on cryoturbation, carbon cycling and trophic cascading. Our results highlight the importance of disentangling effects of winter and spring climate change timing and nature, as spring conditions are a crucial factor in determining the impact of winter warming on plant performance.
Climate change‐driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and stimulation of nutrient availability. However, the extent to which shrubs may benefit from these conditions may be strongly dependent on the following spring climate. Species‐specific differences in phenology and spring frost sensitivity likely affect shrub growth responses to warming. Additionally, effects of changes in winter and spring climate may differ over small spatial scales, as shrub growth may be dependent on natural variation in snow cover, shrub density and cryoturbation. We investigated the effects of winter warming and altered spring climate on growing‐season performance of three common and widespread shrub species in cryoturbated non‐sorted circle arctic tundra. By insulating sparsely vegetated non‐sorted circles and parts of the surrounding heath with additional snow or gardening fleeces, we created two climate change scenarios: snow addition increased soil temperatures in autumn and winter and delayed snowmelt timing without increasing spring temperatures, whereas fleeces increased soil temperature similarly in autumn and winter, but created warmer spring conditions without altering snowmelt timing. Winter warming affected shrub performance, but the direction and magnitude were species‐specific and dependent on spring conditions. Spring warming advanced, and later snowmelt delayed canopy green‐up. The fleece treatment did not affect shoot growth and biomass in any shrub species despite decreasing leaf frost damage in Empetrum nigrum. Snow addition decreased frost damage and stimulated growth of Vaccinium vitis‐idaea by c. 50%, while decreasing Betula nana growth (p < .1). All of these effects were consistent the mostly barren circles and surrounding heath. Synthesis. In cryoturbated arctic tundra, growth of Vaccinium vitis‐idaea may substantially increase when a thicker snow cover delays snowmelt, whereas in longer term, warmer winters and springs may favour E. nigrum instead. This may affect shrub community composition and cover, with potentially far‐reaching effects on arctic ecosystem functioning via its effects on cryoturbation, carbon cycling and trophic cascading. Our results highlight the importance of disentangling effects of winter and spring climate change timing and nature, as spring conditions are a crucial factor in determining the impact of winter warming on plant performance. In cryoturbated arctic tundra, growth of Vaccinium vitis‐idaea may substantially increase when a thicker snow cover delays snowmelt, whereas in longer term, warmer winters and springs may favour Empetrum nigrum instead. This may affect shrub community composition and cover, with potentially far‐reaching effects on arctic ecosystem functioning via its effects on cryoturbation, carbon cycling and trophic cascading. Our results highlight the importance of disentangling effects of winter and spring climate change timing and nature, as spring conditions are a crucial factor in determining the impact of winter warming on plant performance.
1. Climate change-driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and stimulation of nutrient availability. However, the extent to which shrubs may benefit from these conditions may be strongly dependent on the following spring climate. Species-specific differences in phenology and spring frost sensitivity likely affect shrub growth responses to warming. Additionally, effects of changes in winter and spring climate may differ over small spatial scales, as shrub growth may be dependent on natural variation in snow cover, shrub density and cryoturbation. 2. We investigated the effects of winter warming and altered spring climate on growing-season performance of three common and widespread shrub species in cryoturbated non-sorted circle arctic tundra. By insulating sparsely vegetated non-sorted circles and parts of the surrounding heath with additional snow or gardening fleeces, we created two climate change scenarios: snow addition increased soil temperatures in autumn and winter and delayed snowmelt timing without increasing spring temperatures, whereas fleeces increased soil temperature similarly in autumn and winter, but created warmer spring conditions without altering snowmelt timing. 3. Winter warming affected shrub performance, but the direction and magnitude were species-specific and dependent on spring conditions. Spring warming advanced, and later snowmelt delayed canopy green-up. The fleece treatment did not affect shoot growth and biomass in any shrub species despite decreasing leaf frost damage in Empetrum nigrum. Snow addition decreased frost damage and stimulated growth of Vaccinium vitis-idaea by c. 50%, while decreasing Betula nana growth (p < .1). All of these effects were consistent the mostly barren circles and surrounding heath. 4. Synthesis. In cryoturbated arctic tundra, growth of Vaccinium vitis-idaea may substantially increase when a thicker snow cover delays snowmelt, whereas in longer term, warmer winters and springs may favour E. nigrum instead. This may affect shrub community composition and cover, with potentially far-reaching effects on arctic ecosystem functioning via its effects on cryoturbation, carbon cycling and trophic cascading. Our results highlight the importance of disentangling effects of winter and spring climate change timing and nature, as spring conditions are a crucial factor in determining the impact of winter warming on plant performance.
Author Krab, Eveline J.
Roennefarth, Jonas
Dorrepaal, Ellen
Keuper, Frida
Kreyling, Juergen
Becher, Marina
Klaminder, Jonatan
Milbau, Ann
Blume-Werry, Gesche
Makoto, Kobayashi
Author_xml – sequence: 1
  givenname: Eveline J.
  surname: Krab
  fullname: Krab, Eveline J.
– sequence: 2
  givenname: Jonas
  surname: Roennefarth
  fullname: Roennefarth, Jonas
– sequence: 3
  givenname: Marina
  surname: Becher
  fullname: Becher, Marina
– sequence: 4
  givenname: Frida
  surname: Keuper
  fullname: Keuper, Frida
– sequence: 5
  givenname: Jonatan
  surname: Klaminder
  fullname: Klaminder, Jonatan
– sequence: 6
  givenname: Gesche
  surname: Blume-Werry
  fullname: Blume-Werry, Gesche
– sequence: 7
  givenname: Juergen
  surname: Kreyling
  fullname: Kreyling, Juergen
– sequence: 8
  givenname: Kobayashi
  surname: Makoto
  fullname: Makoto, Kobayashi
– sequence: 9
  givenname: Ann
  surname: Milbau
  fullname: Milbau, Ann
– sequence: 10
  givenname: Ellen
  surname: Dorrepaal
  fullname: Dorrepaal, Ellen
BackLink https://hal.inrae.fr/hal-02623639$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-145370$$DView record from Swedish Publication Index (Umeå universitet)
https://res.slu.se/id/publ/94281$$DView record from Swedish Publication Index (Sveriges lantbruksuniversitet)
BookMark eNqFkk1r3DAQhk1JoZu0554Kgl7agxN9WtZx2aRJy0Iv_TgKrT1KtNiSK9ld8u8rx81Cc2h0GRDP82rQzGlx4oOHonhL8DnJ54KwSpRUcnFOaC3pi2J1vDkpVhhTWmIu5aviNKU9xriSAq-K_U_nR4joYGLv_C0Ca6EZEwoejZNvo0HpLk47NEC0IfbGN4BMBJQGaByk8qFa1yDjW9TCAL4FP856GuIc2ATfutEFn14XL63pErz5W8-K75-uvm1uyu3X68-b9bZsRO67VLal3ArBGbE1ZSAFxbLFijPKVcWMBEqFqCprBHCiKiC1Ei1w2tSMUGPZWVEuuekAw7TTuY_exHsdjNOpm3YmzkUn0IrTmvyXv3Q_1jrEWz31kyZcMIkz_3Hh70z3D3yz3ur5DtOKsoqp33P2h4UdYvg1QRp171IDXWc8hClpigWrFVNKZPT9E3QfpujzT2UKEypyoszUxUI1MaQUwR47IFjPe6Dnqet56vphD7IhnhiNG808kTEa1z3vHVwH9889o79cbR69d4u3T2OIR48LTBWuJfsDVWDQAw
CitedBy_id crossref_primary_10_1080_17550874_2023_2286229
crossref_primary_10_1016_j_scitotenv_2024_170252
crossref_primary_10_1016_j_foreco_2024_122414
crossref_primary_10_1007_s00300_023_03164_2
crossref_primary_10_1016_j_agrformet_2021_108762
crossref_primary_10_1016_j_scitotenv_2023_168878
crossref_primary_10_1088_2752_5295_acc08b
crossref_primary_10_1038_s41598_022_22591_5
crossref_primary_10_1016_j_soilbio_2019_107569
crossref_primary_10_1007_s11104_021_05073_x
crossref_primary_10_1007_s00300_019_02543_y
crossref_primary_10_1038_s43247_025_02211_6
crossref_primary_10_3390_rs13234952
crossref_primary_10_1002_ecs2_3688
crossref_primary_10_1007_s00248_018_1213_1
crossref_primary_10_1139_as_2023_0030
crossref_primary_10_3390_rs10071155
crossref_primary_10_1111_gcb_15505
crossref_primary_10_1111_nph_70206
crossref_primary_10_1371_journal_pclm_0000570
crossref_primary_10_2989_10220119_2021_1913762
crossref_primary_10_1007_s10533_017_0385_y
crossref_primary_10_1111_1365_2745_12988
crossref_primary_10_1002_ajb2_1367
crossref_primary_10_1111_1365_2745_13459
crossref_primary_10_1111_jvs_12630
crossref_primary_10_1007_s00300_022_03074_9
crossref_primary_10_1007_s10584_025_03955_y
crossref_primary_10_4000_w6ly
crossref_primary_10_7717_peerj_6967
crossref_primary_10_1016_j_plaphy_2023_108223
Cites_doi 10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2
10.1007/s10021-015-9924-3
10.1111/j.1751-8369.2010.00152.x
10.1002/ppp.1808
10.1111/j.1469-8137.2004.01059.x
10.1111/j.1365-2486.2003.00718.x
10.1098/rsbl.2004.0262
10.1890/02-3154
10.1890/14-0338.1
10.1080/17550874.2011.558126
10.1111/j.1365-2435.2006.01076.x
10.1127/0340-269X/2005/0035-0761
10.1111/j.1365-2435.2009.01566.x
10.1111/1365-2435.12853
10.1890/06-2128.1
10.21273/JASHS.104.1.26
10.1088/1748-9326/7/1/015506
10.1093/aobpla/plw021
10.1093/treephys/11.3.241
10.1111/j.1365-2486.2009.01935.x
10.1038/17709
10.1890/ES11-00225.1
10.1111/j.1466-822X.2005.00168.x
10.1890/ES13-00133.1
10.1038/nclimate1465
10.1002/ppp.1778
10.1890/09-1160.1
10.1007/s11258-009-9653-9
10.2307/1940405
10.1111/j.1365-2745.2011.01925.x
10.1111/geb.12463
10.1007/s00300-012-1206-3
10.1007/s10584-009-9546-x
10.1111/gcb.13040
10.1029/2008GB003327
10.1111/j.0030-1299.2005.13264.x
10.1111/gcb.12624
10.1007/s10533-009-9303-2
10.1007/s10021-012-9540-4
10.1029/2007JG000504
10.1111/j.1654-1103.2012.01472.x
10.1007/s004420050005
10.1111/j.1365-2486.2008.01801.x
10.1111/j.1469-8137.1992.tb00064.x
10.1002/ecy.1817
10.1111/j.1365-3040.2004.01176.x
10.1002/jgrg.20016
10.1088/1748-9326/8/1/015035
10.1657/1523-0430(2003)035[0074:FSOTAA]2.0.CO;2
10.1111/j.1365-2486.2006.01193.x
10.1371/journal.pone.0086281
10.5194/bg-11-6573-2014
10.1111/1365-2745.12579
10.1657/1523-0430(06-029)[KADE]2.0.CO;2
10.1111/j.1365-2486.2005.01097.x
10.1017/CBO9780511564437
10.1007/s11258-005-9031-1
10.1016/j.soilbio.2003.09.008
10.1126/science.1058958
10.1016/j.plantsci.2010.09.005
10.1088/1748-9326/8/3/035025
10.1890/13-0652.1
10.1002/2015JG003251
10.1111/1365-2745.12482
10.1111/j.1365-2486.2010.02377.x
10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2
10.1007/s11434-012-5596-y
10.1890/14-0005.1
10.1111/j.1751-8369.2010.00153.x
10.1111/gcb.12568
10.3389/fpls.2014.00654
10.1126/science.1066860
10.1088/1748-9326/6/4/045509
10.1007/s00442-013-2872-8
10.1016/j.envexpbot.2015.06.007
10.1111/oik.02233
ContentType Journal Article
Copyright 2018 British Ecological Society
2017 The Authors. Journal of Ecology © 2017 British Ecological Society
Journal of Ecology © 2018 British Ecological Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 British Ecological Society
– notice: 2017 The Authors. Journal of Ecology © 2017 British Ecological Society
– notice: Journal of Ecology © 2018 British Ecological Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
1XC
ADTPV
AOWAS
D93
DOI 10.1111/1365-2745.12872
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Umeå universitet
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
Environmental Sciences
EISSN 1365-2745
EndPage 612
ExternalDocumentID oai_slubar_slu_se_94281
oai_DiVA_org_umu_145370
oai:HAL:hal-02623639v1
10_1111_1365_2745_12872
JEC12872
45029087
Genre article
GeographicLocations Arctic region
GeographicLocations_xml – name: Arctic region
GrantInformation_xml – fundername: VR
  funderid: 621‐2011‐5444
– fundername: Wallenberg Academy Fellowship
  funderid: 2012.0152
– fundername: Formas
  funderid: 214‐2011‐788
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
29K
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFXHP
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
YF5
YQT
YZZ
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
3-9
31~
42X
8WZ
A6W
AAHHS
ABEFU
ABTAH
ABYAD
ACCFJ
ACTWD
ACUBG
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
ESX
FVMVE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
MVM
WHG
WRC
XIH
YXE
ZCG
ZY4
AAYXX
ABAWQ
ABSQW
ABUFD
ACHJO
AGUYK
CITATION
O8X
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
1XC
ADTPV
AOWAS
D93
ID FETCH-LOGICAL-c5872-9fd24f55431f823e75207d094324963a7e225566fa5e4196e1895de42c8312af3
IEDL.DBID DRFUL
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425046300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0477
1365-2745
IngestDate Tue Nov 04 16:50:51 EST 2025
Tue Nov 04 16:52:29 EST 2025
Tue Oct 14 19:59:28 EDT 2025
Fri Jul 11 18:29:46 EDT 2025
Fri Jul 25 10:57:27 EDT 2025
Sat Nov 29 07:52:01 EST 2025
Tue Nov 18 22:13:43 EST 2025
Wed Jan 22 16:46:43 EST 2025
Thu Jul 03 21:54:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords winter climate change
snowmelt timing
plant phenology
Betula nana
snow cover
shrubs
Empetrum nigrum
Vaccinium vitis-idaea
spring climate
cryoturbation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5872-9fd24f55431f823e75207d094324963a7e225566fa5e4196e1895de42c8312af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0909-670X
0000-0001-8489-7289
0000-0001-8262-0198
0000-0003-3555-8883
0000-0001-8673-7991
0000-0002-0523-2471
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.12872
PQID 2001256397
PQPubID 37508
PageCount 14
ParticipantIDs swepub_primary_oai_slubar_slu_se_94281
swepub_primary_oai_DiVA_org_umu_145370
hal_primary_oai_HAL_hal_02623639v1
proquest_miscellaneous_2053893995
proquest_journals_2001256397
crossref_primary_10_1111_1365_2745_12872
crossref_citationtrail_10_1111_1365_2745_12872
wiley_primary_10_1111_1365_2745_12872_JEC12872
jstor_primary_45029087
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2018
Publisher John Wiley & Sons Ltd
Blackwell Publishing Ltd
Wiley
Publisher_xml – name: John Wiley & Sons Ltd
– name: Blackwell Publishing Ltd
– name: Wiley
References 1979; 104
2013; 4
2013; 24
2004; 27
1992; 122
2004; 162
2014; 25
2014; 24
2016; 104
1980; 90
2012; 15
1985; 66
2011; 17
2013; 8
1992; 11
2014; 175
2014; 20
2017; 31
2014; 5
2001; 294
2006; 20
2009; 95
2001; 293
2013; 58
2000; 124
2010; 29
2009; 94
2000; 13
2004; 36
2013; 118
2005; 109
2008; 113
1980
2014; 9
2003; 84
2014; 11
2009; 15
2001; 411
2005; 35
1989
2009; 23
2012; 100
2016; 19
2006; 12
2010; 207
2015; 96
2003; 35
2016; 121
2016; 125
2011; 4
2012; 35
2011; 6
2004; 10
2015; 25
2012; 2
2012; 3
2017; 98
2015; 21
2008; 89
2017
2005; 1
2011; 180
2015
1999; 397
2006; 182
2013
2015; 118
2012; 7
2008; 40
2010; 91
2016; 8
2016; 25
2005; 55
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
YanTao S. (e_1_2_8_82_1) 2013; 58
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Aerts R. (e_1_2_8_3_1) 2006; 182
Krab E. J. (e_1_2_8_32_1) 2017
e_1_2_8_70_1
Washburn A. L. (e_1_2_8_72_1) 1980
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Dale R. F. (e_1_2_8_12_1) 1980; 90
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
Sakai A. (e_1_2_8_55_1) 1979; 104
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
IPCC (e_1_2_8_24_1) 2013
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 294
  start-page: 793
  year: 2001
  end-page: 795
  article-title: Phenology – Responses to a warming world
  publication-title: Science
– volume: 397
  start-page: 659
  year: 1999
  end-page: 659
  article-title: Growing season extended in Europe
  publication-title: Nature
– volume: 29
  start-page: 38
  year: 2010
  end-page: 45
  article-title: Overwintering of in two sub‐Arctic microhabitats: A reciprocal transplantation experiment
  publication-title: Polar Research
– volume: 125
  start-page: 364
  year: 2016
  end-page: 373
  article-title: Photosynthetic and phenological responses of dwarf shrubs to the depth and properties of snow
  publication-title: Oikos
– year: 2017
  article-title: Data from: Winter warming effects on tundra shrub performance are species‐specific and dependent on spring conditions
  publication-title: Dryad Digital Repository
– volume: 55
  start-page: 17
  year: 2005
  end-page: 26
  article-title: Winter biological processes could help convert arctic tundra to shrubland
  publication-title: BioScience
– volume: 24
  start-page: 1478
  year: 2014
  end-page: 1489
  article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: A critical assessment
  publication-title: Ecological Applications
– volume: 13
  start-page: 896
  year: 2000
  end-page: 914
  article-title: Variations in surface air temperature observations in the Arctic, 1979‐97
  publication-title: Journal of Climate
– year: 1989
– volume: 182
  start-page: 65
  year: 2006
  end-page: 77
  article-title: Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events
  publication-title: Plant Ecology
– volume: 20
  start-page: 31
  year: 2006
  end-page: 41
  article-title: Sphagnum modifies climate‐change impacts on subarctic vascular bog plants
  publication-title: Functional Ecology
– volume: 118
  start-page: 104
  year: 2013
  end-page: 111
  article-title: Buried soil organic inclusions in non‐sorted circles fields in northern Sweden: Age and Paleoclimatic context
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 8
  start-page: 15035
  year: 2013
  article-title: Patterned‐ground facilitates shrub expansion in low arctic tundra
  publication-title: Environmental Research Letters
– volume: 25
  start-page: 136
  year: 2014
  end-page: 143
  article-title: Which environmental factors determine recent cryoturbation and solifluction activity in a subarctic landscape? A comparison between active and inactive features
  publication-title: Permafrost and Periglacial Processes
– volume: 8
  start-page: 35025
  year: 2013
  article-title: Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub‐arctic Sweden
  publication-title: Environmental Research Letters
– volume: 12
  start-page: 343
  year: 2006
  end-page: 351
  article-title: Onset of spring starting earlier across the Northern Hemisphere
  publication-title: Global Change Biology
– volume: 109
  start-page: 167
  year: 2005
  end-page: 177
  article-title: Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska
  publication-title: Oikos
– volume: 40
  start-page: 96
  year: 2008
  end-page: 103
  article-title: Experimental alteration of vegetation on nonsorted circles: Effects on cryogenic activity and implications for climate change in the arctic
  publication-title: Arctic Antarctic and Alpine Research
– volume: 98
  start-page: 1600
  year: 2017
  end-page: 1612
  article-title: What if plant functional types conceal species‐specific responses to environment? Study on arctic shrub communities
  publication-title: Ecology
– volume: 3
  start-page: 1
  year: 2012
  end-page: 20
  article-title: Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: A meta‐analysis
  publication-title: Ecosphere
– volume: 17
  start-page: 2162
  year: 2011
  end-page: 2171
  article-title: A race for space? How stabilizes vegetation composition during long‐term climate manipulations
  publication-title: Global Change Biology
– volume: 25
  start-page: 99
  year: 2015
  end-page: 115
  article-title: Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy‐scale photosynthesis
  publication-title: Ecological Applications
– volume: 180
  start-page: 157
  year: 2011
  end-page: 167
  article-title: Late snowmelt delays plant development and results in lower reproductive success in the High Arctic
  publication-title: Plant Science
– volume: 122
  start-page: 179
  year: 1992
  end-page: 186
  article-title: Root mechanical‐properties related to disturbed and stressed habitats in the arctic
  publication-title: New Phytologist
– volume: 10
  start-page: 93
  year: 2004
  end-page: 104
  article-title: Summer warming and increased winter snow cover affect growth, structure and production in a sub‐arctic bog
  publication-title: Global Change Biology
– volume: 23
  start-page: 680
  year: 2009
  end-page: 688
  article-title: Seasonal climate manipulations result in species‐specific changes in leaf nutrient levels and isotopic composition in a sub‐arctic bog
  publication-title: Functional Ecology
– volume: 36
  start-page: 217
  year: 2004
  end-page: 227
  article-title: Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities
  publication-title: Soil Biology & Biochemistry
– volume: 90
  start-page: 408
  year: 1980
  end-page: 415
  article-title: Freeze‐thaw cycles in Indiana soils
  publication-title: Proceedings of the Indiana Academy of Science
– volume: 4
  start-page: 1
  year: 2013
  end-page: 18
  article-title: Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions?
  publication-title: Ecosphere
– volume: 91
  start-page: 1939
  year: 2010
  end-page: 1948
  article-title: Winter climate change: A critical factor for temperate vegetation performance
  publication-title: Ecology
– volume: 121
  start-page: 1236
  year: 2016
  end-page: 1248
  article-title: Long‐term experimentally deepened snow decreases growing‐season respiration in a low‐ and high‐arctic tundra ecosystem
  publication-title: Journal of Geophysical Research‐Biogeosciences
– year: 2015
– volume: 104
  start-page: 55
  year: 2016
  end-page: 64
  article-title: Frost sensitivity of leaves and flowers of subalpine plants is related to tissue type and phenology
  publication-title: Journal of Ecology
– volume: 11
  start-page: 6573
  year: 2014
  end-page: 6593
  article-title: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
  publication-title: Biogeosciences
– volume: 5
  start-page: 654
  year: 2014
  article-title: Frost resistance in alpine woody plants
  publication-title: Frontiers in Plant Science
– volume: 31
  start-page: 1493
  year: 2017
  end-page: 1502
  article-title: Root phenology unresponsive to earlier snowmelt despite advanced aboveground phenology in subarctic plant communities
  publication-title: Functional Ecology
– volume: 23
  start-page: GB2023
  year: 2009
  article-title: Soil organic carbon pools in the northern circumpolar permafrost region
  publication-title: Global Biogeochemical Cycles
– volume: 118
  start-page: 95
  year: 2015
  end-page: 101
  article-title: Bud freezing resistance in alpine shrubs across snow depth gradients
  publication-title: Environmental and Experimental Botany
– volume: 175
  start-page: 219
  year: 2014
  end-page: 229
  article-title: Increased spring freezing vulnerability for alpine shrubs under early snowmelt
  publication-title: Oecologia
– volume: 94
  start-page: 105
  year: 2009
  end-page: 121
  article-title: Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing
  publication-title: Climatic Change
– volume: 411
  start-page: 546
  year: 2001
  end-page: 547
  article-title: Climate change – Increasing shrub abundance in the Arctic
  publication-title: Nature
– volume: 24
  start-page: 210
  year: 2013
  end-page: 223
  article-title: Cryogenic soil activity along bioclimatic gradients in northern Sweden: Insights from eight different proxies: Cryogenic soil activity along bioclimatic gradients
  publication-title: Permafrost and Periglacial Processes
– volume: 162
  start-page: 295
  year: 2004
  end-page: 309
  article-title: Responses of spring phenology to climate change
  publication-title: New Phytologist
– volume: 15
  start-page: 2681
  year: 2009
  end-page: 2693
  article-title: Herbivores inhibit climate‐driven shrub expansion on the tundra
  publication-title: Global Change Biology
– volume: 84
  start-page: 1415
  year: 2003
  end-page: 1420
  article-title: Photosynthesis of arctic evergreens under snow: Implications for tundra ecosystem carbon balance
  publication-title: Ecology
– volume: 104
  start-page: 1041
  year: 2016
  end-page: 1050
  article-title: The snow and the willows: Earlier spring snowmelt reduces performance in the low‐lying alpine shrub
  publication-title: Journal of Ecology
– volume: 95
  start-page: 151
  year: 2009
  end-page: 166
  article-title: Process‐level controls on CO fluxes from a seasonally snow‐covered subalpine meadow soil, Niwot Ridge, Colorado
  publication-title: Biogeochemistry
– volume: 35
  start-page: 74
  year: 2003
  end-page: 81
  article-title: Five stages of the Alaskan Arctic cold season with ecosystem implications
  publication-title: Arctic Antarctic and Alpine Research
– volume: 25
  start-page: 1013
  year: 2016
  end-page: 1021
  article-title: Scale dependence of temperature as an abiotic driver of species’ distributions
  publication-title: Global Ecology and Biogeography
– start-page: 1535
  year: 2013
– volume: 15
  start-page: 1153
  year: 2009
  end-page: 1172
  article-title: Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change
  publication-title: Global Change Biology
– volume: 58
  start-page: 907
  year: 2013
  end-page: 912
  article-title: Effects of vegetation height and density on soil temperature variations
  publication-title: Chinese Science Bulletin
– volume: 20
  start-page: 3568
  year: 2014
  end-page: 3577
  article-title: Winter climate change affects growing‐season soil microbial biomass and activity in northern hardwood forests
  publication-title: Global Change Biology
– volume: 29
  start-page: 95
  year: 2010
  end-page: 109
  article-title: A review of snow manipulation experiments in Arctic and alpine tundra ecosystems
  publication-title: Polar Research
– volume: 96
  start-page: 775
  year: 2015
  end-page: 787
  article-title: Phenological mismatch with abiotic conditions‐implications for flowering in Arctic plants
  publication-title: Ecology
– volume: 7
  start-page: 15506
  year: 2012
  article-title: Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades
  publication-title: Environmental Research Letters
– volume: 12
  start-page: 1969
  year: 2006
  end-page: 1976
  article-title: European phenological response to climate change matches the warming pattern
  publication-title: Global Change Biology
– volume: 100
  start-page: 488
  year: 2012
  end-page: 498
  article-title: Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost
  publication-title: Journal of Ecology
– volume: 89
  start-page: 353
  year: 2008
  end-page: 362
  article-title: Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers
  publication-title: Ecology
– volume: 21
  start-page: 4520
  year: 2015
  end-page: 4532
  article-title: Plant phenological responses to a long‐term experimental extension of growing season and soil warming in the tussock tundra of Alaska
  publication-title: Global Change Biology
– volume: 19
  start-page: 155
  year: 2016
  end-page: 169
  article-title: Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming
  publication-title: Ecosystems
– volume: 207
  start-page: 53
  year: 2010
  end-page: 66
  article-title: Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations
  publication-title: Plant Ecology
– volume: 293
  start-page: 85
  year: 2001
  end-page: 89
  article-title: Regional climate impacts of the Northern Hemisphere annular mode
  publication-title: Science
– volume: 104
  start-page: 26
  year: 1979
  end-page: 28
  article-title: Frost hardiness of ericoideae
  publication-title: Journal of the American Society for Horticultural Science
– volume: 1
  start-page: 24
  year: 2005
  end-page: 26
  article-title: The relative role of winter and spring conditions: Linking climate and landscape‐scale plant phenology to alpine reindeer body mass
  publication-title: Biology Letters
– volume: 35
  start-page: 1659
  year: 2012
  end-page: 1667
  article-title: The influence of non‐sorted circles on species diversity of vascular plants, bryophytes and lichens in Sub‐Arctic Tundra
  publication-title: Polar Biology
– volume: 15
  start-page: 711
  year: 2012
  end-page: 724
  article-title: Landscape heterogeneity of shrub expansion in Arctic Alaska
  publication-title: Ecosystems
– volume: 66
  start-page: 564
  year: 1985
  end-page: 576
  article-title: Individualistic growth‐response of tundra plant‐species to environmental manipulations
  publication-title: Ecology
– year: 1980
– volume: 2
  start-page: 453
  year: 2012
  end-page: 457
  article-title: Plot‐scale evidence of tundra vegetation change and links to recent summer warming
  publication-title: Nature Climate Change
– volume: 24
  start-page: 569
  year: 2013
  end-page: 579
  article-title: Advanced snowmelt affects vegetative growth and sexual reproduction of in a sub‐alpine heath
  publication-title: Journal of Vegetation Science
– volume: 11
  start-page: 241
  year: 1992
  end-page: 254
  article-title: Seasonal differences in freezing stress resistance of needles of and – Evaluation of the electrolyte leakage method
  publication-title: Tree Physiology
– volume: 8
  start-page: plw021
  year: 2016
  article-title: Earlier snowmelt and warming lead to earlier but not necessarily more plant growth
  publication-title: AoB Plants
– volume: 4
  start-page: 55
  year: 2011
  end-page: 65
  article-title: Interactions between snow, canopy, and vegetation in a boreal coniferous forest
  publication-title: Plant Ecology & Diversity
– volume: 124
  start-page: 176
  year: 2000
  end-page: 184
  article-title: Predicting vegetative bud break in two arctic deciduous shrub species, and
  publication-title: Oecologia
– volume: 9
  start-page: e86281
  year: 2014
  article-title: Idiosyncratic responses of High Arctic plants to changing snow regimes
  publication-title: PLoS ONE
– volume: 20
  start-page: 3256
  year: 2014
  end-page: 3269
  article-title: Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change
  publication-title: Global Change Biology
– volume: 27
  start-page: 737
  year: 2004
  end-page: 746
  article-title: Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary
  publication-title: Plant Cell and Environment
– volume: 113
  start-page: G03S01
  year: 2008
  article-title: Arctic patterned‐ground ecosystems: A synthesis of field studies and models along a North American Arctic Transect
  publication-title: Journal of Geophysical Research‐Biogeosciences
– volume: 35
  start-page: 761
  year: 2005
  end-page: 820
  article-title: Plant communities and soils in cryoturbated tundra along a bioclimate gradient in the Low Arctic, Alaska
  publication-title: Phytocoenologia
– volume: 6
  start-page: 45509
  year: 2011
  article-title: Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities
  publication-title: Environmental Research Letters
– ident: e_1_2_8_70_1
– ident: e_1_2_8_49_1
  doi: 10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2
– ident: e_1_2_8_7_1
  doi: 10.1007/s10021-015-9924-3
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1751-8369.2010.00152.x
– ident: e_1_2_8_21_1
  doi: 10.1002/ppp.1808
– ident: e_1_2_8_4_1
  doi: 10.1111/j.1469-8137.2004.01059.x
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1365-2486.2003.00718.x
– ident: e_1_2_8_46_1
  doi: 10.1098/rsbl.2004.0262
– ident: e_1_2_8_61_1
  doi: 10.1890/02-3154
– ident: e_1_2_8_76_1
  doi: 10.1890/14-0338.1
– ident: e_1_2_8_48_1
  doi: 10.1080/17550874.2011.558126
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1365-2435.2006.01076.x
– ident: e_1_2_8_28_1
  doi: 10.1127/0340-269X/2005/0035-0761
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1365-2435.2009.01566.x
– ident: e_1_2_8_8_1
  doi: 10.1111/1365-2435.12853
– ident: e_1_2_8_23_1
  doi: 10.1890/06-2128.1
– volume: 104
  start-page: 26
  year: 1979
  ident: e_1_2_8_55_1
  article-title: Frost hardiness of ericoideae
  publication-title: Journal of the American Society for Horticultural Science
  doi: 10.21273/JASHS.104.1.26
– year: 2017
  ident: e_1_2_8_32_1
  article-title: Data from: Winter warming effects on tundra shrub performance are species‐specific and dependent on spring conditions
  publication-title: Dryad Digital Repository
– ident: e_1_2_8_17_1
  doi: 10.1088/1748-9326/7/1/015506
– ident: e_1_2_8_35_1
  doi: 10.1093/aobpla/plw021
– ident: e_1_2_8_64_1
  doi: 10.1093/treephys/11.3.241
– ident: e_1_2_8_42_1
  doi: 10.1111/j.1365-2486.2009.01935.x
– ident: e_1_2_8_37_1
  doi: 10.1038/17709
– ident: e_1_2_8_6_1
  doi: 10.1890/ES11-00225.1
– volume: 90
  start-page: 408
  year: 1980
  ident: e_1_2_8_12_1
  article-title: Freeze‐thaw cycles in Indiana soils
  publication-title: Proceedings of the Indiana Academy of Science
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1466-822X.2005.00168.x
– ident: e_1_2_8_60_1
  doi: 10.1890/ES13-00133.1
– ident: e_1_2_8_16_1
  doi: 10.1038/nclimate1465
– ident: e_1_2_8_31_1
  doi: 10.1002/ppp.1778
– ident: e_1_2_8_33_1
  doi: 10.1890/09-1160.1
– ident: e_1_2_8_78_1
  doi: 10.1007/s11258-009-9653-9
– ident: e_1_2_8_10_1
  doi: 10.2307/1940405
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1365-2745.2011.01925.x
– ident: e_1_2_8_58_1
  doi: 10.1111/geb.12463
– ident: e_1_2_8_36_1
  doi: 10.1007/s00300-012-1206-3
– ident: e_1_2_8_80_1
  doi: 10.1007/s10584-009-9546-x
– ident: e_1_2_8_50_1
  doi: 10.1111/gcb.13040
– start-page: 1535
  volume-title: Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_8_24_1
– ident: e_1_2_8_66_1
  doi: 10.1029/2008GB003327
– ident: e_1_2_8_73_1
  doi: 10.1111/j.0030-1299.2005.13264.x
– ident: e_1_2_8_15_1
  doi: 10.1111/gcb.12624
– ident: e_1_2_8_34_1
  doi: 10.1007/s10533-009-9303-2
– volume-title: Geocryology. A survey of periglacial processes and environments
  year: 1980
  ident: e_1_2_8_72_1
– ident: e_1_2_8_65_1
  doi: 10.1007/s10021-012-9540-4
– ident: e_1_2_8_71_1
  doi: 10.1029/2007JG000504
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1654-1103.2012.01472.x
– ident: e_1_2_8_47_1
  doi: 10.1007/s004420050005
– ident: e_1_2_8_81_1
  doi: 10.1111/j.1365-2486.2008.01801.x
– ident: e_1_2_8_26_1
  doi: 10.1111/j.1469-8137.1992.tb00064.x
– ident: e_1_2_8_54_1
  doi: 10.1002/ecy.1817
– ident: e_1_2_8_67_1
  doi: 10.1111/j.1365-3040.2004.01176.x
– ident: e_1_2_8_5_1
  doi: 10.1002/jgrg.20016
– ident: e_1_2_8_19_1
  doi: 10.1088/1748-9326/8/1/015035
– ident: e_1_2_8_43_1
  doi: 10.1657/1523-0430(2003)035[0074:FSOTAA]2.0.CO;2
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1365-2486.2006.01193.x
– ident: e_1_2_8_51_1
  doi: 10.1371/journal.pone.0086281
– ident: e_1_2_8_22_1
  doi: 10.5194/bg-11-6573-2014
– ident: e_1_2_8_74_1
  doi: 10.1111/1365-2745.12579
– ident: e_1_2_8_27_1
  doi: 10.1657/1523-0430(06-029)[KADE]2.0.CO;2
– ident: e_1_2_8_57_1
  doi: 10.1111/j.1365-2486.2005.01097.x
– ident: e_1_2_8_77_1
  doi: 10.1017/CBO9780511564437
– volume: 182
  start-page: 65
  year: 2006
  ident: e_1_2_8_3_1
  article-title: Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events
  publication-title: Plant Ecology
  doi: 10.1007/s11258-005-9031-1
– ident: e_1_2_8_56_1
  doi: 10.1016/j.soilbio.2003.09.008
– ident: e_1_2_8_68_1
  doi: 10.1126/science.1058958
– ident: e_1_2_8_11_1
  doi: 10.1016/j.plantsci.2010.09.005
– ident: e_1_2_8_25_1
  doi: 10.1088/1748-9326/8/3/035025
– ident: e_1_2_8_29_1
  doi: 10.1890/13-0652.1
– ident: e_1_2_8_59_1
  doi: 10.1002/2015JG003251
– ident: e_1_2_8_9_1
  doi: 10.1111/1365-2745.12482
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1365-2486.2010.02377.x
– ident: e_1_2_8_63_1
  doi: 10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2
– volume: 58
  start-page: 907
  year: 2013
  ident: e_1_2_8_82_1
  article-title: Effects of vegetation height and density on soil temperature variations
  publication-title: Chinese Science Bulletin
  doi: 10.1007/s11434-012-5596-y
– ident: e_1_2_8_69_1
  doi: 10.1890/14-0005.1
– ident: e_1_2_8_79_1
  doi: 10.1111/j.1751-8369.2010.00153.x
– ident: e_1_2_8_18_1
  doi: 10.1111/gcb.12568
– ident: e_1_2_8_41_1
  doi: 10.3389/fpls.2014.00654
– ident: e_1_2_8_45_1
  doi: 10.1126/science.1066860
– ident: e_1_2_8_39_1
  doi: 10.1088/1748-9326/6/4/045509
– ident: e_1_2_8_75_1
  doi: 10.1007/s00442-013-2872-8
– ident: e_1_2_8_44_1
  doi: 10.1016/j.envexpbot.2015.06.007
– ident: e_1_2_8_53_1
  doi: 10.1111/oik.02233
SSID ssj0006750
Score 2.4313858
Snippet 1. Climate change-driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and...
Climate change‐driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and...
Climate change-driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and...
SourceID swepub
hal
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 599
SubjectTerms Arctic region
Autumn
Barren lands
Betula nana
biomass
canopy
Carbon cycle
Cascading
Climate change
Climate effects
Community composition
community structure
Composition effects
cryoturbation
Ecological function
Ecology
Ecosystem assessment
Ekologi
Empetrum nigrum
Environmental Sciences
fleece
Frost
Frost damage
frost injury
Gardening
growing season
Growth
leaves
Life Sciences
Mineral nutrients
Nutrient availability
phenology
Plant cover
plant phenology
Plant-climate interactions
Shrubs
Snow
Snow cover
Snowmelt
snowmelt ming
snowmelt timing
snowpack
Soil
Soil temperature
Species
Spring
Spring (season)
spring climate
Taiga & tundra
Tundra
Vaccinium vitis-idaea
Vegetal Biology
Winter
winter climate change
Title Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions
URI https://www.jstor.org/stable/45029087
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12872
https://www.proquest.com/docview/2001256397
https://www.proquest.com/docview/2053893995
https://hal.inrae.fr/hal-02623639
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-145370
https://res.slu.se/id/publ/94281
Volume 106
WOSCitedRecordID wos000425046300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2745
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0006750
  issn: 1365-2745
  databaseCode: WIN
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006750
  issn: 1365-2745
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RtJW48ChUGEq1IIS4uHL83D2GNlFBUYQQfdxWa--6jZTalR0X9cZP4DfyS5jxOoYgEELilFUyttbrmdlvsjPfALxSqdDGM0M31jx2QxPHbqqNcoXA_dbXiqv2BP90msxm_PxcfOiyCakWxvJD9H-4kWW0_poMXKX1T0beVVOF0QG62AS98KaP2hsNYPPo4-Rk2rtjRMTeijLcC5Ok4_ehdJ5fbrG2NW1cUmKkzVFcR5-WUXQdzLa70eT-f3iOB3Cvg6JsZHXnIdwxxQ5s2-aUtzuw9bZE4IiD7XHLbH37CBZnxC5Rsc-KMmguWJcMwsqCLZtCV4rVl1WTsusf1QhMVYZROSdG5N--fG1H-TxjqtBs1YB3STewB8QMw3Nts8gew8lk_Onw2O3aNbhZhBN3Ra79MI-ouD7nfmCSyPcSTZmLGOLFgUqMT3xnca4iE6LhmyEXkTahn_Fg6Ks82IVBURbmCTAM25SnjeY8pdKwWGSeFqhIQZxmMSJOBw5Wb0pmHZc5tdRYyFVMQ6sqaVVlu6oOvOkvuLY0Hn8WfYmvvpci-u3j0VTSdxiv-gFCupuhA7utZvRiIWq28HjiwN5KVWTnDWpq9Yk4ko5QHXjR_4x2TIczqjBlQzIRYUchIgdeWxVbm8PR_HQky-pCNlcNxmtRkHi_F6wXTaoq-pC1kQLDS5yt1cC_Pbp8Pz5sB0__9YJncBeRJLfJeXswWFaNeQ5b2c1yXlf7nUnuw8bZu9l38X4zOw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BaUUv_JRWDRQwCCEuqbL5tY9L2WoLy55K25vlxE670pJUyaaoNx6BZ-RJmImzoYtACIlTrGQSOc6M_U088w3AK5UKbTwzcGPNYzc0ceym2ihXCFxvfa24anfwTybJdMrPzsTNXBjLD9H_cCPLaOdrMnD6IX3Dyrt0qjDaxzk2wWn4Tohwg8o3nB5N-9kYAbG3ZAz3wiTp6H0omueXB6ysTLcvKC7Shiiugk9LKLqKZdvF6PD-_3iNB3Cvg6JsaHXnIdwyxRZs2OKU11uw_rZE4IiNjVHLbH39COanxC5RsS-KImjOWRcMwsqCLZpCV4rVF1WTssuf2QhMVYZROid65N-_fmtb-SxjqtBsWYB3QQ-wG8QM3XNto8i24dPh6Phg7HblGtwswo67Itd-mEeUXJ9zPzBJ5HuJpshFdPHiQCXGJ76zOFeRCdHwzYCLSJvQz3gw8FUe7MBaURZmFxi6bcrTRnOeUmpYLDJPC1SkIE6zGBGnA_vLTyWzjsucSmrM5dKnoVGVNKqyHVUH3vQ3XFoajz-LvsRv30sR_fZ4OJF0Dv1VP0BIdzVwYKdVjV4sRM0WHk8c2Fvqiuxmg5pKfSKOpC1UB170l9GOaXNGFaZsSCYi7ChE5MBrq2MrfXg3OxnKsjqXzecG_bUoSLzfC9bzJlUVHWRtpED3EntrVfBvry7fjw7axuN_veE53B0ff5zIydH0wxPYRFTJbaDeHqwtqsY8hfXsajGrq2etdf4ALow07g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5B2iIu_BQqDAUWhBAXV47_9xiaRAWiCCFaelutves2UrAjOy7qjUfgGXkSZry2aRAIIXHKKhlb6_XM7DfZmW8AXsiEK-3ooR2qOLR9HYZ2orS0Ocf91lUyls0J_sksms_j01N-tRbG8EP0f7iRZTT-mgxcr1R2xcrbcio_OEAfG6Eb3vKplcwAtsYfpsez3h8jJHY6znDHj6KW4IfyeX65xcbedP2cMiNNkuIm_DSUoptottmOprf_x4PcgVstGGUjoz134ZrOd2HHtKe83IXt1wVCRxzsTBpu68t7sPxE_BIl-yIph-aMtekgrMjZus5VKVl1XtYJW_2sR2Cy1IwKOjEm__71WzPKFimTuWJdC9413cAcETMM0JXJI7sPx9PJx8Mju23YYKcBTtzmmXL9LKDy-ix2PR0FrhMpyl3EIC_0ZKRdYjwLMxloH01fD2MeKO27aewNXZl5ezDIi1w_AIaBm3SUVnGcUHFYyFNHcVQlL0zSEDGnBQfdqxJpy2ZOTTWWootqaFUFrapoVtWCV_0FK0Pk8WfR5_jueyki4D4azQR9hxGr6yGouxhasNeoRi_mo25zJ44s2O90RbT-oKJmn4gk6RDVgmf9z2jJdDwjc13UJBMQeuQ8sOCl0bGNOYwXJyNRlGei_lxjxBZ4kfN7wWpZJ7KkD1FpwTHAxNkaFfzbo4u3k8Nm8PBfL3gKN96Pp2L2Zv7uEdxEWBmbTL19GKzLWj-G7fRivajKJ615_gBTqzWX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Winter+warming+effects+on+tundra+shrub+performance+are+species%E2%80%90specific+and+dependent+on+spring+conditions&rft.jtitle=The+Journal+of+ecology&rft.au=Krab%2C+Eveline+J.&rft.au=Roennefarth%2C+Jonas&rft.au=Becher%2C+Marina&rft.au=Blume%E2%80%90Werry%2C+Gesche&rft.date=2018-03-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=106&rft.issue=2&rft.spage=599&rft.epage=612&rft_id=info:doi/10.1111%2F1365-2745.12872&rft.externalDBID=10.1111%252F1365-2745.12872&rft.externalDocID=JEC12872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon