Patient specific deep learning based segmentation for magnetic resonance guided prostate radiotherapy

Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape and size changes can be...

Full description

Saved in:
Bibliographic Details
Published in:Physics and imaging in radiation oncology Vol. 23; pp. 38 - 42
Main Authors: Fransson, Samuel, Tilly, David, Strand, Robin
Format: Journal Article
Language:English
Published: Elsevier B.V 01.07.2022
Elsevier
Subjects:
ISSN:2405-6316, 2405-6316
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape and size changes can be troublesome. Artificial neural network (ANN) based contouring may alleviate this issue, however generally requires large datasets for training. Mitigating the problem of scarcity of data, we propose patient specific networks trained on a single dataset for each patient, for contouring onto the following datasets in an adaptive MR-Linacworkflow. MR-scans from 17 prostate patients treated on an MR-Linac with contours of Clinical Target Volume (CTV), bladder and rectum were utilized. U-net shaped models were trained based on the image from the first fraction of each patient, and subsequently applied onto the following treatment images. Results were compared with manual contours in terms of the Dice coefficient and Added Path Length (APL). As benchmark, contours propagated through the clinical DIR algorithm were similarly evaluated. In Dice coefficient the ANN output was 0.92 ± 0.03, 0.93 ± 0.07 and 0.84 ± 0.10 while for DIR 0.95 ± 0.03, 0.93 ± 0.08, 0.88 ± 0.06 for CTV, bladder and rectum respectively. Similarly, APL where 3109 ± 1642, 7250 ± 4234 and 5041 ± 2666 for ANN and 1835 ± 1621, 7236 ± 4287 and 4170 ± 2920 voxels for DIR. Patient specific ANN models trained on images from the first fraction of a prostate MR-Linac treatment showed similar accuracy when applied to the subsequent fraction images as a clinically implemented DIR method.
AbstractList Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape and size changes can be troublesome. Artificial neural network (ANN) based contouring may alleviate this issue, however generally requires large datasets for training. Mitigating the problem of scarcity of data, we propose patient specific networks trained on a single dataset for each patient, for contouring onto the following datasets in an adaptive MR-Linacworkflow. MR-scans from 17 prostate patients treated on an MR-Linac with contours of Clinical Target Volume (CTV), bladder and rectum were utilized. U-net shaped models were trained based on the image from the first fraction of each patient, and subsequently applied onto the following treatment images. Results were compared with manual contours in terms of the Dice coefficient and Added Path Length (APL). As benchmark, contours propagated through the clinical DIR algorithm were similarly evaluated. In Dice coefficient the ANN output was 0.92 ± 0.03, 0.93 ± 0.07 and 0.84 ± 0.10 while for DIR 0.95 ± 0.03, 0.93 ± 0.08, 0.88 ± 0.06 for CTV, bladder and rectum respectively. Similarly, APL where 3109 ± 1642, 7250 ± 4234 and 5041 ± 2666 for ANN and 1835 ± 1621, 7236 ± 4287 and 4170 ± 2920 voxels for DIR. Patient specific ANN models trained on images from the first fraction of a prostate MR-Linac treatment showed similar accuracy when applied to the subsequent fraction images as a clinically implemented DIR method.
Background and Purpose: Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape and size changes can be troublesome. Artificial neural network (ANN) based contouring may alleviate this issue, however generally requires large datasets for training. Mitigating the problem of scarcity of data, we propose patient specific networks trained on a single dataset for each patient, for contouring onto the following datasets in an adaptive MR-Linacworkflow. Materials and Methods: MR-scans from 17 prostate patients treated on an MR-Linac with contours of Clinical Target Volume (CTV), bladder and rectum were utilized. U-net shaped models were trained based on the image from the first fraction of each patient, and subsequently applied onto the following treatment images. Results were compared with manual contours in terms of the Dice coefficient and Added Path Length (APL). As benchmark, contours propagated through the clinical DIR algorithm were similarly evaluated. Results: In Dice coefficient the ANN output was 0.92 +/- 0.03, 0.93 +/- 0.07 and 0.84 +/- 0.10 while for DIR 0.95 +/- 0.03, 0.93 +/- 0.08, 0.88 +/- 0.06 for CTV, bladder and rectum respectively. Similarly, APL where 3109 +/- 1642, 7250 +/- 4234 and 5041 +/- 2666 for ANN and 1835 +/- 1621, 7236 +/- 4287 and 4170 +/- 2920 voxels for DIR. Conclusions: Patient specific ANN models trained on images from the first fraction of a prostate MR-Linac treatment showed similar accuracy when applied to the subsequent fraction images as a clinically implemented DIR method.
Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape and size changes can be troublesome. Artificial neural network (ANN) based contouring may alleviate this issue, however generally requires large datasets for training. Mitigating the problem of scarcity of data, we propose patient specific networks trained on a single dataset for each patient, for contouring onto the following datasets in an adaptive MR-Linacworkflow.Background and PurposeTreatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape and size changes can be troublesome. Artificial neural network (ANN) based contouring may alleviate this issue, however generally requires large datasets for training. Mitigating the problem of scarcity of data, we propose patient specific networks trained on a single dataset for each patient, for contouring onto the following datasets in an adaptive MR-Linacworkflow.MR-scans from 17 prostate patients treated on an MR-Linac with contours of Clinical Target Volume (CTV), bladder and rectum were utilized. U-net shaped models were trained based on the image from the first fraction of each patient, and subsequently applied onto the following treatment images. Results were compared with manual contours in terms of the Dice coefficient and Added Path Length (APL). As benchmark, contours propagated through the clinical DIR algorithm were similarly evaluated.Materials and MethodsMR-scans from 17 prostate patients treated on an MR-Linac with contours of Clinical Target Volume (CTV), bladder and rectum were utilized. U-net shaped models were trained based on the image from the first fraction of each patient, and subsequently applied onto the following treatment images. Results were compared with manual contours in terms of the Dice coefficient and Added Path Length (APL). As benchmark, contours propagated through the clinical DIR algorithm were similarly evaluated.In Dice coefficient the ANN output was 0.92 ± 0.03, 0.93 ± 0.07 and 0.84 ± 0.10 while for DIR 0.95 ± 0.03, 0.93 ± 0.08, 0.88 ± 0.06 for CTV, bladder and rectum respectively. Similarly, APL where 3109 ± 1642, 7250 ± 4234 and 5041 ± 2666 for ANN and 1835 ± 1621, 7236 ± 4287 and 4170 ± 2920 voxels for DIR.ResultsIn Dice coefficient the ANN output was 0.92 ± 0.03, 0.93 ± 0.07 and 0.84 ± 0.10 while for DIR 0.95 ± 0.03, 0.93 ± 0.08, 0.88 ± 0.06 for CTV, bladder and rectum respectively. Similarly, APL where 3109 ± 1642, 7250 ± 4234 and 5041 ± 2666 for ANN and 1835 ± 1621, 7236 ± 4287 and 4170 ± 2920 voxels for DIR.Patient specific ANN models trained on images from the first fraction of a prostate MR-Linac treatment showed similar accuracy when applied to the subsequent fraction images as a clinically implemented DIR method.ConclusionsPatient specific ANN models trained on images from the first fraction of a prostate MR-Linac treatment showed similar accuracy when applied to the subsequent fraction images as a clinically implemented DIR method.
Background and Purpose: Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape and size changes can be troublesome. Artificial neural network (ANN) based contouring may alleviate this issue, however generally requires large datasets for training. Mitigating the problem of scarcity of data, we propose patient specific networks trained on a single dataset for each patient, for contouring onto the following datasets in an adaptive MR-Linacworkflow. Materials and Methods: MR-scans from 17 prostate patients treated on an MR-Linac with contours of Clinical Target Volume (CTV), bladder and rectum were utilized. U-net shaped models were trained based on the image from the first fraction of each patient, and subsequently applied onto the following treatment images. Results were compared with manual contours in terms of the Dice coefficient and Added Path Length (APL). As benchmark, contours propagated through the clinical DIR algorithm were similarly evaluated. Results: In Dice coefficient the ANN output was 0.92 ± 0.03, 0.93 ± 0.07 and 0.84 ± 0.10 while for DIR 0.95 ± 0.03, 0.93 ± 0.08, 0.88 ± 0.06 for CTV, bladder and rectum respectively. Similarly, APL where 3109 ± 1642, 7250 ± 4234 and 5041 ± 2666 for ANN and 1835 ± 1621, 7236 ± 4287 and 4170 ± 2920 voxels for DIR. Conclusions: Patient specific ANN models trained on images from the first fraction of a prostate MR-Linac treatment showed similar accuracy when applied to the subsequent fraction images as a clinically implemented DIR method.
Author Tilly, David
Fransson, Samuel
Strand, Robin
Author_xml – sequence: 1
  givenname: Samuel
  surname: Fransson
  fullname: Fransson, Samuel
  email: samuel.fransson@akademiska.se
  organization: Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
– sequence: 2
  givenname: David
  surname: Tilly
  fullname: Tilly, David
  organization: Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
– sequence: 3
  givenname: Robin
  surname: Strand
  fullname: Strand, Robin
  organization: Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-482662$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFks1u1DAUhSNUREvpC7DKkgUTbMd2EoSQqvJXqRIsgK11x77OeMjYwU5azdvjNkViuigrW_Z3jq7OPc-LIx88FsVLSipKqHyzrcZNDBUjjFVEVoTQJ8UJ40SsZE3l0T_34-IspS0hhDVdLWryrDiuRSM7SslJgd9gcuinMo2onXW6NIhjOSBE73xfriGhKRP2uwxlNPjShljuoPc4ZTpiCh68xrKfncnoGEPKIJYRjAvTBiOM-xfFUwtDwrP787T48enj94svq6uvny8vzq9WWrRyWlmUzDDooDW85tTUzAhtWy2YFRIFtaThDWMNp0IYsIyj7GTXNGDXgJQ39WlxufiaAFs1RreDuFcBnLp7CLFXEPPYAyro1hRbAthZwzXlQGSOB7VujCWG1dnr9eKVbnCc1wduH9zP8zu3eVa8ZVKyjL9f8Mzu0OgcV4ThQHX4491G9eFadazmjMls8OreIIbfM6ZJ7VzSOAzgMcxJMdmyphWsJhltF1TnsFNEq7RblpOd3aAoUbcdUTmC3BF12xFFpModyVL2QPp3wkdF7xYR5t1dO4wq6VwajcZF1FMO1z0uf_tArgfnnYbhF-7_J_4DdLLszg
CitedBy_id crossref_primary_10_1002_mp_17580
crossref_primary_10_1088_1361_6560_accaca
crossref_primary_10_3390_a18040233
crossref_primary_10_1016_j_zemedi_2023_05_001
crossref_primary_10_1177_09287329241306201
crossref_primary_10_1016_j_phro_2024_100648
crossref_primary_10_1002_mp_17732
crossref_primary_10_1016_j_phro_2023_100500
crossref_primary_10_1016_j_phro_2025_100794
crossref_primary_10_1016_j_phro_2023_100498
crossref_primary_10_1259_bjro_20230030
crossref_primary_10_1016_j_phro_2024_100551
crossref_primary_10_1016_j_phro_2024_100573
crossref_primary_10_1007_s00066_024_02277_9
crossref_primary_10_1016_j_phro_2025_100766
crossref_primary_10_1007_s13246_023_01249_0
crossref_primary_10_1140_epjp_s13360_024_05660_8
crossref_primary_10_1016_j_radonc_2024_110345
crossref_primary_10_1016_j_radonc_2024_110667
crossref_primary_10_3390_cancers15235629
crossref_primary_10_1186_s13014_023_02330_4
Cites_doi 10.1002/mp.12737
10.1186/1748-717X-7-160
10.1007/s10278-019-00227-x
10.1016/j.adro.2020.04.027
10.1016/j.phro.2022.02.008
10.1002/mp.13765
10.1002/mp.13994
10.3109/0284186X.2010.503662
10.1016/j.phro.2019.12.001
10.1109/icABCD51485.2021.9519338
10.1080/0284186X.2019.1620331
10.1109/TPAMI.2018.2858826
10.1117/1.JMI.7.6.064003
10.1109/TUFFC.2020.3015081
10.3390/diagnostics10110959
10.1002/mp.13200
10.1002/mp.13620
10.1016/j.radonc.2018.12.011
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1016/j.phro.2022.06.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-6316
EndPage 42
ExternalDocumentID oai_doaj_org_article_a9b1e80ae9fd4c14a06793ecc7df0d23
oai_DiVA_org_uu_482662
PMC9234226
10_1016_j_phro_2022_06_001
S2405631622000495
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AFTJW
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
O9-
OK1
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
NCXOZ
RIG
AAYXX
CITATION
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c586t-fe62d2a9a8d4341d32d5cf8c52f56e51f07472274155daf24e696977afbae1473
IEDL.DBID DOA
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836498300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-6316
IngestDate Fri Oct 03 12:32:15 EDT 2025
Tue Nov 04 17:01:48 EST 2025
Thu Aug 21 14:06:50 EDT 2025
Sun Nov 09 14:12:13 EST 2025
Tue Nov 18 21:59:23 EST 2025
Thu Nov 13 04:18:58 EST 2025
Thu Jul 20 20:10:51 EDT 2023
Tue Aug 26 17:19:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-fe62d2a9a8d4341d32d5cf8c52f56e51f07472274155daf24e696977afbae1473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/a9b1e80ae9fd4c14a06793ecc7df0d23
PMID 35769110
PQID 2682785230
PQPubID 23479
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_a9b1e80ae9fd4c14a06793ecc7df0d23
swepub_primary_oai_DiVA_org_uu_482662
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9234226
proquest_miscellaneous_2682785230
crossref_citationtrail_10_1016_j_phro_2022_06_001
crossref_primary_10_1016_j_phro_2022_06_001
elsevier_sciencedirect_doi_10_1016_j_phro_2022_06_001
elsevier_clinicalkey_doi_10_1016_j_phro_2022_06_001
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Physics and imaging in radiation oncology
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lamb, Cao, Kishan, Agazaryan, Thomas, Shaverdian (b0010) 2017; 9
Jansen, Kuijf, Dhara, Weaver, Jan Biessels, Strand (b0080) 2020; 7
Woo, Lee (b0115) 2021
Deng, Dong, Socher, Li, Li, Fei-Fei (b0060) 2009
Zhang, Paulson, Lim, Hall, Ahunbay, Mickevicius (b0040) 2020; 5
Vaassen, Hazelaar, Vaniqui, Gooding, van der Heyden, Canters (b0105) 2020; 13
Milletari, Navab, Ahmadi (b0125) 2016
Wang, Rimner, Hu, Tyagi, Jiang, Yorke (b0130) 2019; 46
Karimi D, Warfield SK, Gholipour A. Critical Assessment of Transfer Learning for Medical Image Segmentation with Fully Convolutional Neural Networks. arXiv:2006.00356 [cs.CV] 2020;1–11.
Klambauer, Unterthiner, Mayr, Hochreiter (b0085) 2017
Willigenburg, Zachiu, Lagendijk, van der Voort van Zyp, de Boer, Raaymakers (b0050) 2022; 21
Eppenhof, Maspero, Savenije, de Boer, van der Voort van Zyp, Raaymakers (b0045) 2020; 47
Kiljunen, Akram, Niemelä, Löyttyniemi, Seppälä, Heikkila (b0120) 2020; 10
Hesamian, Jia, He, Kennedy (b0055) 2019; 32
Shivdeo A, Lokwani R, Kulkarni V, Kharat A, Pant A. Comparative Evaluation of 3D and 2D Deep Learning Techniques for Semantic Segmentation in CT Scans. arXiv:2101.07612 [eess.IV] 2021.
Rigaud, Simon, Castelli, Lafond, Acosta, Haigron (b0015) 2019; 58
Elmahdy, Ahuja, Van Der Heide, Staring (b0075) 2020
Elmahdy, Jagt, Zinkstok, Qiao, Shahzad, Sokooti (b0035) 2019; 46
Lin, Goyal, Girshick, He, Dollár (b0090) 2020; 42
Xie J, Xu B, Chuang Z. Horizontal and Vertical Ensemble with Deep Representation for Classification. arXiv:1306.2759 [cs.LG] 2013.
Tijssen, Philippens, Paulson, Glitzner, Chugh, Wetscherek (b0005) 2019; 132
Thörnqvist, Petersen, Høyer, Bentzen, Muren (b0030) 2010; 49
Loi, Fusella, Lanzi, Cagni, Garibaldi, Iacoviello (b0020) 2018; 45
La Macchia, Fellin, Amichetti, Cianchetti, Gianolini, Paola (b0025) 2012; 7
Amiri, Brooks, Rivaz (b0065) 2020; 67
Gooding, Smith, Tariq, Aljabar, Peressutti, van der Stoep (b0100) 2018; 45
Woo (10.1016/j.phro.2022.06.001_b0115) 2021
Elmahdy (10.1016/j.phro.2022.06.001_b0035) 2019; 46
Hesamian (10.1016/j.phro.2022.06.001_b0055) 2019; 32
La Macchia (10.1016/j.phro.2022.06.001_b0025) 2012; 7
Tijssen (10.1016/j.phro.2022.06.001_b0005) 2019; 132
Rigaud (10.1016/j.phro.2022.06.001_b0015) 2019; 58
Milletari (10.1016/j.phro.2022.06.001_b0125) 2016
Gooding (10.1016/j.phro.2022.06.001_b0100) 2018; 45
10.1016/j.phro.2022.06.001_b0110
Kiljunen (10.1016/j.phro.2022.06.001_b0120) 2020; 10
Eppenhof (10.1016/j.phro.2022.06.001_b0045) 2020; 47
Willigenburg (10.1016/j.phro.2022.06.001_b0050) 2022; 21
Jansen (10.1016/j.phro.2022.06.001_b0080) 2020; 7
Elmahdy (10.1016/j.phro.2022.06.001_b0075) 2020
Vaassen (10.1016/j.phro.2022.06.001_b0105) 2020; 13
Lamb (10.1016/j.phro.2022.06.001_b0010) 2017; 9
Thörnqvist (10.1016/j.phro.2022.06.001_b0030) 2010; 49
Wang (10.1016/j.phro.2022.06.001_b0130) 2019; 46
Deng (10.1016/j.phro.2022.06.001_b0060) 2009
Lin (10.1016/j.phro.2022.06.001_b0090) 2020; 42
10.1016/j.phro.2022.06.001_b0095
10.1016/j.phro.2022.06.001_b0070
Amiri (10.1016/j.phro.2022.06.001_b0065) 2020; 67
Klambauer (10.1016/j.phro.2022.06.001_b0085) 2017
Zhang (10.1016/j.phro.2022.06.001_b0040) 2020; 5
Loi (10.1016/j.phro.2022.06.001_b0020) 2018; 45
References_xml – start-page: 972
  year: 2017
  end-page: 981
  ident: b0085
  article-title: Self-Normalizing Neural Networks
  publication-title: NIPS’17 Proc 31st Int Conf Neural Inf Process Syst
– reference: Xie J, Xu B, Chuang Z. Horizontal and Vertical Ensemble with Deep Representation for Classification. arXiv:1306.2759 [cs.LG] 2013.
– volume: 58
  start-page: 1225
  year: 2019
  end-page: 1237
  ident: b0015
  article-title: Deformable image registration for radiation therapy: principle, methods, applications and evaluation
  publication-title: Acta Oncol
– reference: Shivdeo A, Lokwani R, Kulkarni V, Kharat A, Pant A. Comparative Evaluation of 3D and 2D Deep Learning Techniques for Semantic Segmentation in CT Scans. arXiv:2101.07612 [eess.IV] 2021.
– volume: 49
  start-page: 1023
  year: 2010
  end-page: 1032
  ident: b0030
  article-title: Propagation of target and organ at risk contours in radiotherapy of prostate cancer using deformable image registration
  publication-title: Acta Oncol
– start-page: 565
  year: 2016
  end-page: 571
  ident: b0125
  article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 4th Int Conf 3D Vis
– volume: 47
  start-page: 1238
  year: 2020
  end-page: 1248
  ident: b0045
  article-title: Fast contour propagation for MR-guided prostate radiotherapy using convolutional neural networks
  publication-title: Med Phys
– volume: 132
  start-page: 114
  year: 2019
  end-page: 120
  ident: b0005
  article-title: MRI commissioning of 1.5T MR-linac systems – a multi-institutional study
  publication-title: Radiother Oncol
– volume: 67
  start-page: 2510
  year: 2020
  end-page: 2518
  ident: b0065
  article-title: Fine-tuning U-net for ultrasound image segmentation: different layers, different outcomes
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 9
  year: 2017
  ident: b0010
  article-title: Online adaptive radiation therapy: implementation of a new process of care
  publication-title: Cureus
– volume: 45
  start-page: 748
  year: 2018
  end-page: 757
  ident: b0020
  article-title: Performance of commercially available deformable image registration platforms for contour propagation using patient-based computational phantoms: A multi-institutional study
  publication-title: Med Phys
– volume: 7
  start-page: 1
  year: 2012
  end-page: 16
  ident: b0025
  article-title: Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer
  publication-title: Radiat Oncol
– year: 2021
  ident: b0115
  article-title: Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images
  publication-title: Int Conf Electron Information, Commun ICEIC 2021
– volume: 32
  start-page: 582
  year: 2019
  end-page: 596
  ident: b0055
  article-title: Deep learning techniques for medical image segmentation: achievements and challenges
  publication-title: J Digit Imaging
– volume: 42
  start-page: 318
  year: 2020
  end-page: 327
  ident: b0090
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 7
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0080
  article-title: Patient-specific fine-tuning of convolutional neural networks for follow-up lesion quantification
  publication-title: J Med Imaging
– volume: 21
  start-page: 62
  year: 2022
  end-page: 65
  ident: b0050
  article-title: Fast and accurate deformable contour propagation for intra-fraction adaptive magnetic resonance-guided prostate radiotherapy
  publication-title: Phys Imaging Radiat Oncol
– start-page: 577
  year: 2020
  end-page: 580
  ident: b0075
  article-title: Patient-specific finetuning of deep learning models for adaptive radiotherapy in prostate CT
  publication-title: Proc - Int Symp Biomed Imaging
– volume: 10
  year: 2020
  ident: b0120
  article-title: A deep learning-based automated CT segmentation of prostate cancer anatomy for radiation therapy planning-a retrospective multicenter study
  publication-title: Diagnostics
– volume: 5
  start-page: 1350
  year: 2020
  end-page: 1358
  ident: b0040
  article-title: A patient-specific autosegmentation strategy using multi-input deformable image registration for magnetic resonance imaging-guided online adaptive radiation therapy: a feasibility study
  publication-title: Adv Radiat Oncol
– reference: Karimi D, Warfield SK, Gholipour A. Critical Assessment of Transfer Learning for Medical Image Segmentation with Fully Convolutional Neural Networks. arXiv:2006.00356 [cs.CV] 2020;1–11.
– volume: 46
  start-page: 4699
  year: 2019
  end-page: 4707
  ident: b0130
  article-title: Toward predicting the evolution of lung tumors during radiotherapy observed on a longitudinal MR imaging study via a deep learning algorithm
  publication-title: Med Phys
– volume: 46
  start-page: 3329
  year: 2019
  end-page: 3343
  ident: b0035
  article-title: Robust contour propagation using deep learning and image registration for online adaptive proton therapy of prostate cancer
  publication-title: Med Phys
– volume: 13
  start-page: 1
  year: 2020
  end-page: 6
  ident: b0105
  article-title: Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy
  publication-title: Phys Imaging Radiat Oncol
– start-page: 248
  year: 2009
  end-page: 255
  ident: b0060
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– volume: 45
  start-page: 5105
  year: 2018
  end-page: 5115
  ident: b0100
  article-title: Comparative evaluation of autocontouring in clinical practice: a practical method using the Turing test
  publication-title: Med Phys
– volume: 45
  start-page: 748
  year: 2018
  ident: 10.1016/j.phro.2022.06.001_b0020
  article-title: Performance of commercially available deformable image registration platforms for contour propagation using patient-based computational phantoms: A multi-institutional study
  publication-title: Med Phys
  doi: 10.1002/mp.12737
– volume: 7
  start-page: 1
  year: 2012
  ident: 10.1016/j.phro.2022.06.001_b0025
  article-title: Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-7-160
– start-page: 248
  year: 2009
  ident: 10.1016/j.phro.2022.06.001_b0060
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– volume: 32
  start-page: 582
  year: 2019
  ident: 10.1016/j.phro.2022.06.001_b0055
  article-title: Deep learning techniques for medical image segmentation: achievements and challenges
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00227-x
– volume: 5
  start-page: 1350
  year: 2020
  ident: 10.1016/j.phro.2022.06.001_b0040
  article-title: A patient-specific autosegmentation strategy using multi-input deformable image registration for magnetic resonance imaging-guided online adaptive radiation therapy: a feasibility study
  publication-title: Adv Radiat Oncol
  doi: 10.1016/j.adro.2020.04.027
– ident: 10.1016/j.phro.2022.06.001_b0095
– volume: 21
  start-page: 62
  year: 2022
  ident: 10.1016/j.phro.2022.06.001_b0050
  article-title: Fast and accurate deformable contour propagation for intra-fraction adaptive magnetic resonance-guided prostate radiotherapy
  publication-title: Phys Imaging Radiat Oncol
  doi: 10.1016/j.phro.2022.02.008
– ident: 10.1016/j.phro.2022.06.001_b0070
– volume: 46
  start-page: 4699
  year: 2019
  ident: 10.1016/j.phro.2022.06.001_b0130
  article-title: Toward predicting the evolution of lung tumors during radiotherapy observed on a longitudinal MR imaging study via a deep learning algorithm
  publication-title: Med Phys
  doi: 10.1002/mp.13765
– volume: 47
  start-page: 1238
  year: 2020
  ident: 10.1016/j.phro.2022.06.001_b0045
  article-title: Fast contour propagation for MR-guided prostate radiotherapy using convolutional neural networks
  publication-title: Med Phys
  doi: 10.1002/mp.13994
– volume: 49
  start-page: 1023
  year: 2010
  ident: 10.1016/j.phro.2022.06.001_b0030
  article-title: Propagation of target and organ at risk contours in radiotherapy of prostate cancer using deformable image registration
  publication-title: Acta Oncol
  doi: 10.3109/0284186X.2010.503662
– year: 2021
  ident: 10.1016/j.phro.2022.06.001_b0115
  article-title: Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images
– volume: 9
  year: 2017
  ident: 10.1016/j.phro.2022.06.001_b0010
  article-title: Online adaptive radiation therapy: implementation of a new process of care
  publication-title: Cureus
– volume: 13
  start-page: 1
  year: 2020
  ident: 10.1016/j.phro.2022.06.001_b0105
  article-title: Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy
  publication-title: Phys Imaging Radiat Oncol
  doi: 10.1016/j.phro.2019.12.001
– ident: 10.1016/j.phro.2022.06.001_b0110
  doi: 10.1109/icABCD51485.2021.9519338
– start-page: 565
  year: 2016
  ident: 10.1016/j.phro.2022.06.001_b0125
  article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation
– volume: 58
  start-page: 1225
  year: 2019
  ident: 10.1016/j.phro.2022.06.001_b0015
  article-title: Deformable image registration for radiation therapy: principle, methods, applications and evaluation
  publication-title: Acta Oncol
  doi: 10.1080/0284186X.2019.1620331
– volume: 42
  start-page: 318
  year: 2020
  ident: 10.1016/j.phro.2022.06.001_b0090
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2858826
– volume: 7
  start-page: 1
  year: 2020
  ident: 10.1016/j.phro.2022.06.001_b0080
  article-title: Patient-specific fine-tuning of convolutional neural networks for follow-up lesion quantification
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.7.6.064003
– volume: 67
  start-page: 2510
  year: 2020
  ident: 10.1016/j.phro.2022.06.001_b0065
  article-title: Fine-tuning U-net for ultrasound image segmentation: different layers, different outcomes
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2020.3015081
– volume: 10
  year: 2020
  ident: 10.1016/j.phro.2022.06.001_b0120
  article-title: A deep learning-based automated CT segmentation of prostate cancer anatomy for radiation therapy planning-a retrospective multicenter study
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10110959
– volume: 45
  start-page: 5105
  year: 2018
  ident: 10.1016/j.phro.2022.06.001_b0100
  article-title: Comparative evaluation of autocontouring in clinical practice: a practical method using the Turing test
  publication-title: Med Phys
  doi: 10.1002/mp.13200
– volume: 46
  start-page: 3329
  year: 2019
  ident: 10.1016/j.phro.2022.06.001_b0035
  article-title: Robust contour propagation using deep learning and image registration for online adaptive proton therapy of prostate cancer
  publication-title: Med Phys
  doi: 10.1002/mp.13620
– start-page: 972
  year: 2017
  ident: 10.1016/j.phro.2022.06.001_b0085
  article-title: Self-Normalizing Neural Networks
– start-page: 577
  year: 2020
  ident: 10.1016/j.phro.2022.06.001_b0075
  article-title: Patient-specific finetuning of deep learning models for adaptive radiotherapy in prostate CT
  publication-title: Proc - Int Symp Biomed Imaging
– volume: 132
  start-page: 114
  year: 2019
  ident: 10.1016/j.phro.2022.06.001_b0005
  article-title: MRI commissioning of 1.5T MR-linac systems – a multi-institutional study
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2018.12.011
SSID ssj0002793530
Score 2.3347297
Snippet Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring....
Background and Purpose: Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often...
SourceID doaj
swepub
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38
SubjectTerms Computerized Image Processing
Datoriserad bildbehandling
Original
Title Patient specific deep learning based segmentation for magnetic resonance guided prostate radiotherapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2405631622000495
https://dx.doi.org/10.1016/j.phro.2022.06.001
https://www.proquest.com/docview/2682785230
https://pubmed.ncbi.nlm.nih.gov/PMC9234226
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-482662
https://doaj.org/article/a9b1e80ae9fd4c14a06793ecc7df0d23
Volume 23
WOSCitedRecordID wos000836498300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgQogLKl8ilFZGghMKrJ3EcY5tacWBVj0A2pvl-mNJ1WZXu5tKXPjtzNjOasOhvXDZw669kWcmmed43htC3ntWF0JLnQvPUVSb8bwRJThEiNowCxDaB8n8b_X5uZxOm4utVl9YExblgaPhPuvmkjk50a7xtjSs1Pjmo4AL19ZPLA86n5O62dpMXYXjtKaoQqMRyFhVLgomEmMmFneBoZD5x_mneBgxykpBvH-UnLbA57-lkyOB0ZCUTnfJ04Qm6WFcxTPywHXPyeOzdF7-griLKJtKkVCJRUHUOregqVXEjGIOs3TlZjeJgtRRALH0Rs86JDdS2IvPUZHD0VnfWhi6QJIIwFO61LZN5K3fL8mP05Pvx1_z1FghN5UU69w7wS3XjZa2hCxmC24r46WpuK-Eq5hHVX3OA9iw2vPSiUYAUNT-UjtW1sUrstPNO_eaUK0LwEh2YhrANiVsN4rSaWngEcu8B69nhA2GVSapjmPzi2s1lJddKXSGQmeoWGOXkY-bOYuouXHn6CP012Yk6mWHLyCKVIoidV8UZaQYvK0GSio8ROGP2jsvXW1mJcASgci9894NAaXgbsYjGt25eb9SXEheS3xTn5F6FGmj9Y1_6dpfQRccsDryojPyIcbkaMqX9udhMEnfqxL2lIK_-R-G2yNPcGGxgPkt2Vkve7dPHpnbdbtaHpCH9VQehFsTPs_-nPwFpBhACg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient+specific+deep+learning+based+segmentation+for+magnetic+resonance+guided+prostate+radiotherapy&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Fransson%2C+Samuel&rft.au=Tilly%2C+David&rft.au=Strand%2C+Robin&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=2405-6316&rft.eissn=2405-6316&rft.volume=23&rft.spage=38&rft.epage=42&rft_id=info:doi/10.1016%2Fj.phro.2022.06.001&rft.externalDocID=S2405631622000495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon