Deep learning for the harmonization of structural MRI scans: a survey

Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of facto...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical engineering online Ročník 23; číslo 1; s. 90 - 42
Hlavní autoři: Abbasi, Soolmaz, Lan, Haoyu, Choupan, Jeiran, Sheikh-Bahaei, Nasim, Pandey, Gaurav, Varghese, Bino
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 31.08.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1475-925X, 1475-925X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of factors like inherent differences between various vendors, hardware upgrades, protocol changes, and scanner calibration drift, as well as to ensure consistent data for medical image processing techniques. Given the critical importance and widespread relevance of this issue, a vast array of image harmonization methodologies have emerged, with deep learning-based approaches driving substantial advancements in recent times. The goal of this review paper is to examine the latest deep learning techniques employed for image harmonization by analyzing cutting-edge architectural approaches in the field of medical image harmonization, evaluating both their strengths and limitations. This paper begins by providing a comprehensive fundamental overview of image harmonization strategies, covering three critical aspects: established imaging datasets, commonly used evaluation metrics, and characteristics of different scanners. Subsequently, this paper analyzes recent structural MRI (Magnetic Resonance Imaging) harmonization techniques based on network architecture, network learning algorithm, network supervision strategy, and network output. The underlying architectures include U-Net, Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), flow-based generative models, transformer-based approaches, as well as custom-designed network architectures. This paper investigates the effectiveness of Disentangled Representation Learning (DRL) as a pivotal learning algorithm in harmonization. Lastly, the review highlights the primary limitations in harmonization techniques, specifically the lack of comprehensive quantitative comparisons across different methods. The overall aim of this review is to serve as a guide for researchers and practitioners to select appropriate architectures based on their specific conditions and requirements. It also aims to foster discussions around ongoing challenges in the field and shed light on promising future research directions with the potential for significant advancements.
AbstractList Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of factors like inherent differences between various vendors, hardware upgrades, protocol changes, and scanner calibration drift, as well as to ensure consistent data for medical image processing techniques. Given the critical importance and widespread relevance of this issue, a vast array of image harmonization methodologies have emerged, with deep learning-based approaches driving substantial advancements in recent times. The goal of this review paper is to examine the latest deep learning techniques employed for image harmonization by analyzing cutting-edge architectural approaches in the field of medical image harmonization, evaluating both their strengths and limitations. This paper begins by providing a comprehensive fundamental overview of image harmonization strategies, covering three critical aspects: established imaging datasets, commonly used evaluation metrics, and characteristics of different scanners. Subsequently, this paper analyzes recent structural MRI (Magnetic Resonance Imaging) harmonization techniques based on network architecture, network learning algorithm, network supervision strategy, and network output. The underlying architectures include U-Net, Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), flow-based generative models, transformer-based approaches, as well as custom-designed network architectures. This paper investigates the effectiveness of Disentangled Representation Learning (DRL) as a pivotal learning algorithm in harmonization. Lastly, the review highlights the primary limitations in harmonization techniques, specifically the lack of comprehensive quantitative comparisons across different methods. The overall aim of this review is to serve as a guide for researchers and practitioners to select appropriate architectures based on their specific conditions and requirements. It also aims to foster discussions around ongoing challenges in the field and shed light on promising future research directions with the potential for significant advancements.
Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of factors like inherent differences between various vendors, hardware upgrades, protocol changes, and scanner calibration drift, as well as to ensure consistent data for medical image processing techniques. Given the critical importance and widespread relevance of this issue, a vast array of image harmonization methodologies have emerged, with deep learning-based approaches driving substantial advancements in recent times. The goal of this review paper is to examine the latest deep learning techniques employed for image harmonization by analyzing cutting-edge architectural approaches in the field of medical image harmonization, evaluating both their strengths and limitations. This paper begins by providing a comprehensive fundamental overview of image harmonization strategies, covering three critical aspects: established imaging datasets, commonly used evaluation metrics, and characteristics of different scanners. Subsequently, this paper analyzes recent structural MRI (Magnetic Resonance Imaging) harmonization techniques based on network architecture, network learning algorithm, network supervision strategy, and network output. The underlying architectures include U-Net, Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), flow-based generative models, transformer-based approaches, as well as custom-designed network architectures. This paper investigates the effectiveness of Disentangled Representation Learning (DRL) as a pivotal learning algorithm in harmonization. Lastly, the review highlights the primary limitations in harmonization techniques, specifically the lack of comprehensive quantitative comparisons across different methods. The overall aim of this review is to serve as a guide for researchers and practitioners to select appropriate architectures based on their specific conditions and requirements. It also aims to foster discussions around ongoing challenges in the field and shed light on promising future research directions with the potential for significant advancements. Keywords: Harmonization, Structural MRI, Generative adversarial networks, Variational autoencoders, Disentangled representation learning
Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of factors like inherent differences between various vendors, hardware upgrades, protocol changes, and scanner calibration drift, as well as to ensure consistent data for medical image processing techniques. Given the critical importance and widespread relevance of this issue, a vast array of image harmonization methodologies have emerged, with deep learning-based approaches driving substantial advancements in recent times. The goal of this review paper is to examine the latest deep learning techniques employed for image harmonization by analyzing cutting-edge architectural approaches in the field of medical image harmonization, evaluating both their strengths and limitations. This paper begins by providing a comprehensive fundamental overview of image harmonization strategies, covering three critical aspects: established imaging datasets, commonly used evaluation metrics, and characteristics of different scanners. Subsequently, this paper analyzes recent structural MRI (Magnetic Resonance Imaging) harmonization techniques based on network architecture, network learning algorithm, network supervision strategy, and network output. The underlying architectures include U-Net, Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), flow-based generative models, transformer-based approaches, as well as custom-designed network architectures. This paper investigates the effectiveness of Disentangled Representation Learning (DRL) as a pivotal learning algorithm in harmonization. Lastly, the review highlights the primary limitations in harmonization techniques, specifically the lack of comprehensive quantitative comparisons across different methods. The overall aim of this review is to serve as a guide for researchers and practitioners to select appropriate architectures based on their specific conditions and requirements. It also aims to foster discussions around ongoing challenges in the field and shed light on promising future research directions with the potential for significant advancements.Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of factors like inherent differences between various vendors, hardware upgrades, protocol changes, and scanner calibration drift, as well as to ensure consistent data for medical image processing techniques. Given the critical importance and widespread relevance of this issue, a vast array of image harmonization methodologies have emerged, with deep learning-based approaches driving substantial advancements in recent times. The goal of this review paper is to examine the latest deep learning techniques employed for image harmonization by analyzing cutting-edge architectural approaches in the field of medical image harmonization, evaluating both their strengths and limitations. This paper begins by providing a comprehensive fundamental overview of image harmonization strategies, covering three critical aspects: established imaging datasets, commonly used evaluation metrics, and characteristics of different scanners. Subsequently, this paper analyzes recent structural MRI (Magnetic Resonance Imaging) harmonization techniques based on network architecture, network learning algorithm, network supervision strategy, and network output. The underlying architectures include U-Net, Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), flow-based generative models, transformer-based approaches, as well as custom-designed network architectures. This paper investigates the effectiveness of Disentangled Representation Learning (DRL) as a pivotal learning algorithm in harmonization. Lastly, the review highlights the primary limitations in harmonization techniques, specifically the lack of comprehensive quantitative comparisons across different methods. The overall aim of this review is to serve as a guide for researchers and practitioners to select appropriate architectures based on their specific conditions and requirements. It also aims to foster discussions around ongoing challenges in the field and shed light on promising future research directions with the potential for significant advancements.
Abstract Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of factors like inherent differences between various vendors, hardware upgrades, protocol changes, and scanner calibration drift, as well as to ensure consistent data for medical image processing techniques. Given the critical importance and widespread relevance of this issue, a vast array of image harmonization methodologies have emerged, with deep learning-based approaches driving substantial advancements in recent times. The goal of this review paper is to examine the latest deep learning techniques employed for image harmonization by analyzing cutting-edge architectural approaches in the field of medical image harmonization, evaluating both their strengths and limitations. This paper begins by providing a comprehensive fundamental overview of image harmonization strategies, covering three critical aspects: established imaging datasets, commonly used evaluation metrics, and characteristics of different scanners. Subsequently, this paper analyzes recent structural MRI (Magnetic Resonance Imaging) harmonization techniques based on network architecture, network learning algorithm, network supervision strategy, and network output. The underlying architectures include U-Net, Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), flow-based generative models, transformer-based approaches, as well as custom-designed network architectures. This paper investigates the effectiveness of Disentangled Representation Learning (DRL) as a pivotal learning algorithm in harmonization. Lastly, the review highlights the primary limitations in harmonization techniques, specifically the lack of comprehensive quantitative comparisons across different methods. The overall aim of this review is to serve as a guide for researchers and practitioners to select appropriate architectures based on their specific conditions and requirements. It also aims to foster discussions around ongoing challenges in the field and shed light on promising future research directions with the potential for significant advancements.
ArticleNumber 90
Audience Academic
Author Pandey, Gaurav
Sheikh-Bahaei, Nasim
Lan, Haoyu
Varghese, Bino
Abbasi, Soolmaz
Choupan, Jeiran
Author_xml – sequence: 1
  givenname: Soolmaz
  surname: Abbasi
  fullname: Abbasi, Soolmaz
  organization: Department of Computer Engineering, Yazd University
– sequence: 2
  givenname: Haoyu
  surname: Lan
  fullname: Lan, Haoyu
  organization: Department of Neurology, University of Southern California
– sequence: 3
  givenname: Jeiran
  surname: Choupan
  fullname: Choupan, Jeiran
  organization: Department of Neurology, University of Southern California
– sequence: 4
  givenname: Nasim
  surname: Sheikh-Bahaei
  fullname: Sheikh-Bahaei, Nasim
  organization: Department of Radiology, University of Southern California
– sequence: 5
  givenname: Gaurav
  surname: Pandey
  fullname: Pandey, Gaurav
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
– sequence: 6
  givenname: Bino
  surname: Varghese
  fullname: Varghese, Bino
  email: bino.varghese@med.usc.edu
  organization: Department of Radiology, University of Southern California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39217355$$D View this record in MEDLINE/PubMed
BookMark eNp9kltrFDEYhgep2IP-AS9kwBu9mJrD5ORdqVUXKkJV8C5kMt9Ms8wma5IR66833W2tW6TkIuHjed98p8NqzwcPVfUco2OMJX-TMFFUNoi0DcJEooY_qg5wK1ijCPu-9897vzpMaYkQQYirJ9U-VQQLythBdfYOYF1PYKJ3fqyHEOt8CfWliavg3W-TXfB1GOqU42zzHM1Uf7pY1Mkan97Wpk5z_AlXT6vHg5kSPLu5j6pv78--nn5szj9_WJyenDeWSZ6bQXFkERkYxx1gQ1s7gOow7XrCLCa0FZjbvsPtgFoQineW95Z2FMnOKFueR9Vi69sHs9Tr6FYmXulgnN4EQhy1idnZCbTgsig63CnoW8S44pgLhklvQVijRPF6tfVax_BjhpT1yiUL02Q8hDlpipSSrJUcFfTlPXQZ5uhLpZri0n5FOWrvqNGU_50fQo7GXpvqE4kkFUIwVajj_1Dl9LBytgx4cCW-I3i9IyhMhl95NHNKevHlYpd9cZPo3K2g_9uh23kXQG4BG0NKEQZtXd4MuWThJo2Rvl4tvV0tXWrTm9XSvEjJPemt-4MiuhWlAvsR4l3nHlD9AcgE3HI
CitedBy_id crossref_primary_10_1177_14727978251361542
crossref_primary_10_1186_s41747_025_00562_5
crossref_primary_10_21833_ijaas_2025_08_024
crossref_primary_10_3389_fneur_2025_1656705
crossref_primary_10_1007_s10334_025_01245_3
crossref_primary_10_1016_j_neuroimage_2025_121297
crossref_primary_10_1186_s41747_025_00553_6
crossref_primary_10_1016_j_biopsych_2025_09_003
crossref_primary_10_1016_j_radi_2025_01_013
crossref_primary_10_3390_ijms26189178
Cites_doi 10.1109/ICCVW54120.2021.00367
10.1016/j.media.2016.08.009
10.1162/jocn.2009.21407
10.1016/S0730-725X(96)00219-6
10.1007/978-3-030-00931-1_52
10.25122/jml-2022-0212
10.3389/fneur.2022.923988
10.1007/978-3-030-01219-9_11
10.3390/s19102361
10.1007/978-3-030-88210-5_10
10.1007/978-3-030-59861-7_19
10.1016/j.media.2023.102799
10.1007/978-3-031-16446-0_72
10.2967/jnumed.121.262464
10.1109/ICCV.2017.244
10.1109/SIPAIM56729.2023.10373501
10.48550/arXiv.1801.01401
10.3389/fnins.2020.00072
10.1016/j.neuroimage.2022.119570
10.1117/12.2613159
10.1016/j.jalz.2016.10.006
10.1007/978-3-030-78191-0_27
10.3389/fnins.2021.662005
10.1109/SEB-SDG57117.2023.10124624
10.1016/j.heliyon.2023.e22647
10.1109/TIP.2003.819861
10.1007/978-3-031-17027-0_6
10.1002/acm2.13121
10.1109/TBME.2021.3117407
10.1016/j.neuroimage.2019.116450
10.1016/j.neuroimage.2020.117689
10.48550/arXiv.2112.12625
10.3390/biology10111174
10.1016/j.media.2021.102076
10.1016/j.neuroimage.2023.120125
10.1017/S1041610209009405
10.1088/0031-9155/55/20/008
10.1002/hbm.26422
10.3390/jimaging8110303
10.1186/s12880-015-0068-x
10.1038/mp.2013.78
10.1002/jmri.1880060111
10.1109/ICMA57826.2023.10215948
10.1101/2019.12.13.19014902
10.1007/978-3-030-00536-8_3
10.1016/j.adro.2021.100708
10.3390/jpm11090842
10.1162/jocn.2007.19.9.1498
10.48550/arXiv.1802.05957
10.1117/12.2606155
10.48550/arXiv.1312.6114
10.1109/CVPR52688.2022.01775
10.48550/arXiv.2402.03227
10.1016/j.dcn.2018.03.001
10.3988/jcn.2021.17.4.503
10.1088/1361-6560/ac39e5
10.21037/qims-20-541
10.1016/j.mri.2019.05.041
10.1109/WACV56688.2023.00059
10.3390/cancers15164172
10.3390/bioengineering10040397
10.1109/CVPR.2018.00068
10.1007/978-3-030-59728-3_70
10.1038/s44172-023-00140-w
10.1007/978-3-031-34048-2_27
10.1007/978-3-031-17899-3_9
10.48550/arXiv.2010.05355
10.1016/j.neunet.2023.02.042
10.1186/s40708-020-00112-2
10.1109/TMI.2022.3199155
10.1016/B978-0-32-385124-4.00014-3
10.3390/app122211758
10.1109/EMBC48229.2022.9871061
10.1016/j.media.2020.101952
10.48550/arXiv.2310.18689
10.1109/TMI.2020.2972701
10.1016/j.compmedimag.2023.102285
10.1117/12.2551301
10.1088/1361-6560/ac7b66
10.11604/pamj.2018.30.240.14000
10.3233/JAD-170261
10.1117/12.2654392
10.1016/j.phro.2022.05.005
10.5005/jp/books/14192.
10.48550/arXiv.2404.18930
10.1371/journal.pmed.1001779
10.1109/WACV56688.2023.00077
10.48550/arXiv.2309.11433
10.1007/978-3-031-16449-1_69
10.1007/978-3-030-50641-4_7
10.1016/j.cmpb.2024.108115
10.1002/jmri.27908
10.1117/12.2608565
10.1007/978-3-031-43993-3_36
10.1007/s00330-019-06229-1
10.48550/arXiv.2008.06365
10.48550/arXiv.2405.18654
10.48550/arXiv.2211.11695
10.1038/s41598-022-16609-1
10.3390/bioengineering10060712
10.1016/j.jneumeth.2022.109579
10.6084/m9.figshare.14716329
10.48550/arXiv.2308.11047
10.1109/ICCV51070.2023.01932
10.1002/acm2.13530
10.1016/j.imed.2022.07.002
10.1016/j.media.2022.102461
10.1007/s11517-023-02941-9
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOA
DOI 10.1186/s12938-024-01280-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 42
ExternalDocumentID oai_doaj_org_article_768cdcb1b9ed405696167512dce7ca97
A808377759
39217355
10_1186_s12938_024_01280_6
Genre Journal Article
Review
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GrantInformation_xml – fundername: National Institutes of Health
  grantid: 5R01NS128486-03
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIA NIH HHS
  grantid: P30 AG066530
– fundername: NINDS NIH HHS
  grantid: R01 NS128486
– fundername: NIH HHS
  grantid: 5R01NS128486-03
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7XB
8FD
8FK
AZQEC
COVID
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c586t-f960c02f561be1a34cfe9b13bd25c1234716cdb14f04e796bc6dc3b308ba9cdc3
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302520200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1475-925X
IngestDate Fri Oct 03 12:52:09 EDT 2025
Thu Sep 04 15:56:56 EDT 2025
Mon Oct 06 18:12:07 EDT 2025
Sat Nov 29 13:56:21 EST 2025
Tue Nov 04 18:17:10 EST 2025
Wed Nov 26 11:28:43 EST 2025
Mon Sep 22 02:44:27 EDT 2025
Tue Nov 18 21:17:21 EST 2025
Sat Nov 29 01:47:58 EST 2025
Sat Sep 06 07:30:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Variational autoencoders
Structural MRI
Generative adversarial networks
Disentangled representation learning
Harmonization
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-f960c02f561be1a34cfe9b13bd25c1234716cdb14f04e796bc6dc3b308ba9cdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12938-024-01280-6
PMID 39217355
PQID 3102493604
PQPubID 42562
PageCount 42
ParticipantIDs doaj_primary_oai_doaj_org_article_768cdcb1b9ed405696167512dce7ca97
proquest_miscellaneous_3099854860
proquest_journals_3102493604
gale_infotracmisc_A808377759
gale_infotracacademiconefile_A808377759
gale_incontextgauss_ISR_A808377759
pubmed_primary_39217355
crossref_citationtrail_10_1186_s12938_024_01280_6
crossref_primary_10_1186_s12938_024_01280_6
springer_journals_10_1186_s12938_024_01280_6
PublicationCentury 2000
PublicationDate 2024-08-31
PublicationDateYYYYMMDD 2024-08-31
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References C Chen (1280_CR14) 2020; 39
SY Ahmed (1280_CR41) 2023; 16
AC Klemenz (1280_CR23) 2024; 14
L Tronchin (1280_CR51) 2021
F Zhao (1280_CR70) 2019
R Pomponio (1280_CR11) 2020; 208
X Wang (1280_CR107) 2022
NK Bangerter (1280_CR1) 2019
Y Pan (1280_CR116) 2018
S Cackowski (1280_CR54) 2023; 88
E Pachetti (1280_CR85) 2023
SC Tanaka (1280_CR17) 2021; 8
S Sinha (1280_CR55) 2021; 12088
BE Dewey (1280_CR59) 2018
C-B Jin (1280_CR114) 2019; 19
AF Osman (1280_CR64) 2022; 23
MW Weiner (1280_CR33) 2017; 13
PJ LaMontagne (1280_CR38) 2019
1280_CR29
YJ Ma (1280_CR43) 2020; 10
1280_CR8
BK Rutt (1280_CR40) 1996; 6
A Parida (1280_CR49) 2023
L Zuo (1280_CR106) 2023; 109
GI Ogbole (1280_CR39) 2018
D Komandur (1280_CR66) 2023
NK Dinsdale (1280_CR96) 2021
S Liu (1280_CR102) 2024; 3
BJ Casey (1280_CR34) 2018; 32
S Jadon (1280_CR84) 2020
M Shao (1280_CR56) 2022; 12032
K Ko (1280_CR30) 2023; 162
1280_CR53
SA Mali (1280_CR26) 2021; 11
M Bińkowski (1280_CR52) 2018
AA Taha (1280_CR57) 2015; 15
S Bottani (1280_CR63) 2022; 12032
A Carré (1280_CR3) 2022; 12
J Zhang (1280_CR16) 2024; 12930
M Yurt (1280_CR110) 2022; 41
H Li (1280_CR103) 2021
J Sijbers (1280_CR46) 1996; 14
1280_CR2
DS Marcus (1280_CR37) 2010
X Yao (1280_CR93) 2023; 12464
I Shiri (1280_CR60) 2019; 29
V Roca (1280_CR21) 2023
M Liu (1280_CR72) 2021
Z Bai (1280_CR77) 2024
M Wu (1280_CR105) 2023
G Modanwal (1280_CR67) 2020; 11314
S Zhang (1280_CR61) 2023; 10
A Di Martino (1280_CR32) 2014; 19
C Sudlow (1280_CR31) 2015; 12
K He (1280_CR91) 2023; 3
M Fratini (1280_CR4) 2020; 14
E Lawrence (1280_CR10) 2017
L Zuo (1280_CR28) 2024; 1
H Guan (1280_CR97) 2021; 71
R Sharma (1280_CR119) 2022; 12
A Jog (1280_CR108) 2017; 35
L An (1280_CR113) 2022; 263
L Zuo (1280_CR101) 2022
F Hu (1280_CR20) 2023; 20
Z Wang (1280_CR47) 2004; 13
1280_CR104
MJ Lakshmi (1280_CR5) 2022; 26
VM Bashyam (1280_CR75) 2022; 55
S Saxena (1280_CR74) 2021
V Roca (1280_CR76) 2024
1280_CR112
K Zhou (1280_CR15) 2022; 45
1280_CR71
K Fatania (1280_CR87) 2022; 22
MB Noor (1280_CR7) 2020; 7
A Ayaz (1280_CR22) 2024; 248
X Chang (1280_CR109) 2022; 67
T Miyato (1280_CR80) 2018
H Guan (1280_CR13) 2021; 69
1280_CR117
M Nazarpoor (1280_CR44) 2014; 28
J Wang (1280_CR12) 2022; 35
GR Morrell (1280_CR45) 2010; 55
W Yan (1280_CR69) 2022
T Wang (1280_CR115) 2021; 22
1280_CR120
C Baur (1280_CR82) 2021; 69
JY Zhu (1280_CR65) 2017
1280_CR95
1280_CR94
1280_CR99
1280_CR98
V Ravano (1280_CR48) 2022; 18
M Liu (1280_CR73) 2023; 44
SL Thrower (1280_CR42) 2021; 6
O Ronneberger (1280_CR58) 2015
J Liang (1280_CR79) 2022; 79
L Deng (1280_CR24) 2024; 62
G Wen (1280_CR25) 2023; 10
MS Treder (1280_CR50) 2022; 374
R Sharma (1280_CR118) 2023; 21
B Azad (1280_CR122) 2023
DS Marcus (1280_CR36) 2007; 19
BE Dewey (1280_CR62) 2019; 64
1280_CR92
1280_CR90
1280_CR86
F Orlhac (1280_CR19) 2022; 63
I Grigorescu (1280_CR111) 2021; 15
S Akter (1280_CR121) 2021; 10
1280_CR83
1280_CR89
1280_CR88
F Tixier (1280_CR9) 2021; 66
JMM Bayer (1280_CR27) 2022; 13
KM Han (1280_CR6) 2021; 17
VM Bashyam (1280_CR68) 2020
P Sarkar (1280_CR78) 2024
1280_CR100
KA Ellis (1280_CR35) 2009; 21
E Stamoulou (1280_CR18) 2022; 8
DP Kingma (1280_CR81) 2013
References_xml – start-page: 475
  volume-title: International conference on medical image computing and computer-assisted intervention
  year: 2019
  ident: 1280_CR70
– ident: 1280_CR83
  doi: 10.1109/ICCVW54120.2021.00367
– volume: 35
  start-page: 475
  year: 2017
  ident: 1280_CR108
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.08.009
– year: 2010
  ident: 1280_CR37
  publication-title: J Cognit Neurosci
  doi: 10.1162/jocn.2009.21407
– volume: 14
  start-page: 1157
  issue: 10
  year: 1996
  ident: 1280_CR46
  publication-title: Magnet Reson Imaging
  doi: 10.1016/S0730-725X(96)00219-6
– year: 2018
  ident: 1280_CR116
  publication-title: Med Image Comput Comput Assist Intervent MICCAI
  doi: 10.1007/978-3-030-00931-1_52
– volume: 16
  start-page: 920
  issue: 6
  year: 2023
  ident: 1280_CR41
  publication-title: J Med Life
  doi: 10.25122/jml-2022-0212
– volume: 13
  start-page: 923988
  year: 2022
  ident: 1280_CR27
  publication-title: Front Neurol
  doi: 10.3389/fneur.2022.923988
– ident: 1280_CR71
  doi: 10.1007/978-3-030-01219-9_11
– volume: 19
  start-page: 2361
  issue: 10
  year: 2019
  ident: 1280_CR114
  publication-title: Sensors
  doi: 10.3390/s19102361
– start-page: 112
  volume-title: Deep generative models, and data augmentation, labelling, and imperfections. MICCAI
  year: 2021
  ident: 1280_CR51
  doi: 10.1007/978-3-030-88210-5_10
– ident: 1280_CR112
  doi: 10.1007/978-3-030-59861-7_19
– volume: 88
  start-page: 102799
  year: 2023
  ident: 1280_CR54
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102799
– ident: 1280_CR117
  doi: 10.1007/978-3-031-16446-0_72
– volume: 63
  start-page: 172
  issue: 2
  year: 2022
  ident: 1280_CR19
  publication-title: J Nuclear Med
  doi: 10.2967/jnumed.121.262464
– year: 2017
  ident: 1280_CR65
  publication-title: Proc IEEE Int Con Comput Vision
  doi: 10.1109/ICCV.2017.244
– year: 2023
  ident: 1280_CR66
  publication-title: Int Sympos Med Inform Proc Anal (SIPAIM)
  doi: 10.1109/SIPAIM56729.2023.10373501
– year: 2018
  ident: 1280_CR52
  publication-title: arXiv
  doi: 10.48550/arXiv.1801.01401
– volume: 14
  start-page: 72
  year: 2020
  ident: 1280_CR4
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00072
– volume: 263
  start-page: 119570
  year: 2022
  ident: 1280_CR113
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119570
– volume: 12032
  start-page: 115
  year: 2022
  ident: 1280_CR56
  publication-title: Med Imaging 2022 Image Proc
  doi: 10.1117/12.2613159
– volume: 13
  start-page: 561
  issue: 5
  year: 2017
  ident: 1280_CR33
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.jalz.2016.10.006
– ident: 1280_CR100
  doi: 10.1007/978-3-030-78191-0_27
– volume: 15
  start-page: 662005
  year: 2021
  ident: 1280_CR111
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.662005
– start-page: 1
  volume-title: International Workshop on machine learning in medical imaging
  year: 2023
  ident: 1280_CR105
– ident: 1280_CR120
  doi: 10.1109/SEB-SDG57117.2023.10124624
– year: 2023
  ident: 1280_CR21
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e22647
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 1280_CR47
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– start-page: 54
  volume-title: Disentangling a single MR modality. MICCAI Workshop on Data Augmentation, Labelling, and Imperfections
  year: 2022
  ident: 1280_CR101
  doi: 10.1007/978-3-031-17027-0_6
– volume: 22
  start-page: 11
  issue: 1
  year: 2021
  ident: 1280_CR115
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.13121
– volume: 69
  start-page: 1173
  issue: 3
  year: 2021
  ident: 1280_CR13
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2021.3117407
– volume: 208
  start-page: 116450
  year: 2020
  ident: 1280_CR11
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116450
– year: 2021
  ident: 1280_CR96
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117689
– year: 2021
  ident: 1280_CR74
  publication-title: arXiv
  doi: 10.48550/arXiv.2112.12625
– volume: 10
  start-page: 1174
  issue: 11
  year: 2021
  ident: 1280_CR121
  publication-title: Biology
  doi: 10.3390/biology10111174
– volume: 35
  start-page: 8052
  issue: 8
  year: 2022
  ident: 1280_CR12
  publication-title: IEEE Trans Knowl Data Eng
– volume: 71
  start-page: 102076
  year: 2021
  ident: 1280_CR97
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102076
– volume: 20
  start-page: 120125
  year: 2023
  ident: 1280_CR20
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120125
– volume: 21
  start-page: 672
  issue: 4
  year: 2009
  ident: 1280_CR35
  publication-title: Int Psychogeriatrics
  doi: 10.1017/S1041610209009405
– volume: 55
  start-page: 6157
  issue: 20
  year: 2010
  ident: 1280_CR45
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/20/008
– year: 2021
  ident: 1280_CR72
  publication-title: Med Image Comput Comput Assist Intervent MICCAI
  doi: 10.1002/hbm.26422
– volume: 8
  start-page: 303
  issue: 11
  year: 2022
  ident: 1280_CR18
  publication-title: J Imaging
  doi: 10.3390/jimaging8110303
– volume: 15
  start-page: 1
  year: 2015
  ident: 1280_CR57
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  ident: 1280_CR32
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 6
  start-page: 57
  issue: 1
  year: 1996
  ident: 1280_CR40
  publication-title: J Magnet Reson Imaging
  doi: 10.1002/jmri.1880060111
– ident: 1280_CR95
  doi: 10.1109/ICMA57826.2023.10215948
– year: 2019
  ident: 1280_CR38
  publication-title: MedRxiv
  doi: 10.1101/2019.12.13.19014902
– start-page: 20
  volume-title: Simulation and synthesis in medical imaging: third international workshop, SASHIMI 2018, held in conjunction with MICCAI
  year: 2018
  ident: 1280_CR59
  doi: 10.1007/978-3-030-00536-8_3
– volume: 6
  start-page: 100708
  issue: 4
  year: 2021
  ident: 1280_CR42
  publication-title: Adv Radiat Oncol
  doi: 10.1016/j.adro.2021.100708
– volume: 12930
  start-page: 635
  year: 2024
  ident: 1280_CR16
  publication-title: InMed Imaging 2024 Clin Biomed Imaging
– volume: 11
  start-page: 842
  issue: 9
  year: 2021
  ident: 1280_CR26
  publication-title: J Personal Med
  doi: 10.3390/jpm11090842
– volume: 19
  start-page: 1498
  issue: 9
  year: 2007
  ident: 1280_CR36
  publication-title: J Cognit Neurosci
  doi: 10.1162/jocn.2007.19.9.1498
– year: 2018
  ident: 1280_CR80
  publication-title: ArXiv
  doi: 10.48550/arXiv.1802.05957
– volume: 28
  start-page: 128
  year: 2014
  ident: 1280_CR44
  publication-title: Med J Islamic Republic Iran
– volume: 12088
  start-page: 180
  year: 2021
  ident: 1280_CR55
  publication-title: Int Sympos Med Inform Proc Anal
  doi: 10.1117/12.2606155
– start-page: 234
  volume-title: Medical Image computing and computer-assisted intervention–MICCAI
  year: 2015
  ident: 1280_CR58
– year: 2013
  ident: 1280_CR81
  publication-title: ArXiv
  doi: 10.48550/arXiv.1312.6114
– ident: 1280_CR94
  doi: 10.1109/CVPR52688.2022.01775
– ident: 1280_CR8
– year: 2024
  ident: 1280_CR76
  publication-title: arXiv
  doi: 10.48550/arXiv.2402.03227
– volume: 32
  start-page: 43
  year: 2018
  ident: 1280_CR34
  publication-title: Dev Cogn Neurosci
  doi: 10.1016/j.dcn.2018.03.001
– volume: 17
  start-page: 503
  issue: 4
  year: 2021
  ident: 1280_CR6
  publication-title: J Clin Neurol
  doi: 10.3988/jcn.2021.17.4.503
– volume: 66
  start-page: 245009
  issue: 24
  year: 2021
  ident: 1280_CR9
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ac39e5
– volume: 10
  start-page: 1186
  issue: 6
  year: 2020
  ident: 1280_CR43
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims-20-541
– volume: 64
  start-page: 160
  year: 2019
  ident: 1280_CR62
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.05.041
– ident: 1280_CR90
– ident: 1280_CR29
  doi: 10.1109/WACV56688.2023.00059
– volume: 26
  start-page: 6245
  issue: 13
  year: 2022
  ident: 1280_CR5
  publication-title: Soft Comput
  doi: 10.3390/cancers15164172
– volume: 10
  start-page: 397
  issue: 4
  year: 2023
  ident: 1280_CR25
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10040397
– ident: 1280_CR53
  doi: 10.1109/CVPR.2018.00068
– ident: 1280_CR99
  doi: 10.1007/978-3-030-59728-3_70
– volume: 3
  start-page: 6
  issue: 1
  year: 2024
  ident: 1280_CR102
  publication-title: Commun Eng
  doi: 10.1038/s44172-023-00140-w
– ident: 1280_CR89
  doi: 10.1007/978-3-031-34048-2_27
– volume: 18
  start-page: 83
  year: 2022
  ident: 1280_CR48
  publication-title: Int Workshop Mach Learn Clin Neuroimag
  doi: 10.1007/978-3-031-17899-3_9
– year: 2020
  ident: 1280_CR68
  publication-title: arXiv
  doi: 10.48550/arXiv.2010.05355
– volume: 162
  start-page: 330
  year: 2023
  ident: 1280_CR30
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2023.02.042
– volume: 7
  start-page: 1
  year: 2020
  ident: 1280_CR7
  publication-title: Brain Inform
  doi: 10.1186/s40708-020-00112-2
– volume: 41
  start-page: 3895
  issue: 12
  year: 2022
  ident: 1280_CR110
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3199155
– volume: 14
  start-page: 2494
  issue: 1
  year: 2024
  ident: 1280_CR23
  publication-title: Sci Reports
– volume: 1
  start-page: 135
  year: 2024
  ident: 1280_CR28
  publication-title: Deep Learn Med Image Anal
  doi: 10.1016/B978-0-32-385124-4.00014-3
– volume: 12
  start-page: 11758
  issue: 22
  year: 2022
  ident: 1280_CR119
  publication-title: Appl Sci
  doi: 10.3390/app122211758
– volume: 44
  start-page: 4875
  issue: 14
  year: 2023
  ident: 1280_CR73
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.26422
– year: 2022
  ident: 1280_CR69
  publication-title: Ann Int Conf IEEE Eng Med Biol Soc (EMBC)
  doi: 10.1109/EMBC48229.2022.9871061
– volume: 69
  start-page: 101952
  year: 2021
  ident: 1280_CR82
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101952
– year: 2023
  ident: 1280_CR122
  publication-title: ArXiv
  doi: 10.48550/arXiv.2310.18689
– volume: 39
  start-page: 2494
  issue: 7
  year: 2020
  ident: 1280_CR14
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2972701
– volume: 109
  start-page: 102285
  year: 2023
  ident: 1280_CR106
  publication-title: Comput Med Imaging Graphics
  doi: 10.1016/j.compmedimag.2023.102285
– volume: 11314
  start-page: 259
  year: 2020
  ident: 1280_CR67
  publication-title: Med Imaging
  doi: 10.1117/12.2551301
– volume: 67
  start-page: 145004
  issue: 14
  year: 2022
  ident: 1280_CR109
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ac7b66
– year: 2018
  ident: 1280_CR39
  publication-title: Pan Afr Med J
  doi: 10.11604/pamj.2018.30.240.14000
– year: 2017
  ident: 1280_CR10
  publication-title: J Alzheimer's Dis
  doi: 10.3233/JAD-170261
– volume: 12464
  start-page: 184
  year: 2023
  ident: 1280_CR93
  publication-title: Med Imaging
  doi: 10.1117/12.2654392
– start-page: 44
  volume-title: Unpaired MR image homogenisation by disentangled representations and its uncertainty. Uncertainty for safe utilization of machine learning in medical imaging, and perinatal imaging, placental and preterm image analysis: 3rd international workshop
  year: 2021
  ident: 1280_CR103
– volume: 22
  start-page: 115
  year: 2022
  ident: 1280_CR87
  publication-title: Phys Imaging Radiat Oncol
  doi: 10.1016/j.phro.2022.05.005
– start-page: 163
  volume-title: Magnetic resonance imaging. In: bioengineering innovative solutions for cancer
  year: 2019
  ident: 1280_CR1
– ident: 1280_CR2
  doi: 10.5005/jp/books/14192.
– volume: 45
  start-page: 4396
  issue: 4
  year: 2022
  ident: 1280_CR15
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2024
  ident: 1280_CR77
  publication-title: arXiv
  doi: 10.48550/arXiv.2404.18930
– volume: 12
  start-page: e1001779
  issue: 3
  year: 2015
  ident: 1280_CR31
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– ident: 1280_CR92
  doi: 10.1109/WACV56688.2023.00077
– year: 2023
  ident: 1280_CR85
  publication-title: ArXiv
  doi: 10.48550/arXiv.2309.11433
– ident: 1280_CR98
  doi: 10.1007/978-3-031-16449-1_69
– ident: 1280_CR86
  doi: 10.1007/978-3-030-50641-4_7
– volume: 248
  start-page: 108115
  year: 2024
  ident: 1280_CR22
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2024.108115
– volume: 55
  start-page: 908
  issue: 3
  year: 2022
  ident: 1280_CR75
  publication-title: J Magnet Reson Imaging
  doi: 10.1002/jmri.27908
– volume: 12032
  start-page: 576
  year: 2022
  ident: 1280_CR63
  publication-title: Med Imaging
  doi: 10.1117/12.2608565
– ident: 1280_CR104
  doi: 10.1007/978-3-031-43993-3_36
– volume: 29
  start-page: 6867
  year: 2019
  ident: 1280_CR60
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06229-1
– year: 2020
  ident: 1280_CR84
  publication-title: arXiv
  doi: 10.48550/arXiv.2008.06365
– year: 2024
  ident: 1280_CR78
  publication-title: arXiv
  doi: 10.48550/arXiv.2405.18654
– volume: 21
  start-page: 1
  year: 2023
  ident: 1280_CR118
  publication-title: Magn Reson Mater Phys Biol Med
– year: 2022
  ident: 1280_CR107
  publication-title: ArXiv
  doi: 10.48550/arXiv.2211.11695
– volume: 12
  start-page: 12762
  issue: 1
  year: 2022
  ident: 1280_CR3
  publication-title: Sci Reports
  doi: 10.1038/s41598-022-16609-1
– volume: 10
  start-page: 712
  issue: 6
  year: 2023
  ident: 1280_CR61
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10060712
– volume: 374
  start-page: 109579
  year: 2022
  ident: 1280_CR50
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2022.109579
– volume: 8
  start-page: 227
  issue: 1
  year: 2021
  ident: 1280_CR17
  publication-title: Sci Data
  doi: 10.6084/m9.figshare.14716329
– year: 2023
  ident: 1280_CR49
  publication-title: arXiv
  doi: 10.48550/arXiv.2308.11047
– ident: 1280_CR88
  doi: 10.1109/ICCV51070.2023.01932
– volume: 23
  start-page: e13530
  issue: 4
  year: 2022
  ident: 1280_CR64
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.13530
– volume: 3
  start-page: 59
  issue: 1
  year: 2023
  ident: 1280_CR91
  publication-title: Intell Med
  doi: 10.1016/j.imed.2022.07.002
– volume: 79
  start-page: 102461
  year: 2022
  ident: 1280_CR79
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102461
– volume: 62
  start-page: 505
  issue: 2
  year: 2024
  ident: 1280_CR24
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-023-02941-9
SSID ssj0020069
Score 2.4423652
SecondaryResourceType review_article
Snippet Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These...
Abstract Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These...
SourceID doaj
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 90
SubjectTerms Algorithms
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Data mining
Datasets
Deep Learning
Disentangled representation learning
Electronic data processing
Engineering
Generative adversarial networks
Harmonization
Humans
Image processing
Image Processing, Computer-Assisted - methods
Machine learning
Magnetic Resonance Imaging
Medical imaging
Medical imaging equipment
Medical research
Methods
Neural networks
Neuroimaging
Neurological disorders
Radiomics
Review
Reviews
Scanners
Statistical methods
Structural MRI
Surveys
Surveys and Questionnaires
Tomography
Upgrading
Variational autoencoders
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9YwFD7IENEL0fmx6pQoghda1vQjabybuuHADZkf7C4k6ckQpB3r3oH_3pM0fX1fRb3xtjkt7dOTnOe0Oc8BeFYbRC-tyUtVUoJSmyZXlalz5zmXznuLsRbmy3t5dNSenKgPK62-wp6wSR54Am6H6LDrnOVWYUfkQijBiePysnMonVGxjryQak6mUqoVBHjnEplW7IwhqrU5xaM8LMiUMK2FoajW__uavBKUfvlLGoPP_i24mVgj253u9jZcwX4TbqxoCW7CtcP0l_wO7L1FPGOpH8QpI1rKiOaxIFI9zHWXbPBs0o4Nuhvs8PiAjYTy-IoZNi7OL_H7Xfi8v_fpzbs8tUvIXdOKi9xTMuKK0hMjsshNVTuPyvLKdmXjKEBRGBKus7z2RY1SCetE5ypbFa01ijCu7sFGP_S4BayrDHJuaIDbmnfKNKiwKazsolgNZsBn9LRLWuKhpcU3HXOKVugJcU2I64i4Fhm8WJ5zNilp_NX6dXgpS8uggh0PkG_o5Bv6X76RwdPwSnXQuejDRppTsxhHffDxWO-2xD2llI3K4Hky8gM9gzOpLoGQCNJYa5bba5Y0Ed368Ow5Oi0Eoyb2TAluJYo6gyfL4XBm2NzW47AgG2LpbRO6gWVwf_K45XMTfeWSOGEGL2cX_HnxP8P34H_A9xCul3HKhC_o27BBTomP4Kq7vPg6nj-OE-4H6i8p5g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB5BQQgOLGULFGQQEgeIGmexYy6oQCsq0aoqi3qzbMd-qlQlj5e-Svx7xo6T9oHohVsUTyIv45lvvHwD8KpU1jquVZqLHAOUUlWpKFSZGkcpN85pG-7C_PjC9_froyNxEBfc-niscrSJwVA3nfFr5JsIQzBSKFhWvp__TH3WKL-7GlNoXIVrniUhD0f3DqaAy9PwjhdlarbZe99Wp_if1JtlDJtWnFHg7P_bMl9wTX_slQYXtHPnfyt_F25H8Em2Bm25B1dsuw63LlASrsONvbjZfh-2P1k7JzGtxIwguiWIFonnuu7G65ukc2SgoPX0HWTvcJf0OFj9O6JIv1yc2V8P4PvO9rePn9OYdSE1Vc1OU4cxjclyh8BKW6qK0jgrNC10k1cG_Rx6M2YaTUuXlZYLpg1rTKGLrNZKGHx8CGtt19rHQJpCWUoVFlBd0kaoygpbZZo3gfPGJkDH7pcmUpL7zBgnMoQmNZPDkEnsPRmGTLIE3kzfzAdCjkulP_hRnSQ9mXZ40S1mMs5NiREX1ltTLWyD-JUJRjGMonljLDdK8AReep2Qni6j9edxZmrZ93L366HcqhHCcs4rkcDrKOQ6bINR8XoD9oRn2FqR3FiRxPlsVotHHZLRnvTyXIESeDEV-y_9GbnWdkuUQbBfVz6pWAKPBpWd2o0omHKElgm8HXX4_Of_7r4nl9flKdzMw2zyS-wbsIbqZp_BdXN2etwvnoe5-BuhtTei
  priority: 102
  providerName: ProQuest
Title Deep learning for the harmonization of structural MRI scans: a survey
URI https://link.springer.com/article/10.1186/s12938-024-01280-6
https://www.ncbi.nlm.nih.gov/pubmed/39217355
https://www.proquest.com/docview/3102493604
https://www.proquest.com/docview/3099854860
https://doaj.org/article/768cdcb1b9ed405696167512dce7ca97
Volume 23
WOSCitedRecordID wos001302520200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RSV
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB7RFiF44ChXoKwMQuIBIuJcjnlrYStWYlfRLlTLk2U7zqpSlVSbbiX-PWPnoMslwUsUxeMomYw938SebwBextKYkinphzzEACWWic8jGfu6pJTpslTG5cKcfGKzWbZc8rxLCmv63e79kqSbqd2wztK3jfVMmY8-xbeTKgY9O7CH7i6zBRvmi5MhzLLku316zG_7bbkgx9T_63x8xSH9tELqHM_xnf975LtwuwOa5LC1jHtwzVT7cOsK_eA-3Jh2C-v3YfzBmHPSlZBYEUSyBJEhsbzWdZ-qSeqStHSzlqqDTOcT0uCHad4RSZrN-tJ8ewBfjsef33_0uwoLvk6y9MIvMX7RQVgiiFKGyijWpeGKRqoIE40-DT1XqgtF4zKIDeOp0mmhIxUFmZJc4-lD2K3qyjwGUkTSUCqxgaqYFlwmhpskUKxw_DbGA9orXeiOftxWwTgTLgzJUtFqS6C2hNOWSD14PfQ5b8k3_ip9ZL_lIGmJs92Fer0S3TgUGF3hcyuquCkQq6Y8pRgy0bDQhmnJmQcvrCUIS41R2b03K7lpGjFZzMVhhnCVMZZwD151QmWN76Bll8qAmrBsWluSB1uSOHb1dnNvcKKbOxqBgBtj4igNYg-eD822p90PV5l6gzII7LPEFhDz4FFrqMN7I-KlDGGkB296q_xx8z-r78m_iT-Fm6EzbPt7_QB20fzMM7iuLy9Om_UIdtiSuWM2gr2j8Syfj9zvjpHdXJu74wJb8sk0_zpy4_c74IA11g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxEB6VFHE8cJRroYBBIB5g1Xgvr5EQKrRVoyZR1RZUnozt9UZIKBuyTVH_FL-RmT3SBkTf-sBbFM-ufHyeY-35BuBFpJ3LhdF-IAMMUCId-zLUkW9zzoXNc-OqXJjPfTEcpoeHcncJfrW5MHStstWJlaLOCkvfyNfQDcFIIUy60fvJD5-qRtHpaltCo4bFjjv5iSFb-a63gev7Mgi2Ng8-bvtNVQHfxmly5Ofos9tukKPjYBzXYWRzJw0PTRbEFvU4auvEZoZHeTdyQibGJpkNTdhNjZYWf-J7L8FyRGDvwPJub7D7ZR7iEfFvm5qTJmslWdPUx577ZAgwUFswf1WVgL9twRlj-MfpbGX0tm7-b9N1C2407jVbr_fDbVhy4xW4foZ0cQWuDJrrBHdgc8O5CWsKZ4wY-u8M_WFGbN5Fm6DKipzVJLtEUMIGez1WIhzLt0yzcjY9did34dOFDOkedMbF2D0AloXaca6xgZuIZ1LHTrq4a0RWsfo4D3i73Mo2pOtU--O7qoKvNFE1RBSulqogohIPXs-fmdSUI-dKfyAUzSWJLrz6o5iOVKN9FMaU2G_DjXQZeuiJTDgGijzIrBNWS-HBc8KgIkKQMd04GulZWare_p5aT9FJF0LE0oNXjVBe4BisbhI4cCaIQ2xBcnVBEjWWXWxuMasajVmqU8B68GzeTE_SLcCxK2Yog-FMGlPZNA_u11tkPm7087lA59mDN-2eOX35v6fv4fl9eQpXtw8GfdXvDXcewbWg2sl0oLAKHYSeewyX7fHRt3L6pNEEDL5e9G76DeYAl8o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZbxMxEB5BQRU8cJRroYBBSDyUVdd72GveCm1ERBtVLVR9s2yvHVWqdqNsUol_z3gvEi4J8RbF42h3PPZ8X-z5DPAmVdY6rlUYixgJSqqyUCQqDY2jlBvntG1qYc4O-WSSn5-L45Uq_ua0e78l2dY0eJWmcrE7K1w7xXO2W_sslYeYX0K_wCIBug43Un-Q3vP107OBcnkh3r5U5rf91tJRo9r_69q8kpx-2i1tktDo7v8__j240wFQstdGzH24ZsstuL0iS7gFm0fdhvsDONi3dka6qyWmBBEuQcRIvN511ZdwksqRVobWS3iQo5MxqXHA6vdEkXo5v7LfHsLX0cGXj5_C7uaF0GQ5W4QOeY2JYofgSluqktQ4KzRNdBFnBnMdZjRmCk1TF6WWC6YNK0yikyjXShj8-Ag2yqq0T4AUibKUKmygOqWFUJkVNos0LxrdGxsA7QdAmk6W3N-OcSkbepIz2XpLordk4y3JAtgZ-sxaUY6_Wn_w4zpYekHt5otqPpXd_JTIuvC5NdXCFohhmWAUqRSNC2O5UYIH8NpHhfSSGaU_kzNVy7qW49MTuZcjjOWcZyKAt52Rq_AdjOpKHNATXmVrzXJ7zRLntFlv7oNPdmtKLRGII1dOWJQG8Gpo9j39ObnSVku0QcCfZ_5isQAet0E7vDciYcoRXgbwro_QHz_-Z_c9_Tfzl7B5vD-Sh-PJ52dwK25i3P8Dvw0bGIn2Odw0V4uLev6imajfATVROaE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+the+harmonization+of+structural+MRI+scans%3A+a+survey&rft.jtitle=Biomedical+engineering+online&rft.au=Abbasi%2C+Soolmaz&rft.au=Lan%2C+Haoyu&rft.au=Choupan%2C+Jeiran&rft.au=Sheikh-Bahaei%2C+Nasim&rft.date=2024-08-31&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=23&rft.issue=1&rft.spage=90&rft_id=info:doi/10.1186%2Fs12938-024-01280-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon