Satellite-to-ground quantum key distribution

Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature (London) Ročník 549; číslo 7670; s. 43 - 47
Hlavní autoři: Liao, Sheng-Kai, Cai, Wen-Qi, Liu, Wei-Yue, Zhang, Liang, Li, Yang, Ren, Ji-Gang, Yin, Juan, Shen, Qi, Cao, Yuan, Li, Zheng-Ping, Li, Feng-Zhi, Chen, Xia-Wei, Sun, Li-Hua, Jia, Jian-Jun, Wu, Jin-Cai, Jiang, Xiao-Jun, Wang, Jian-Feng, Huang, Yong-Mei, Wang, Qiang, Zhou, Yi-Lin, Deng, Lei, Xi, Tao, Ma, Lu, Hu, Tai, Zhang, Qiang, Chen, Yu-Ao, Liu, Nai-Le, Wang, Xiang-Bin, Zhu, Zhen-Cai, Lu, Chao-Yang, Shu, Rong, Peng, Cheng-Zhi, Wang, Jian-Yu, Pan, Jian-Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 07.09.2017
Nature Publishing Group
Témata:
ISSN:0028-0836, 1476-4687, 1476-4687
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD—a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks. Decoy-state quantum key distribution from a satellite to a ground station is achieved with much greater efficiency than is possible over the same distance using optical fibres. Quantum security in orbit The laws of quantum physics give rise to protocols for ultra-secure cryptography and quantum communications. However, to be useful in a global network, these protocols will have to function with satellites. Extending existing protocols to such long distances poses a tremendous experimental challenge. Researchers led by Jian-Wei Pan present a pair of papers in this issue that take steps toward a global quantum network, using the low-Earth-orbit satellite Micius. They demonstrate satellite-to-ground quantum key distribution, an integral part of quantum cryptosystems, at kilohertz rates over 1,200 kilometres, and report quantum teleportation of a single-photon qubit over 1,400 kilometres. Quantum teleportation is the transfer of the exact state of a quantum object from one place to another, without physical travelling of the object itself, and is a central process in many quantum communication protocols. These two experiments suggest that Micius could become the first component in a global quantum internet.
AbstractList Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKDa form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to globalscale quantum networks.
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD—a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks. Decoy-state quantum key distribution from a satellite to a ground station is achieved with much greater efficiency than is possible over the same distance using optical fibres. Quantum security in orbit The laws of quantum physics give rise to protocols for ultra-secure cryptography and quantum communications. However, to be useful in a global network, these protocols will have to function with satellites. Extending existing protocols to such long distances poses a tremendous experimental challenge. Researchers led by Jian-Wei Pan present a pair of papers in this issue that take steps toward a global quantum network, using the low-Earth-orbit satellite Micius. They demonstrate satellite-to-ground quantum key distribution, an integral part of quantum cryptosystems, at kilohertz rates over 1,200 kilometres, and report quantum teleportation of a single-photon qubit over 1,400 kilometres. Quantum teleportation is the transfer of the exact state of a quantum object from one place to another, without physical travelling of the object itself, and is a central process in many quantum communication protocols. These two experiments suggest that Micius could become the first component in a global quantum internet.
Audience Academic
Author Ma, Lu
Yin, Juan
Huang, Yong-Mei
Peng, Cheng-Zhi
Shu, Rong
Pan, Jian-Wei
Wang, Qiang
Wang, Jian-Feng
Shen, Qi
Zhou, Yi-Lin
Xi, Tao
Deng, Lei
Liu, Wei-Yue
Wu, Jin-Cai
Hu, Tai
Chen, Xia-Wei
Liu, Nai-Le
Cao, Yuan
Li, Feng-Zhi
Sun, Li-Hua
Zhang, Liang
Chen, Yu-Ao
Zhang, Qiang
Liao, Sheng-Kai
Zhu, Zhen-Cai
Wang, Jian-Yu
Cai, Wen-Qi
Jia, Jian-Jun
Jiang, Xiao-Jun
Li, Zheng-Ping
Li, Yang
Ren, Ji-Gang
Wang, Xiang-Bin
Lu, Chao-Yang
Author_xml – sequence: 1
  givenname: Sheng-Kai
  surname: Liao
  fullname: Liao, Sheng-Kai
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 2
  givenname: Wen-Qi
  surname: Cai
  fullname: Cai, Wen-Qi
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 3
  givenname: Wei-Yue
  surname: Liu
  fullname: Liu, Wei-Yue
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 4
  givenname: Liang
  surname: Zhang
  fullname: Zhang, Liang
  organization: Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
– sequence: 5
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 6
  givenname: Ji-Gang
  surname: Ren
  fullname: Ren, Ji-Gang
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 7
  givenname: Juan
  surname: Yin
  fullname: Yin, Juan
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 8
  givenname: Qi
  surname: Shen
  fullname: Shen, Qi
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 9
  givenname: Yuan
  surname: Cao
  fullname: Cao, Yuan
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 10
  givenname: Zheng-Ping
  surname: Li
  fullname: Li, Zheng-Ping
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 11
  givenname: Feng-Zhi
  surname: Li
  fullname: Li, Feng-Zhi
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 12
  givenname: Xia-Wei
  surname: Chen
  fullname: Chen, Xia-Wei
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 13
  givenname: Li-Hua
  surname: Sun
  fullname: Sun, Li-Hua
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 14
  givenname: Jian-Jun
  surname: Jia
  fullname: Jia, Jian-Jun
  organization: Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
– sequence: 15
  givenname: Jin-Cai
  surname: Wu
  fullname: Wu, Jin-Cai
  organization: Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
– sequence: 16
  givenname: Xiao-Jun
  surname: Jiang
  fullname: Jiang, Xiao-Jun
  organization: National Astronomical Observatories, Chinese Academy of Sciences
– sequence: 17
  givenname: Jian-Feng
  surname: Wang
  fullname: Wang, Jian-Feng
  organization: National Astronomical Observatories, Chinese Academy of Sciences
– sequence: 18
  givenname: Yong-Mei
  surname: Huang
  fullname: Huang, Yong-Mei
  organization: Key Laboratory of Optical Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences
– sequence: 19
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
  organization: Key Laboratory of Optical Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences
– sequence: 20
  givenname: Yi-Lin
  surname: Zhou
  fullname: Zhou, Yi-Lin
  organization: Shanghai Engineering Center for Microsatellites
– sequence: 21
  givenname: Lei
  surname: Deng
  fullname: Deng, Lei
  organization: Shanghai Engineering Center for Microsatellites
– sequence: 22
  givenname: Tao
  surname: Xi
  fullname: Xi, Tao
  organization: State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center
– sequence: 23
  givenname: Lu
  surname: Ma
  fullname: Ma, Lu
  organization: Xinjiang Astronomical Observatory, Chinese Academy of Sciences
– sequence: 24
  givenname: Tai
  surname: Hu
  fullname: Hu, Tai
  organization: National Space Science Center, Chinese Academy of Sciences
– sequence: 25
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 26
  givenname: Yu-Ao
  surname: Chen
  fullname: Chen, Yu-Ao
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 27
  givenname: Nai-Le
  surname: Liu
  fullname: Liu, Nai-Le
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 28
  givenname: Xiang-Bin
  surname: Wang
  fullname: Wang, Xiang-Bin
  organization: Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 29
  givenname: Zhen-Cai
  surname: Zhu
  fullname: Zhu, Zhen-Cai
  organization: Shanghai Engineering Center for Microsatellites
– sequence: 30
  givenname: Chao-Yang
  surname: Lu
  fullname: Lu, Chao-Yang
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 31
  givenname: Rong
  surname: Shu
  fullname: Shu, Rong
  organization: Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
– sequence: 32
  givenname: Cheng-Zhi
  surname: Peng
  fullname: Peng, Cheng-Zhi
  email: pcz@ustc.edu.cn
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 33
  givenname: Jian-Yu
  surname: Wang
  fullname: Wang, Jian-Yu
  email: jywang@mail.sitp.ac.cn
  organization: Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
– sequence: 34
  givenname: Jian-Wei
  surname: Pan
  fullname: Pan, Jian-Wei
  email: pan@ustc.edu.cn
  organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28825707$$D View this record in MEDLINE/PubMed
BookMark eNp10s9rFDEUB_AgFbutnrzLYi8WOzU_ZpLMsRSrhYJg9RyyyZshdSazmx9g_3uzbJXdMpJDIHzel5e8nKAjP3lA6C3BlwQz-cnrlANQxpvmBVqQWvCq5lIcoQXGVFZYMn6MTmJ8wBg3RNSv0DGVkjYCiwW6uNcJhsElqNJU9WHK3i43WfuUx-UveFxaF1Nwq5zc5F-jl50eIrx52k_Rz5vPP66_VnffvtxeX91VppE8VXYliMWtFK3mnAAjNTPWcskFtZrWQoiOa8y0NJwK22pGgHRCGOBmhSlp2Cn6sMtdh2mTISY1umhKm9rDlKMiLcMtoy2lhZ49ow9TDr50t1WCNW29r3o9gHK-m1LQZhuqrhrMOGsok0VVM6oHD0EP5c07V44P_PsZb9Zuo_bR5Qwqy8LozGzq-UFBMQl-p17nGNXt_fdD--7p9nk1glXr4EYdHtXf-RbwcQdMmGIM0P0jBKvt71F7v6do8kwbl_R28qVnN_yn5mJXE0uy7yHsDWCG_wEmd9Gu
CitedBy_id crossref_primary_10_1038_s41566_023_01201_4
crossref_primary_10_1038_lsa_2017_146
crossref_primary_10_1364_OE_552079
crossref_primary_10_1109_ACCESS_2019_2917587
crossref_primary_10_1109_TAES_2021_3069286
crossref_primary_10_1088_1674_1056_acfd16
crossref_primary_10_1103_8plr_m6n8
crossref_primary_10_1103_PhysRevApplied_18_024067
crossref_primary_10_1364_PRJ_481475
crossref_primary_10_31857_S0555292323040022
crossref_primary_10_1140_epjqt_s40507_021_00108_9
crossref_primary_10_3390_aerospace11010005
crossref_primary_10_1364_OE_558610
crossref_primary_10_3390_nano12142427
crossref_primary_10_1364_AO_565080
crossref_primary_10_1007_s11432_022_3509_6
crossref_primary_10_1063_1_5100318
crossref_primary_10_1016_j_actaastro_2020_04_049
crossref_primary_10_1103_PhysRevApplied_21_014036
crossref_primary_10_1109_TNET_2024_3507785
crossref_primary_10_1109_JLT_2020_3009505
crossref_primary_10_1103_PhysRevResearch_6_043143
crossref_primary_10_1038_s41467_022_28767_x
crossref_primary_10_1088_1674_1056_27_5_054207
crossref_primary_10_1038_s41534_023_00754_0
crossref_primary_10_1016_j_actaastro_2020_12_039
crossref_primary_10_1155_2020_3418780
crossref_primary_10_1088_1742_6596_2386_1_012025
crossref_primary_10_1007_s11082_024_07105_z
crossref_primary_10_1007_s11128_018_2146_9
crossref_primary_10_1103_PhysRevA_111_012613
crossref_primary_10_1016_j_comcom_2020_05_021
crossref_primary_10_1103_PhysRevApplied_23_054071
crossref_primary_10_1063_5_0227350
crossref_primary_10_1088_1361_6455_ab1e91
crossref_primary_10_1063_5_0161654
crossref_primary_10_1038_s41534_023_00789_3
crossref_primary_10_1140_epjqt_s40507_025_00354_1
crossref_primary_10_1088_1367_2630_ab573e
crossref_primary_10_1007_s11082_020_02451_0
crossref_primary_10_1103_PhysRevApplied_15_034072
crossref_primary_10_1209_0295_5075_131_40005
crossref_primary_10_1016_j_ymssp_2024_112028
crossref_primary_10_1063_5_0186767
crossref_primary_10_1364_OE_565103
crossref_primary_10_59324_ejaset_2025_3_2__27
crossref_primary_10_1016_j_mattod_2023_07_021
crossref_primary_10_1109_JLT_2021_3131193
crossref_primary_10_1109_JLT_2023_3258146
crossref_primary_10_1016_j_optcom_2022_128906
crossref_primary_10_1109_ACCESS_2025_3585799
crossref_primary_10_1103_PhysRevResearch_5_023065
crossref_primary_10_3390_app10051661
crossref_primary_10_1103_PhysRevResearch_5_023069
crossref_primary_10_1038_s41566_019_0377_7
crossref_primary_10_1103_PhysRevApplied_15_034081
crossref_primary_10_1007_s10773_021_04758_4
crossref_primary_10_1103_PhysRevA_103_012606
crossref_primary_10_1016_j_ijleo_2022_169434
crossref_primary_10_1016_j_optlaseng_2022_107287
crossref_primary_10_1063_5_0070966
crossref_primary_10_1088_1367_2630_abbab7
crossref_primary_10_3390_e25040670
crossref_primary_10_1007_s11128_024_04520_9
crossref_primary_10_1016_j_actaastro_2020_10_023
crossref_primary_10_1038_s41377_023_01374_1
crossref_primary_10_1140_epjqt_s40507_020_0079_6
crossref_primary_10_1002_andp_202300289
crossref_primary_10_1007_s10796_020_10086_5
crossref_primary_10_1063_5_0031166
crossref_primary_10_1109_TCSI_2022_3200974
crossref_primary_10_3390_quantum7010012
crossref_primary_10_1088_1367_2630_ad5b13
crossref_primary_10_1140_epjqt_s40507_023_00168_z
crossref_primary_10_1088_1674_1056_ad51f6
crossref_primary_10_1103_PhysRevApplied_18_034087
crossref_primary_10_3390_app9061073
crossref_primary_10_1007_s11128_025_04706_9
crossref_primary_10_3390_photonics11070609
crossref_primary_10_3390_e23070870
crossref_primary_10_1088_1674_1056_adbee4
crossref_primary_10_1109_TCOMM_2022_3188018
crossref_primary_10_1038_s41586_018_0766_y
crossref_primary_10_1088_1674_1056_abff1f
crossref_primary_10_1109_JLT_2018_2868498
crossref_primary_10_1007_s11128_020_02716_3
crossref_primary_10_1073_pnas_1818752116
crossref_primary_10_1002_qute_202100062
crossref_primary_10_1088_1367_2630_abdf9b
crossref_primary_10_1002_qute_202100069
crossref_primary_10_1088_2399_6528_abf472
crossref_primary_10_1002_qute_202100068
crossref_primary_10_1088_2632_2153_adc86f
crossref_primary_10_1103_PhysRevApplied_15_024060
crossref_primary_10_1088_1367_2630_abf534
crossref_primary_10_1016_j_automatica_2020_109174
crossref_primary_10_3390_e25020258
crossref_primary_10_1109_TIFS_2024_3390995
crossref_primary_10_1038_s41534_019_0238_8
crossref_primary_10_1038_s41598_019_56637_y
crossref_primary_10_1007_s10773_019_04033_7
crossref_primary_10_1088_1402_4896_ade6db
crossref_primary_10_1063_5_0128445
crossref_primary_10_1063_5_0109702
crossref_primary_10_1007_s11082_020_02449_8
crossref_primary_10_1088_1674_1056_adcdeb
crossref_primary_10_1063_5_0050550
crossref_primary_10_1103_PhysRevApplied_16_L051005
crossref_primary_10_1007_s10773_021_04785_1
crossref_primary_10_1002_qute_202100082
crossref_primary_10_1038_s42005_022_00945_9
crossref_primary_10_1002_andp_202300401
crossref_primary_10_1007_s11082_022_04041_8
crossref_primary_10_1049_2023_5604802
crossref_primary_10_1088_1367_2630_ab0e3b
crossref_primary_10_1088_2040_8986_acea92
crossref_primary_10_3390_sci3010004
crossref_primary_10_1088_1367_2630_ac0478
crossref_primary_10_1016_j_chip_2023_100039
crossref_primary_10_1109_TASE_2025_3585348
crossref_primary_10_1038_s41534_024_00873_2
crossref_primary_10_1088_1367_2630_ab5dd3
crossref_primary_10_1063_5_0039772
crossref_primary_10_1140_epjqt_s40507_024_00290_6
crossref_primary_10_1364_OE_563574
crossref_primary_10_1002_lpor_202500127
crossref_primary_10_1063_5_0249996
crossref_primary_10_1155_2022_9927255
crossref_primary_10_1103_PhysRevApplied_15_024027
crossref_primary_10_1103_PhysRevApplied_18_014064
crossref_primary_10_1088_1681_7575_ab4533
crossref_primary_10_1063_5_0084744
crossref_primary_10_1007_s10773_022_05166_y
crossref_primary_10_1088_1674_4926_45_4_042702
crossref_primary_10_1515_nanoph_2021_0736
crossref_primary_10_35848_1347_4065_addca8
crossref_primary_10_1038_s42005_022_00814_5
crossref_primary_10_1109_COMST_2017_2786748
crossref_primary_10_1038_s41534_022_00524_4
crossref_primary_10_1063_1_5131664
crossref_primary_10_1038_s41598_020_76728_5
crossref_primary_10_1007_s44227_025_00060_5
crossref_primary_10_1109_ACCESS_2022_3185403
crossref_primary_10_1364_JOCN_445621
crossref_primary_10_1364_PRJ_409645
crossref_primary_10_1016_j_ijleo_2021_168438
crossref_primary_10_1038_s41563_025_02306_7
crossref_primary_10_1002_qute_202100013
crossref_primary_10_1007_s11128_018_2068_6
crossref_primary_10_1007_s11128_025_04750_5
crossref_primary_10_1016_j_jece_2021_106264
crossref_primary_10_1016_j_measen_2024_101777
crossref_primary_10_1016_j_physleta_2019_126061
crossref_primary_10_1038_s41467_021_27808_1
crossref_primary_10_1103_PhysRevApplied_17_064034
crossref_primary_10_1103_PhysRevResearch_6_033329
crossref_primary_10_1038_s41598_024_71203_x
crossref_primary_10_1088_1361_6633_ad9505
crossref_primary_10_1103_PhysRevApplied_15_034011
crossref_primary_10_1007_s11128_024_04270_8
crossref_primary_10_1002_adma_202201064
crossref_primary_10_1002_lpor_202500338
crossref_primary_10_1088_1367_2630_ac0285
crossref_primary_10_1364_JOSAB_36_003523
crossref_primary_10_1002_qute_202300343
crossref_primary_10_1038_s41566_025_01735_9
crossref_primary_10_1038_s41534_021_00471_6
crossref_primary_10_1515_nanoph_2023_0912
crossref_primary_10_1109_ACCESS_2020_3006136
crossref_primary_10_3390_s19184048
crossref_primary_10_1007_s11042_024_20535_x
crossref_primary_10_3390_app9224956
crossref_primary_10_1109_JPHOT_2019_2946910
crossref_primary_10_1038_s41534_021_00482_3
crossref_primary_10_1038_s41377_021_00595_6
crossref_primary_10_3390_fi14030073
crossref_primary_10_1364_OPTICAQ_552059
crossref_primary_10_1364_PRJ_6_000214
crossref_primary_10_1088_2058_9565_adbd6d
crossref_primary_10_1007_s11128_023_04238_0
crossref_primary_10_1007_s13369_025_10391_8
crossref_primary_10_1103_PhysRevResearch_3_023031
crossref_primary_10_1364_PRJ_444853
crossref_primary_10_1007_s11128_023_04129_4
crossref_primary_10_1007_s10773_019_04195_4
crossref_primary_10_3390_photonics11040314
crossref_primary_10_1002_pssr_202200133
crossref_primary_10_1109_MAES_2024_3383817
crossref_primary_10_1038_s42005_023_01394_8
crossref_primary_10_1007_s11128_022_03462_4
crossref_primary_10_1038_s42005_022_01002_1
crossref_primary_10_1049_qtc2_70003
crossref_primary_10_1007_s11128_019_2394_3
crossref_primary_10_1063_1_5140695
crossref_primary_10_1134_S1063785021090078
crossref_primary_10_1007_s11082_020_02422_5
crossref_primary_10_1038_s41598_020_68038_7
crossref_primary_10_1002_ett_3936
crossref_primary_10_1007_s11432_024_4408_1
crossref_primary_10_1038_d41586_020_01779_7
crossref_primary_10_1007_s11128_019_2296_4
crossref_primary_10_1103_PhysRevApplied_16_014006
crossref_primary_10_1016_j_optcom_2020_125649
crossref_primary_10_1088_1742_6596_2977_1_012094
crossref_primary_10_1103_PhysRevApplied_18_054026
crossref_primary_10_1088_1751_8121_acfc08
crossref_primary_10_1109_ACCESS_2021_3109816
crossref_primary_10_1109_JPHOT_2019_2923749
crossref_primary_10_1109_MWC_006_00340
crossref_primary_10_1038_s41467_022_28006_3
crossref_primary_10_1016_j_future_2024_04_031
crossref_primary_10_1088_2058_9565_aaefd4
crossref_primary_10_1002_qute_202000025
crossref_primary_10_1063_5_0086312
crossref_primary_10_1140_epjqt_s40507_024_00279_1
crossref_primary_10_3390_photonics12030267
crossref_primary_10_1007_s11128_019_2546_5
crossref_primary_10_1039_D5MH00323G
crossref_primary_10_1103_PhysRevLett_134_210801
crossref_primary_10_1109_JLT_2024_3464750
crossref_primary_10_1140_epjqt_s40507_025_00306_9
crossref_primary_10_1103_PhysRevApplied_18_044002
crossref_primary_10_1515_joc_2025_0350
crossref_primary_10_3390_photonics11090800
crossref_primary_10_1139_cjp_2023_0190
crossref_primary_10_1002_qute_202300022
crossref_primary_10_1109_JSAC_2020_2968999
crossref_primary_10_1088_1367_2630_ab193d
crossref_primary_10_1002_qute_202300038
crossref_primary_10_1109_JPHOT_2022_3209532
crossref_primary_10_1364_OPTICA_562734
crossref_primary_10_1103_PhysRevResearch_7_023199
crossref_primary_10_3390_e21090908
crossref_primary_10_1063_5_0179566
crossref_primary_10_1109_JLT_2024_3484572
crossref_primary_10_1007_s11128_020_02836_w
crossref_primary_10_1109_MAES_2020_3004053
crossref_primary_10_1088_1402_4896_ad3485
crossref_primary_10_1088_2040_8986_ad535a
crossref_primary_10_1038_s41567_022_01692_y
crossref_primary_10_1063_5_0070176
crossref_primary_10_1038_s41598_020_67018_1
crossref_primary_10_1109_TASC_2019_2895621
crossref_primary_10_1140_epjqt_s40507_025_00392_9
crossref_primary_10_1007_s12045_023_1528_1
crossref_primary_10_1103_PhysRevApplied_14_011001
crossref_primary_10_1038_s41586_020_2401_y
crossref_primary_10_1002_andp_202500134
crossref_primary_10_1109_JPHOT_2025_3591925
crossref_primary_10_1038_s41467_022_35274_6
crossref_primary_10_1109_TASC_2018_2807359
crossref_primary_10_1007_s11128_019_2424_1
crossref_primary_10_3367_UFNr_2025_05_039918
crossref_primary_10_3390_electronics14050994
crossref_primary_10_1103_PhysRevResearch_3_023251
crossref_primary_10_1103_PhysRevX_13_021001
crossref_primary_10_1038_s41566_017_0032_0
crossref_primary_10_1103_PhysRevLett_134_190601
crossref_primary_10_1016_j_ijleo_2020_164941
crossref_primary_10_1002_qute_202400029
crossref_primary_10_1016_j_optcom_2024_130925
crossref_primary_10_1002_lpor_202000024
crossref_primary_10_1109_ACCESS_2020_2990186
crossref_primary_10_1038_d41586_025_00816_7
crossref_primary_10_3390_axioms14010070
crossref_primary_10_1109_JPHOT_2021_3058002
crossref_primary_10_1109_TNSM_2023_3253858
crossref_primary_10_1016_j_physleta_2020_126322
crossref_primary_10_1063_5_0049372
crossref_primary_10_1038_s41467_025_58232_4
crossref_primary_10_3390_qubs8030019
crossref_primary_10_1038_s41567_020_0892_y
crossref_primary_10_1109_TCSII_2021_3098755
crossref_primary_10_1109_TQE_2022_3221029
crossref_primary_10_1088_1367_2630_ac77f4
crossref_primary_10_1088_1402_4896_ade2ae
crossref_primary_10_1140_epjqt_s40507_021_00103_0
crossref_primary_10_1063_5_0206186
crossref_primary_10_1007_s10773_019_04084_w
crossref_primary_10_1109_COMST_2023_3294240
crossref_primary_10_3390_app15031308
crossref_primary_10_1103_PhysRevApplied_10_064032
crossref_primary_10_1109_LCOMM_2023_3273305
crossref_primary_10_1126_science_aay5820
crossref_primary_10_1002_lpor_202100219
crossref_primary_10_3390_app12094709
crossref_primary_10_1103_PhysRevA_104_042610
crossref_primary_10_1038_s41598_024_69410_7
crossref_primary_10_1088_1402_4896_ad0617
crossref_primary_10_1038_s41534_023_00800_x
crossref_primary_10_1515_nanoph_2022_0652
crossref_primary_10_1103_PhysRevApplied_13_054041
crossref_primary_10_1080_02286203_2019_1647696
crossref_primary_10_1002_qua_27280
crossref_primary_10_1038_s41586_020_03093_8
crossref_primary_10_1364_PRJ_388790
crossref_primary_10_1002_qute_202400489
crossref_primary_10_1038_s41586_021_03288_7
crossref_primary_10_3390_e26080635
crossref_primary_10_1088_1361_6455_ad12d5
crossref_primary_10_1364_OL_562436
crossref_primary_10_1063_5_0010744
crossref_primary_10_1038_s42005_025_01986_6
crossref_primary_10_1002_qute_202400492
crossref_primary_10_3390_e26070601
crossref_primary_10_1088_1612_202X_abdcbe
crossref_primary_10_1088_1612_202X_abdcbf
crossref_primary_10_1103_PhysRevApplied_18_044069
crossref_primary_10_1109_LCOMM_2020_2977914
crossref_primary_10_1063_5_0031230
crossref_primary_10_1140_epjqt_s40507_023_00210_0
crossref_primary_10_3390_s23073376
crossref_primary_10_1103_PhysRevResearch_4_L042007
crossref_primary_10_1002_adma_202109621
crossref_primary_10_1088_1367_2630_adce24
crossref_primary_10_1109_JSAC_2020_2973529
crossref_primary_10_1007_s11128_019_2494_0
crossref_primary_10_1038_s41534_020_00335_5
crossref_primary_10_1002_adma_202313589
crossref_primary_10_1088_2040_8986_ad8c5b
crossref_primary_10_1103_PhysRevApplied_13_054027
crossref_primary_10_3390_app142210759
crossref_primary_10_1088_1674_4926_40_7_071901
crossref_primary_10_1088_1674_4926_40_7_071902
crossref_primary_10_1002_qute_202300096
crossref_primary_10_1088_1367_2630_ab520e
crossref_primary_10_1126_sciadv_adu4133
crossref_primary_10_1002_qute_202300099
crossref_primary_10_1016_j_comnet_2024_110668
crossref_primary_10_3390_e25040627
crossref_primary_10_1103_PRXQuantum_3_010332
crossref_primary_10_1109_JLT_2024_3476323
crossref_primary_10_1140_epjqt_s40507_025_00408_4
crossref_primary_10_1364_JOSAB_35_002608
crossref_primary_10_1109_ACCESS_2020_2966683
crossref_primary_10_1007_s11128_022_03591_w
crossref_primary_10_1103_PhysRevApplied_13_054015
crossref_primary_10_1088_2058_9565_addb6e
crossref_primary_10_1038_s41598_019_54249_0
crossref_primary_10_3390_e26060437
crossref_primary_10_1088_1402_4896_ada9bf
crossref_primary_10_1088_2040_8986_ac01f6
crossref_primary_10_1364_OPTICAQ_553977
crossref_primary_10_1103_PhysRevApplied_16_014067
crossref_primary_10_1088_1612_202X_ac0915
crossref_primary_10_1063_1_5079970
crossref_primary_10_1109_ACCESS_2019_2929084
crossref_primary_10_1007_s11082_023_04749_1
crossref_primary_10_1364_AO_555977
crossref_primary_10_1002_qute_202400687
crossref_primary_10_1007_s10686_021_09731_x
crossref_primary_10_1063_5_0014921
crossref_primary_10_1063_5_0271171
crossref_primary_10_1109_COMST_2024_3421523
crossref_primary_10_1088_1361_6382_ad7cbb
crossref_primary_10_1364_AO_447785
crossref_primary_10_1063_5_0073040
crossref_primary_10_1103_PRXQuantum_5_030101
crossref_primary_10_1002_lpor_202501080
crossref_primary_10_1088_1402_4896_adf920
crossref_primary_10_1038_s41598_025_00700_4
crossref_primary_10_1016_j_measen_2021_100267
crossref_primary_10_1103_PhysRevApplied_18_044027
crossref_primary_10_1109_JPHOT_2021_3053860
crossref_primary_10_1038_s41534_024_00834_9
crossref_primary_10_1007_s10773_019_04080_0
crossref_primary_10_3390_e25060869
crossref_primary_10_1002_qute_202000084
crossref_primary_10_1038_s41467_024_48791_3
crossref_primary_10_1038_s41598_020_61316_4
crossref_primary_10_1109_JSAC_2021_3064662
crossref_primary_10_1109_ACCESS_2020_3018909
crossref_primary_10_1103_PhysRevResearch_6_013294
crossref_primary_10_1109_TQE_2021_3091709
crossref_primary_10_1038_s41550_018_0456_6
crossref_primary_10_1007_s11082_021_02915_x
crossref_primary_10_1002_qute_202400421
crossref_primary_10_1002_que2_31
crossref_primary_10_1038_s41598_021_81522_y
crossref_primary_10_1088_1367_2630_adac83
crossref_primary_10_3390_math13071071
crossref_primary_10_3788_LOP242291
crossref_primary_10_3788_COL202523_082701
crossref_primary_10_1088_1367_2630_ad7493
crossref_primary_10_1109_COMST_2024_3361662
crossref_primary_10_1109_LWC_2020_3014633
crossref_primary_10_1007_s10773_020_04587_x
crossref_primary_10_1038_s41467_018_08099_5
crossref_primary_10_1038_s41598_022_19503_y
crossref_primary_10_1364_AO_58_003902
crossref_primary_10_1364_AO_471632
crossref_primary_10_1088_2633_4356_ad7fc1
crossref_primary_10_1103_PhysRevX_7_031041
crossref_primary_10_1038_s41534_019_0158_7
crossref_primary_10_1088_1555_6611_addb22
crossref_primary_10_1364_JOCN_461878
crossref_primary_10_1364_PRJ_7_001169
crossref_primary_10_1109_LPT_2019_2962837
crossref_primary_10_1038_s41534_021_00421_2
crossref_primary_10_1016_j_talanta_2019_120504
crossref_primary_10_1016_j_comnet_2022_109246
crossref_primary_10_1088_1742_6596_1680_1_012031
crossref_primary_10_3367_UFNr_2023_06_039412
crossref_primary_10_1002_que2_50
crossref_primary_10_1109_MWC_008_2200163
crossref_primary_10_1002_adom_202200819
crossref_primary_10_3788_CJL241102
crossref_primary_10_1038_s42005_022_00831_4
crossref_primary_10_1002_que2_55
crossref_primary_10_1088_1361_6382_ab8a60
crossref_primary_10_1140_epjqt_s40507_023_00189_8
crossref_primary_10_1021_acs_nanolett_5c02608
crossref_primary_10_1038_s41598_019_56689_0
crossref_primary_10_1088_2058_9565_acc4af
crossref_primary_10_3367_UFNe_2023_06_039412
crossref_primary_10_3390_s24237645
crossref_primary_10_1007_s12200_024_00133_3
crossref_primary_10_1109_ACCESS_2018_2890166
crossref_primary_10_1109_ACCESS_2024_3366527
crossref_primary_10_1016_j_talanta_2019_01_113
crossref_primary_10_1007_s11432_023_3773_4
crossref_primary_10_1364_JOSAB_36_001273
crossref_primary_10_1103_PhysRevApplied_22_034047
crossref_primary_10_1364_AO_500416
crossref_primary_10_1103_PhysRevApplied_14_014044
crossref_primary_10_1103_PhysRevResearch_6_043266
crossref_primary_10_1109_JQE_2024_3415126
crossref_primary_10_1063_5_0045241
crossref_primary_10_1038_s41467_022_33919_0
crossref_primary_10_1364_JOSAB_36_000B99
crossref_primary_10_1016_j_asr_2023_01_056
crossref_primary_10_1016_j_isatra_2022_11_004
crossref_primary_10_1088_2399_6528_aac5d4
crossref_primary_10_1088_2058_9565_abf9ae
crossref_primary_10_1002_qute_202100116
crossref_primary_10_1145_3730575
crossref_primary_10_3390_s21237904
crossref_primary_10_1007_s11141_025_10352_z
crossref_primary_10_1088_1367_2630_ab2b00
crossref_primary_10_1109_TIT_2018_2854747
crossref_primary_10_1007_s11128_018_2112_6
crossref_primary_10_1016_j_actaastro_2018_06_005
crossref_primary_10_1038_s41563_020_0616_9
crossref_primary_10_1103_PhysRevApplied_19_054082
crossref_primary_10_1038_s41598_021_90694_6
crossref_primary_10_1007_s11128_023_04221_9
crossref_primary_10_1007_s11128_024_04382_1
crossref_primary_10_1088_1367_2630_abfa63
crossref_primary_10_1140_epjqt_s40507_025_00331_8
crossref_primary_10_1007_s11128_020_02970_5
crossref_primary_10_1088_1367_2630_ab81b7
crossref_primary_10_3390_e27040405
crossref_primary_10_1088_1674_4926_42_9_091901
crossref_primary_10_1007_s11128_018_2147_8
crossref_primary_10_1109_COMST_2023_3254481
crossref_primary_10_1103_PhysRevResearch_6_023002
crossref_primary_10_1007_s11128_024_04556_x
crossref_primary_10_1007_s13538_024_01537_4
crossref_primary_10_1002_sat_1544
crossref_primary_10_1103_PhysRevX_8_031043
crossref_primary_10_1109_ACCESS_2019_2955541
crossref_primary_10_1002_sat_1545
crossref_primary_10_1002_que2_86
crossref_primary_10_1038_s41534_025_01046_5
crossref_primary_10_1364_PRJ_481168
crossref_primary_10_1088_1757_899X_1172_1_012010
crossref_primary_10_1051_bcas_2024003
crossref_primary_10_1145_3524455
crossref_primary_10_1088_2058_9565_ac3460
crossref_primary_10_1364_PRJ_464808
crossref_primary_10_3390_e24020298
crossref_primary_10_1063_1_5027030
crossref_primary_10_1063_5_0149695
crossref_primary_10_1038_s41377_025_01781_6
crossref_primary_10_1088_1742_6596_2416_1_012001
crossref_primary_10_1038_s41598_020_75159_6
crossref_primary_10_1103_7fdd_m92n
crossref_primary_10_1364_OE_566771
crossref_primary_10_1109_ACCESS_2024_3432330
crossref_primary_10_1109_ACCESS_2025_3541870
crossref_primary_10_1109_JPHOT_2025_3550712
crossref_primary_10_1007_s13369_025_10230_w
crossref_primary_10_1007_s11128_022_03502_z
crossref_primary_10_1103_PhysRevApplied_19_044065
crossref_primary_10_1007_s11128_020_02694_6
crossref_primary_10_1088_1367_2630_ad231c
crossref_primary_10_1103_PhysRevApplied_22_044014
crossref_primary_10_1002_piuz_202401725
crossref_primary_10_1007_s13538_025_01828_4
crossref_primary_10_3390_aerospace6010002
crossref_primary_10_1186_s43593_024_00066_6
crossref_primary_10_3390_s24092897
crossref_primary_10_1155_2022_9717591
crossref_primary_10_1364_JOSAB_36_000B31
crossref_primary_10_1038_s41598_019_51848_9
crossref_primary_10_1007_s11128_022_03673_9
crossref_primary_10_1364_OE_562397
crossref_primary_10_1109_MAES_2019_2927852
crossref_primary_10_1088_1612_202X_ac827f
crossref_primary_10_1063_5_0118778
crossref_primary_10_1209_0295_5075_125_40004
crossref_primary_10_1038_s41467_019_09219_5
crossref_primary_10_1007_s10773_022_05132_8
crossref_primary_10_1093_nsr_nwz227
crossref_primary_10_1109_JPHOT_2022_3212590
crossref_primary_10_1364_JOCN_474487
crossref_primary_10_3367_UFNe_2020_03_038743
crossref_primary_10_3390_app15147958
crossref_primary_10_1016_j_optcom_2021_127038
crossref_primary_10_1088_1367_2630_ab41a2
crossref_primary_10_1088_2058_9565_ad0ce0
crossref_primary_10_1109_MDAT_2024_3408748
crossref_primary_10_1140_epjqt_s40507_025_00390_x
crossref_primary_10_1515_nanoph_2023_0844
crossref_primary_10_1109_TCOMM_2020_2997398
crossref_primary_10_3390_e21040387
crossref_primary_10_1007_s40766_023_00040_x
crossref_primary_10_1103_PhysRevResearch_2_043304
crossref_primary_10_1140_epjqt_s40507_022_00122_5
crossref_primary_10_1109_ACCESS_2024_3402990
crossref_primary_10_1088_0256_307X_42_1_010303
crossref_primary_10_1103_PhysRevX_11_041016
crossref_primary_10_1051_epn_2023104
crossref_primary_10_1140_epjqt_s40507_023_00185_y
crossref_primary_10_1088_1555_6611_ab4f74
crossref_primary_10_1109_ACCESS_2025_3558944
crossref_primary_10_1088_1367_2630_ab5cbe
crossref_primary_10_1103_RevModPhys_95_045006
crossref_primary_10_1109_MNET_2024_3397836
crossref_primary_10_1038_s41699_023_00366_4
crossref_primary_10_3390_e25071047
crossref_primary_10_1088_1367_2630_aac58b
crossref_primary_10_1088_1681_7575_ab4641
crossref_primary_10_1088_1742_5468_ad6df3
crossref_primary_10_3390_s23249818
crossref_primary_10_1007_s11433_024_2545_5
crossref_primary_10_1088_1361_6633_aad5b2
crossref_primary_10_1038_s41598_020_58200_6
crossref_primary_10_1088_2632_2153_ad0d11
crossref_primary_10_1364_AO_425085
crossref_primary_10_1007_s11128_023_04041_x
crossref_primary_10_1103_PhysRevResearch_4_013031
crossref_primary_10_1103_PhysRevApplied_16_064049
crossref_primary_10_1002_qute_202500202
crossref_primary_10_1103_PhysRevApplied_20_024048
crossref_primary_10_1088_1367_2630_aad9c4
crossref_primary_10_1109_JPHOT_2021_3069510
crossref_primary_10_1088_1742_6596_2531_1_012016
crossref_primary_10_2514_1_J063187
crossref_primary_10_1103_PhysRevApplied_14_024036
crossref_primary_10_3390_e24101334
crossref_primary_10_1038_s41534_022_00558_8
crossref_primary_10_3390_photonics9080527
crossref_primary_10_3103_S8756699024700055
crossref_primary_10_1088_2058_9565_aab623
crossref_primary_10_1109_JPHOT_2021_3104599
crossref_primary_10_1109_MAES_2020_3015571
crossref_primary_10_1364_JOSAB_36_000B59
crossref_primary_10_3390_fractalfract7030264
crossref_primary_10_1109_COMST_2024_3367535
crossref_primary_10_5209_rced_85980
crossref_primary_10_1109_TQE_2024_3361810
crossref_primary_10_1364_PRJ_559858
crossref_primary_10_1063_5_0002595
crossref_primary_10_1140_epjqt_s40507_023_00208_8
crossref_primary_10_1109_JPHOT_2019_2921521
crossref_primary_10_1007_s10773_023_05307_x
crossref_primary_10_1016_j_jii_2024_100594
crossref_primary_10_3390_aerospace9090495
crossref_primary_10_1103_PhysRevResearch_4_043097
crossref_primary_10_1002_qute_202300224
crossref_primary_10_1038_s41567_019_0673_7
crossref_primary_10_1109_ACCESS_2022_3196677
crossref_primary_10_1515_aot_2020_0017
crossref_primary_10_3390_e24020204
crossref_primary_10_1038_s41534_021_00395_1
crossref_primary_10_1016_j_heliyon_2023_e23578
crossref_primary_10_1145_3708475
crossref_primary_10_1088_1674_1056_28_7_078502
crossref_primary_10_1088_2058_9565_ac8760
crossref_primary_10_1155_2023_7185329
crossref_primary_10_1364_AO_501323
crossref_primary_10_1088_1367_2630_ad295a
crossref_primary_10_1063_5_0188597
crossref_primary_10_1109_TIE_2024_3392997
crossref_primary_10_1016_j_matpr_2020_10_783
crossref_primary_10_1038_s41586_025_08739_z
crossref_primary_10_1038_549041a
crossref_primary_10_1007_s11467_023_1293_3
crossref_primary_10_1140_epjqt_s40507_021_00111_0
crossref_primary_10_1109_JLT_2024_3441760
crossref_primary_10_1103_PhysRevLett_127_140501
crossref_primary_10_1103_PhysRevApplied_12_024061
crossref_primary_10_1364_JOCN_516271
crossref_primary_10_1103_PhysRevApplied_17_034045
crossref_primary_10_1109_TGRS_2024_3416819
crossref_primary_10_1038_d41586_021_02091_8
crossref_primary_10_1103_PhysRevApplied_22_064037
crossref_primary_10_1134_S0032946023040026
crossref_primary_10_1103_PhysRevApplied_20_034049
crossref_primary_10_1109_COMST_2022_3144219
crossref_primary_10_3788_LOP241970
crossref_primary_10_1140_epjqt_s40507_025_00307_8
crossref_primary_10_1088_1757_899X_1187_1_012020
crossref_primary_10_1140_epjd_e2019_100324_6
crossref_primary_10_1109_ACCESS_2024_3380015
crossref_primary_10_1088_1367_2630_abb688
crossref_primary_10_1140_epjqt_s40507_018_0068_1
crossref_primary_10_1109_ACCESS_2022_3172934
crossref_primary_10_1007_s11128_024_04465_z
crossref_primary_10_1063_1_5049659
crossref_primary_10_1038_s41467_024_51421_7
crossref_primary_10_1109_JLT_2023_3264234
crossref_primary_10_1063_5_0247876
crossref_primary_10_1364_AO_486818
crossref_primary_10_1134_S1063739723600164
crossref_primary_10_1088_1742_6596_1757_1_012173
crossref_primary_10_1140_epjqt_s40507_021_00113_y
crossref_primary_10_1088_1361_6633_ad5867
crossref_primary_10_1109_COMST_2018_2864557
crossref_primary_10_1002_lpor_202100399
crossref_primary_10_1088_1367_2630_aba8d5
crossref_primary_10_1088_2040_8986_ab6303
crossref_primary_10_1016_j_optcom_2022_128159
crossref_primary_10_3390_cryptography6010004
crossref_primary_10_1103_PhysRevApplied_12_024041
crossref_primary_10_1038_s41598_018_36366_4
crossref_primary_10_1038_s41534_023_00684_x
crossref_primary_10_1016_j_optcom_2019_02_039
crossref_primary_10_1103_wmyd_cptd
crossref_primary_10_1038_nature23675
crossref_primary_10_1038_s41598_020_68498_x
crossref_primary_10_1103_PhysRevA_106_032405
crossref_primary_10_1557_s43577_023_00584_7
crossref_primary_10_1016_j_infsof_2023_107380
crossref_primary_10_1016_j_yofte_2025_104140
crossref_primary_10_3788_COL202321_042702
crossref_primary_10_1088_1361_6668_ac76e9
crossref_primary_10_3390_e25010031
crossref_primary_10_1007_s11432_023_3945_x
crossref_primary_10_1109_JPHOT_2024_3428932
crossref_primary_10_1016_j_optcom_2020_125771
crossref_primary_10_1038_s41534_019_0175_6
crossref_primary_10_1016_j_optcom_2025_132044
crossref_primary_10_1109_TCOMM_2022_3205683
crossref_primary_10_1002_qute_202000132
crossref_primary_10_1063_5_0167218
crossref_primary_10_1038_s41598_023_32701_6
crossref_primary_10_1103_PhysRevApplied_20_044052
crossref_primary_10_1007_s11432_020_2886_x
crossref_primary_10_1007_s11128_018_1941_7
crossref_primary_10_1016_j_newton_2025_100024
crossref_primary_10_1049_qtc2_12039
crossref_primary_10_1088_1361_6455_ac31c7
crossref_primary_10_1364_AO_57_001351
crossref_primary_10_1038_s41586_018_0605_1
crossref_primary_10_1109_TCSI_2022_3140762
crossref_primary_10_1007_s12200_022_00006_7
crossref_primary_10_1364_PRJ_445617
crossref_primary_10_1088_1612_202X_adfdc2
crossref_primary_10_1038_s42005_018_0105_5
crossref_primary_10_1002_qute_201900092
crossref_primary_10_1103_PRXQuantum_2_010337
crossref_primary_10_1103_PRXQuantum_4_040320
crossref_primary_10_1038_s41534_025_01085_y
crossref_primary_10_3390_e26040305
crossref_primary_10_3788_gzxb20255403_0331002
crossref_primary_10_1038_s41467_019_13740_y
crossref_primary_10_1038_s41526_022_00204_9
crossref_primary_10_1002_adpr_202500024
crossref_primary_10_3390_e24070990
crossref_primary_10_1088_1361_6404_abe13e
crossref_primary_10_1007_s11432_022_3602_0
crossref_primary_10_1103_PhysRevResearch_3_023130
crossref_primary_10_1109_ACCESS_2024_3462530
crossref_primary_10_1063_1_5016931
crossref_primary_10_1049_qtc2_12016
crossref_primary_10_1049_qtc2_12015
crossref_primary_10_1002_qute_202400140
crossref_primary_10_1088_2058_9565_ad9d75
crossref_primary_10_1002_qute_202400149
crossref_primary_10_1134_S1062873824706883
crossref_primary_10_1088_2058_9565_ac0519
crossref_primary_10_1088_2058_9565_adc8cc
crossref_primary_10_1038_s41598_018_21418_6
crossref_primary_10_1002_qute_202000102
crossref_primary_10_1088_1742_6596_1646_1_012010
crossref_primary_10_1364_OL_557649
crossref_primary_10_1016_j_pquantelec_2024_100551
crossref_primary_10_1140_epjqt_s40507_025_00305_w
crossref_primary_10_1088_1402_4896_ad8600
crossref_primary_10_1134_S106287382470686X
crossref_primary_10_1038_s41598_020_78960_5
crossref_primary_10_1002_qute_202300180
crossref_primary_10_1016_j_gene_2025_149412
crossref_primary_10_1109_TGCN_2024_3525297
crossref_primary_10_1007_s11831_021_09561_2
crossref_primary_10_1134_S1062873824706871
crossref_primary_10_1016_j_adhoc_2025_103817
crossref_primary_10_1016_j_optlaseng_2021_106794
crossref_primary_10_1088_1612_202X_ad3a56
crossref_primary_10_1049_qtc2_12071
crossref_primary_10_1038_s41534_020_00336_4
crossref_primary_10_1103_PhysRevX_15_011024
crossref_primary_10_1364_AO_58_008061
crossref_primary_10_1007_s11082_020_02706_w
crossref_primary_10_3390_app11010348
crossref_primary_10_1002_lpor_202000167
crossref_primary_10_1049_qtc2_12081
crossref_primary_10_1016_j_optcom_2023_129586
crossref_primary_10_3390_sym14061271
crossref_primary_10_1109_ACCESS_2022_3205426
crossref_primary_10_1002_adom_202500719
crossref_primary_10_1016_j_optcom_2019_07_037
crossref_primary_10_3390_mi15030298
crossref_primary_10_1103_PhysRevApplied_20_044006
crossref_primary_10_1063_5_0021755
crossref_primary_10_1002_lpor_201800316
crossref_primary_10_1007_s11128_019_2182_0
crossref_primary_10_1109_JLT_2021_3071436
crossref_primary_10_1049_qtc2_12091
crossref_primary_10_1088_0256_307X_36_8_084202
crossref_primary_10_1088_1572_9494_abeedc
crossref_primary_10_1109_JSTQE_2020_3025737
crossref_primary_10_1364_OE_567276
crossref_primary_10_1049_qtc2_12053
crossref_primary_10_1038_s41598_019_39225_y
crossref_primary_10_1038_s41598_019_39454_1
crossref_primary_10_1049_qtc2_12059
crossref_primary_10_1007_s11128_024_04419_5
crossref_primary_10_1364_PRJ_563239
crossref_primary_10_1007_s11128_020_2605_y
crossref_primary_10_1088_1367_2630_ac7f4e
crossref_primary_10_1007_s10895_025_04329_4
crossref_primary_10_1103_PhysRevA_103_023705
crossref_primary_10_1016_j_ijleo_2020_164639
crossref_primary_10_1049_qtc2_12060
crossref_primary_10_1038_s41598_019_50429_0
crossref_primary_10_1007_s11433_024_2618_y
crossref_primary_10_1109_JSAC_2025_3568037
crossref_primary_10_3390_app9183940
crossref_primary_10_1364_AO_457662
crossref_primary_10_1049_qtc2_12069
crossref_primary_10_1063_5_0261470
crossref_primary_10_1109_ACCESS_2021_3070222
crossref_primary_10_1109_ACCESS_2022_3154468
crossref_primary_10_52912_jsta_2025_5_3_139
crossref_primary_10_1109_JSTQE_2025_3597073
crossref_primary_10_3390_e23010055
crossref_primary_10_1007_s43673_021_00017_0
crossref_primary_10_1364_OPTICA_553783
crossref_primary_10_3367_UFNr_2020_03_038743
crossref_primary_10_1140_epjqt_s40507_025_00340_7
crossref_primary_10_1007_s11082_021_02829_8
crossref_primary_10_1088_1402_4896_ab36e0
crossref_primary_10_1088_1751_8121_abc220
crossref_primary_10_1103_PhysRevA_108_032610
crossref_primary_10_1038_d41586_017_05995_6
crossref_primary_10_1016_j_physrep_2021_11_004
crossref_primary_10_1103_PhysRevA_103_032614
crossref_primary_10_1002_adpr_202300343
crossref_primary_10_1088_1367_2630_acd412
crossref_primary_10_1364_PRJ_390945
crossref_primary_10_1063_5_0054885
crossref_primary_10_1002_qute_201900011
crossref_primary_10_3390_cryptography4010007
crossref_primary_10_1016_j_actaastro_2020_02_010
crossref_primary_10_1038_s41534_020_00327_5
crossref_primary_10_3390_e24060756
crossref_primary_10_1109_COMST_2023_3296160
crossref_primary_10_1007_s40509_023_00294_4
crossref_primary_10_1109_LPT_2018_2884477
crossref_primary_10_1109_ACCESS_2019_2933694
crossref_primary_10_1103_PhysRevA_111_062607
crossref_primary_10_1140_epjd_s10053_021_00175_8
crossref_primary_10_1038_s41377_021_00610_w
crossref_primary_10_23713_HT_58_5_09
crossref_primary_10_1049_qtc2_12093
crossref_primary_10_1109_ACCESS_2024_3370430
crossref_primary_10_1145_3457356_3457358
crossref_primary_10_1109_ACCESS_2024_3504815
crossref_primary_10_1002_qute_201900005
crossref_primary_10_1109_JLT_2020_2965185
crossref_primary_10_1103_PhysRevApplied_12_034059
crossref_primary_10_1103_PhysRevApplied_19_054029
crossref_primary_10_1038_s42005_023_01299_6
crossref_primary_10_1140_epjqt_s40507_018_0070_7
crossref_primary_10_1109_ACCESS_2020_3012006
crossref_primary_10_1002_lpor_202401436
crossref_primary_10_1088_1674_1056_adbb5c
crossref_primary_10_1038_s41534_022_00608_1
crossref_primary_10_1088_1367_2630_ac1808
crossref_primary_10_1364_OE_558986
crossref_primary_10_4218_etrij_2024_0142
crossref_primary_10_1364_JOCN_563470
crossref_primary_10_3390_e26060515
crossref_primary_10_1103_PhysRevApplied_14_064031
crossref_primary_10_1109_ACCESS_2019_2946777
Cites_doi 10.1038/nphoton.2017.116
10.1103/PhysRevLett.85.1330
10.1038/nature01623
10.1002/j.1538-7305.1949.tb00928.x
10.1038/ncomms4732
10.1103/PhysRevLett.81.5932
10.1038/nphoton.2013.89
10.1364/OE.18.027217
10.1364/OE.21.020032
10.1145/74074.74087
10.1103/PhysRevLett.94.150501
10.1038/nphoton.2016.51
10.1038/299802a0
10.1126/science.1140300
10.1088/1367-2630/4/1/382
10.1038/nature07241
10.1103/PhysRevLett.115.040502
10.1038/nature11023
10.1038/nphys629
10.1103/PhysRevLett.76.722
10.1088/1367-2630/11/7/075006
10.1038/35106500
10.1038/nature12016
10.1103/PhysRevLett.71.4287
10.1103/RevModPhys.83.33
10.1038/nature11472
10.1038/nphoton.2013.46
10.1103/PhysRevLett.94.230504
10.1103/PhysRevLett.80.3891
10.1103/PhysRevLett.94.230503
10.1103/PhysRevLett.117.190501
10.1038/nature11332
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Sep 7, 2017
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Sep 7, 2017
DBID AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature23655
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Psychology Database
Research Library
ProQuest Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Agricultural Science Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 47
ExternalDocumentID A503635238
28825707
10_1038_nature23655
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AETEA
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
NPM
ACMFV
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c586t-db71d09879a661e3143cdd68672da24777f6a03a8c627d9a31e1f77ce6cb02153
IEDL.DBID M7P
ISICitedReferencesCount 1201
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409388700029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Fri Sep 05 13:06:06 EDT 2025
Tue Oct 07 06:40:27 EDT 2025
Tue Nov 11 10:05:38 EST 2025
Sat Nov 29 11:50:44 EST 2025
Tue Jun 10 15:35:26 EDT 2025
Tue Nov 04 17:46:31 EST 2025
Thu Nov 13 15:16:02 EST 2025
Wed Feb 19 02:00:50 EST 2025
Tue Nov 18 21:49:35 EST 2025
Sat Nov 29 02:12:26 EST 2025
Fri Feb 21 02:37:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7670
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-db71d09879a661e3143cdd68672da24777f6a03a8c627d9a31e1f77ce6cb02153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28825707
PQID 1937359422
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_1930932922
proquest_journals_1937359422
gale_infotracmisc_A503635238
gale_infotracgeneralonefile_A503635238
gale_infotraccpiq_503635238
gale_infotracacademiconefile_A503635238
gale_incontextgauss_ISR_A503635238
pubmed_primary_28825707
crossref_primary_10_1038_nature23655
crossref_citationtrail_10_1038_nature23655
springer_journals_10_1038_nature23655
PublicationCentury 2000
PublicationDate 2017-09-07
PublicationDateYYYYMMDD 2017-09-07
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-07
  day: 07
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References BennettCHPurification of noisy entanglement and faithful teleportation via noisy channelsPhys. Rev. Lett.1996767227251996PhRvL..76..722B1:CAS:528:DyaK28XntVCktA%3D%3D10.1103/PhysRevLett.76.722
RarityJGTapsterPRGormanPMKnightPGround to satellite secure key exchange using quantum cryptographyNew J. Phys.20024822002NJPh....4...82R10.1088/1367-2630/4/1/382
ChenT-YMetropolitan all-pass and inter-city quantum communication networkOpt. Express20101827217272252010OExpr..1827217C10.1364/OE.18.027217
Z˙ukowskiMZeilingerAHorneMAEkertAK‘Event-ready-detectors’ Bell experiment via entanglement swappingPhys. Rev. Lett.199371428742901993PhRvL..71.4287Z10.1103/PhysRevLett.71.4287
SangouardNSimonCDe RiedmattenHGisinNQuantum repeaters based on atomic ensembles and linear opticsRev. Mod. Phys.20118333802011RvMP...83...33S10.1103/RevModPhys.83.33
CurtyMFinite-key analysis for measurement-device-independent quantum key distributionNat. Commun.2014537322014NatCo...5.3732C1:CAS:528:DC%2BC2cXitVaktbfP10.1038/ncomms4732
ShannonCECommunication theory of secrecy systemsBell Syst. Tech. J.1949286567153213310.1002/j.1538-7305.1949.tb00928.x
WangJ-YDirect and full-scale experimental verifications towards ground–satellite quantum key distributionNat. Photon.201373873932013NaPho...7..387W1:CAS:528:DC%2BC3sXmt1SltLg%3D10.1038/nphoton.2013.89
YinJExperimental quasi-single-photon transmission from satellite to earthOpt. Express20132120032200402013OExpr..2120032Y10.1364/OE.21.020032
DuanL-MLukinMDCiracJIZollerPLong-distance quantum communication with atomic ensembles and linear opticsNature20014144134182001Natur.414..413D1:CAS:528:DC%2BD3MXovFanurw%3D10.1038/35106500
PanJ-WBouwmeesterDWeinfurterHZeilingerAExperimental entanglement swapping: entangling photons that never interactedPhys. Rev. Lett.199880389138941998PhRvL..80.3891P16237291:CAS:528:DyaK1cXislOjs7o%3D10.1103/PhysRevLett.80.3891
BennettCHBrassardGExperimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working!ACM Sigact News198920788010.1145/74074.74087
RitterSAn elementary quantum network of single atoms in optical cavitiesNature20124841952002012Natur.484..195R1:CAS:528:DC%2BC38XmtVCjurc%3D10.1038/nature11023
ValloneGExperimental satellite quantum communicationsPhys. Rev. Lett.20151150405022015PhRvL.115d0502V10.1103/PhysRevLett.115.040502
WangX-BYangLPengC-ZPanJ-WDecoy-state quantum key distribution with both source errors and statistical fluctuationsNew J. Phys.2009110750062009NJPh...11g5006W10.1088/1367-2630/11/7/075006
YuanZ-SExperimental demonstration of a BDCZ quantum repeater nodeNature2008454109811012008Natur.454.1098Y1:CAS:528:DC%2BD1cXhtVGgtr%2FL10.1038/nature07241
BrassardGLütkenhausNMorTSandersBCLimitations on practical quantum cryptographyPhys. Rev. Lett.200085133013332000PhRvL..85.1330B1:CAS:528:DC%2BD3cXlsVWrsr8%3D10.1103/PhysRevLett.85.1330
Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. Int. Conf. on Computers, Systems and Signal Processing 175–179 (1984)
BriegelH-JDürWCiracJIZollerPQuantum repeaters: the role of imperfect local operations in quantum communicationPhys. Rev. Lett.199881593259351998PhRvL..81.5932B1:CAS:528:DyaK1MXis1equw%3D%3D10.1103/PhysRevLett.81.5932
LiaoS-KLong-distance free-space quantum key distribution in daylight towards inter-satellite communicationNat. Photon.2017115095131:CAS:528:DC%2BC2sXht1Wlsb7K10.1038/nphoton.2017.116
LoH-KMaXChenKDecoy state quantum key distributionPhys. Rev. Lett.2005942305042005PhRvL..94w0504L10.1103/PhysRevLett.94.230504
UrsinREntanglement-based quantum communication over 144 kmNat. Phys.200734814861:CAS:528:DC%2BD2sXntFemur8%3D10.1038/nphys629
WangX-BBeating the photon-number-splitting attack in practical quantum cryptographyPhys. Rev. Lett.2005942305032005PhRvL..94w0503W10.1103/PhysRevLett.94.230503
WoottersWKZurekWHA single quantum cannot be clonedNature19822998028031982Natur.299..802W1:CAS:528:DyaL3sXnvVCgsA%3D%3D10.1038/299802a0
YinH-LMeasurement-device-independent quantum key distribution over a 404 km optical fiberPhys. Rev. Lett.20161171905012016PhRvL.117s0501Y10.1103/PhysRevLett.117.190501
YangS-JWangX-JBaoX-HPanJ-WAn efficient quantum light–matter interface with sub-second lifetimeNat. Photon.2016103813842016NaPho..10..381Y1:CAS:528:DC%2BC28XltlyisLY%3D10.1038/nphoton.2016.51
PanJ-WGasparoniSUrsinRWeihsGZeilingerAExperimental entanglement purification of arbitrary unknown statesNature20034234174222003Natur.423..417P1:CAS:528:DC%2BD3sXjvFaltLw%3D10.1038/nature01623
PengC-ZExperimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communicationPhys. Rev. Lett.2005941505012005PhRvL..94o0501P10.1103/PhysRevLett.94.150501
YinJQuantum teleportation and entanglement distribution over 100-kilometre free-space channelsNature20124881851882012Natur.488..185Y1:CAS:528:DC%2BC38XhtFKitL7N10.1038/nature11332
NauerthSAir-to-ground quantum communicationNat. Photon.201373823862013NaPho...7..382N1:CAS:528:DC%2BC3sXkvFyjs7o%3D10.1038/nphoton.2013.46
MaX-SQuantum teleportation over 143 kilometres using active feed-forwardNature20124892692732012Natur.489..269M1:CAS:528:DC%2BC38XhtlajsrzF10.1038/nature11472
BernienHHeralded entanglement between solid-state qubits separated by three metresNature201349786902013Natur.497...86B1:CAS:528:DC%2BC3sXms1Wmt7w%3D10.1038/nature12016
ChouC-WFunctional quantum nodes for entanglement distribution over scalable quantum networksScience2007316131613202007Sci...316.1316C1:CAS:528:DC%2BD2sXmtVyitrw%3D10.1126/science.1140300
J-W Pan (BFnature23655_CR11) 1998; 80
C-W Chou (BFnature23655_CR14) 2007; 316
J Yin (BFnature23655_CR26) 2013; 21
WK Wootters (BFnature23655_CR4) 1982; 299
H-K Lo (BFnature23655_CR29) 2005; 94
C-Z Peng (BFnature23655_CR20) 2005; 94
X-B Wang (BFnature23655_CR28) 2005; 94
Z-S Yuan (BFnature23655_CR15) 2008; 454
H-J Briegel (BFnature23655_CR7) 1998; 81
J-Y Wang (BFnature23655_CR24) 2013; 7
X-S Ma (BFnature23655_CR23) 2012; 489
G Brassard (BFnature23655_CR6) 2000; 85
S-K Liao (BFnature23655_CR30) 2017; 11
X-B Wang (BFnature23655_CR33) 2009; 11
CH Bennett (BFnature23655_CR3) 1989; 20
S-J Yang (BFnature23655_CR13) 2016; 10
S Nauerth (BFnature23655_CR25) 2013; 7
L-M Duan (BFnature23655_CR10) 2001; 414
H Bernien (BFnature23655_CR18) 2013; 497
N Sangouard (BFnature23655_CR16) 2011; 83
M Curty (BFnature23655_CR32) 2014; 5
CE Shannon (BFnature23655_CR2) 1949; 28
S Ritter (BFnature23655_CR17) 2012; 484
H-L Yin (BFnature23655_CR5) 2016; 117
G Vallone (BFnature23655_CR27) 2015; 115
R Ursin (BFnature23655_CR21) 2007; 3
JG Rarity (BFnature23655_CR19) 2002; 4
CH Bennett (BFnature23655_CR9) 1996; 76
J-W Pan (BFnature23655_CR12) 2003; 423
J Yin (BFnature23655_CR22) 2012; 488
M Z˙ukowski (BFnature23655_CR8) 1993; 71
BFnature23655_CR1
T-Y Chen (BFnature23655_CR31) 2010; 18
26252672 - Phys Rev Lett. 2015 Jul 24;115(4):040502
22951967 - Nature. 2012 Sep 13;489(7415):269-73
27858431 - Phys Rev Lett. 2016 Nov 4;117(19):190501
16090452 - Phys Rev Lett. 2005 Jun 17;94(23):230504
22874963 - Nature. 2012 Aug 9;488(7410):185-8
17412919 - Science. 2007 Jun 1;316(5829):1316-20
23615617 - Nature. 2013 May 2;497(7447):86-90
22498625 - Nature. 2012 Apr 11;484(7393):195-200
10061534 - Phys Rev Lett. 1996 Jan 29;76(5):722-725
10055208 - Phys Rev Lett. 1993 Dec 27;71(26):4287-4290
21196999 - Opt Express. 2010 Dec 20;18(26):27217-25
11719796 - Nature. 2001 Nov 22;414(6862):413-8
28880288 - Nature. 2017 Sep 6;549(7670):41-42
16090451 - Phys Rev Lett. 2005 Jun 17;94(23):230503
24105550 - Opt Express. 2013 Aug 26;21(17):20032-40
12761543 - Nature. 2003 May 22;423(6938):417-22
24776959 - Nat Commun. 2014 Apr 29;5:3732
15904125 - Phys Rev Lett. 2005 Apr 22;94(15):150501
10991544 - Phys Rev Lett. 2000 Aug 7;85(6):1330-3
18756253 - Nature. 2008 Aug 28;454(7208):1098-101
References_xml – reference: RarityJGTapsterPRGormanPMKnightPGround to satellite secure key exchange using quantum cryptographyNew J. Phys.20024822002NJPh....4...82R10.1088/1367-2630/4/1/382
– reference: ValloneGExperimental satellite quantum communicationsPhys. Rev. Lett.20151150405022015PhRvL.115d0502V10.1103/PhysRevLett.115.040502
– reference: ChenT-YMetropolitan all-pass and inter-city quantum communication networkOpt. Express20101827217272252010OExpr..1827217C10.1364/OE.18.027217
– reference: WangJ-YDirect and full-scale experimental verifications towards ground–satellite quantum key distributionNat. Photon.201373873932013NaPho...7..387W1:CAS:528:DC%2BC3sXmt1SltLg%3D10.1038/nphoton.2013.89
– reference: YinJExperimental quasi-single-photon transmission from satellite to earthOpt. Express20132120032200402013OExpr..2120032Y10.1364/OE.21.020032
– reference: MaX-SQuantum teleportation over 143 kilometres using active feed-forwardNature20124892692732012Natur.489..269M1:CAS:528:DC%2BC38XhtlajsrzF10.1038/nature11472
– reference: WoottersWKZurekWHA single quantum cannot be clonedNature19822998028031982Natur.299..802W1:CAS:528:DyaL3sXnvVCgsA%3D%3D10.1038/299802a0
– reference: UrsinREntanglement-based quantum communication over 144 kmNat. Phys.200734814861:CAS:528:DC%2BD2sXntFemur8%3D10.1038/nphys629
– reference: BernienHHeralded entanglement between solid-state qubits separated by three metresNature201349786902013Natur.497...86B1:CAS:528:DC%2BC3sXms1Wmt7w%3D10.1038/nature12016
– reference: YangS-JWangX-JBaoX-HPanJ-WAn efficient quantum light–matter interface with sub-second lifetimeNat. Photon.2016103813842016NaPho..10..381Y1:CAS:528:DC%2BC28XltlyisLY%3D10.1038/nphoton.2016.51
– reference: BennettCHPurification of noisy entanglement and faithful teleportation via noisy channelsPhys. Rev. Lett.1996767227251996PhRvL..76..722B1:CAS:528:DyaK28XntVCktA%3D%3D10.1103/PhysRevLett.76.722
– reference: ShannonCECommunication theory of secrecy systemsBell Syst. Tech. J.1949286567153213310.1002/j.1538-7305.1949.tb00928.x
– reference: PanJ-WGasparoniSUrsinRWeihsGZeilingerAExperimental entanglement purification of arbitrary unknown statesNature20034234174222003Natur.423..417P1:CAS:528:DC%2BD3sXjvFaltLw%3D10.1038/nature01623
– reference: YinH-LMeasurement-device-independent quantum key distribution over a 404 km optical fiberPhys. Rev. Lett.20161171905012016PhRvL.117s0501Y10.1103/PhysRevLett.117.190501
– reference: LoH-KMaXChenKDecoy state quantum key distributionPhys. Rev. Lett.2005942305042005PhRvL..94w0504L10.1103/PhysRevLett.94.230504
– reference: Z˙ukowskiMZeilingerAHorneMAEkertAK‘Event-ready-detectors’ Bell experiment via entanglement swappingPhys. Rev. Lett.199371428742901993PhRvL..71.4287Z10.1103/PhysRevLett.71.4287
– reference: CurtyMFinite-key analysis for measurement-device-independent quantum key distributionNat. Commun.2014537322014NatCo...5.3732C1:CAS:528:DC%2BC2cXitVaktbfP10.1038/ncomms4732
– reference: BriegelH-JDürWCiracJIZollerPQuantum repeaters: the role of imperfect local operations in quantum communicationPhys. Rev. Lett.199881593259351998PhRvL..81.5932B1:CAS:528:DyaK1MXis1equw%3D%3D10.1103/PhysRevLett.81.5932
– reference: ChouC-WFunctional quantum nodes for entanglement distribution over scalable quantum networksScience2007316131613202007Sci...316.1316C1:CAS:528:DC%2BD2sXmtVyitrw%3D10.1126/science.1140300
– reference: LiaoS-KLong-distance free-space quantum key distribution in daylight towards inter-satellite communicationNat. Photon.2017115095131:CAS:528:DC%2BC2sXht1Wlsb7K10.1038/nphoton.2017.116
– reference: WangX-BBeating the photon-number-splitting attack in practical quantum cryptographyPhys. Rev. Lett.2005942305032005PhRvL..94w0503W10.1103/PhysRevLett.94.230503
– reference: BrassardGLütkenhausNMorTSandersBCLimitations on practical quantum cryptographyPhys. Rev. Lett.200085133013332000PhRvL..85.1330B1:CAS:528:DC%2BD3cXlsVWrsr8%3D10.1103/PhysRevLett.85.1330
– reference: YinJQuantum teleportation and entanglement distribution over 100-kilometre free-space channelsNature20124881851882012Natur.488..185Y1:CAS:528:DC%2BC38XhtFKitL7N10.1038/nature11332
– reference: DuanL-MLukinMDCiracJIZollerPLong-distance quantum communication with atomic ensembles and linear opticsNature20014144134182001Natur.414..413D1:CAS:528:DC%2BD3MXovFanurw%3D10.1038/35106500
– reference: PanJ-WBouwmeesterDWeinfurterHZeilingerAExperimental entanglement swapping: entangling photons that never interactedPhys. Rev. Lett.199880389138941998PhRvL..80.3891P16237291:CAS:528:DyaK1cXislOjs7o%3D10.1103/PhysRevLett.80.3891
– reference: Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. Int. Conf. on Computers, Systems and Signal Processing 175–179 (1984)
– reference: YuanZ-SExperimental demonstration of a BDCZ quantum repeater nodeNature2008454109811012008Natur.454.1098Y1:CAS:528:DC%2BD1cXhtVGgtr%2FL10.1038/nature07241
– reference: SangouardNSimonCDe RiedmattenHGisinNQuantum repeaters based on atomic ensembles and linear opticsRev. Mod. Phys.20118333802011RvMP...83...33S10.1103/RevModPhys.83.33
– reference: WangX-BYangLPengC-ZPanJ-WDecoy-state quantum key distribution with both source errors and statistical fluctuationsNew J. Phys.2009110750062009NJPh...11g5006W10.1088/1367-2630/11/7/075006
– reference: PengC-ZExperimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communicationPhys. Rev. Lett.2005941505012005PhRvL..94o0501P10.1103/PhysRevLett.94.150501
– reference: NauerthSAir-to-ground quantum communicationNat. Photon.201373823862013NaPho...7..382N1:CAS:528:DC%2BC3sXkvFyjs7o%3D10.1038/nphoton.2013.46
– reference: RitterSAn elementary quantum network of single atoms in optical cavitiesNature20124841952002012Natur.484..195R1:CAS:528:DC%2BC38XmtVCjurc%3D10.1038/nature11023
– reference: BennettCHBrassardGExperimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working!ACM Sigact News198920788010.1145/74074.74087
– volume: 11
  start-page: 509
  year: 2017
  ident: BFnature23655_CR30
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.116
– volume: 85
  start-page: 1330
  year: 2000
  ident: BFnature23655_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.1330
– volume: 423
  start-page: 417
  year: 2003
  ident: BFnature23655_CR12
  publication-title: Nature
  doi: 10.1038/nature01623
– volume: 28
  start-page: 656
  year: 1949
  ident: BFnature23655_CR2
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1949.tb00928.x
– volume: 5
  start-page: 3732
  year: 2014
  ident: BFnature23655_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4732
– volume: 81
  start-page: 5932
  year: 1998
  ident: BFnature23655_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5932
– volume: 7
  start-page: 387
  year: 2013
  ident: BFnature23655_CR24
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.89
– volume: 18
  start-page: 27217
  year: 2010
  ident: BFnature23655_CR31
  publication-title: Opt. Express
  doi: 10.1364/OE.18.027217
– volume: 21
  start-page: 20032
  year: 2013
  ident: BFnature23655_CR26
  publication-title: Opt. Express
  doi: 10.1364/OE.21.020032
– volume: 20
  start-page: 78
  year: 1989
  ident: BFnature23655_CR3
  publication-title: ACM Sigact News
  doi: 10.1145/74074.74087
– ident: BFnature23655_CR1
– volume: 94
  start-page: 150501
  year: 2005
  ident: BFnature23655_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.150501
– volume: 10
  start-page: 381
  year: 2016
  ident: BFnature23655_CR13
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2016.51
– volume: 299
  start-page: 802
  year: 1982
  ident: BFnature23655_CR4
  publication-title: Nature
  doi: 10.1038/299802a0
– volume: 316
  start-page: 1316
  year: 2007
  ident: BFnature23655_CR14
  publication-title: Science
  doi: 10.1126/science.1140300
– volume: 4
  start-page: 82
  year: 2002
  ident: BFnature23655_CR19
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/4/1/382
– volume: 454
  start-page: 1098
  year: 2008
  ident: BFnature23655_CR15
  publication-title: Nature
  doi: 10.1038/nature07241
– volume: 115
  start-page: 040502
  year: 2015
  ident: BFnature23655_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.040502
– volume: 484
  start-page: 195
  year: 2012
  ident: BFnature23655_CR17
  publication-title: Nature
  doi: 10.1038/nature11023
– volume: 3
  start-page: 481
  year: 2007
  ident: BFnature23655_CR21
  publication-title: Nat. Phys.
  doi: 10.1038/nphys629
– volume: 76
  start-page: 722
  year: 1996
  ident: BFnature23655_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.722
– volume: 11
  start-page: 075006
  year: 2009
  ident: BFnature23655_CR33
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/7/075006
– volume: 414
  start-page: 413
  year: 2001
  ident: BFnature23655_CR10
  publication-title: Nature
  doi: 10.1038/35106500
– volume: 497
  start-page: 86
  year: 2013
  ident: BFnature23655_CR18
  publication-title: Nature
  doi: 10.1038/nature12016
– volume: 71
  start-page: 4287
  year: 1993
  ident: BFnature23655_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.4287
– volume: 83
  start-page: 33
  year: 2011
  ident: BFnature23655_CR16
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.33
– volume: 489
  start-page: 269
  year: 2012
  ident: BFnature23655_CR23
  publication-title: Nature
  doi: 10.1038/nature11472
– volume: 7
  start-page: 382
  year: 2013
  ident: BFnature23655_CR25
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.46
– volume: 94
  start-page: 230504
  year: 2005
  ident: BFnature23655_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.230504
– volume: 80
  start-page: 3891
  year: 1998
  ident: BFnature23655_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.3891
– volume: 94
  start-page: 230503
  year: 2005
  ident: BFnature23655_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.230503
– volume: 117
  start-page: 190501
  year: 2016
  ident: BFnature23655_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.190501
– volume: 488
  start-page: 185
  year: 2012
  ident: BFnature23655_CR22
  publication-title: Nature
  doi: 10.1038/nature11332
– reference: 24776959 - Nat Commun. 2014 Apr 29;5:3732
– reference: 10991544 - Phys Rev Lett. 2000 Aug 7;85(6):1330-3
– reference: 21196999 - Opt Express. 2010 Dec 20;18(26):27217-25
– reference: 16090451 - Phys Rev Lett. 2005 Jun 17;94(23):230503
– reference: 23615617 - Nature. 2013 May 2;497(7447):86-90
– reference: 18756253 - Nature. 2008 Aug 28;454(7208):1098-101
– reference: 26252672 - Phys Rev Lett. 2015 Jul 24;115(4):040502
– reference: 17412919 - Science. 2007 Jun 1;316(5829):1316-20
– reference: 22951967 - Nature. 2012 Sep 13;489(7415):269-73
– reference: 12761543 - Nature. 2003 May 22;423(6938):417-22
– reference: 16090452 - Phys Rev Lett. 2005 Jun 17;94(23):230504
– reference: 22498625 - Nature. 2012 Apr 11;484(7393):195-200
– reference: 24105550 - Opt Express. 2013 Aug 26;21(17):20032-40
– reference: 10055208 - Phys Rev Lett. 1993 Dec 27;71(26):4287-4290
– reference: 15904125 - Phys Rev Lett. 2005 Apr 22;94(15):150501
– reference: 27858431 - Phys Rev Lett. 2016 Nov 4;117(19):190501
– reference: 22874963 - Nature. 2012 Aug 9;488(7410):185-8
– reference: 11719796 - Nature. 2001 Nov 22;414(6862):413-8
– reference: 10061534 - Phys Rev Lett. 1996 Jan 29;76(5):722-725
– reference: 28880288 - Nature. 2017 Sep 6;549(7670):41-42
SSID ssj0005174
Score 2.70953
Snippet Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms 639/766/483/3925
639/766/483/481
Atmosphere
Channel loss
Communication satellites
Cryptography
Earth orbits
Ground stations
Humanities and Social Sciences
Methods
multidisciplinary
Optical fibers
Optics
Quantum cryptography
Quantum mechanics
Quantum theory
Satellite communications
Satellite data communications
Satellites
Science
Telescopes
Title Satellite-to-ground quantum key distribution
URI https://link.springer.com/article/10.1038/nature23655
https://www.ncbi.nlm.nih.gov/pubmed/28825707
https://www.proquest.com/docview/1937359422
https://www.proquest.com/docview/1930932922
Volume 549
WOSCitedRecordID wos000409388700029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvwMZX2agCGp8izLWT2HlC3bQJNLVE7YYKL1FiO9MkSNsl4e_nznW7tky88HJS5Eti2Xe-s-_8O0L2wagaasLCD0JKfdBE6ecyMr4JmM5zWqi8yGyxCdHvy9EoTtyBW-XSKudrol2o9VjhGfkBOBqCh3HA2KfJ1MeqURhddSU0NsgWoiRwm7qXXKd4rKEwu_t5lMuDGWwm4xHe8VuySOvr8pJhWouUWgN0cv9_u_6A3HOup9edyco2uWXKHXLHpoCqaodsOzWvvLcOi_rdQ_JhmFnIztr49djHKyCl9qYNTEfzywP99zQC77qaWY_I-cnx2dFn3xVY8FUoo9rXuehoGksRZ2CmDQffSWkdyUgwnbFACFFEGeWZVBETOs54x3QKIZSJVI6-An9MNstxaZ4Sj4OnYwTV4P6KIA8N7FoKeOBMhdDCRIu8nw9yqhz6OBbB-JnaKDiX6dKMtMj-gnkyA924me0lzlaKMBYl5slcZE1VpV-Gg7QbYoAaNtmyRd44pmIMP1SZu3YA3UbkqxXO3RVONbmcpkutr1daL2YzcdNn9lYYQV3VavNcSFK3XFTptYS0yItFM76JKXClGTeWh4KzHSPPk5lMLgaHwT4pFBRG-dVcSJc-_vfIPft3J3bJXYbeC8bNxB7ZrK8a85zcVr_ry-qqTTbE4BvSkbBUApVHnTbZOjzuJwN4Oj38CLRHT5GynqVfLU3aVkMtHQJNwh_wXtI9633_A6-AOaY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFQKCC5Ay2tpgYBaoAirXjuJkwNCFVB11bJCbUG9uYntVJUg2W0SED_FNzLOY5ssFbceOEYzcSx7npkXwBoqVUONlxDXo5QgJwYkDnxDjMt0HNNExUlUDZsQ43FwdBR-XoDfbS2MTatsZWIlqHWm7D_yTTQ0BPdCl7F3kymxU6NsdLUdoVGTxa759RNdtvzt6APe7zpj2x8P3--QZqoAUV7gF0THYqgputphhLrJcDQYlNZ-4AumI-YKIRI_ojwKlM-EDiM-NMNECGV8FVsFyXHdK3AV5fjQppCJ_a_nKSVzXZ-bekDKg826TSfjvq0p7GjAeT3QUYRzkdlK4W3f_t-O6g7cakxrZ6vmhSVYMOkyXK9SXFW-DEuNGMudV02v7Y278OYgqlqSFoYUGbElLql2piWSW_ndQfnmaNtYuJkJdg--XMr-78NimqXmITgcLTkjqEbzXrixZ9ArS_CBM-UhhIkBvG4vVaqmu7od8vFNVlF-HsgOBQxgbYY8qZuKXIz23FKHtG06UpsHdBKVeS5HB_tyy7MBeA_trQG8bJCSDD-ooqasArdtO3v1MFd6mGpyOpUd6Ise9KS-iYuWWe0hojhSfXBLlLIRh7k8p8gBPJuB7Zs2xS81WVnhUHQmQovzoOaB2eEw9AM9QfGU11um6Cz-98k9-vcmnsKNncNPe3JvNN5dgZvMWmo2RihWYbE4K81juKZ-FKf52ZOKvx04vmwu-QMGvIf7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3bbtMw9GiMi3gBNm5lAwLaYENYTe0kTh4QmjYqqqFqYiDtzSS2M02CpF0SEL_G13GcOCUpE2974LE6p67lc--5AWyhUdWu9lPi-a5LUBJDkoSBJtqjKkncVCZpXC-b4NNpeHISHa3Ar7YXxpRVtjqxVtQql-Y_8iE6Gpz5kUfpMLVlEUcH47ezOTEbpEymtV2n0bDIof75A8O34s3kAGm9Ten43af998RuGCDSD4OSqISPlIthdxSjndIMnQepVBAGnKqYepzzNIhdFocyoFxFMRvpUcq51IFMjLFkeO4VuMoZcrHpUt_vlJcsTYC2vYEuC4fNyE7KAtNf2LGGyzahYxSXsrS18Rvf_p-f7Q7csi63s9fIyBqs6Gwdrtelr7JYhzWr3gpnx87g3r0Lr4_jelRpqUmZE9P6kilnXiEbVt8c1HuOMgOH7a6we_D5Uu5_H1azPNMPwUHKR5q7Ct1-7iW-xmgtxQ-MSh8hlA_gVUtgIe3UdbP846uos_8sFB1uGMDWAnnWDBu5GO254RRhxndkhqKncVUUYnL8Uez5JjHvox82gJcWKc3xB2Vs2y3w2mbiVw9zo4cpZ2dz0YG-6EFPG0pcdMxmDxHVlOyDWwYVVk0W4g93DuDZAmy-aUr_Mp1XNY6LQUZkcB408rB4HIrxoc9dfOXtVkA6h__9co_-fYmncAOFQ3yYTA834CY1DpxJHfJNWC3PK_0Yrsnv5Vlx_qQWdQe-XLaQ_AYWYJBW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Satellite-to-ground+quantum+key+distribution&rft.jtitle=Nature+%28London%29&rft.au=Liao%2C+Sheng-Kai&rft.au=Cai%2C+Wen-Qi&rft.au=Liu%2C+Wei-Yue&rft.au=Zhang%2C+Liang&rft.date=2017-09-07&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=549&rft.issue=7670&rft.spage=43&rft.epage=47&rft_id=info:doi/10.1038%2Fnature23655&rft.externalDocID=10_1038_nature23655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon