Satellite-to-ground quantum key distribution
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occur...
Uloženo v:
| Vydáno v: | Nature (London) Ročník 549; číslo 7670; s. 43 - 47 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
07.09.2017
Nature Publishing Group |
| Témata: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD—a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.
Decoy-state quantum key distribution from a satellite to a ground station is achieved with much greater efficiency than is possible over the same distance using optical fibres.
Quantum security in orbit
The laws of quantum physics give rise to protocols for ultra-secure cryptography and quantum communications. However, to be useful in a global network, these protocols will have to function with satellites. Extending existing protocols to such long distances poses a tremendous experimental challenge. Researchers led by Jian-Wei Pan present a pair of papers in this issue that take steps toward a global quantum network, using the low-Earth-orbit satellite Micius. They demonstrate satellite-to-ground quantum key distribution, an integral part of quantum cryptosystems, at kilohertz rates over 1,200 kilometres, and report quantum teleportation of a single-photon qubit over 1,400 kilometres. Quantum teleportation is the transfer of the exact state of a quantum object from one place to another, without physical travelling of the object itself, and is a central process in many quantum communication protocols. These two experiments suggest that Micius could become the first component in a global quantum internet. |
|---|---|
| AbstractList | Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKDa form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks. Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks. Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to globalscale quantum networks. Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks. Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD—a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks. Decoy-state quantum key distribution from a satellite to a ground station is achieved with much greater efficiency than is possible over the same distance using optical fibres. Quantum security in orbit The laws of quantum physics give rise to protocols for ultra-secure cryptography and quantum communications. However, to be useful in a global network, these protocols will have to function with satellites. Extending existing protocols to such long distances poses a tremendous experimental challenge. Researchers led by Jian-Wei Pan present a pair of papers in this issue that take steps toward a global quantum network, using the low-Earth-orbit satellite Micius. They demonstrate satellite-to-ground quantum key distribution, an integral part of quantum cryptosystems, at kilohertz rates over 1,200 kilometres, and report quantum teleportation of a single-photon qubit over 1,400 kilometres. Quantum teleportation is the transfer of the exact state of a quantum object from one place to another, without physical travelling of the object itself, and is a central process in many quantum communication protocols. These two experiments suggest that Micius could become the first component in a global quantum internet. |
| Audience | Academic |
| Author | Ma, Lu Yin, Juan Huang, Yong-Mei Peng, Cheng-Zhi Shu, Rong Pan, Jian-Wei Wang, Qiang Wang, Jian-Feng Shen, Qi Zhou, Yi-Lin Xi, Tao Deng, Lei Liu, Wei-Yue Wu, Jin-Cai Hu, Tai Chen, Xia-Wei Liu, Nai-Le Cao, Yuan Li, Feng-Zhi Sun, Li-Hua Zhang, Liang Chen, Yu-Ao Zhang, Qiang Liao, Sheng-Kai Zhu, Zhen-Cai Wang, Jian-Yu Cai, Wen-Qi Jia, Jian-Jun Jiang, Xiao-Jun Li, Zheng-Ping Li, Yang Ren, Ji-Gang Wang, Xiang-Bin Lu, Chao-Yang |
| Author_xml | – sequence: 1 givenname: Sheng-Kai surname: Liao fullname: Liao, Sheng-Kai organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 2 givenname: Wen-Qi surname: Cai fullname: Cai, Wen-Qi organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 3 givenname: Wei-Yue surname: Liu fullname: Liu, Wei-Yue organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 4 givenname: Liang surname: Zhang fullname: Zhang, Liang organization: Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences – sequence: 5 givenname: Yang surname: Li fullname: Li, Yang organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 6 givenname: Ji-Gang surname: Ren fullname: Ren, Ji-Gang organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 7 givenname: Juan surname: Yin fullname: Yin, Juan organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 8 givenname: Qi surname: Shen fullname: Shen, Qi organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 9 givenname: Yuan surname: Cao fullname: Cao, Yuan organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 10 givenname: Zheng-Ping surname: Li fullname: Li, Zheng-Ping organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 11 givenname: Feng-Zhi surname: Li fullname: Li, Feng-Zhi organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 12 givenname: Xia-Wei surname: Chen fullname: Chen, Xia-Wei organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 13 givenname: Li-Hua surname: Sun fullname: Sun, Li-Hua organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 14 givenname: Jian-Jun surname: Jia fullname: Jia, Jian-Jun organization: Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences – sequence: 15 givenname: Jin-Cai surname: Wu fullname: Wu, Jin-Cai organization: Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences – sequence: 16 givenname: Xiao-Jun surname: Jiang fullname: Jiang, Xiao-Jun organization: National Astronomical Observatories, Chinese Academy of Sciences – sequence: 17 givenname: Jian-Feng surname: Wang fullname: Wang, Jian-Feng organization: National Astronomical Observatories, Chinese Academy of Sciences – sequence: 18 givenname: Yong-Mei surname: Huang fullname: Huang, Yong-Mei organization: Key Laboratory of Optical Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences – sequence: 19 givenname: Qiang surname: Wang fullname: Wang, Qiang organization: Key Laboratory of Optical Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences – sequence: 20 givenname: Yi-Lin surname: Zhou fullname: Zhou, Yi-Lin organization: Shanghai Engineering Center for Microsatellites – sequence: 21 givenname: Lei surname: Deng fullname: Deng, Lei organization: Shanghai Engineering Center for Microsatellites – sequence: 22 givenname: Tao surname: Xi fullname: Xi, Tao organization: State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center – sequence: 23 givenname: Lu surname: Ma fullname: Ma, Lu organization: Xinjiang Astronomical Observatory, Chinese Academy of Sciences – sequence: 24 givenname: Tai surname: Hu fullname: Hu, Tai organization: National Space Science Center, Chinese Academy of Sciences – sequence: 25 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 26 givenname: Yu-Ao surname: Chen fullname: Chen, Yu-Ao organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 27 givenname: Nai-Le surname: Liu fullname: Liu, Nai-Le organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 28 givenname: Xiang-Bin surname: Wang fullname: Wang, Xiang-Bin organization: Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 29 givenname: Zhen-Cai surname: Zhu fullname: Zhu, Zhen-Cai organization: Shanghai Engineering Center for Microsatellites – sequence: 30 givenname: Chao-Yang surname: Lu fullname: Lu, Chao-Yang organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 31 givenname: Rong surname: Shu fullname: Shu, Rong organization: Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences – sequence: 32 givenname: Cheng-Zhi surname: Peng fullname: Peng, Cheng-Zhi email: pcz@ustc.edu.cn organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 33 givenname: Jian-Yu surname: Wang fullname: Wang, Jian-Yu email: jywang@mail.sitp.ac.cn organization: Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences – sequence: 34 givenname: Jian-Wei surname: Pan fullname: Pan, Jian-Wei email: pan@ustc.edu.cn organization: Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28825707$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10s9rFDEUB_AgFbutnrzLYi8WOzU_ZpLMsRSrhYJg9RyyyZshdSazmx9g_3uzbJXdMpJDIHzel5e8nKAjP3lA6C3BlwQz-cnrlANQxpvmBVqQWvCq5lIcoQXGVFZYMn6MTmJ8wBg3RNSv0DGVkjYCiwW6uNcJhsElqNJU9WHK3i43WfuUx-UveFxaF1Nwq5zc5F-jl50eIrx52k_Rz5vPP66_VnffvtxeX91VppE8VXYliMWtFK3mnAAjNTPWcskFtZrWQoiOa8y0NJwK22pGgHRCGOBmhSlp2Cn6sMtdh2mTISY1umhKm9rDlKMiLcMtoy2lhZ49ow9TDr50t1WCNW29r3o9gHK-m1LQZhuqrhrMOGsok0VVM6oHD0EP5c07V44P_PsZb9Zuo_bR5Qwqy8LozGzq-UFBMQl-p17nGNXt_fdD--7p9nk1glXr4EYdHtXf-RbwcQdMmGIM0P0jBKvt71F7v6do8kwbl_R28qVnN_yn5mJXE0uy7yHsDWCG_wEmd9Gu |
| CitedBy_id | crossref_primary_10_1038_s41566_023_01201_4 crossref_primary_10_1038_lsa_2017_146 crossref_primary_10_1364_OE_552079 crossref_primary_10_1109_ACCESS_2019_2917587 crossref_primary_10_1109_TAES_2021_3069286 crossref_primary_10_1088_1674_1056_acfd16 crossref_primary_10_1103_8plr_m6n8 crossref_primary_10_1103_PhysRevApplied_18_024067 crossref_primary_10_1364_PRJ_481475 crossref_primary_10_31857_S0555292323040022 crossref_primary_10_1140_epjqt_s40507_021_00108_9 crossref_primary_10_3390_aerospace11010005 crossref_primary_10_1364_OE_558610 crossref_primary_10_3390_nano12142427 crossref_primary_10_1364_AO_565080 crossref_primary_10_1007_s11432_022_3509_6 crossref_primary_10_1063_1_5100318 crossref_primary_10_1016_j_actaastro_2020_04_049 crossref_primary_10_1103_PhysRevApplied_21_014036 crossref_primary_10_1109_TNET_2024_3507785 crossref_primary_10_1109_JLT_2020_3009505 crossref_primary_10_1103_PhysRevResearch_6_043143 crossref_primary_10_1038_s41467_022_28767_x crossref_primary_10_1088_1674_1056_27_5_054207 crossref_primary_10_1038_s41534_023_00754_0 crossref_primary_10_1016_j_actaastro_2020_12_039 crossref_primary_10_1155_2020_3418780 crossref_primary_10_1088_1742_6596_2386_1_012025 crossref_primary_10_1007_s11082_024_07105_z crossref_primary_10_1007_s11128_018_2146_9 crossref_primary_10_1103_PhysRevA_111_012613 crossref_primary_10_1016_j_comcom_2020_05_021 crossref_primary_10_1103_PhysRevApplied_23_054071 crossref_primary_10_1063_5_0227350 crossref_primary_10_1088_1361_6455_ab1e91 crossref_primary_10_1063_5_0161654 crossref_primary_10_1038_s41534_023_00789_3 crossref_primary_10_1140_epjqt_s40507_025_00354_1 crossref_primary_10_1088_1367_2630_ab573e crossref_primary_10_1007_s11082_020_02451_0 crossref_primary_10_1103_PhysRevApplied_15_034072 crossref_primary_10_1209_0295_5075_131_40005 crossref_primary_10_1016_j_ymssp_2024_112028 crossref_primary_10_1063_5_0186767 crossref_primary_10_1364_OE_565103 crossref_primary_10_59324_ejaset_2025_3_2__27 crossref_primary_10_1016_j_mattod_2023_07_021 crossref_primary_10_1109_JLT_2021_3131193 crossref_primary_10_1109_JLT_2023_3258146 crossref_primary_10_1016_j_optcom_2022_128906 crossref_primary_10_1109_ACCESS_2025_3585799 crossref_primary_10_1103_PhysRevResearch_5_023065 crossref_primary_10_3390_app10051661 crossref_primary_10_1103_PhysRevResearch_5_023069 crossref_primary_10_1038_s41566_019_0377_7 crossref_primary_10_1103_PhysRevApplied_15_034081 crossref_primary_10_1007_s10773_021_04758_4 crossref_primary_10_1103_PhysRevA_103_012606 crossref_primary_10_1016_j_ijleo_2022_169434 crossref_primary_10_1016_j_optlaseng_2022_107287 crossref_primary_10_1063_5_0070966 crossref_primary_10_1088_1367_2630_abbab7 crossref_primary_10_3390_e25040670 crossref_primary_10_1007_s11128_024_04520_9 crossref_primary_10_1016_j_actaastro_2020_10_023 crossref_primary_10_1038_s41377_023_01374_1 crossref_primary_10_1140_epjqt_s40507_020_0079_6 crossref_primary_10_1002_andp_202300289 crossref_primary_10_1007_s10796_020_10086_5 crossref_primary_10_1063_5_0031166 crossref_primary_10_1109_TCSI_2022_3200974 crossref_primary_10_3390_quantum7010012 crossref_primary_10_1088_1367_2630_ad5b13 crossref_primary_10_1140_epjqt_s40507_023_00168_z crossref_primary_10_1088_1674_1056_ad51f6 crossref_primary_10_1103_PhysRevApplied_18_034087 crossref_primary_10_3390_app9061073 crossref_primary_10_1007_s11128_025_04706_9 crossref_primary_10_3390_photonics11070609 crossref_primary_10_3390_e23070870 crossref_primary_10_1088_1674_1056_adbee4 crossref_primary_10_1109_TCOMM_2022_3188018 crossref_primary_10_1038_s41586_018_0766_y crossref_primary_10_1088_1674_1056_abff1f crossref_primary_10_1109_JLT_2018_2868498 crossref_primary_10_1007_s11128_020_02716_3 crossref_primary_10_1073_pnas_1818752116 crossref_primary_10_1002_qute_202100062 crossref_primary_10_1088_1367_2630_abdf9b crossref_primary_10_1002_qute_202100069 crossref_primary_10_1088_2399_6528_abf472 crossref_primary_10_1002_qute_202100068 crossref_primary_10_1088_2632_2153_adc86f crossref_primary_10_1103_PhysRevApplied_15_024060 crossref_primary_10_1088_1367_2630_abf534 crossref_primary_10_1016_j_automatica_2020_109174 crossref_primary_10_3390_e25020258 crossref_primary_10_1109_TIFS_2024_3390995 crossref_primary_10_1038_s41534_019_0238_8 crossref_primary_10_1038_s41598_019_56637_y crossref_primary_10_1007_s10773_019_04033_7 crossref_primary_10_1088_1402_4896_ade6db crossref_primary_10_1063_5_0128445 crossref_primary_10_1063_5_0109702 crossref_primary_10_1007_s11082_020_02449_8 crossref_primary_10_1088_1674_1056_adcdeb crossref_primary_10_1063_5_0050550 crossref_primary_10_1103_PhysRevApplied_16_L051005 crossref_primary_10_1007_s10773_021_04785_1 crossref_primary_10_1002_qute_202100082 crossref_primary_10_1038_s42005_022_00945_9 crossref_primary_10_1002_andp_202300401 crossref_primary_10_1007_s11082_022_04041_8 crossref_primary_10_1049_2023_5604802 crossref_primary_10_1088_1367_2630_ab0e3b crossref_primary_10_1088_2040_8986_acea92 crossref_primary_10_3390_sci3010004 crossref_primary_10_1088_1367_2630_ac0478 crossref_primary_10_1016_j_chip_2023_100039 crossref_primary_10_1109_TASE_2025_3585348 crossref_primary_10_1038_s41534_024_00873_2 crossref_primary_10_1088_1367_2630_ab5dd3 crossref_primary_10_1063_5_0039772 crossref_primary_10_1140_epjqt_s40507_024_00290_6 crossref_primary_10_1364_OE_563574 crossref_primary_10_1002_lpor_202500127 crossref_primary_10_1063_5_0249996 crossref_primary_10_1155_2022_9927255 crossref_primary_10_1103_PhysRevApplied_15_024027 crossref_primary_10_1103_PhysRevApplied_18_014064 crossref_primary_10_1088_1681_7575_ab4533 crossref_primary_10_1063_5_0084744 crossref_primary_10_1007_s10773_022_05166_y crossref_primary_10_1088_1674_4926_45_4_042702 crossref_primary_10_1515_nanoph_2021_0736 crossref_primary_10_35848_1347_4065_addca8 crossref_primary_10_1038_s42005_022_00814_5 crossref_primary_10_1109_COMST_2017_2786748 crossref_primary_10_1038_s41534_022_00524_4 crossref_primary_10_1063_1_5131664 crossref_primary_10_1038_s41598_020_76728_5 crossref_primary_10_1007_s44227_025_00060_5 crossref_primary_10_1109_ACCESS_2022_3185403 crossref_primary_10_1364_JOCN_445621 crossref_primary_10_1364_PRJ_409645 crossref_primary_10_1016_j_ijleo_2021_168438 crossref_primary_10_1038_s41563_025_02306_7 crossref_primary_10_1002_qute_202100013 crossref_primary_10_1007_s11128_018_2068_6 crossref_primary_10_1007_s11128_025_04750_5 crossref_primary_10_1016_j_jece_2021_106264 crossref_primary_10_1016_j_measen_2024_101777 crossref_primary_10_1016_j_physleta_2019_126061 crossref_primary_10_1038_s41467_021_27808_1 crossref_primary_10_1103_PhysRevApplied_17_064034 crossref_primary_10_1103_PhysRevResearch_6_033329 crossref_primary_10_1038_s41598_024_71203_x crossref_primary_10_1088_1361_6633_ad9505 crossref_primary_10_1103_PhysRevApplied_15_034011 crossref_primary_10_1007_s11128_024_04270_8 crossref_primary_10_1002_adma_202201064 crossref_primary_10_1002_lpor_202500338 crossref_primary_10_1088_1367_2630_ac0285 crossref_primary_10_1364_JOSAB_36_003523 crossref_primary_10_1002_qute_202300343 crossref_primary_10_1038_s41566_025_01735_9 crossref_primary_10_1038_s41534_021_00471_6 crossref_primary_10_1515_nanoph_2023_0912 crossref_primary_10_1109_ACCESS_2020_3006136 crossref_primary_10_3390_s19184048 crossref_primary_10_1007_s11042_024_20535_x crossref_primary_10_3390_app9224956 crossref_primary_10_1109_JPHOT_2019_2946910 crossref_primary_10_1038_s41534_021_00482_3 crossref_primary_10_1038_s41377_021_00595_6 crossref_primary_10_3390_fi14030073 crossref_primary_10_1364_OPTICAQ_552059 crossref_primary_10_1364_PRJ_6_000214 crossref_primary_10_1088_2058_9565_adbd6d crossref_primary_10_1007_s11128_023_04238_0 crossref_primary_10_1007_s13369_025_10391_8 crossref_primary_10_1103_PhysRevResearch_3_023031 crossref_primary_10_1364_PRJ_444853 crossref_primary_10_1007_s11128_023_04129_4 crossref_primary_10_1007_s10773_019_04195_4 crossref_primary_10_3390_photonics11040314 crossref_primary_10_1002_pssr_202200133 crossref_primary_10_1109_MAES_2024_3383817 crossref_primary_10_1038_s42005_023_01394_8 crossref_primary_10_1007_s11128_022_03462_4 crossref_primary_10_1038_s42005_022_01002_1 crossref_primary_10_1049_qtc2_70003 crossref_primary_10_1007_s11128_019_2394_3 crossref_primary_10_1063_1_5140695 crossref_primary_10_1134_S1063785021090078 crossref_primary_10_1007_s11082_020_02422_5 crossref_primary_10_1038_s41598_020_68038_7 crossref_primary_10_1002_ett_3936 crossref_primary_10_1007_s11432_024_4408_1 crossref_primary_10_1038_d41586_020_01779_7 crossref_primary_10_1007_s11128_019_2296_4 crossref_primary_10_1103_PhysRevApplied_16_014006 crossref_primary_10_1016_j_optcom_2020_125649 crossref_primary_10_1088_1742_6596_2977_1_012094 crossref_primary_10_1103_PhysRevApplied_18_054026 crossref_primary_10_1088_1751_8121_acfc08 crossref_primary_10_1109_ACCESS_2021_3109816 crossref_primary_10_1109_JPHOT_2019_2923749 crossref_primary_10_1109_MWC_006_00340 crossref_primary_10_1038_s41467_022_28006_3 crossref_primary_10_1016_j_future_2024_04_031 crossref_primary_10_1088_2058_9565_aaefd4 crossref_primary_10_1002_qute_202000025 crossref_primary_10_1063_5_0086312 crossref_primary_10_1140_epjqt_s40507_024_00279_1 crossref_primary_10_3390_photonics12030267 crossref_primary_10_1007_s11128_019_2546_5 crossref_primary_10_1039_D5MH00323G crossref_primary_10_1103_PhysRevLett_134_210801 crossref_primary_10_1109_JLT_2024_3464750 crossref_primary_10_1140_epjqt_s40507_025_00306_9 crossref_primary_10_1103_PhysRevApplied_18_044002 crossref_primary_10_1515_joc_2025_0350 crossref_primary_10_3390_photonics11090800 crossref_primary_10_1139_cjp_2023_0190 crossref_primary_10_1002_qute_202300022 crossref_primary_10_1109_JSAC_2020_2968999 crossref_primary_10_1088_1367_2630_ab193d crossref_primary_10_1002_qute_202300038 crossref_primary_10_1109_JPHOT_2022_3209532 crossref_primary_10_1364_OPTICA_562734 crossref_primary_10_1103_PhysRevResearch_7_023199 crossref_primary_10_3390_e21090908 crossref_primary_10_1063_5_0179566 crossref_primary_10_1109_JLT_2024_3484572 crossref_primary_10_1007_s11128_020_02836_w crossref_primary_10_1109_MAES_2020_3004053 crossref_primary_10_1088_1402_4896_ad3485 crossref_primary_10_1088_2040_8986_ad535a crossref_primary_10_1038_s41567_022_01692_y crossref_primary_10_1063_5_0070176 crossref_primary_10_1038_s41598_020_67018_1 crossref_primary_10_1109_TASC_2019_2895621 crossref_primary_10_1140_epjqt_s40507_025_00392_9 crossref_primary_10_1007_s12045_023_1528_1 crossref_primary_10_1103_PhysRevApplied_14_011001 crossref_primary_10_1038_s41586_020_2401_y crossref_primary_10_1002_andp_202500134 crossref_primary_10_1109_JPHOT_2025_3591925 crossref_primary_10_1038_s41467_022_35274_6 crossref_primary_10_1109_TASC_2018_2807359 crossref_primary_10_1007_s11128_019_2424_1 crossref_primary_10_3367_UFNr_2025_05_039918 crossref_primary_10_3390_electronics14050994 crossref_primary_10_1103_PhysRevResearch_3_023251 crossref_primary_10_1103_PhysRevX_13_021001 crossref_primary_10_1038_s41566_017_0032_0 crossref_primary_10_1103_PhysRevLett_134_190601 crossref_primary_10_1016_j_ijleo_2020_164941 crossref_primary_10_1002_qute_202400029 crossref_primary_10_1016_j_optcom_2024_130925 crossref_primary_10_1002_lpor_202000024 crossref_primary_10_1109_ACCESS_2020_2990186 crossref_primary_10_1038_d41586_025_00816_7 crossref_primary_10_3390_axioms14010070 crossref_primary_10_1109_JPHOT_2021_3058002 crossref_primary_10_1109_TNSM_2023_3253858 crossref_primary_10_1016_j_physleta_2020_126322 crossref_primary_10_1063_5_0049372 crossref_primary_10_1038_s41467_025_58232_4 crossref_primary_10_3390_qubs8030019 crossref_primary_10_1038_s41567_020_0892_y crossref_primary_10_1109_TCSII_2021_3098755 crossref_primary_10_1109_TQE_2022_3221029 crossref_primary_10_1088_1367_2630_ac77f4 crossref_primary_10_1088_1402_4896_ade2ae crossref_primary_10_1140_epjqt_s40507_021_00103_0 crossref_primary_10_1063_5_0206186 crossref_primary_10_1007_s10773_019_04084_w crossref_primary_10_1109_COMST_2023_3294240 crossref_primary_10_3390_app15031308 crossref_primary_10_1103_PhysRevApplied_10_064032 crossref_primary_10_1109_LCOMM_2023_3273305 crossref_primary_10_1126_science_aay5820 crossref_primary_10_1002_lpor_202100219 crossref_primary_10_3390_app12094709 crossref_primary_10_1103_PhysRevA_104_042610 crossref_primary_10_1038_s41598_024_69410_7 crossref_primary_10_1088_1402_4896_ad0617 crossref_primary_10_1038_s41534_023_00800_x crossref_primary_10_1515_nanoph_2022_0652 crossref_primary_10_1103_PhysRevApplied_13_054041 crossref_primary_10_1080_02286203_2019_1647696 crossref_primary_10_1002_qua_27280 crossref_primary_10_1038_s41586_020_03093_8 crossref_primary_10_1364_PRJ_388790 crossref_primary_10_1002_qute_202400489 crossref_primary_10_1038_s41586_021_03288_7 crossref_primary_10_3390_e26080635 crossref_primary_10_1088_1361_6455_ad12d5 crossref_primary_10_1364_OL_562436 crossref_primary_10_1063_5_0010744 crossref_primary_10_1038_s42005_025_01986_6 crossref_primary_10_1002_qute_202400492 crossref_primary_10_3390_e26070601 crossref_primary_10_1088_1612_202X_abdcbe crossref_primary_10_1088_1612_202X_abdcbf crossref_primary_10_1103_PhysRevApplied_18_044069 crossref_primary_10_1109_LCOMM_2020_2977914 crossref_primary_10_1063_5_0031230 crossref_primary_10_1140_epjqt_s40507_023_00210_0 crossref_primary_10_3390_s23073376 crossref_primary_10_1103_PhysRevResearch_4_L042007 crossref_primary_10_1002_adma_202109621 crossref_primary_10_1088_1367_2630_adce24 crossref_primary_10_1109_JSAC_2020_2973529 crossref_primary_10_1007_s11128_019_2494_0 crossref_primary_10_1038_s41534_020_00335_5 crossref_primary_10_1002_adma_202313589 crossref_primary_10_1088_2040_8986_ad8c5b crossref_primary_10_1103_PhysRevApplied_13_054027 crossref_primary_10_3390_app142210759 crossref_primary_10_1088_1674_4926_40_7_071901 crossref_primary_10_1088_1674_4926_40_7_071902 crossref_primary_10_1002_qute_202300096 crossref_primary_10_1088_1367_2630_ab520e crossref_primary_10_1126_sciadv_adu4133 crossref_primary_10_1002_qute_202300099 crossref_primary_10_1016_j_comnet_2024_110668 crossref_primary_10_3390_e25040627 crossref_primary_10_1103_PRXQuantum_3_010332 crossref_primary_10_1109_JLT_2024_3476323 crossref_primary_10_1140_epjqt_s40507_025_00408_4 crossref_primary_10_1364_JOSAB_35_002608 crossref_primary_10_1109_ACCESS_2020_2966683 crossref_primary_10_1007_s11128_022_03591_w crossref_primary_10_1103_PhysRevApplied_13_054015 crossref_primary_10_1088_2058_9565_addb6e crossref_primary_10_1038_s41598_019_54249_0 crossref_primary_10_3390_e26060437 crossref_primary_10_1088_1402_4896_ada9bf crossref_primary_10_1088_2040_8986_ac01f6 crossref_primary_10_1364_OPTICAQ_553977 crossref_primary_10_1103_PhysRevApplied_16_014067 crossref_primary_10_1088_1612_202X_ac0915 crossref_primary_10_1063_1_5079970 crossref_primary_10_1109_ACCESS_2019_2929084 crossref_primary_10_1007_s11082_023_04749_1 crossref_primary_10_1364_AO_555977 crossref_primary_10_1002_qute_202400687 crossref_primary_10_1007_s10686_021_09731_x crossref_primary_10_1063_5_0014921 crossref_primary_10_1063_5_0271171 crossref_primary_10_1109_COMST_2024_3421523 crossref_primary_10_1088_1361_6382_ad7cbb crossref_primary_10_1364_AO_447785 crossref_primary_10_1063_5_0073040 crossref_primary_10_1103_PRXQuantum_5_030101 crossref_primary_10_1002_lpor_202501080 crossref_primary_10_1088_1402_4896_adf920 crossref_primary_10_1038_s41598_025_00700_4 crossref_primary_10_1016_j_measen_2021_100267 crossref_primary_10_1103_PhysRevApplied_18_044027 crossref_primary_10_1109_JPHOT_2021_3053860 crossref_primary_10_1038_s41534_024_00834_9 crossref_primary_10_1007_s10773_019_04080_0 crossref_primary_10_3390_e25060869 crossref_primary_10_1002_qute_202000084 crossref_primary_10_1038_s41467_024_48791_3 crossref_primary_10_1038_s41598_020_61316_4 crossref_primary_10_1109_JSAC_2021_3064662 crossref_primary_10_1109_ACCESS_2020_3018909 crossref_primary_10_1103_PhysRevResearch_6_013294 crossref_primary_10_1109_TQE_2021_3091709 crossref_primary_10_1038_s41550_018_0456_6 crossref_primary_10_1007_s11082_021_02915_x crossref_primary_10_1002_qute_202400421 crossref_primary_10_1002_que2_31 crossref_primary_10_1038_s41598_021_81522_y crossref_primary_10_1088_1367_2630_adac83 crossref_primary_10_3390_math13071071 crossref_primary_10_3788_LOP242291 crossref_primary_10_3788_COL202523_082701 crossref_primary_10_1088_1367_2630_ad7493 crossref_primary_10_1109_COMST_2024_3361662 crossref_primary_10_1109_LWC_2020_3014633 crossref_primary_10_1007_s10773_020_04587_x crossref_primary_10_1038_s41467_018_08099_5 crossref_primary_10_1038_s41598_022_19503_y crossref_primary_10_1364_AO_58_003902 crossref_primary_10_1364_AO_471632 crossref_primary_10_1088_2633_4356_ad7fc1 crossref_primary_10_1103_PhysRevX_7_031041 crossref_primary_10_1038_s41534_019_0158_7 crossref_primary_10_1088_1555_6611_addb22 crossref_primary_10_1364_JOCN_461878 crossref_primary_10_1364_PRJ_7_001169 crossref_primary_10_1109_LPT_2019_2962837 crossref_primary_10_1038_s41534_021_00421_2 crossref_primary_10_1016_j_talanta_2019_120504 crossref_primary_10_1016_j_comnet_2022_109246 crossref_primary_10_1088_1742_6596_1680_1_012031 crossref_primary_10_3367_UFNr_2023_06_039412 crossref_primary_10_1002_que2_50 crossref_primary_10_1109_MWC_008_2200163 crossref_primary_10_1002_adom_202200819 crossref_primary_10_3788_CJL241102 crossref_primary_10_1038_s42005_022_00831_4 crossref_primary_10_1002_que2_55 crossref_primary_10_1088_1361_6382_ab8a60 crossref_primary_10_1140_epjqt_s40507_023_00189_8 crossref_primary_10_1021_acs_nanolett_5c02608 crossref_primary_10_1038_s41598_019_56689_0 crossref_primary_10_1088_2058_9565_acc4af crossref_primary_10_3367_UFNe_2023_06_039412 crossref_primary_10_3390_s24237645 crossref_primary_10_1007_s12200_024_00133_3 crossref_primary_10_1109_ACCESS_2018_2890166 crossref_primary_10_1109_ACCESS_2024_3366527 crossref_primary_10_1016_j_talanta_2019_01_113 crossref_primary_10_1007_s11432_023_3773_4 crossref_primary_10_1364_JOSAB_36_001273 crossref_primary_10_1103_PhysRevApplied_22_034047 crossref_primary_10_1364_AO_500416 crossref_primary_10_1103_PhysRevApplied_14_014044 crossref_primary_10_1103_PhysRevResearch_6_043266 crossref_primary_10_1109_JQE_2024_3415126 crossref_primary_10_1063_5_0045241 crossref_primary_10_1038_s41467_022_33919_0 crossref_primary_10_1364_JOSAB_36_000B99 crossref_primary_10_1016_j_asr_2023_01_056 crossref_primary_10_1016_j_isatra_2022_11_004 crossref_primary_10_1088_2399_6528_aac5d4 crossref_primary_10_1088_2058_9565_abf9ae crossref_primary_10_1002_qute_202100116 crossref_primary_10_1145_3730575 crossref_primary_10_3390_s21237904 crossref_primary_10_1007_s11141_025_10352_z crossref_primary_10_1088_1367_2630_ab2b00 crossref_primary_10_1109_TIT_2018_2854747 crossref_primary_10_1007_s11128_018_2112_6 crossref_primary_10_1016_j_actaastro_2018_06_005 crossref_primary_10_1038_s41563_020_0616_9 crossref_primary_10_1103_PhysRevApplied_19_054082 crossref_primary_10_1038_s41598_021_90694_6 crossref_primary_10_1007_s11128_023_04221_9 crossref_primary_10_1007_s11128_024_04382_1 crossref_primary_10_1088_1367_2630_abfa63 crossref_primary_10_1140_epjqt_s40507_025_00331_8 crossref_primary_10_1007_s11128_020_02970_5 crossref_primary_10_1088_1367_2630_ab81b7 crossref_primary_10_3390_e27040405 crossref_primary_10_1088_1674_4926_42_9_091901 crossref_primary_10_1007_s11128_018_2147_8 crossref_primary_10_1109_COMST_2023_3254481 crossref_primary_10_1103_PhysRevResearch_6_023002 crossref_primary_10_1007_s11128_024_04556_x crossref_primary_10_1007_s13538_024_01537_4 crossref_primary_10_1002_sat_1544 crossref_primary_10_1103_PhysRevX_8_031043 crossref_primary_10_1109_ACCESS_2019_2955541 crossref_primary_10_1002_sat_1545 crossref_primary_10_1002_que2_86 crossref_primary_10_1038_s41534_025_01046_5 crossref_primary_10_1364_PRJ_481168 crossref_primary_10_1088_1757_899X_1172_1_012010 crossref_primary_10_1051_bcas_2024003 crossref_primary_10_1145_3524455 crossref_primary_10_1088_2058_9565_ac3460 crossref_primary_10_1364_PRJ_464808 crossref_primary_10_3390_e24020298 crossref_primary_10_1063_1_5027030 crossref_primary_10_1063_5_0149695 crossref_primary_10_1038_s41377_025_01781_6 crossref_primary_10_1088_1742_6596_2416_1_012001 crossref_primary_10_1038_s41598_020_75159_6 crossref_primary_10_1103_7fdd_m92n crossref_primary_10_1364_OE_566771 crossref_primary_10_1109_ACCESS_2024_3432330 crossref_primary_10_1109_ACCESS_2025_3541870 crossref_primary_10_1109_JPHOT_2025_3550712 crossref_primary_10_1007_s13369_025_10230_w crossref_primary_10_1007_s11128_022_03502_z crossref_primary_10_1103_PhysRevApplied_19_044065 crossref_primary_10_1007_s11128_020_02694_6 crossref_primary_10_1088_1367_2630_ad231c crossref_primary_10_1103_PhysRevApplied_22_044014 crossref_primary_10_1002_piuz_202401725 crossref_primary_10_1007_s13538_025_01828_4 crossref_primary_10_3390_aerospace6010002 crossref_primary_10_1186_s43593_024_00066_6 crossref_primary_10_3390_s24092897 crossref_primary_10_1155_2022_9717591 crossref_primary_10_1364_JOSAB_36_000B31 crossref_primary_10_1038_s41598_019_51848_9 crossref_primary_10_1007_s11128_022_03673_9 crossref_primary_10_1364_OE_562397 crossref_primary_10_1109_MAES_2019_2927852 crossref_primary_10_1088_1612_202X_ac827f crossref_primary_10_1063_5_0118778 crossref_primary_10_1209_0295_5075_125_40004 crossref_primary_10_1038_s41467_019_09219_5 crossref_primary_10_1007_s10773_022_05132_8 crossref_primary_10_1093_nsr_nwz227 crossref_primary_10_1109_JPHOT_2022_3212590 crossref_primary_10_1364_JOCN_474487 crossref_primary_10_3367_UFNe_2020_03_038743 crossref_primary_10_3390_app15147958 crossref_primary_10_1016_j_optcom_2021_127038 crossref_primary_10_1088_1367_2630_ab41a2 crossref_primary_10_1088_2058_9565_ad0ce0 crossref_primary_10_1109_MDAT_2024_3408748 crossref_primary_10_1140_epjqt_s40507_025_00390_x crossref_primary_10_1515_nanoph_2023_0844 crossref_primary_10_1109_TCOMM_2020_2997398 crossref_primary_10_3390_e21040387 crossref_primary_10_1007_s40766_023_00040_x crossref_primary_10_1103_PhysRevResearch_2_043304 crossref_primary_10_1140_epjqt_s40507_022_00122_5 crossref_primary_10_1109_ACCESS_2024_3402990 crossref_primary_10_1088_0256_307X_42_1_010303 crossref_primary_10_1103_PhysRevX_11_041016 crossref_primary_10_1051_epn_2023104 crossref_primary_10_1140_epjqt_s40507_023_00185_y crossref_primary_10_1088_1555_6611_ab4f74 crossref_primary_10_1109_ACCESS_2025_3558944 crossref_primary_10_1088_1367_2630_ab5cbe crossref_primary_10_1103_RevModPhys_95_045006 crossref_primary_10_1109_MNET_2024_3397836 crossref_primary_10_1038_s41699_023_00366_4 crossref_primary_10_3390_e25071047 crossref_primary_10_1088_1367_2630_aac58b crossref_primary_10_1088_1681_7575_ab4641 crossref_primary_10_1088_1742_5468_ad6df3 crossref_primary_10_3390_s23249818 crossref_primary_10_1007_s11433_024_2545_5 crossref_primary_10_1088_1361_6633_aad5b2 crossref_primary_10_1038_s41598_020_58200_6 crossref_primary_10_1088_2632_2153_ad0d11 crossref_primary_10_1364_AO_425085 crossref_primary_10_1007_s11128_023_04041_x crossref_primary_10_1103_PhysRevResearch_4_013031 crossref_primary_10_1103_PhysRevApplied_16_064049 crossref_primary_10_1002_qute_202500202 crossref_primary_10_1103_PhysRevApplied_20_024048 crossref_primary_10_1088_1367_2630_aad9c4 crossref_primary_10_1109_JPHOT_2021_3069510 crossref_primary_10_1088_1742_6596_2531_1_012016 crossref_primary_10_2514_1_J063187 crossref_primary_10_1103_PhysRevApplied_14_024036 crossref_primary_10_3390_e24101334 crossref_primary_10_1038_s41534_022_00558_8 crossref_primary_10_3390_photonics9080527 crossref_primary_10_3103_S8756699024700055 crossref_primary_10_1088_2058_9565_aab623 crossref_primary_10_1109_JPHOT_2021_3104599 crossref_primary_10_1109_MAES_2020_3015571 crossref_primary_10_1364_JOSAB_36_000B59 crossref_primary_10_3390_fractalfract7030264 crossref_primary_10_1109_COMST_2024_3367535 crossref_primary_10_5209_rced_85980 crossref_primary_10_1109_TQE_2024_3361810 crossref_primary_10_1364_PRJ_559858 crossref_primary_10_1063_5_0002595 crossref_primary_10_1140_epjqt_s40507_023_00208_8 crossref_primary_10_1109_JPHOT_2019_2921521 crossref_primary_10_1007_s10773_023_05307_x crossref_primary_10_1016_j_jii_2024_100594 crossref_primary_10_3390_aerospace9090495 crossref_primary_10_1103_PhysRevResearch_4_043097 crossref_primary_10_1002_qute_202300224 crossref_primary_10_1038_s41567_019_0673_7 crossref_primary_10_1109_ACCESS_2022_3196677 crossref_primary_10_1515_aot_2020_0017 crossref_primary_10_3390_e24020204 crossref_primary_10_1038_s41534_021_00395_1 crossref_primary_10_1016_j_heliyon_2023_e23578 crossref_primary_10_1145_3708475 crossref_primary_10_1088_1674_1056_28_7_078502 crossref_primary_10_1088_2058_9565_ac8760 crossref_primary_10_1155_2023_7185329 crossref_primary_10_1364_AO_501323 crossref_primary_10_1088_1367_2630_ad295a crossref_primary_10_1063_5_0188597 crossref_primary_10_1109_TIE_2024_3392997 crossref_primary_10_1016_j_matpr_2020_10_783 crossref_primary_10_1038_s41586_025_08739_z crossref_primary_10_1038_549041a crossref_primary_10_1007_s11467_023_1293_3 crossref_primary_10_1140_epjqt_s40507_021_00111_0 crossref_primary_10_1109_JLT_2024_3441760 crossref_primary_10_1103_PhysRevLett_127_140501 crossref_primary_10_1103_PhysRevApplied_12_024061 crossref_primary_10_1364_JOCN_516271 crossref_primary_10_1103_PhysRevApplied_17_034045 crossref_primary_10_1109_TGRS_2024_3416819 crossref_primary_10_1038_d41586_021_02091_8 crossref_primary_10_1103_PhysRevApplied_22_064037 crossref_primary_10_1134_S0032946023040026 crossref_primary_10_1103_PhysRevApplied_20_034049 crossref_primary_10_1109_COMST_2022_3144219 crossref_primary_10_3788_LOP241970 crossref_primary_10_1140_epjqt_s40507_025_00307_8 crossref_primary_10_1088_1757_899X_1187_1_012020 crossref_primary_10_1140_epjd_e2019_100324_6 crossref_primary_10_1109_ACCESS_2024_3380015 crossref_primary_10_1088_1367_2630_abb688 crossref_primary_10_1140_epjqt_s40507_018_0068_1 crossref_primary_10_1109_ACCESS_2022_3172934 crossref_primary_10_1007_s11128_024_04465_z crossref_primary_10_1063_1_5049659 crossref_primary_10_1038_s41467_024_51421_7 crossref_primary_10_1109_JLT_2023_3264234 crossref_primary_10_1063_5_0247876 crossref_primary_10_1364_AO_486818 crossref_primary_10_1134_S1063739723600164 crossref_primary_10_1088_1742_6596_1757_1_012173 crossref_primary_10_1140_epjqt_s40507_021_00113_y crossref_primary_10_1088_1361_6633_ad5867 crossref_primary_10_1109_COMST_2018_2864557 crossref_primary_10_1002_lpor_202100399 crossref_primary_10_1088_1367_2630_aba8d5 crossref_primary_10_1088_2040_8986_ab6303 crossref_primary_10_1016_j_optcom_2022_128159 crossref_primary_10_3390_cryptography6010004 crossref_primary_10_1103_PhysRevApplied_12_024041 crossref_primary_10_1038_s41598_018_36366_4 crossref_primary_10_1038_s41534_023_00684_x crossref_primary_10_1016_j_optcom_2019_02_039 crossref_primary_10_1103_wmyd_cptd crossref_primary_10_1038_nature23675 crossref_primary_10_1038_s41598_020_68498_x crossref_primary_10_1103_PhysRevA_106_032405 crossref_primary_10_1557_s43577_023_00584_7 crossref_primary_10_1016_j_infsof_2023_107380 crossref_primary_10_1016_j_yofte_2025_104140 crossref_primary_10_3788_COL202321_042702 crossref_primary_10_1088_1361_6668_ac76e9 crossref_primary_10_3390_e25010031 crossref_primary_10_1007_s11432_023_3945_x crossref_primary_10_1109_JPHOT_2024_3428932 crossref_primary_10_1016_j_optcom_2020_125771 crossref_primary_10_1038_s41534_019_0175_6 crossref_primary_10_1016_j_optcom_2025_132044 crossref_primary_10_1109_TCOMM_2022_3205683 crossref_primary_10_1002_qute_202000132 crossref_primary_10_1063_5_0167218 crossref_primary_10_1038_s41598_023_32701_6 crossref_primary_10_1103_PhysRevApplied_20_044052 crossref_primary_10_1007_s11432_020_2886_x crossref_primary_10_1007_s11128_018_1941_7 crossref_primary_10_1016_j_newton_2025_100024 crossref_primary_10_1049_qtc2_12039 crossref_primary_10_1088_1361_6455_ac31c7 crossref_primary_10_1364_AO_57_001351 crossref_primary_10_1038_s41586_018_0605_1 crossref_primary_10_1109_TCSI_2022_3140762 crossref_primary_10_1007_s12200_022_00006_7 crossref_primary_10_1364_PRJ_445617 crossref_primary_10_1088_1612_202X_adfdc2 crossref_primary_10_1038_s42005_018_0105_5 crossref_primary_10_1002_qute_201900092 crossref_primary_10_1103_PRXQuantum_2_010337 crossref_primary_10_1103_PRXQuantum_4_040320 crossref_primary_10_1038_s41534_025_01085_y crossref_primary_10_3390_e26040305 crossref_primary_10_3788_gzxb20255403_0331002 crossref_primary_10_1038_s41467_019_13740_y crossref_primary_10_1038_s41526_022_00204_9 crossref_primary_10_1002_adpr_202500024 crossref_primary_10_3390_e24070990 crossref_primary_10_1088_1361_6404_abe13e crossref_primary_10_1007_s11432_022_3602_0 crossref_primary_10_1103_PhysRevResearch_3_023130 crossref_primary_10_1109_ACCESS_2024_3462530 crossref_primary_10_1063_1_5016931 crossref_primary_10_1049_qtc2_12016 crossref_primary_10_1049_qtc2_12015 crossref_primary_10_1002_qute_202400140 crossref_primary_10_1088_2058_9565_ad9d75 crossref_primary_10_1002_qute_202400149 crossref_primary_10_1134_S1062873824706883 crossref_primary_10_1088_2058_9565_ac0519 crossref_primary_10_1088_2058_9565_adc8cc crossref_primary_10_1038_s41598_018_21418_6 crossref_primary_10_1002_qute_202000102 crossref_primary_10_1088_1742_6596_1646_1_012010 crossref_primary_10_1364_OL_557649 crossref_primary_10_1016_j_pquantelec_2024_100551 crossref_primary_10_1140_epjqt_s40507_025_00305_w crossref_primary_10_1088_1402_4896_ad8600 crossref_primary_10_1134_S106287382470686X crossref_primary_10_1038_s41598_020_78960_5 crossref_primary_10_1002_qute_202300180 crossref_primary_10_1016_j_gene_2025_149412 crossref_primary_10_1109_TGCN_2024_3525297 crossref_primary_10_1007_s11831_021_09561_2 crossref_primary_10_1134_S1062873824706871 crossref_primary_10_1016_j_adhoc_2025_103817 crossref_primary_10_1016_j_optlaseng_2021_106794 crossref_primary_10_1088_1612_202X_ad3a56 crossref_primary_10_1049_qtc2_12071 crossref_primary_10_1038_s41534_020_00336_4 crossref_primary_10_1103_PhysRevX_15_011024 crossref_primary_10_1364_AO_58_008061 crossref_primary_10_1007_s11082_020_02706_w crossref_primary_10_3390_app11010348 crossref_primary_10_1002_lpor_202000167 crossref_primary_10_1049_qtc2_12081 crossref_primary_10_1016_j_optcom_2023_129586 crossref_primary_10_3390_sym14061271 crossref_primary_10_1109_ACCESS_2022_3205426 crossref_primary_10_1002_adom_202500719 crossref_primary_10_1016_j_optcom_2019_07_037 crossref_primary_10_3390_mi15030298 crossref_primary_10_1103_PhysRevApplied_20_044006 crossref_primary_10_1063_5_0021755 crossref_primary_10_1002_lpor_201800316 crossref_primary_10_1007_s11128_019_2182_0 crossref_primary_10_1109_JLT_2021_3071436 crossref_primary_10_1049_qtc2_12091 crossref_primary_10_1088_0256_307X_36_8_084202 crossref_primary_10_1088_1572_9494_abeedc crossref_primary_10_1109_JSTQE_2020_3025737 crossref_primary_10_1364_OE_567276 crossref_primary_10_1049_qtc2_12053 crossref_primary_10_1038_s41598_019_39225_y crossref_primary_10_1038_s41598_019_39454_1 crossref_primary_10_1049_qtc2_12059 crossref_primary_10_1007_s11128_024_04419_5 crossref_primary_10_1364_PRJ_563239 crossref_primary_10_1007_s11128_020_2605_y crossref_primary_10_1088_1367_2630_ac7f4e crossref_primary_10_1007_s10895_025_04329_4 crossref_primary_10_1103_PhysRevA_103_023705 crossref_primary_10_1016_j_ijleo_2020_164639 crossref_primary_10_1049_qtc2_12060 crossref_primary_10_1038_s41598_019_50429_0 crossref_primary_10_1007_s11433_024_2618_y crossref_primary_10_1109_JSAC_2025_3568037 crossref_primary_10_3390_app9183940 crossref_primary_10_1364_AO_457662 crossref_primary_10_1049_qtc2_12069 crossref_primary_10_1063_5_0261470 crossref_primary_10_1109_ACCESS_2021_3070222 crossref_primary_10_1109_ACCESS_2022_3154468 crossref_primary_10_52912_jsta_2025_5_3_139 crossref_primary_10_1109_JSTQE_2025_3597073 crossref_primary_10_3390_e23010055 crossref_primary_10_1007_s43673_021_00017_0 crossref_primary_10_1364_OPTICA_553783 crossref_primary_10_3367_UFNr_2020_03_038743 crossref_primary_10_1140_epjqt_s40507_025_00340_7 crossref_primary_10_1007_s11082_021_02829_8 crossref_primary_10_1088_1402_4896_ab36e0 crossref_primary_10_1088_1751_8121_abc220 crossref_primary_10_1103_PhysRevA_108_032610 crossref_primary_10_1038_d41586_017_05995_6 crossref_primary_10_1016_j_physrep_2021_11_004 crossref_primary_10_1103_PhysRevA_103_032614 crossref_primary_10_1002_adpr_202300343 crossref_primary_10_1088_1367_2630_acd412 crossref_primary_10_1364_PRJ_390945 crossref_primary_10_1063_5_0054885 crossref_primary_10_1002_qute_201900011 crossref_primary_10_3390_cryptography4010007 crossref_primary_10_1016_j_actaastro_2020_02_010 crossref_primary_10_1038_s41534_020_00327_5 crossref_primary_10_3390_e24060756 crossref_primary_10_1109_COMST_2023_3296160 crossref_primary_10_1007_s40509_023_00294_4 crossref_primary_10_1109_LPT_2018_2884477 crossref_primary_10_1109_ACCESS_2019_2933694 crossref_primary_10_1103_PhysRevA_111_062607 crossref_primary_10_1140_epjd_s10053_021_00175_8 crossref_primary_10_1038_s41377_021_00610_w crossref_primary_10_23713_HT_58_5_09 crossref_primary_10_1049_qtc2_12093 crossref_primary_10_1109_ACCESS_2024_3370430 crossref_primary_10_1145_3457356_3457358 crossref_primary_10_1109_ACCESS_2024_3504815 crossref_primary_10_1002_qute_201900005 crossref_primary_10_1109_JLT_2020_2965185 crossref_primary_10_1103_PhysRevApplied_12_034059 crossref_primary_10_1103_PhysRevApplied_19_054029 crossref_primary_10_1038_s42005_023_01299_6 crossref_primary_10_1140_epjqt_s40507_018_0070_7 crossref_primary_10_1109_ACCESS_2020_3012006 crossref_primary_10_1002_lpor_202401436 crossref_primary_10_1088_1674_1056_adbb5c crossref_primary_10_1038_s41534_022_00608_1 crossref_primary_10_1088_1367_2630_ac1808 crossref_primary_10_1364_OE_558986 crossref_primary_10_4218_etrij_2024_0142 crossref_primary_10_1364_JOCN_563470 crossref_primary_10_3390_e26060515 crossref_primary_10_1103_PhysRevApplied_14_064031 crossref_primary_10_1109_ACCESS_2019_2946777 |
| Cites_doi | 10.1038/nphoton.2017.116 10.1103/PhysRevLett.85.1330 10.1038/nature01623 10.1002/j.1538-7305.1949.tb00928.x 10.1038/ncomms4732 10.1103/PhysRevLett.81.5932 10.1038/nphoton.2013.89 10.1364/OE.18.027217 10.1364/OE.21.020032 10.1145/74074.74087 10.1103/PhysRevLett.94.150501 10.1038/nphoton.2016.51 10.1038/299802a0 10.1126/science.1140300 10.1088/1367-2630/4/1/382 10.1038/nature07241 10.1103/PhysRevLett.115.040502 10.1038/nature11023 10.1038/nphys629 10.1103/PhysRevLett.76.722 10.1088/1367-2630/11/7/075006 10.1038/35106500 10.1038/nature12016 10.1103/PhysRevLett.71.4287 10.1103/RevModPhys.83.33 10.1038/nature11472 10.1038/nphoton.2013.46 10.1103/PhysRevLett.94.230504 10.1103/PhysRevLett.80.3891 10.1103/PhysRevLett.94.230503 10.1103/PhysRevLett.117.190501 10.1038/nature11332 |
| ContentType | Journal Article |
| Copyright | Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Sep 7, 2017 |
| Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Sep 7, 2017 |
| DBID | AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
| DOI | 10.1038/nature23655 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Psychology Database Research Library Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 47 |
| ExternalDocumentID | A503635238 28825707 10_1038_nature23655 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AETEA AFANA AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS NPM ACMFV AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c586t-db71d09879a661e3143cdd68672da24777f6a03a8c627d9a31e1f77ce6cb02153 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 1201 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409388700029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Fri Sep 05 13:06:06 EDT 2025 Tue Oct 07 06:40:27 EDT 2025 Tue Nov 11 10:05:38 EST 2025 Sat Nov 29 11:50:44 EST 2025 Tue Jun 10 15:35:26 EDT 2025 Tue Nov 04 17:46:31 EST 2025 Thu Nov 13 15:16:02 EST 2025 Wed Feb 19 02:00:50 EST 2025 Tue Nov 18 21:49:35 EST 2025 Sat Nov 29 02:12:26 EST 2025 Fri Feb 21 02:37:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7670 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c586t-db71d09879a661e3143cdd68672da24777f6a03a8c627d9a31e1f77ce6cb02153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 28825707 |
| PQID | 1937359422 |
| PQPubID | 40569 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1930932922 proquest_journals_1937359422 gale_infotracmisc_A503635238 gale_infotracgeneralonefile_A503635238 gale_infotraccpiq_503635238 gale_infotracacademiconefile_A503635238 gale_incontextgauss_ISR_A503635238 pubmed_primary_28825707 crossref_primary_10_1038_nature23655 crossref_citationtrail_10_1038_nature23655 springer_journals_10_1038_nature23655 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-07 |
| PublicationDateYYYYMMDD | 2017-09-07 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | BennettCHPurification of noisy entanglement and faithful teleportation via noisy channelsPhys. Rev. Lett.1996767227251996PhRvL..76..722B1:CAS:528:DyaK28XntVCktA%3D%3D10.1103/PhysRevLett.76.722 RarityJGTapsterPRGormanPMKnightPGround to satellite secure key exchange using quantum cryptographyNew J. Phys.20024822002NJPh....4...82R10.1088/1367-2630/4/1/382 ChenT-YMetropolitan all-pass and inter-city quantum communication networkOpt. Express20101827217272252010OExpr..1827217C10.1364/OE.18.027217 Z˙ukowskiMZeilingerAHorneMAEkertAK‘Event-ready-detectors’ Bell experiment via entanglement swappingPhys. Rev. Lett.199371428742901993PhRvL..71.4287Z10.1103/PhysRevLett.71.4287 SangouardNSimonCDe RiedmattenHGisinNQuantum repeaters based on atomic ensembles and linear opticsRev. Mod. Phys.20118333802011RvMP...83...33S10.1103/RevModPhys.83.33 CurtyMFinite-key analysis for measurement-device-independent quantum key distributionNat. Commun.2014537322014NatCo...5.3732C1:CAS:528:DC%2BC2cXitVaktbfP10.1038/ncomms4732 ShannonCECommunication theory of secrecy systemsBell Syst. Tech. J.1949286567153213310.1002/j.1538-7305.1949.tb00928.x WangJ-YDirect and full-scale experimental verifications towards ground–satellite quantum key distributionNat. Photon.201373873932013NaPho...7..387W1:CAS:528:DC%2BC3sXmt1SltLg%3D10.1038/nphoton.2013.89 YinJExperimental quasi-single-photon transmission from satellite to earthOpt. Express20132120032200402013OExpr..2120032Y10.1364/OE.21.020032 DuanL-MLukinMDCiracJIZollerPLong-distance quantum communication with atomic ensembles and linear opticsNature20014144134182001Natur.414..413D1:CAS:528:DC%2BD3MXovFanurw%3D10.1038/35106500 PanJ-WBouwmeesterDWeinfurterHZeilingerAExperimental entanglement swapping: entangling photons that never interactedPhys. Rev. Lett.199880389138941998PhRvL..80.3891P16237291:CAS:528:DyaK1cXislOjs7o%3D10.1103/PhysRevLett.80.3891 BennettCHBrassardGExperimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working!ACM Sigact News198920788010.1145/74074.74087 RitterSAn elementary quantum network of single atoms in optical cavitiesNature20124841952002012Natur.484..195R1:CAS:528:DC%2BC38XmtVCjurc%3D10.1038/nature11023 ValloneGExperimental satellite quantum communicationsPhys. Rev. Lett.20151150405022015PhRvL.115d0502V10.1103/PhysRevLett.115.040502 WangX-BYangLPengC-ZPanJ-WDecoy-state quantum key distribution with both source errors and statistical fluctuationsNew J. Phys.2009110750062009NJPh...11g5006W10.1088/1367-2630/11/7/075006 YuanZ-SExperimental demonstration of a BDCZ quantum repeater nodeNature2008454109811012008Natur.454.1098Y1:CAS:528:DC%2BD1cXhtVGgtr%2FL10.1038/nature07241 BrassardGLütkenhausNMorTSandersBCLimitations on practical quantum cryptographyPhys. Rev. Lett.200085133013332000PhRvL..85.1330B1:CAS:528:DC%2BD3cXlsVWrsr8%3D10.1103/PhysRevLett.85.1330 Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. Int. Conf. on Computers, Systems and Signal Processing 175–179 (1984) BriegelH-JDürWCiracJIZollerPQuantum repeaters: the role of imperfect local operations in quantum communicationPhys. Rev. Lett.199881593259351998PhRvL..81.5932B1:CAS:528:DyaK1MXis1equw%3D%3D10.1103/PhysRevLett.81.5932 LiaoS-KLong-distance free-space quantum key distribution in daylight towards inter-satellite communicationNat. Photon.2017115095131:CAS:528:DC%2BC2sXht1Wlsb7K10.1038/nphoton.2017.116 LoH-KMaXChenKDecoy state quantum key distributionPhys. Rev. Lett.2005942305042005PhRvL..94w0504L10.1103/PhysRevLett.94.230504 UrsinREntanglement-based quantum communication over 144 kmNat. Phys.200734814861:CAS:528:DC%2BD2sXntFemur8%3D10.1038/nphys629 WangX-BBeating the photon-number-splitting attack in practical quantum cryptographyPhys. Rev. Lett.2005942305032005PhRvL..94w0503W10.1103/PhysRevLett.94.230503 WoottersWKZurekWHA single quantum cannot be clonedNature19822998028031982Natur.299..802W1:CAS:528:DyaL3sXnvVCgsA%3D%3D10.1038/299802a0 YinH-LMeasurement-device-independent quantum key distribution over a 404 km optical fiberPhys. Rev. Lett.20161171905012016PhRvL.117s0501Y10.1103/PhysRevLett.117.190501 YangS-JWangX-JBaoX-HPanJ-WAn efficient quantum light–matter interface with sub-second lifetimeNat. Photon.2016103813842016NaPho..10..381Y1:CAS:528:DC%2BC28XltlyisLY%3D10.1038/nphoton.2016.51 PanJ-WGasparoniSUrsinRWeihsGZeilingerAExperimental entanglement purification of arbitrary unknown statesNature20034234174222003Natur.423..417P1:CAS:528:DC%2BD3sXjvFaltLw%3D10.1038/nature01623 PengC-ZExperimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communicationPhys. Rev. Lett.2005941505012005PhRvL..94o0501P10.1103/PhysRevLett.94.150501 YinJQuantum teleportation and entanglement distribution over 100-kilometre free-space channelsNature20124881851882012Natur.488..185Y1:CAS:528:DC%2BC38XhtFKitL7N10.1038/nature11332 NauerthSAir-to-ground quantum communicationNat. Photon.201373823862013NaPho...7..382N1:CAS:528:DC%2BC3sXkvFyjs7o%3D10.1038/nphoton.2013.46 MaX-SQuantum teleportation over 143 kilometres using active feed-forwardNature20124892692732012Natur.489..269M1:CAS:528:DC%2BC38XhtlajsrzF10.1038/nature11472 BernienHHeralded entanglement between solid-state qubits separated by three metresNature201349786902013Natur.497...86B1:CAS:528:DC%2BC3sXms1Wmt7w%3D10.1038/nature12016 ChouC-WFunctional quantum nodes for entanglement distribution over scalable quantum networksScience2007316131613202007Sci...316.1316C1:CAS:528:DC%2BD2sXmtVyitrw%3D10.1126/science.1140300 J-W Pan (BFnature23655_CR11) 1998; 80 C-W Chou (BFnature23655_CR14) 2007; 316 J Yin (BFnature23655_CR26) 2013; 21 WK Wootters (BFnature23655_CR4) 1982; 299 H-K Lo (BFnature23655_CR29) 2005; 94 C-Z Peng (BFnature23655_CR20) 2005; 94 X-B Wang (BFnature23655_CR28) 2005; 94 Z-S Yuan (BFnature23655_CR15) 2008; 454 H-J Briegel (BFnature23655_CR7) 1998; 81 J-Y Wang (BFnature23655_CR24) 2013; 7 X-S Ma (BFnature23655_CR23) 2012; 489 G Brassard (BFnature23655_CR6) 2000; 85 S-K Liao (BFnature23655_CR30) 2017; 11 X-B Wang (BFnature23655_CR33) 2009; 11 CH Bennett (BFnature23655_CR3) 1989; 20 S-J Yang (BFnature23655_CR13) 2016; 10 S Nauerth (BFnature23655_CR25) 2013; 7 L-M Duan (BFnature23655_CR10) 2001; 414 H Bernien (BFnature23655_CR18) 2013; 497 N Sangouard (BFnature23655_CR16) 2011; 83 M Curty (BFnature23655_CR32) 2014; 5 CE Shannon (BFnature23655_CR2) 1949; 28 S Ritter (BFnature23655_CR17) 2012; 484 H-L Yin (BFnature23655_CR5) 2016; 117 G Vallone (BFnature23655_CR27) 2015; 115 R Ursin (BFnature23655_CR21) 2007; 3 JG Rarity (BFnature23655_CR19) 2002; 4 CH Bennett (BFnature23655_CR9) 1996; 76 J-W Pan (BFnature23655_CR12) 2003; 423 J Yin (BFnature23655_CR22) 2012; 488 M Z˙ukowski (BFnature23655_CR8) 1993; 71 BFnature23655_CR1 T-Y Chen (BFnature23655_CR31) 2010; 18 26252672 - Phys Rev Lett. 2015 Jul 24;115(4):040502 22951967 - Nature. 2012 Sep 13;489(7415):269-73 27858431 - Phys Rev Lett. 2016 Nov 4;117(19):190501 16090452 - Phys Rev Lett. 2005 Jun 17;94(23):230504 22874963 - Nature. 2012 Aug 9;488(7410):185-8 17412919 - Science. 2007 Jun 1;316(5829):1316-20 23615617 - Nature. 2013 May 2;497(7447):86-90 22498625 - Nature. 2012 Apr 11;484(7393):195-200 10061534 - Phys Rev Lett. 1996 Jan 29;76(5):722-725 10055208 - Phys Rev Lett. 1993 Dec 27;71(26):4287-4290 21196999 - Opt Express. 2010 Dec 20;18(26):27217-25 11719796 - Nature. 2001 Nov 22;414(6862):413-8 28880288 - Nature. 2017 Sep 6;549(7670):41-42 16090451 - Phys Rev Lett. 2005 Jun 17;94(23):230503 24105550 - Opt Express. 2013 Aug 26;21(17):20032-40 12761543 - Nature. 2003 May 22;423(6938):417-22 24776959 - Nat Commun. 2014 Apr 29;5:3732 15904125 - Phys Rev Lett. 2005 Apr 22;94(15):150501 10991544 - Phys Rev Lett. 2000 Aug 7;85(6):1330-3 18756253 - Nature. 2008 Aug 28;454(7208):1098-101 |
| References_xml | – reference: RarityJGTapsterPRGormanPMKnightPGround to satellite secure key exchange using quantum cryptographyNew J. Phys.20024822002NJPh....4...82R10.1088/1367-2630/4/1/382 – reference: ValloneGExperimental satellite quantum communicationsPhys. Rev. Lett.20151150405022015PhRvL.115d0502V10.1103/PhysRevLett.115.040502 – reference: ChenT-YMetropolitan all-pass and inter-city quantum communication networkOpt. Express20101827217272252010OExpr..1827217C10.1364/OE.18.027217 – reference: WangJ-YDirect and full-scale experimental verifications towards ground–satellite quantum key distributionNat. Photon.201373873932013NaPho...7..387W1:CAS:528:DC%2BC3sXmt1SltLg%3D10.1038/nphoton.2013.89 – reference: YinJExperimental quasi-single-photon transmission from satellite to earthOpt. Express20132120032200402013OExpr..2120032Y10.1364/OE.21.020032 – reference: MaX-SQuantum teleportation over 143 kilometres using active feed-forwardNature20124892692732012Natur.489..269M1:CAS:528:DC%2BC38XhtlajsrzF10.1038/nature11472 – reference: WoottersWKZurekWHA single quantum cannot be clonedNature19822998028031982Natur.299..802W1:CAS:528:DyaL3sXnvVCgsA%3D%3D10.1038/299802a0 – reference: UrsinREntanglement-based quantum communication over 144 kmNat. Phys.200734814861:CAS:528:DC%2BD2sXntFemur8%3D10.1038/nphys629 – reference: BernienHHeralded entanglement between solid-state qubits separated by three metresNature201349786902013Natur.497...86B1:CAS:528:DC%2BC3sXms1Wmt7w%3D10.1038/nature12016 – reference: YangS-JWangX-JBaoX-HPanJ-WAn efficient quantum light–matter interface with sub-second lifetimeNat. Photon.2016103813842016NaPho..10..381Y1:CAS:528:DC%2BC28XltlyisLY%3D10.1038/nphoton.2016.51 – reference: BennettCHPurification of noisy entanglement and faithful teleportation via noisy channelsPhys. Rev. Lett.1996767227251996PhRvL..76..722B1:CAS:528:DyaK28XntVCktA%3D%3D10.1103/PhysRevLett.76.722 – reference: ShannonCECommunication theory of secrecy systemsBell Syst. Tech. J.1949286567153213310.1002/j.1538-7305.1949.tb00928.x – reference: PanJ-WGasparoniSUrsinRWeihsGZeilingerAExperimental entanglement purification of arbitrary unknown statesNature20034234174222003Natur.423..417P1:CAS:528:DC%2BD3sXjvFaltLw%3D10.1038/nature01623 – reference: YinH-LMeasurement-device-independent quantum key distribution over a 404 km optical fiberPhys. Rev. Lett.20161171905012016PhRvL.117s0501Y10.1103/PhysRevLett.117.190501 – reference: LoH-KMaXChenKDecoy state quantum key distributionPhys. Rev. Lett.2005942305042005PhRvL..94w0504L10.1103/PhysRevLett.94.230504 – reference: Z˙ukowskiMZeilingerAHorneMAEkertAK‘Event-ready-detectors’ Bell experiment via entanglement swappingPhys. Rev. Lett.199371428742901993PhRvL..71.4287Z10.1103/PhysRevLett.71.4287 – reference: CurtyMFinite-key analysis for measurement-device-independent quantum key distributionNat. Commun.2014537322014NatCo...5.3732C1:CAS:528:DC%2BC2cXitVaktbfP10.1038/ncomms4732 – reference: BriegelH-JDürWCiracJIZollerPQuantum repeaters: the role of imperfect local operations in quantum communicationPhys. Rev. Lett.199881593259351998PhRvL..81.5932B1:CAS:528:DyaK1MXis1equw%3D%3D10.1103/PhysRevLett.81.5932 – reference: ChouC-WFunctional quantum nodes for entanglement distribution over scalable quantum networksScience2007316131613202007Sci...316.1316C1:CAS:528:DC%2BD2sXmtVyitrw%3D10.1126/science.1140300 – reference: LiaoS-KLong-distance free-space quantum key distribution in daylight towards inter-satellite communicationNat. Photon.2017115095131:CAS:528:DC%2BC2sXht1Wlsb7K10.1038/nphoton.2017.116 – reference: WangX-BBeating the photon-number-splitting attack in practical quantum cryptographyPhys. Rev. Lett.2005942305032005PhRvL..94w0503W10.1103/PhysRevLett.94.230503 – reference: BrassardGLütkenhausNMorTSandersBCLimitations on practical quantum cryptographyPhys. Rev. Lett.200085133013332000PhRvL..85.1330B1:CAS:528:DC%2BD3cXlsVWrsr8%3D10.1103/PhysRevLett.85.1330 – reference: YinJQuantum teleportation and entanglement distribution over 100-kilometre free-space channelsNature20124881851882012Natur.488..185Y1:CAS:528:DC%2BC38XhtFKitL7N10.1038/nature11332 – reference: DuanL-MLukinMDCiracJIZollerPLong-distance quantum communication with atomic ensembles and linear opticsNature20014144134182001Natur.414..413D1:CAS:528:DC%2BD3MXovFanurw%3D10.1038/35106500 – reference: PanJ-WBouwmeesterDWeinfurterHZeilingerAExperimental entanglement swapping: entangling photons that never interactedPhys. Rev. Lett.199880389138941998PhRvL..80.3891P16237291:CAS:528:DyaK1cXislOjs7o%3D10.1103/PhysRevLett.80.3891 – reference: Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. Int. Conf. on Computers, Systems and Signal Processing 175–179 (1984) – reference: YuanZ-SExperimental demonstration of a BDCZ quantum repeater nodeNature2008454109811012008Natur.454.1098Y1:CAS:528:DC%2BD1cXhtVGgtr%2FL10.1038/nature07241 – reference: SangouardNSimonCDe RiedmattenHGisinNQuantum repeaters based on atomic ensembles and linear opticsRev. Mod. Phys.20118333802011RvMP...83...33S10.1103/RevModPhys.83.33 – reference: WangX-BYangLPengC-ZPanJ-WDecoy-state quantum key distribution with both source errors and statistical fluctuationsNew J. Phys.2009110750062009NJPh...11g5006W10.1088/1367-2630/11/7/075006 – reference: PengC-ZExperimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communicationPhys. Rev. Lett.2005941505012005PhRvL..94o0501P10.1103/PhysRevLett.94.150501 – reference: NauerthSAir-to-ground quantum communicationNat. Photon.201373823862013NaPho...7..382N1:CAS:528:DC%2BC3sXkvFyjs7o%3D10.1038/nphoton.2013.46 – reference: RitterSAn elementary quantum network of single atoms in optical cavitiesNature20124841952002012Natur.484..195R1:CAS:528:DC%2BC38XmtVCjurc%3D10.1038/nature11023 – reference: BennettCHBrassardGExperimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working!ACM Sigact News198920788010.1145/74074.74087 – volume: 11 start-page: 509 year: 2017 ident: BFnature23655_CR30 publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.116 – volume: 85 start-page: 1330 year: 2000 ident: BFnature23655_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.1330 – volume: 423 start-page: 417 year: 2003 ident: BFnature23655_CR12 publication-title: Nature doi: 10.1038/nature01623 – volume: 28 start-page: 656 year: 1949 ident: BFnature23655_CR2 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1949.tb00928.x – volume: 5 start-page: 3732 year: 2014 ident: BFnature23655_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms4732 – volume: 81 start-page: 5932 year: 1998 ident: BFnature23655_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.5932 – volume: 7 start-page: 387 year: 2013 ident: BFnature23655_CR24 publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.89 – volume: 18 start-page: 27217 year: 2010 ident: BFnature23655_CR31 publication-title: Opt. Express doi: 10.1364/OE.18.027217 – volume: 21 start-page: 20032 year: 2013 ident: BFnature23655_CR26 publication-title: Opt. Express doi: 10.1364/OE.21.020032 – volume: 20 start-page: 78 year: 1989 ident: BFnature23655_CR3 publication-title: ACM Sigact News doi: 10.1145/74074.74087 – ident: BFnature23655_CR1 – volume: 94 start-page: 150501 year: 2005 ident: BFnature23655_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.150501 – volume: 10 start-page: 381 year: 2016 ident: BFnature23655_CR13 publication-title: Nat. Photon. doi: 10.1038/nphoton.2016.51 – volume: 299 start-page: 802 year: 1982 ident: BFnature23655_CR4 publication-title: Nature doi: 10.1038/299802a0 – volume: 316 start-page: 1316 year: 2007 ident: BFnature23655_CR14 publication-title: Science doi: 10.1126/science.1140300 – volume: 4 start-page: 82 year: 2002 ident: BFnature23655_CR19 publication-title: New J. Phys. doi: 10.1088/1367-2630/4/1/382 – volume: 454 start-page: 1098 year: 2008 ident: BFnature23655_CR15 publication-title: Nature doi: 10.1038/nature07241 – volume: 115 start-page: 040502 year: 2015 ident: BFnature23655_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.040502 – volume: 484 start-page: 195 year: 2012 ident: BFnature23655_CR17 publication-title: Nature doi: 10.1038/nature11023 – volume: 3 start-page: 481 year: 2007 ident: BFnature23655_CR21 publication-title: Nat. Phys. doi: 10.1038/nphys629 – volume: 76 start-page: 722 year: 1996 ident: BFnature23655_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.722 – volume: 11 start-page: 075006 year: 2009 ident: BFnature23655_CR33 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/7/075006 – volume: 414 start-page: 413 year: 2001 ident: BFnature23655_CR10 publication-title: Nature doi: 10.1038/35106500 – volume: 497 start-page: 86 year: 2013 ident: BFnature23655_CR18 publication-title: Nature doi: 10.1038/nature12016 – volume: 71 start-page: 4287 year: 1993 ident: BFnature23655_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.4287 – volume: 83 start-page: 33 year: 2011 ident: BFnature23655_CR16 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.33 – volume: 489 start-page: 269 year: 2012 ident: BFnature23655_CR23 publication-title: Nature doi: 10.1038/nature11472 – volume: 7 start-page: 382 year: 2013 ident: BFnature23655_CR25 publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.46 – volume: 94 start-page: 230504 year: 2005 ident: BFnature23655_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.230504 – volume: 80 start-page: 3891 year: 1998 ident: BFnature23655_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.3891 – volume: 94 start-page: 230503 year: 2005 ident: BFnature23655_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.230503 – volume: 117 start-page: 190501 year: 2016 ident: BFnature23655_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.190501 – volume: 488 start-page: 185 year: 2012 ident: BFnature23655_CR22 publication-title: Nature doi: 10.1038/nature11332 – reference: 24776959 - Nat Commun. 2014 Apr 29;5:3732 – reference: 10991544 - Phys Rev Lett. 2000 Aug 7;85(6):1330-3 – reference: 21196999 - Opt Express. 2010 Dec 20;18(26):27217-25 – reference: 16090451 - Phys Rev Lett. 2005 Jun 17;94(23):230503 – reference: 23615617 - Nature. 2013 May 2;497(7447):86-90 – reference: 18756253 - Nature. 2008 Aug 28;454(7208):1098-101 – reference: 26252672 - Phys Rev Lett. 2015 Jul 24;115(4):040502 – reference: 17412919 - Science. 2007 Jun 1;316(5829):1316-20 – reference: 22951967 - Nature. 2012 Sep 13;489(7415):269-73 – reference: 12761543 - Nature. 2003 May 22;423(6938):417-22 – reference: 16090452 - Phys Rev Lett. 2005 Jun 17;94(23):230504 – reference: 22498625 - Nature. 2012 Apr 11;484(7393):195-200 – reference: 24105550 - Opt Express. 2013 Aug 26;21(17):20032-40 – reference: 10055208 - Phys Rev Lett. 1993 Dec 27;71(26):4287-4290 – reference: 15904125 - Phys Rev Lett. 2005 Apr 22;94(15):150501 – reference: 27858431 - Phys Rev Lett. 2016 Nov 4;117(19):190501 – reference: 22874963 - Nature. 2012 Aug 9;488(7410):185-8 – reference: 11719796 - Nature. 2001 Nov 22;414(6862):413-8 – reference: 10061534 - Phys Rev Lett. 1996 Jan 29;76(5):722-725 – reference: 28880288 - Nature. 2017 Sep 6;549(7670):41-42 |
| SSID | ssj0005174 |
| Score | 2.70953 |
| Snippet | Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 43 |
| SubjectTerms | 639/766/483/3925 639/766/483/481 Atmosphere Channel loss Communication satellites Cryptography Earth orbits Ground stations Humanities and Social Sciences Methods multidisciplinary Optical fibers Optics Quantum cryptography Quantum mechanics Quantum theory Satellite communications Satellite data communications Satellites Science Telescopes |
| Title | Satellite-to-ground quantum key distribution |
| URI | https://link.springer.com/article/10.1038/nature23655 https://www.ncbi.nlm.nih.gov/pubmed/28825707 https://www.proquest.com/docview/1937359422 https://www.proquest.com/docview/1930932922 |
| Volume | 549 |
| WOSCitedRecordID | wos000409388700029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature / Palgrave current and perpetual access customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRegI2vslEFND6FWWI3sfOEumkTaGqJ2g0VXiLHcaZJkLZLwt-Pz3W7tky88PKTKp9Tyz7bl9zd7wD2M5UZs6GgREumSUdFMZGFlkQxVBeNrqTMFpvg_b4YjeLEfXCrXFjl_Ey0B3U-VviN_MAYGpyFcYfST5MpwapR6F11JTQ2YAtZEpgN3UuuQzzWWJhdfp7PxMGMNpOyCHP8lm6k9XN56WJa85TaC-jk_v8O_QHcc6an153pyjbc0uUO3LEhoKragW23zSvvreOifvcQPgylpeysNanHBFNAytybNmY5ml-e2f9ejsS7rmbWIzg_OT47-kxcgQWiQhHVJM94kPux4LE017RmxnZSeR6JiNNc0g7nvIikz6RQEeV5LFmgg4JzpSOVoa3AHsNmOS71U_ACxbQKqenJig6mdvlKyKDIjPmgqZS0Be_nk5wqxz6ORTB-ptYLzkS6tCIt2F8IT2akGzeLvcTVSpHGosQ4mQvZVFX6ZThIuyE6qM1LtmjBGydUjM0fKunSDsywkflqRXJ3RVJNLqfpUuvrldaL2Urc9Ji9FUGzXdVq81xJUndcVOm1hrTgxaIZe2IIXKnHjZXxjbEdo8yTmU4uJoea96SQ-7wFr-ZKuvTwv2fu2b8HsQt3KVov6Dfje7BZXzX6OdxWv-vL6qoNG3zwDXHELQqD4ihow9bhcT8ZmF-nhx8N9vxTRNqz-NVi0rY71OLQYBL-MP2S7lnv-x975jqu |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL0PIKLRBQCxRhNbE3cXJAqAKqrlpWqC2oN9dxnKoSJLtNAuJP8RvxJM42u1TceuDssWPZ83Jm5huAtUQlxm3IKNGSaTJQYUxkpiVRDNlFYygpaZpN8NEoOjqKPy_A764WBtMqO53YKOq0UPiPfNM4GpwF8YDSd-MJwa5RGF3tWmi0bLGrf_00T7by7fCDud91Src_Hr7fIbarAFFBFFYkTbifeuapHUtjmzQzDoNK0zAKOU0lHXDOs1B6TEYqpDyNJfO1n3GudKgSNJDMrHsFrho97mMKGd__ep5SMof6bOsBPRZttjCdlIVYU9izgPN2oGcI5yKzjcHbvv2_HdUduGVda3erlYUlWND5MlxvUlxVuQxLVo2V7iuLtb1xF94cyAaStNKkKgiWuOSpO6kNu9XfXaPf3BSBhW1PsHvw5VL2fx8W8yLXD8H1FdMqoGYmywZYuuapSPpZYtwjTaWkDrzuLlUoi66OTT6-iSbKzyLR4wAH1qbE4xZU5GKy58gdAmE6cswDOpF1WYrhwb7YCjAAHxh_y4GXligrzAeVtGUVZtuI7DVDuTJDqcanE9EbfTEzetLexEXLrM4QGnWkZoc7phRWHZbinCMdeDYdxpmY4pfrom5oPPOYiJHmQSsD08Oh5h0YcI87sN4JRW_xv0_u0b838RRu7Bx-2hN7w9HuCtyk6KlhjJCvwmJ1VuvHcE39qE7LsyeNfLtwfNlS8gcmaokD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAXoOUVWiCgFlqEtVl7EycHhKqWFauiVUVB6s04jlNVgmS3SUD8NX4dnsRZkqXi1gNnjx3LnpczM98AbMUqNm5DSomWTJORCiIiUy2JYsguGkNJcd1sgk-n4clJdLQCv9paGEyrbHViraiTXOE_8oFxNDjzoxGlg9SmRRwdjN_O5gQ7SGGktW2n0bDIof75wzzfijeTA3PX25SO333af09shwGi_DAoSRLzYeKZZ3ckjZ3SzDgPKkmCMOA0kXTEOU8D6TEZqoDyJJJsqIcp50oHKkZjycy6V-AqZ4aLsUp9v5NesoQAbWsDPRYOGshOygKsL-xYw2Wb0DGKS1Ha2viNb__Px3YHblmX291rZGQNVnS2Dtfr1FdVrMOaVW-Fu2MxuHfvwutjWUOVlpqUOcHSlyxx55Vhw-qba_SemyDgsO0Vdg8-X8r-78Nqlmf6IbhDxbTyqZnJ0hGWtHkqlMM0Nm6TplJSB161FyyURV3H5h9fRR39Z6HocIMDWwviWQM2cjHZc-QUgfAdGd7oqayKQkyOP4o9HwPzvvHDHHhpidLcfFBJW25hto2IXz3KjR6lmp3NRWf0RW_0tLmJi5bZ7BEaNaX6wy2DCqsmC_GHOx14thjGmZj6l-m8qmk888iIkOZBIw-Lw6Hmfehzjzuw3QpIZ_G_T-7RvzfxFG4Y4RAfJtPDDbhJ0YHD0CHfhNXyvNKP4Zr6Xp4V509qUXfhy2ULyW86vpFe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Satellite-to-ground+quantum+key+distribution&rft.jtitle=Nature+%28London%29&rft.au=Liao%2C+Sheng-Kai&rft.au=Cai%2C+Wen-Qi&rft.au=Liu%2C+Wei-Yue&rft.au=Zhang%2C+Liang&rft.date=2017-09-07&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=549&rft.issue=7670&rft.spage=43&rft.epage=47&rft_id=info:doi/10.1038%2Fnature23655&rft.externalDocID=10_1038_nature23655 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |