Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone

The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman–Monteith (PM) model always performs the highes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Agricultural water management Ročník 97; číslo 5; s. 707 - 714
Hlavní autoři: Traore, Seydou, Wang, Yu-Min, Kerh, Tienfuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.05.2010
Amsterdam; New York: Elsevier
Elsevier
Edice:Agricultural Water Management
Témata:
ISSN:0378-3774, 1873-2283
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman–Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination ( r 2) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso.
AbstractList The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman-Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination (r 2) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso.
The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman-Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination (r2) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso.
The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman-Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination (r ²) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso.
The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman–Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination ( r 2) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso.
Author Traore, Seydou
Wang, Yu-Min
Kerh, Tienfuan
Author_xml – sequence: 1
  givenname: Seydou
  surname: Traore
  fullname: Traore, Seydou
  organization: Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu Hsiang, Pingtung 91201, Taiwan
– sequence: 2
  givenname: Yu-Min
  surname: Wang
  fullname: Wang, Yu-Min
  email: wangym@mail.npust.edu.tw, se73traore@gmail.com
  organization: Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu Hsiang, Pingtung 91201, Taiwan
– sequence: 3
  givenname: Tienfuan
  surname: Kerh
  fullname: Kerh, Tienfuan
  organization: Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu Hsiang, Pingtung 91201, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22496793$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeagiwat/v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707-714.htm$$DView record in RePEc
BookMark eNp9kj1v2zAQhoUiBeqk_QUdqqUfi1yKpEhq6BAE_USADm5m4kwdHTqyqJKy0_TX92ynHTp4OB5APu_dge-dF2dDHLAoXtZsXrNavV_PYXUP05wzumH1nDH-pJjVRouKcyPOihkT2lRCa_msOM95zRiTTOpZcXeZpuCDC9CXA27TIU33Md2VPqZyEzvsw7AqE3pMODgscQdjnBIMeQwJphCH0sXN2OOvckzRYc5lGMrFtoMhVgu4JT0M5W8a-Hnx1EOf8cVjvihuPn38cfWluv7--evV5XXlGqOmquUOoVkK4znvjBMGQDkjeQsghPQSatSicUI6A77x4M3SLdF3HLlSSxJcFG-PdWmen1vMk92E7LDvYcC4zVbLRgmueEPkm5OkVI2stdIEvjsJ1krXkstGK0K_HdGEIzo7prCB9GAREVaBTLI7K6DVdDxQ7B2jFCgaipFCM22pmr2dNlTs9WNfyA56T9_uQv5XlHPZKt0K4toj51LMmcyyLkwHc8ip0Ftqsl8Uu7aHRbGHtqy2tCikFf9p_5Y_rXp1VHmI9JxoqpsFAYLVhjXs8BEfjgSS17uAyWYX9ivUhYRusl0MJzv8AfVY5ZY
CODEN AWMADF
CitedBy_id crossref_primary_10_2166_nh_2016_240
crossref_primary_10_1007_s10668_013_9465_x
crossref_primary_10_1016_j_fcr_2016_08_007
crossref_primary_10_1007_s00704_019_02966_x
crossref_primary_10_1007_s11269_015_1033_8
crossref_primary_10_1016_j_compag_2019_105031
crossref_primary_10_3233_JIFS_232277
crossref_primary_10_1016_j_compag_2017_01_027
crossref_primary_10_3390_w16040602
crossref_primary_10_1007_s10661_022_09812_0
crossref_primary_10_1016_j_agwat_2019_105875
crossref_primary_10_3390_w13213078
crossref_primary_10_1080_09715010_2018_1481462
crossref_primary_10_1016_j_agwat_2016_11_010
crossref_primary_10_1155_2021_8850243
crossref_primary_10_1007_s00477_021_02078_x
crossref_primary_10_1007_s10333_010_0219_1
crossref_primary_10_3390_w12030785
crossref_primary_10_1016_j_jhydrol_2018_09_021
crossref_primary_10_1007_s00704_021_03525_z
crossref_primary_10_1007_s11269_016_1269_y
crossref_primary_10_1061__ASCE_IR_1943_4774_0000949
crossref_primary_10_1016_j_agwat_2019_105923
crossref_primary_10_1016_j_engappai_2014_03_012
crossref_primary_10_1016_j_scitotenv_2022_157034
crossref_primary_10_1016_j_jenvman_2023_119714
crossref_primary_10_2166_nh_2018_022
crossref_primary_10_1016_j_jaridenv_2015_08_006
crossref_primary_10_1007_s10333_011_0289_8
crossref_primary_10_1007_s11269_012_0148_4
crossref_primary_10_1007_s40710_015_0066_6
crossref_primary_10_3390_w17091384
crossref_primary_10_1016_j_jhydrol_2016_02_053
crossref_primary_10_1016_j_agwat_2022_107812
crossref_primary_10_1007_s12040_013_0289_8
crossref_primary_10_1088_1755_1315_612_1_012017
crossref_primary_10_1016_j_jhydrol_2022_128947
crossref_primary_10_1007_s12517_021_08150_8
crossref_primary_10_1016_j_jhydrol_2020_125241
crossref_primary_10_1016_S1002_0160_17_60336_9
crossref_primary_10_2166_nh_2020_012
crossref_primary_10_1007_s13201_024_02308_x
crossref_primary_10_1016_j_agwat_2015_10_009
crossref_primary_10_1016_j_jhydrol_2020_125087
crossref_primary_10_3390_w15050922
crossref_primary_10_2166_hydro_2023_161
crossref_primary_10_1016_j_agwat_2024_108935
crossref_primary_10_1080_03650340_2011_603126
crossref_primary_10_3390_su15075689
crossref_primary_10_1007_s40808_022_01385_8
crossref_primary_10_2166_nh_2016_099
crossref_primary_10_2166_nh_2023_040
crossref_primary_10_1016_j_compag_2023_107836
crossref_primary_10_1155_2018_1824317
crossref_primary_10_1007_s12517_025_12240_2
crossref_primary_10_1016_j_compag_2021_106466
crossref_primary_10_3390_agriculture14040510
crossref_primary_10_1007_s11269_012_0149_3
crossref_primary_10_1007_s00704_025_05360_y
crossref_primary_10_1134_S0097807816020172
crossref_primary_10_3390_app122010689
crossref_primary_10_1016_j_compag_2015_11_001
crossref_primary_10_1007_s00704_016_1735_8
crossref_primary_10_1016_j_agwat_2023_108324
crossref_primary_10_1080_03650340_2017_1414196
crossref_primary_10_1016_j_agwat_2017_12_017
crossref_primary_10_1016_j_ecolmodel_2011_11_023
crossref_primary_10_1016_j_agwat_2025_109534
crossref_primary_10_2166_nh_2016_205
crossref_primary_10_3390_w6092830
crossref_primary_10_1080_19942060_2022_2125442
crossref_primary_10_1007_s00271_012_0332_6
crossref_primary_10_1007_s40808_019_00647_2
crossref_primary_10_1007_s00024_020_02473_5
crossref_primary_10_1007_s00271_018_0583_y
crossref_primary_10_1016_j_jhydrol_2012_04_007
crossref_primary_10_1016_j_heliyon_2021_e07487
crossref_primary_10_1016_j_compag_2016_11_011
crossref_primary_10_1007_s00703_012_0205_9
crossref_primary_10_3390_w12051508
crossref_primary_10_1016_j_agwat_2023_108331
crossref_primary_10_7717_peerj_17437
crossref_primary_10_2166_wst_2025_078
crossref_primary_10_1007_s10333_014_0458_7
crossref_primary_10_1016_j_compag_2020_105430
crossref_primary_10_1002_met_1644
crossref_primary_10_1007_s00704_017_2120_y
crossref_primary_10_1016_j_apacoust_2021_108022
crossref_primary_10_1007_s12040_013_0398_4
crossref_primary_10_1016_j_agwat_2017_08_003
crossref_primary_10_1016_j_quaint_2014_02_011
crossref_primary_10_1007_s00704_016_1977_5
crossref_primary_10_1007_s00271_010_0230_8
crossref_primary_10_1007_s40808_020_00780_3
crossref_primary_10_1007_s12517_021_08735_3
crossref_primary_10_1016_j_agwat_2015_09_009
crossref_primary_10_3390_w13060793
crossref_primary_10_1007_s00521_018_3410_8
crossref_primary_10_3389_fpls_2024_1354913
crossref_primary_10_1080_02626667_2020_1787416
crossref_primary_10_1016_j_agwat_2014_03_014
crossref_primary_10_3390_app11188649
crossref_primary_10_1061__ASCE_HE_1943_5584_0001485
crossref_primary_10_1016_j_compag_2019_104937
crossref_primary_10_1016_j_jhydrol_2020_125286
crossref_primary_10_1016_j_agwat_2020_106558
crossref_primary_10_1016_j_compag_2015_04_015
crossref_primary_10_1016_j_ecolind_2024_113012
crossref_primary_10_1016_j_ejrh_2025_102279
crossref_primary_10_2166_wst_2023_253
crossref_primary_10_3390_agriculture15050544
crossref_primary_10_1007_s00271_011_0288_y
crossref_primary_10_3390_agronomy10010101
crossref_primary_10_2166_wcc_2018_003
crossref_primary_10_1038_s41598_017_05660_y
Cites_doi 10.1061/(ASCE)0733-9437(1999)125:1(26)
10.1016/j.agwat.2005.08.001
10.1016/j.jhydrol.2007.12.014
10.1016/j.rse.2007.08.013
10.1007/s00271-008-0119-y
10.1016/j.agwat.2008.04.013
10.1061/(ASCE)0733-9437(1994)120:6(1132)
10.1016/j.agwat.2008.01.009
10.1061/(ASCE)0733-9437(2007)133:4(368)
10.1007/s11269-008-9301-5
10.1061/(ASCE)0733-9437(2002)128:4(224)
10.1061/(ASCE)0733-9437(2003)129:6(454)
10.1016/S0022-1694(00)00413-3
10.1016/j.agwat.2007.09.002
10.1623/hysj.52.4.825
10.1623/hysj.48.3.349.45288
10.1061/(ASCE)0733-9437(2003)129:3(214)
10.5194/hess-12-123-2008
10.1007/s00271-007-0090-z
10.1061/(ASCE)0733-9437(2006)132:6(564)
10.1061/(ASCE)0733-9437(2005)131:4(316)
10.1623/hysj.52.3.563
10.1061/(ASCE)1084-0699(2006)11:1(65)
10.1016/S0378-3774(03)00199-9
10.1016/S0168-1923(00)00121-0
10.1109/TC.2007.70821
10.1016/j.agwat.2007.12.011
10.1061/(ASCE)0733-9437(2007)133:2(83)
10.1061/(ASCE)0733-9437(1984)110:3(263)
10.1016/j.envsoft.2004.04.009
10.1016/j.agwat.2004.07.007
10.1007/s00271-009-0158-z
10.1007/s00271-008-0114-3
10.1006/jare.1997.0327
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
DKI
X2L
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.agwat.2010.01.002
DatabaseName AGRIS
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database

Technology Research Database


AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2283
EndPage 714
ExternalDocumentID eeeagiwat_v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707_714_htm
22496793
10_1016_j_agwat_2010_01_002
US201301805076
S037837741000017X
GeographicLocations Burkina Faso
Sudano Sahelian zone
Sub-Saharan Africa
Africa
GeographicLocations_xml – name: Burkina Faso
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEP
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
08R
0R
1
8P
AAPBV
ADALY
DKI
G-
HZ
IPNFZ
K
KM
M
X2L
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c586t-92cea5b38f22d8c38aa6c8429aa334f4a1e735c34c8af5faf8bcbefd2e266b8c3
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275764000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-3774
IngestDate Sun Sep 28 05:52:34 EDT 2025
Sat Sep 27 22:55:41 EDT 2025
Sun Sep 28 12:20:28 EDT 2025
Wed Aug 18 03:07:25 EDT 2021
Mon Jul 21 09:16:55 EDT 2025
Tue Nov 18 21:22:30 EST 2025
Sat Nov 29 07:17:48 EST 2025
Wed Dec 27 19:15:43 EST 2023
Fri Feb 23 02:24:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Temperature data
Sudano-Sahelian zone
Performance
Evapotranspiration
Hargreaves
Feed forward backpropagation
Temperature
Tropical zone
Reference
Data
Process
Neural network
Modeling
Water engineering
Models
Feedforward
Artificial intelligence
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c586t-92cea5b38f22d8c38aa6c8429aa334f4a1e735c34c8af5faf8bcbefd2e266b8c3
Notes http://dx.doi.org/10.1016/j.agwat.2010.01.002
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671424576
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_745632625
proquest_miscellaneous_46541767
proquest_miscellaneous_1671424576
repec_primary_eeeagiwat_v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707_714_htm
pascalfrancis_primary_22496793
crossref_citationtrail_10_1016_j_agwat_2010_01_002
crossref_primary_10_1016_j_agwat_2010_01_002
fao_agris_US201301805076
elsevier_sciencedirect_doi_10_1016_j_agwat_2010_01_002
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Agricultural Water Management
PublicationTitle Agricultural water management
PublicationYear 2010
Publisher Elsevier B.V
Amsterdam; New York: Elsevier
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Amsterdam; New York: Elsevier
– name: Elsevier
References Wang, Traore, Kerh (bib42) 2008; 6
Irmak, Payero, Martin, Irmak, Howell (bib15) 2006; 132
Khoob (bib18) 2008; 26
Hess (bib13) 1998; 38
Kişi (bib21) 2007; 52
Kişi, Ozturk (bib23) 2007; 133
Xiaoying, Erda (bib45) 2005; 71
Temesgen, Allen, Jensen (bib36) 1999; 125
Kumar, Raghuwanshi, Singh, Wallender, Pruitt (bib24) 2002; 128
Govindaraju, Rao (bib11) 2000
Yin, Wu, Zheng, Yang (bib46) 2008; 95
Stisen, Sandholt, Nørgaard, Fensholt, Jensen (bib34) 2008; 112
Chauhan, Shrivastava (bib4) 2008; 23
Landeras, Barredo, Lopez (bib26) 2008; 95
Wang, Traore, Kerh (bib40) 2008; 5
Alexandris, Kerkides, Liakatas (bib2) 2006; 82
Cigizoglu (bib5) 2003; 48
Shih (bib31) 1984; 110
Keskin, Terzi (bib17) 2006; 11
Kumar, Bandyopadhyay, Raghuwanshi, Singh (bib25) 2008; 26
Dogan (bib7) 2008
Doorenbos, J., Pruitt, W.O., 1977. Crop water requirement. Irrigation and Drainage Paper No. 33. FAO, Rome, Italy.
Jabloun, Sahli (bib16) 2008; 95
Smith, Allen, Monteith, Perrier, Pereira, Segeren (bib32) 1991
Smith (bib33) 2000; 103
Parasuraman, Elshorbagy, Carey (bib29) 2007; 52
Lovelli, Perniola, Arcieri, Rivelli, Tommaso (bib28) 2008; 95
Trajkovic (bib38) 2005; 131
Wang, Kerh, Traore (bib44) 2009; 11
Li, F.Z., Beswick, A., 2005. Sensitivity of the FAO-56 crop reference evapotranspiration to different input data. Technical report. Queensland Government, Natural Resources and Mines, pp. 1–14.
Wang, Traore (bib43) 2009; 4
Trajkovic, Todorovic, Stankovic (bib37) 2003; 129
Sudheer, Gosain, Ramasastri (bib35) 2003; 129
Khoob (bib19) 2008; 27
Popova, Kercheva, Pereira (bib30) 2005
Fisher, Terry, DeBiase, Qi1, Xu, Allen (bib10) 2005; 20
Hargreaves (bib12) 1994; 120
Wang, Traore, Kerh (bib39) 2007; 6
Wang, Traore, Kerh (bib41) 2008; 5
Kişi (bib22) 2009; 27
Cob, Juste (bib6) 2004; 64
Firat (bib9) 2008; 12
Aksoy, Guven, Aytek, Yuce, Unal (bib1) 2007; 52
Hupet, Vanclooster (bib14) 2001; 243
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration, guideline for computing water requirements. Irrigation Drainage Paper No. 56. FAO, Rome, Italy.
Zanetti, Sousa, Oliveira, Almeida, Bernardo (bib47) 2007; 133
Kim, Kim (bib20) 2008; 351
Khoob (10.1016/j.agwat.2010.01.002_bib19) 2008; 27
Wang (10.1016/j.agwat.2010.01.002_bib43) 2009; 4
Zanetti (10.1016/j.agwat.2010.01.002_bib47) 2007; 133
Hess (10.1016/j.agwat.2010.01.002_bib13) 1998; 38
Kumar (10.1016/j.agwat.2010.01.002_bib25) 2008; 26
Kişi (10.1016/j.agwat.2010.01.002_bib22) 2009; 27
Cob (10.1016/j.agwat.2010.01.002_bib6) 2004; 64
Xiaoying (10.1016/j.agwat.2010.01.002_bib45) 2005; 71
Aksoy (10.1016/j.agwat.2010.01.002_bib1) 2007; 52
Keskin (10.1016/j.agwat.2010.01.002_bib17) 2006; 11
Hargreaves (10.1016/j.agwat.2010.01.002_bib12) 1994; 120
Trajkovic (10.1016/j.agwat.2010.01.002_bib38) 2005; 131
Wang (10.1016/j.agwat.2010.01.002_bib42) 2008; 6
Irmak (10.1016/j.agwat.2010.01.002_bib15) 2006; 132
Temesgen (10.1016/j.agwat.2010.01.002_bib36) 1999; 125
Parasuraman (10.1016/j.agwat.2010.01.002_bib29) 2007; 52
Shih (10.1016/j.agwat.2010.01.002_bib31) 1984; 110
Lovelli (10.1016/j.agwat.2010.01.002_bib28) 2008; 95
Kişi (10.1016/j.agwat.2010.01.002_bib21) 2007; 52
Alexandris (10.1016/j.agwat.2010.01.002_bib2) 2006; 82
Chauhan (10.1016/j.agwat.2010.01.002_bib4) 2008; 23
Cigizoglu (10.1016/j.agwat.2010.01.002_bib5) 2003; 48
Wang (10.1016/j.agwat.2010.01.002_bib40) 2008; 5
Fisher (10.1016/j.agwat.2010.01.002_bib10) 2005; 20
Stisen (10.1016/j.agwat.2010.01.002_bib34) 2008; 112
Kişi (10.1016/j.agwat.2010.01.002_bib23) 2007; 133
Smith (10.1016/j.agwat.2010.01.002_bib32) 1991
Wang (10.1016/j.agwat.2010.01.002_bib44) 2009; 11
Firat (10.1016/j.agwat.2010.01.002_bib9) 2008; 12
10.1016/j.agwat.2010.01.002_bib8
Yin (10.1016/j.agwat.2010.01.002_bib46) 2008; 95
Khoob (10.1016/j.agwat.2010.01.002_bib18) 2008; 26
Jabloun (10.1016/j.agwat.2010.01.002_bib16) 2008; 95
10.1016/j.agwat.2010.01.002_bib3
Kim (10.1016/j.agwat.2010.01.002_bib20) 2008; 351
Landeras (10.1016/j.agwat.2010.01.002_bib26) 2008; 95
Smith (10.1016/j.agwat.2010.01.002_bib33) 2000; 103
Trajkovic (10.1016/j.agwat.2010.01.002_bib37) 2003; 129
Govindaraju (10.1016/j.agwat.2010.01.002_bib11) 2000
Sudheer (10.1016/j.agwat.2010.01.002_bib35) 2003; 129
Wang (10.1016/j.agwat.2010.01.002_bib39) 2007; 6
Kumar (10.1016/j.agwat.2010.01.002_bib24) 2002; 128
Popova (10.1016/j.agwat.2010.01.002_bib30) 2005
Wang (10.1016/j.agwat.2010.01.002_bib41) 2008; 5
Dogan (10.1016/j.agwat.2010.01.002_bib7) 2008
10.1016/j.agwat.2010.01.002_bib27
Hupet (10.1016/j.agwat.2010.01.002_bib14) 2001; 243
References_xml – year: 2008
  ident: bib7
  article-title: Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems
  publication-title: Irrigation and Drainage
– volume: 11
  start-page: 65
  year: 2006
  end-page: 70
  ident: bib17
  article-title: Artificial neural network models of daily pan evaporation
  publication-title: Journal of Hydrologic Engineering
– volume: 351
  start-page: 299
  year: 2008
  end-page: 317
  ident: bib20
  article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
  publication-title: Journal of Hydrology
– volume: 103
  start-page: 99
  year: 2000
  end-page: 108
  ident: bib33
  article-title: The application of climatic data for planning and management of sustainable rainfed and irrigated crop production
  publication-title: Agricultural and Forest Meteorology
– volume: 95
  start-page: 707
  year: 2008
  end-page: 715
  ident: bib16
  article-title: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data Application to Tunisia
  publication-title: Agricultural Water Management
– volume: 38
  start-page: 99
  year: 1998
  end-page: 115
  ident: bib13
  article-title: Trends in reference evapo-transpiration in the North East arid zone of Nigeria
  publication-title: Journal of Arid Environments
– volume: 95
  start-page: 553
  year: 2008
  end-page: 565
  ident: bib26
  article-title: Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)
  publication-title: Agricultural Water Management
– volume: 129
  start-page: 454
  year: 2003
  end-page: 457
  ident: bib37
  article-title: Forecasting of reference evapotranspiration by artificial neural networks
  publication-title: Journal of Irrigation and Drainage Engineering
– year: 2000
  ident: bib11
  article-title: Introduction in Artificial Neural Networks in Hydrology
– volume: 132
  start-page: 564
  year: 2006
  end-page: 578
  ident: bib15
  article-title: Sensitivity analyses and sensitivity coefficients of standardized daily ASCE–Penman–Monteith equation
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 27
  start-page: 35
  year: 2008
  end-page: 39
  ident: bib19
  article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment
  publication-title: Irrigation Science
– volume: 82
  start-page: 371
  year: 2006
  end-page: 386
  ident: bib2
  article-title: Daily reference evapotranspiration estimates by the “Copais” approach
  publication-title: Agricultural Water Management
– volume: 5
  start-page: 359
  year: 2008
  end-page: 368
  ident: bib41
  article-title: Monitoring event-based suspended sediment concentration by artificial neural network models
  publication-title: WSEAS Transactions on Computers
– volume: 52
  start-page: 825
  year: 2007
  end-page: 831
  ident: bib1
  article-title: Discussion of generalized regression neural networks for evapotranspiration modeling
  publication-title: Hydrological Sciences Journal
– volume: 112
  start-page: 1242
  year: 2008
  end-page: 1255
  ident: bib34
  article-title: Combining the triangle method with thermal inertia to estimate regional evapotranspiration—applied to MSG-SEVIRI data in the Senegal River basin
  publication-title: Remote Sensing of Environment
– volume: 125
  start-page: 26
  year: 1999
  end-page: 33
  ident: bib36
  article-title: Adjusting temperature parameters to reflect well-water conditions
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 110
  start-page: 263
  year: 1984
  end-page: 274
  ident: bib31
  article-title: Data requirement for evapotranspiration estimation
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 27
  start-page: 417
  year: 2009
  end-page: 430
  ident: bib22
  article-title: Modeling monthly evaporation using two different neural computing techniques
  publication-title: Irrigation Science
– volume: 64
  start-page: 251
  year: 2004
  end-page: 264
  ident: bib6
  article-title: A wind-based qualitative calibration of the Hargreaves ETo estimation equation in semiarid regions
  publication-title: Agricultural Water Management
– volume: 5
  start-page: 832
  year: 2008
  end-page: 842
  ident: bib40
  article-title: Computing and modeling for crop yields in Burkina Faso based on climatic data information
  publication-title: WSEAS Transactions on Information Science and Applications
– year: 1991
  ident: bib32
  article-title: Expert Consultation on Procedures for Revision of FAO Guidelines for Prediction of Crop Water Requirements
– volume: 128
  start-page: 224
  year: 2002
  end-page: 233
  ident: bib24
  article-title: Estimating evapotranspiration using artificial neural network
  publication-title: Journal of Irrigation and Drainage Engineering
– reference: Doorenbos, J., Pruitt, W.O., 1977. Crop water requirement. Irrigation and Drainage Paper No. 33. FAO, Rome, Italy.
– volume: 243
  start-page: 192
  year: 2001
  end-page: 204
  ident: bib14
  article-title: Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration
  publication-title: Journal of Hydrology
– volume: 131
  start-page: 316
  year: 2005
  end-page: 323
  ident: bib38
  article-title: Temperature-based approaches for estimating reference evapotranspiration
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 26
  start-page: 531
  year: 2008
  end-page: 545
  ident: bib25
  article-title: Comparative study of conventional and artificial neural network-based ETo estimation models
  publication-title: Irrigation Science
– volume: 133
  start-page: 83
  year: 2007
  end-page: 89
  ident: bib47
  article-title: Estimating evapotranspiration using artificial neural network and minimum climatological data
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 4
  start-page: 519
  year: 2009
  end-page: 528
  ident: bib43
  article-title: Time-lagged recurrent network for forecasting episodic event suspended sediment load in Typhoon Prone Area
  publication-title: International Journal of Physical Sciences
– volume: 26
  start-page: 253
  year: 2008
  end-page: 259
  ident: bib18
  article-title: Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment
  publication-title: Irrigation Science
– volume: 23
  start-page: 825
  year: 2008
  end-page: 837
  ident: bib4
  article-title: Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
  publication-title: Water Resources Management
– volume: 48
  start-page: 349
  year: 2003
  end-page: 361
  ident: bib5
  article-title: Estimation, forecasting and extrapolation of river, flows by artificial neural networks
  publication-title: Hydrological Sciences Journal
– volume: 120
  start-page: 1132
  year: 1994
  end-page: 1139
  ident: bib12
  article-title: Defining and using reference evapotranspiration
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 129
  start-page: 214
  year: 2003
  end-page: 218
  ident: bib35
  article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 52
  start-page: 836
  year: 2007
  end-page: 839
  ident: bib21
  article-title: Reply to discussion of generalized regression neural networks for evapotranspiration modelling by D. Koutsoyiannis
  publication-title: Hydrological Sciences Journal
– volume: 52
  start-page: 563
  year: 2007
  end-page: 578
  ident: bib29
  article-title: Modelling the dynamics of the evapotranspiration process using genetic programming
  publication-title: Hydrological Sciences Journal
– volume: 11
  start-page: 457
  year: 2009
  end-page: 466
  ident: bib44
  article-title: Neural Networks Approaches for Modeling River Suspended Sediment Concentration Due to Tropical Storms
  publication-title: Global NEST Journal
– volume: 95
  start-page: 77
  year: 2008
  end-page: 84
  ident: bib46
  article-title: Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China
  publication-title: Agricultural Water Management
– volume: 6
  start-page: 880
  year: 2007
  end-page: 887
  ident: bib39
  article-title: Assessment of evapotranspiration based on data information models at production sites in Burkina Faso
  publication-title: WSEAS Transactions on Computers
– volume: 6
  start-page: 704
  year: 2008
  end-page: 713
  ident: bib42
  article-title: Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina
  publication-title: WSEAS Transactions on Computers
– volume: 95
  start-page: 1153
  year: 2008
  end-page: 1160
  ident: bib28
  article-title: Water use assessment in muskmelon by the Penman–Monteith “one-step” approach
  publication-title: Agricultural Water Management
– reference: Li, F.Z., Beswick, A., 2005. Sensitivity of the FAO-56 crop reference evapotranspiration to different input data. Technical report. Queensland Government, Natural Resources and Mines, pp. 1–14.
– volume: 133
  start-page: 368
  year: 2007
  end-page: 379
  ident: bib23
  article-title: Adaptive neurofuzzy computing technique for evapotranspiration estimation
  publication-title: Journal of Irrigation and Drainage Engineering
– start-page: 1
  year: 2005
  end-page: 13
  ident: bib30
  article-title: Validation of the FAO methodology for computing ETo with limited data: application to south Bulgaria
  publication-title: European Regional Conference
– reference: Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration, guideline for computing water requirements. Irrigation Drainage Paper No. 56. FAO, Rome, Italy.
– volume: 20
  start-page: 783
  year: 2005
  end-page: 796
  ident: bib10
  article-title: Evapotranspiration models compared on a Sierra Nevada forest ecosystem
  publication-title: Environmental Modeling and Software
– volume: 71
  start-page: 1
  year: 2005
  end-page: 17
  ident: bib45
  article-title: Performance of the Priestley–Taylor equation in the semi-arid climate of North China
  publication-title: Agricultural Water Management
– volume: 12
  start-page: 123
  year: 2008
  end-page: 139
  ident: bib9
  article-title: Comparison of artificial intelligence techniques for river flow forecasting
  publication-title: Hydrology and Earth System Sciences
– volume: 125
  start-page: 26
  year: 1999
  ident: 10.1016/j.agwat.2010.01.002_bib36
  article-title: Adjusting temperature parameters to reflect well-water conditions
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(1999)125:1(26)
– volume: 82
  start-page: 371
  year: 2006
  ident: 10.1016/j.agwat.2010.01.002_bib2
  article-title: Daily reference evapotranspiration estimates by the “Copais” approach
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2005.08.001
– volume: 6
  start-page: 704
  issue: 7
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib42
  article-title: Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina
  publication-title: WSEAS Transactions on Computers
– year: 1991
  ident: 10.1016/j.agwat.2010.01.002_bib32
– ident: 10.1016/j.agwat.2010.01.002_bib27
– volume: 351
  start-page: 299
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib20
  article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2007.12.014
– year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib7
  article-title: Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems
  publication-title: Irrigation and Drainage
– volume: 112
  start-page: 1242
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib34
  article-title: Combining the triangle method with thermal inertia to estimate regional evapotranspiration—applied to MSG-SEVIRI data in the Senegal River basin
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.08.013
– volume: 27
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib19
  article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment
  publication-title: Irrigation Science
  doi: 10.1007/s00271-008-0119-y
– volume: 95
  start-page: 1153
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib28
  article-title: Water use assessment in muskmelon by the Penman–Monteith “one-step” approach
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2008.04.013
– volume: 120
  start-page: 1132
  issue: 6
  year: 1994
  ident: 10.1016/j.agwat.2010.01.002_bib12
  article-title: Defining and using reference evapotranspiration
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(1994)120:6(1132)
– volume: 95
  start-page: 707
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib16
  article-title: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data Application to Tunisia
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2008.01.009
– volume: 133
  start-page: 368
  issue: 4
  year: 2007
  ident: 10.1016/j.agwat.2010.01.002_bib23
  article-title: Adaptive neurofuzzy computing technique for evapotranspiration estimation
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(368)
– volume: 23
  start-page: 825
  issue: 5
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib4
  article-title: Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
  publication-title: Water Resources Management
  doi: 10.1007/s11269-008-9301-5
– volume: 128
  start-page: 224
  issue: 4
  year: 2002
  ident: 10.1016/j.agwat.2010.01.002_bib24
  article-title: Estimating evapotranspiration using artificial neural network
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(2002)128:4(224)
– volume: 129
  start-page: 454
  issue: 6
  year: 2003
  ident: 10.1016/j.agwat.2010.01.002_bib37
  article-title: Forecasting of reference evapotranspiration by artificial neural networks
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(2003)129:6(454)
– volume: 243
  start-page: 192
  year: 2001
  ident: 10.1016/j.agwat.2010.01.002_bib14
  article-title: Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration
  publication-title: Journal of Hydrology
  doi: 10.1016/S0022-1694(00)00413-3
– volume: 95
  start-page: 77
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib46
  article-title: Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2007.09.002
– volume: 52
  start-page: 825
  issue: 4
  year: 2007
  ident: 10.1016/j.agwat.2010.01.002_bib1
  article-title: Discussion of generalized regression neural networks for evapotranspiration modeling
  publication-title: Hydrological Sciences Journal
  doi: 10.1623/hysj.52.4.825
– volume: 48
  start-page: 349
  issue: 3
  year: 2003
  ident: 10.1016/j.agwat.2010.01.002_bib5
  article-title: Estimation, forecasting and extrapolation of river, flows by artificial neural networks
  publication-title: Hydrological Sciences Journal
  doi: 10.1623/hysj.48.3.349.45288
– volume: 129
  start-page: 214
  issue: 3
  year: 2003
  ident: 10.1016/j.agwat.2010.01.002_bib35
  article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(2003)129:3(214)
– volume: 4
  start-page: 519
  issue: 9
  year: 2009
  ident: 10.1016/j.agwat.2010.01.002_bib43
  article-title: Time-lagged recurrent network for forecasting episodic event suspended sediment load in Typhoon Prone Area
  publication-title: International Journal of Physical Sciences
– volume: 11
  start-page: 457
  issue: 4
  year: 2009
  ident: 10.1016/j.agwat.2010.01.002_bib44
  article-title: Neural Networks Approaches for Modeling River Suspended Sediment Concentration Due to Tropical Storms
  publication-title: Global NEST Journal
– start-page: 1
  year: 2005
  ident: 10.1016/j.agwat.2010.01.002_bib30
  article-title: Validation of the FAO methodology for computing ETo with limited data: application to south Bulgaria
  publication-title: European Regional Conference
– volume: 5
  start-page: 832
  issue: 7
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib40
  article-title: Computing and modeling for crop yields in Burkina Faso based on climatic data information
  publication-title: WSEAS Transactions on Information Science and Applications
– volume: 12
  start-page: 123
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib9
  article-title: Comparison of artificial intelligence techniques for river flow forecasting
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-12-123-2008
– volume: 52
  start-page: 836
  issue: 4
  year: 2007
  ident: 10.1016/j.agwat.2010.01.002_bib21
  article-title: Reply to discussion of generalized regression neural networks for evapotranspiration modelling by D. Koutsoyiannis
  publication-title: Hydrological Sciences Journal
– volume: 26
  start-page: 253
  issue: 3
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib18
  article-title: Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment
  publication-title: Irrigation Science
  doi: 10.1007/s00271-007-0090-z
– volume: 132
  start-page: 564
  issue: 6
  year: 2006
  ident: 10.1016/j.agwat.2010.01.002_bib15
  article-title: Sensitivity analyses and sensitivity coefficients of standardized daily ASCE–Penman–Monteith equation
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(2006)132:6(564)
– ident: 10.1016/j.agwat.2010.01.002_bib3
– ident: 10.1016/j.agwat.2010.01.002_bib8
– volume: 131
  start-page: 316
  issue: 4
  year: 2005
  ident: 10.1016/j.agwat.2010.01.002_bib38
  article-title: Temperature-based approaches for estimating reference evapotranspiration
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(2005)131:4(316)
– volume: 6
  start-page: 880
  issue: 6
  year: 2007
  ident: 10.1016/j.agwat.2010.01.002_bib39
  article-title: Assessment of evapotranspiration based on data information models at production sites in Burkina Faso
  publication-title: WSEAS Transactions on Computers
– volume: 52
  start-page: 563
  issue: 3
  year: 2007
  ident: 10.1016/j.agwat.2010.01.002_bib29
  article-title: Modelling the dynamics of the evapotranspiration process using genetic programming
  publication-title: Hydrological Sciences Journal
  doi: 10.1623/hysj.52.3.563
– year: 2000
  ident: 10.1016/j.agwat.2010.01.002_bib11
– volume: 11
  start-page: 65
  issue: 1
  year: 2006
  ident: 10.1016/j.agwat.2010.01.002_bib17
  article-title: Artificial neural network models of daily pan evaporation
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)1084-0699(2006)11:1(65)
– volume: 64
  start-page: 251
  year: 2004
  ident: 10.1016/j.agwat.2010.01.002_bib6
  article-title: A wind-based qualitative calibration of the Hargreaves ETo estimation equation in semiarid regions
  publication-title: Agricultural Water Management
  doi: 10.1016/S0378-3774(03)00199-9
– volume: 103
  start-page: 99
  year: 2000
  ident: 10.1016/j.agwat.2010.01.002_bib33
  article-title: The application of climatic data for planning and management of sustainable rainfed and irrigated crop production
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/S0168-1923(00)00121-0
– volume: 5
  start-page: 359
  issue: 7
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib41
  article-title: Monitoring event-based suspended sediment concentration by artificial neural network models
  publication-title: WSEAS Transactions on Computers
  doi: 10.1109/TC.2007.70821
– volume: 95
  start-page: 553
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib26
  article-title: Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2007.12.011
– volume: 133
  start-page: 83
  issue: 2
  year: 2007
  ident: 10.1016/j.agwat.2010.01.002_bib47
  article-title: Estimating evapotranspiration using artificial neural network and minimum climatological data
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(2007)133:2(83)
– volume: 110
  start-page: 263
  issue: 33
  year: 1984
  ident: 10.1016/j.agwat.2010.01.002_bib31
  article-title: Data requirement for evapotranspiration estimation
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(1984)110:3(263)
– volume: 20
  start-page: 783
  year: 2005
  ident: 10.1016/j.agwat.2010.01.002_bib10
  article-title: Evapotranspiration models compared on a Sierra Nevada forest ecosystem
  publication-title: Environmental Modeling and Software
  doi: 10.1016/j.envsoft.2004.04.009
– volume: 71
  start-page: 1
  year: 2005
  ident: 10.1016/j.agwat.2010.01.002_bib45
  article-title: Performance of the Priestley–Taylor equation in the semi-arid climate of North China
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2004.07.007
– volume: 27
  start-page: 417
  year: 2009
  ident: 10.1016/j.agwat.2010.01.002_bib22
  article-title: Modeling monthly evaporation using two different neural computing techniques
  publication-title: Irrigation Science
  doi: 10.1007/s00271-009-0158-z
– volume: 26
  start-page: 531
  year: 2008
  ident: 10.1016/j.agwat.2010.01.002_bib25
  article-title: Comparative study of conventional and artificial neural network-based ETo estimation models
  publication-title: Irrigation Science
  doi: 10.1007/s00271-008-0114-3
– volume: 38
  start-page: 99
  year: 1998
  ident: 10.1016/j.agwat.2010.01.002_bib13
  article-title: Trends in reference evapo-transpiration in the North East arid zone of Nigeria
  publication-title: Journal of Arid Environments
  doi: 10.1006/jare.1997.0327
SSID ssj0004047
Score 2.3259969
Snippet The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference...
SourceID proquest
repec
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 707
SubjectTerms Accuracy
Agricultural and forest climatology and meteorology. Irrigation. Drainage
Agricultural and forest meteorology
Agronomy. Soil science and plant productions
air temperature
Artificial neural networks
Back propagation
back-propagation neural networks
Biological and medical sciences
Burkina Faso
data analysis
equations
Evapotranspiration
Evapotranspiration Temperature data Feed forward backpropagation Hargreaves Performance Sudano-Sahelian zone
Feed forward backpropagation
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Hargreaves
Learning theory
mathematical models
meteorological parameters
Neural networks
Penman-Monteith equation
Relative humidity
Sahel
solar radiation
Sudano-Sahelian zone
Temperature data
Water balance and requirements. Evapotranspiration
wind
wind speed
Title Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone
URI https://dx.doi.org/10.1016/j.agwat.2010.01.002
http://econpapers.repec.org/article/eeeagiwat/v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707-714.htm
https://www.proquest.com/docview/1671424576
https://www.proquest.com/docview/46541767
https://www.proquest.com/docview/745632625
Volume 97
WOSCitedRecordID wos000275764000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: AIEXJ
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF714AEeEKcajrJIvIGr2o6968eoKgIkKqS0anlardezSUrrRLlI-bP8FWYP20mjVoBAke3I2cPxfN6ZHX87Q8ibLG1noFMVFKh-AhNjKsh1GAWQ4Qe0RC3LbbIJdnTEz86yLxsbP6u1MPMLVpZ8schG_1XUeA6FbZbO_oG460bxBH5HoeMexY773xJ8Z2zpP8YTboJV2oOleltGoc18Y9wDdX4RE_B7NJzaIOcDjwdLNIfF25FbRmCcIt1ZIcth0JV9sJ6RH8NyhUXU6Y2bMB7fpYm9eLlGrTn13umvs-DzoHn_D-O-ww2UetbAFfWoZwF34aoYztwIaCIzT1a7O7XdXWPyeFeGewu_5Mqo1tgsDYGxIW8wl8dnD9wQzVkcmKA9y2O44_h6rCZLAzJzOXW9bmduweqa2nAejPM92cP74_l-ofG1NVqy5i4CgOwNsJyYi1hmDHdXuJlKeBjgluA2wg37Ftij6E8vN8l2xJKMb5HtzsfDs0_N0t19mwOv_qNVYCxLQVy7nJuMp00th4bVKyf4YGuXkWVlyrQ9hhGoJcvp-AG576c8tOOg-pBsQPmI3GsECI_Jtwa01IGWetBSBC2tQEtr0NJ10FIPWupBSwclvQZaakD7hJy8Pzw--BD4NCCBSng6DbJIgUzymOsoKriKuZSp4mhHSRnHbd2WIbA4UXFbcakTLTXPVQ66iACNzxwrPCVbJTa_Q2iWR1AUWYy_QDtnWc4LSLVShZJoqirZIlF1f4XyMfJNqpYLUZEhz4UVirDi3g8FCqVF3tWVRi5EzO3F00pwwlu5znoViMbbK-6gmPE8an9x0o0M5yDk-zihS1tkd0X29XWggZ6lqIJb5HUFBoH6w7wUlCUMZxMRpswsdk1MI69uKGNiLoYsZS1CbyjBcB6GE8EoaZEDC7X6Cv7qcXn2T1p5Tu42o8wLsjUdz-AluaPm08FkvOufxF8OhSmS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+for+modeling+reference+evapotranspiration+complex+process+in+Sudano-Sahelian+zone&rft.jtitle=Agricultural+water+management&rft.au=Wang%2C+Yu-Min&rft.au=Kerh%2C+Tienfuan&rft.au=Traore%2C+Seydou&rft.series=Agricultural+Water+Management&rft.date=2010-05-01&rft.pub=Elsevier&rft.issn=0378-3774&rft.eissn=1873-2283&rft.volume=97&rft.issue=5&rft.spage=707&rft.epage=714&rft_id=info:doi/10.1016%2Fj.agwat.2010.01.002&rft.externalDocID=eeeagiwat_v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707_714_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon