Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone
The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman–Monteith (PM) model always performs the highes...
Saved in:
| Published in: | Agricultural water management Vol. 97; no. 5; pp. 707 - 714 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.05.2010
Amsterdam; New York: Elsevier Elsevier |
| Series: | Agricultural Water Management |
| Subjects: | |
| ISSN: | 0378-3774, 1873-2283 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman–Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination (
r
2) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso. |
|---|---|
| AbstractList | The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman-Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination (r 2) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso. The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman-Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination (r2) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso. The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman–Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination ( r 2) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso. The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference evapotranspiration (ET-ref) estimation models in rich and poor data situations. Thus, the well-known Penman-Monteith (PM) model always performs the highest accuracy results of ET-ref from a rich data situation. Its application in many areas particularly in developing countries such as Burkina Faso has been limited by the unavailability of the enormous climatic data required. In such circumstances, simple empirical Hargreaves (HARG) equation is often used despite of its non-universal suitability. The present study assesses the artificial neural network (ANN) performance in ET-ref modeling based on temperature data in Bobo-Dioulasso region, located in the Sudano-Sahelian zone of Burkina Faso. The models of feed forward backpropagation neural network (BPNN) algorithm type ANN and Hargreaves (HARG) were employed to study their performance by comparing with the true PM. From the statistical results, BPNN temperature-based models perform better than HARG. Beside, when wind speed is introduced into the neural network models, the coefficient of determination (r ²) increases significantly up to 9.52%. While, sunshine duration and relative humidity might cause only 3.51 and 6.69% of difference, respectively. Wind is found to be the most effective variable extremely required for modeling with high accuracy the nonlinear complex process of ET-ref in the Sudano-Sahelian zone of Burkina Faso. |
| Author | Traore, Seydou Wang, Yu-Min Kerh, Tienfuan |
| Author_xml | – sequence: 1 givenname: Seydou surname: Traore fullname: Traore, Seydou organization: Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu Hsiang, Pingtung 91201, Taiwan – sequence: 2 givenname: Yu-Min surname: Wang fullname: Wang, Yu-Min email: wangym@mail.npust.edu.tw, se73traore@gmail.com organization: Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu Hsiang, Pingtung 91201, Taiwan – sequence: 3 givenname: Tienfuan surname: Kerh fullname: Kerh, Tienfuan organization: Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu Hsiang, Pingtung 91201, Taiwan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22496793$$DView record in Pascal Francis http://econpapers.repec.org/article/eeeagiwat/v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707-714.htm$$DView record in RePEc |
| BookMark | eNp9kj1v2zAQhoUiBeqk_QUdqqUfi1yKpEhq6BAE_USADm5m4kwdHTqyqJKy0_TX92ynHTp4OB5APu_dge-dF2dDHLAoXtZsXrNavV_PYXUP05wzumH1nDH-pJjVRouKcyPOihkT2lRCa_msOM95zRiTTOpZcXeZpuCDC9CXA27TIU33Md2VPqZyEzvsw7AqE3pMODgscQdjnBIMeQwJphCH0sXN2OOvckzRYc5lGMrFtoMhVgu4JT0M5W8a-Hnx1EOf8cVjvihuPn38cfWluv7--evV5XXlGqOmquUOoVkK4znvjBMGQDkjeQsghPQSatSicUI6A77x4M3SLdF3HLlSSxJcFG-PdWmen1vMk92E7LDvYcC4zVbLRgmueEPkm5OkVI2stdIEvjsJ1krXkstGK0K_HdGEIzo7prCB9GAREVaBTLI7K6DVdDxQ7B2jFCgaipFCM22pmr2dNlTs9WNfyA56T9_uQv5XlHPZKt0K4toj51LMmcyyLkwHc8ip0Ftqsl8Uu7aHRbGHtqy2tCikFf9p_5Y_rXp1VHmI9JxoqpsFAYLVhjXs8BEfjgSS17uAyWYX9ivUhYRusl0MJzv8AfVY5ZY |
| CODEN | AWMADF |
| CitedBy_id | crossref_primary_10_2166_nh_2016_240 crossref_primary_10_1007_s10668_013_9465_x crossref_primary_10_1016_j_fcr_2016_08_007 crossref_primary_10_1007_s00704_019_02966_x crossref_primary_10_1007_s11269_015_1033_8 crossref_primary_10_1016_j_compag_2019_105031 crossref_primary_10_3233_JIFS_232277 crossref_primary_10_1016_j_compag_2017_01_027 crossref_primary_10_3390_w16040602 crossref_primary_10_1007_s10661_022_09812_0 crossref_primary_10_1016_j_agwat_2019_105875 crossref_primary_10_3390_w13213078 crossref_primary_10_1080_09715010_2018_1481462 crossref_primary_10_1016_j_agwat_2016_11_010 crossref_primary_10_1155_2021_8850243 crossref_primary_10_1007_s00477_021_02078_x crossref_primary_10_1007_s10333_010_0219_1 crossref_primary_10_3390_w12030785 crossref_primary_10_1016_j_jhydrol_2018_09_021 crossref_primary_10_1007_s00704_021_03525_z crossref_primary_10_1007_s11269_016_1269_y crossref_primary_10_1061__ASCE_IR_1943_4774_0000949 crossref_primary_10_1016_j_agwat_2019_105923 crossref_primary_10_1016_j_engappai_2014_03_012 crossref_primary_10_1016_j_scitotenv_2022_157034 crossref_primary_10_1016_j_jenvman_2023_119714 crossref_primary_10_2166_nh_2018_022 crossref_primary_10_1016_j_jaridenv_2015_08_006 crossref_primary_10_1007_s10333_011_0289_8 crossref_primary_10_1007_s11269_012_0148_4 crossref_primary_10_1007_s40710_015_0066_6 crossref_primary_10_3390_w17091384 crossref_primary_10_1016_j_jhydrol_2016_02_053 crossref_primary_10_1016_j_agwat_2022_107812 crossref_primary_10_1007_s12040_013_0289_8 crossref_primary_10_1088_1755_1315_612_1_012017 crossref_primary_10_1016_j_jhydrol_2022_128947 crossref_primary_10_1007_s12517_021_08150_8 crossref_primary_10_1016_j_jhydrol_2020_125241 crossref_primary_10_1016_S1002_0160_17_60336_9 crossref_primary_10_2166_nh_2020_012 crossref_primary_10_1007_s13201_024_02308_x crossref_primary_10_1016_j_agwat_2015_10_009 crossref_primary_10_1016_j_jhydrol_2020_125087 crossref_primary_10_3390_w15050922 crossref_primary_10_2166_hydro_2023_161 crossref_primary_10_1016_j_agwat_2024_108935 crossref_primary_10_1080_03650340_2011_603126 crossref_primary_10_3390_su15075689 crossref_primary_10_1007_s40808_022_01385_8 crossref_primary_10_2166_nh_2016_099 crossref_primary_10_2166_nh_2023_040 crossref_primary_10_1016_j_compag_2023_107836 crossref_primary_10_1155_2018_1824317 crossref_primary_10_1007_s12517_025_12240_2 crossref_primary_10_1016_j_compag_2021_106466 crossref_primary_10_3390_agriculture14040510 crossref_primary_10_1007_s11269_012_0149_3 crossref_primary_10_1007_s00704_025_05360_y crossref_primary_10_1134_S0097807816020172 crossref_primary_10_3390_app122010689 crossref_primary_10_1016_j_compag_2015_11_001 crossref_primary_10_1007_s00704_016_1735_8 crossref_primary_10_1016_j_agwat_2023_108324 crossref_primary_10_1080_03650340_2017_1414196 crossref_primary_10_1016_j_agwat_2017_12_017 crossref_primary_10_1016_j_ecolmodel_2011_11_023 crossref_primary_10_1016_j_agwat_2025_109534 crossref_primary_10_2166_nh_2016_205 crossref_primary_10_3390_w6092830 crossref_primary_10_1080_19942060_2022_2125442 crossref_primary_10_1007_s00271_012_0332_6 crossref_primary_10_1007_s40808_019_00647_2 crossref_primary_10_1007_s00024_020_02473_5 crossref_primary_10_1007_s00271_018_0583_y crossref_primary_10_1016_j_jhydrol_2012_04_007 crossref_primary_10_1016_j_heliyon_2021_e07487 crossref_primary_10_1016_j_compag_2016_11_011 crossref_primary_10_1007_s00703_012_0205_9 crossref_primary_10_3390_w12051508 crossref_primary_10_1016_j_agwat_2023_108331 crossref_primary_10_7717_peerj_17437 crossref_primary_10_2166_wst_2025_078 crossref_primary_10_1007_s10333_014_0458_7 crossref_primary_10_1016_j_compag_2020_105430 crossref_primary_10_1002_met_1644 crossref_primary_10_1007_s00704_017_2120_y crossref_primary_10_1016_j_apacoust_2021_108022 crossref_primary_10_1007_s12040_013_0398_4 crossref_primary_10_1016_j_agwat_2017_08_003 crossref_primary_10_1016_j_quaint_2014_02_011 crossref_primary_10_1007_s00704_016_1977_5 crossref_primary_10_1007_s00271_010_0230_8 crossref_primary_10_1007_s40808_020_00780_3 crossref_primary_10_1007_s12517_021_08735_3 crossref_primary_10_1016_j_agwat_2015_09_009 crossref_primary_10_3390_w13060793 crossref_primary_10_1007_s00521_018_3410_8 crossref_primary_10_3389_fpls_2024_1354913 crossref_primary_10_1080_02626667_2020_1787416 crossref_primary_10_1016_j_agwat_2014_03_014 crossref_primary_10_3390_app11188649 crossref_primary_10_1061__ASCE_HE_1943_5584_0001485 crossref_primary_10_1016_j_compag_2019_104937 crossref_primary_10_1016_j_jhydrol_2020_125286 crossref_primary_10_1016_j_agwat_2020_106558 crossref_primary_10_1016_j_compag_2015_04_015 crossref_primary_10_1016_j_ecolind_2024_113012 crossref_primary_10_1016_j_ejrh_2025_102279 crossref_primary_10_2166_wst_2023_253 crossref_primary_10_3390_agriculture15050544 crossref_primary_10_1007_s00271_011_0288_y crossref_primary_10_3390_agronomy10010101 crossref_primary_10_2166_wcc_2018_003 crossref_primary_10_1038_s41598_017_05660_y |
| Cites_doi | 10.1061/(ASCE)0733-9437(1999)125:1(26) 10.1016/j.agwat.2005.08.001 10.1016/j.jhydrol.2007.12.014 10.1016/j.rse.2007.08.013 10.1007/s00271-008-0119-y 10.1016/j.agwat.2008.04.013 10.1061/(ASCE)0733-9437(1994)120:6(1132) 10.1016/j.agwat.2008.01.009 10.1061/(ASCE)0733-9437(2007)133:4(368) 10.1007/s11269-008-9301-5 10.1061/(ASCE)0733-9437(2002)128:4(224) 10.1061/(ASCE)0733-9437(2003)129:6(454) 10.1016/S0022-1694(00)00413-3 10.1016/j.agwat.2007.09.002 10.1623/hysj.52.4.825 10.1623/hysj.48.3.349.45288 10.1061/(ASCE)0733-9437(2003)129:3(214) 10.5194/hess-12-123-2008 10.1007/s00271-007-0090-z 10.1061/(ASCE)0733-9437(2006)132:6(564) 10.1061/(ASCE)0733-9437(2005)131:4(316) 10.1623/hysj.52.3.563 10.1061/(ASCE)1084-0699(2006)11:1(65) 10.1016/S0378-3774(03)00199-9 10.1016/S0168-1923(00)00121-0 10.1109/TC.2007.70821 10.1016/j.agwat.2007.12.011 10.1061/(ASCE)0733-9437(2007)133:2(83) 10.1061/(ASCE)0733-9437(1984)110:3(263) 10.1016/j.envsoft.2004.04.009 10.1016/j.agwat.2004.07.007 10.1007/s00271-009-0158-z 10.1007/s00271-008-0114-3 10.1006/jare.1997.0327 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW DKI X2L 8FD FR3 KR7 7S9 L.6 |
| DOI | 10.1016/j.agwat.2010.01.002 |
| DatabaseName | AGRIS CrossRef Pascal-Francis RePEc IDEAS RePEc Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Technology Research Database Technology Research Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1873-2283 |
| EndPage | 714 |
| ExternalDocumentID | eeeagiwat_v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707_714_htm 22496793 10_1016_j_agwat_2010_01_002 US201301805076 S037837741000017X |
| GeographicLocations | Burkina Faso Sudano Sahelian zone Sub-Saharan Africa Africa |
| GeographicLocations_xml | – name: Burkina Faso |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABQEM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEP SES SEW SPCBC SSA SSJ SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- ~KM ABPIF ABPTK FBQ 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV IQODW SSH 02 08R 0R 1 8P AAPBV ADALY DKI G- HZ IPNFZ K KM M X2L 8FD FR3 KR7 7S9 L.6 |
| ID | FETCH-LOGICAL-c586t-92cea5b38f22d8c38aa6c8429aa334f4a1e735c34c8af5faf8bcbefd2e266b8c3 |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275764000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-3774 |
| IngestDate | Sun Sep 28 05:52:34 EDT 2025 Sat Sep 27 22:55:41 EDT 2025 Sun Sep 28 12:20:28 EDT 2025 Wed Aug 18 03:07:25 EDT 2021 Mon Jul 21 09:16:55 EDT 2025 Tue Nov 18 21:22:30 EST 2025 Sat Nov 29 07:17:48 EST 2025 Wed Dec 27 19:15:43 EST 2023 Fri Feb 23 02:24:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Temperature data Sudano-Sahelian zone Performance Evapotranspiration Hargreaves Feed forward backpropagation Temperature Tropical zone Reference Data Process Neural network Modeling Water engineering Models Feedforward Artificial intelligence |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c586t-92cea5b38f22d8c38aa6c8429aa334f4a1e735c34c8af5faf8bcbefd2e266b8c3 |
| Notes | http://dx.doi.org/10.1016/j.agwat.2010.01.002 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1671424576 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_745632625 proquest_miscellaneous_46541767 proquest_miscellaneous_1671424576 repec_primary_eeeagiwat_v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707_714_htm pascalfrancis_primary_22496793 crossref_citationtrail_10_1016_j_agwat_2010_01_002 crossref_primary_10_1016_j_agwat_2010_01_002 fao_agris_US201301805076 elsevier_sciencedirect_doi_10_1016_j_agwat_2010_01_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-05-01 |
| PublicationDateYYYYMMDD | 2010-05-01 |
| PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationSeriesTitle | Agricultural Water Management |
| PublicationTitle | Agricultural water management |
| PublicationYear | 2010 |
| Publisher | Elsevier B.V Amsterdam; New York: Elsevier Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Amsterdam; New York: Elsevier – name: Elsevier |
| References | Wang, Traore, Kerh (bib42) 2008; 6 Irmak, Payero, Martin, Irmak, Howell (bib15) 2006; 132 Khoob (bib18) 2008; 26 Hess (bib13) 1998; 38 Kişi (bib21) 2007; 52 Kişi, Ozturk (bib23) 2007; 133 Xiaoying, Erda (bib45) 2005; 71 Temesgen, Allen, Jensen (bib36) 1999; 125 Kumar, Raghuwanshi, Singh, Wallender, Pruitt (bib24) 2002; 128 Govindaraju, Rao (bib11) 2000 Yin, Wu, Zheng, Yang (bib46) 2008; 95 Stisen, Sandholt, Nørgaard, Fensholt, Jensen (bib34) 2008; 112 Chauhan, Shrivastava (bib4) 2008; 23 Landeras, Barredo, Lopez (bib26) 2008; 95 Wang, Traore, Kerh (bib40) 2008; 5 Alexandris, Kerkides, Liakatas (bib2) 2006; 82 Cigizoglu (bib5) 2003; 48 Shih (bib31) 1984; 110 Keskin, Terzi (bib17) 2006; 11 Kumar, Bandyopadhyay, Raghuwanshi, Singh (bib25) 2008; 26 Dogan (bib7) 2008 Doorenbos, J., Pruitt, W.O., 1977. Crop water requirement. Irrigation and Drainage Paper No. 33. FAO, Rome, Italy. Jabloun, Sahli (bib16) 2008; 95 Smith, Allen, Monteith, Perrier, Pereira, Segeren (bib32) 1991 Smith (bib33) 2000; 103 Parasuraman, Elshorbagy, Carey (bib29) 2007; 52 Lovelli, Perniola, Arcieri, Rivelli, Tommaso (bib28) 2008; 95 Trajkovic (bib38) 2005; 131 Wang, Kerh, Traore (bib44) 2009; 11 Li, F.Z., Beswick, A., 2005. Sensitivity of the FAO-56 crop reference evapotranspiration to different input data. Technical report. Queensland Government, Natural Resources and Mines, pp. 1–14. Wang, Traore (bib43) 2009; 4 Trajkovic, Todorovic, Stankovic (bib37) 2003; 129 Sudheer, Gosain, Ramasastri (bib35) 2003; 129 Khoob (bib19) 2008; 27 Popova, Kercheva, Pereira (bib30) 2005 Fisher, Terry, DeBiase, Qi1, Xu, Allen (bib10) 2005; 20 Hargreaves (bib12) 1994; 120 Wang, Traore, Kerh (bib39) 2007; 6 Wang, Traore, Kerh (bib41) 2008; 5 Kişi (bib22) 2009; 27 Cob, Juste (bib6) 2004; 64 Firat (bib9) 2008; 12 Aksoy, Guven, Aytek, Yuce, Unal (bib1) 2007; 52 Hupet, Vanclooster (bib14) 2001; 243 Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration, guideline for computing water requirements. Irrigation Drainage Paper No. 56. FAO, Rome, Italy. Zanetti, Sousa, Oliveira, Almeida, Bernardo (bib47) 2007; 133 Kim, Kim (bib20) 2008; 351 Khoob (10.1016/j.agwat.2010.01.002_bib19) 2008; 27 Wang (10.1016/j.agwat.2010.01.002_bib43) 2009; 4 Zanetti (10.1016/j.agwat.2010.01.002_bib47) 2007; 133 Hess (10.1016/j.agwat.2010.01.002_bib13) 1998; 38 Kumar (10.1016/j.agwat.2010.01.002_bib25) 2008; 26 Kişi (10.1016/j.agwat.2010.01.002_bib22) 2009; 27 Cob (10.1016/j.agwat.2010.01.002_bib6) 2004; 64 Xiaoying (10.1016/j.agwat.2010.01.002_bib45) 2005; 71 Aksoy (10.1016/j.agwat.2010.01.002_bib1) 2007; 52 Keskin (10.1016/j.agwat.2010.01.002_bib17) 2006; 11 Hargreaves (10.1016/j.agwat.2010.01.002_bib12) 1994; 120 Trajkovic (10.1016/j.agwat.2010.01.002_bib38) 2005; 131 Wang (10.1016/j.agwat.2010.01.002_bib42) 2008; 6 Irmak (10.1016/j.agwat.2010.01.002_bib15) 2006; 132 Temesgen (10.1016/j.agwat.2010.01.002_bib36) 1999; 125 Parasuraman (10.1016/j.agwat.2010.01.002_bib29) 2007; 52 Shih (10.1016/j.agwat.2010.01.002_bib31) 1984; 110 Lovelli (10.1016/j.agwat.2010.01.002_bib28) 2008; 95 Kişi (10.1016/j.agwat.2010.01.002_bib21) 2007; 52 Alexandris (10.1016/j.agwat.2010.01.002_bib2) 2006; 82 Chauhan (10.1016/j.agwat.2010.01.002_bib4) 2008; 23 Cigizoglu (10.1016/j.agwat.2010.01.002_bib5) 2003; 48 Wang (10.1016/j.agwat.2010.01.002_bib40) 2008; 5 Fisher (10.1016/j.agwat.2010.01.002_bib10) 2005; 20 Stisen (10.1016/j.agwat.2010.01.002_bib34) 2008; 112 Kişi (10.1016/j.agwat.2010.01.002_bib23) 2007; 133 Smith (10.1016/j.agwat.2010.01.002_bib32) 1991 Wang (10.1016/j.agwat.2010.01.002_bib44) 2009; 11 Firat (10.1016/j.agwat.2010.01.002_bib9) 2008; 12 10.1016/j.agwat.2010.01.002_bib8 Yin (10.1016/j.agwat.2010.01.002_bib46) 2008; 95 Khoob (10.1016/j.agwat.2010.01.002_bib18) 2008; 26 Jabloun (10.1016/j.agwat.2010.01.002_bib16) 2008; 95 10.1016/j.agwat.2010.01.002_bib3 Kim (10.1016/j.agwat.2010.01.002_bib20) 2008; 351 Landeras (10.1016/j.agwat.2010.01.002_bib26) 2008; 95 Smith (10.1016/j.agwat.2010.01.002_bib33) 2000; 103 Trajkovic (10.1016/j.agwat.2010.01.002_bib37) 2003; 129 Govindaraju (10.1016/j.agwat.2010.01.002_bib11) 2000 Sudheer (10.1016/j.agwat.2010.01.002_bib35) 2003; 129 Wang (10.1016/j.agwat.2010.01.002_bib39) 2007; 6 Kumar (10.1016/j.agwat.2010.01.002_bib24) 2002; 128 Popova (10.1016/j.agwat.2010.01.002_bib30) 2005 Wang (10.1016/j.agwat.2010.01.002_bib41) 2008; 5 Dogan (10.1016/j.agwat.2010.01.002_bib7) 2008 10.1016/j.agwat.2010.01.002_bib27 Hupet (10.1016/j.agwat.2010.01.002_bib14) 2001; 243 |
| References_xml | – year: 2008 ident: bib7 article-title: Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems publication-title: Irrigation and Drainage – volume: 11 start-page: 65 year: 2006 end-page: 70 ident: bib17 article-title: Artificial neural network models of daily pan evaporation publication-title: Journal of Hydrologic Engineering – volume: 351 start-page: 299 year: 2008 end-page: 317 ident: bib20 article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling publication-title: Journal of Hydrology – volume: 103 start-page: 99 year: 2000 end-page: 108 ident: bib33 article-title: The application of climatic data for planning and management of sustainable rainfed and irrigated crop production publication-title: Agricultural and Forest Meteorology – volume: 95 start-page: 707 year: 2008 end-page: 715 ident: bib16 article-title: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data Application to Tunisia publication-title: Agricultural Water Management – volume: 38 start-page: 99 year: 1998 end-page: 115 ident: bib13 article-title: Trends in reference evapo-transpiration in the North East arid zone of Nigeria publication-title: Journal of Arid Environments – volume: 95 start-page: 553 year: 2008 end-page: 565 ident: bib26 article-title: Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) publication-title: Agricultural Water Management – volume: 129 start-page: 454 year: 2003 end-page: 457 ident: bib37 article-title: Forecasting of reference evapotranspiration by artificial neural networks publication-title: Journal of Irrigation and Drainage Engineering – year: 2000 ident: bib11 article-title: Introduction in Artificial Neural Networks in Hydrology – volume: 132 start-page: 564 year: 2006 end-page: 578 ident: bib15 article-title: Sensitivity analyses and sensitivity coefficients of standardized daily ASCE–Penman–Monteith equation publication-title: Journal of Irrigation and Drainage Engineering – volume: 27 start-page: 35 year: 2008 end-page: 39 ident: bib19 article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment publication-title: Irrigation Science – volume: 82 start-page: 371 year: 2006 end-page: 386 ident: bib2 article-title: Daily reference evapotranspiration estimates by the “Copais” approach publication-title: Agricultural Water Management – volume: 5 start-page: 359 year: 2008 end-page: 368 ident: bib41 article-title: Monitoring event-based suspended sediment concentration by artificial neural network models publication-title: WSEAS Transactions on Computers – volume: 52 start-page: 825 year: 2007 end-page: 831 ident: bib1 article-title: Discussion of generalized regression neural networks for evapotranspiration modeling publication-title: Hydrological Sciences Journal – volume: 112 start-page: 1242 year: 2008 end-page: 1255 ident: bib34 article-title: Combining the triangle method with thermal inertia to estimate regional evapotranspiration—applied to MSG-SEVIRI data in the Senegal River basin publication-title: Remote Sensing of Environment – volume: 125 start-page: 26 year: 1999 end-page: 33 ident: bib36 article-title: Adjusting temperature parameters to reflect well-water conditions publication-title: Journal of Irrigation and Drainage Engineering – volume: 110 start-page: 263 year: 1984 end-page: 274 ident: bib31 article-title: Data requirement for evapotranspiration estimation publication-title: Journal of Irrigation and Drainage Engineering – volume: 27 start-page: 417 year: 2009 end-page: 430 ident: bib22 article-title: Modeling monthly evaporation using two different neural computing techniques publication-title: Irrigation Science – volume: 64 start-page: 251 year: 2004 end-page: 264 ident: bib6 article-title: A wind-based qualitative calibration of the Hargreaves ETo estimation equation in semiarid regions publication-title: Agricultural Water Management – volume: 5 start-page: 832 year: 2008 end-page: 842 ident: bib40 article-title: Computing and modeling for crop yields in Burkina Faso based on climatic data information publication-title: WSEAS Transactions on Information Science and Applications – year: 1991 ident: bib32 article-title: Expert Consultation on Procedures for Revision of FAO Guidelines for Prediction of Crop Water Requirements – volume: 128 start-page: 224 year: 2002 end-page: 233 ident: bib24 article-title: Estimating evapotranspiration using artificial neural network publication-title: Journal of Irrigation and Drainage Engineering – reference: Doorenbos, J., Pruitt, W.O., 1977. Crop water requirement. Irrigation and Drainage Paper No. 33. FAO, Rome, Italy. – volume: 243 start-page: 192 year: 2001 end-page: 204 ident: bib14 article-title: Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration publication-title: Journal of Hydrology – volume: 131 start-page: 316 year: 2005 end-page: 323 ident: bib38 article-title: Temperature-based approaches for estimating reference evapotranspiration publication-title: Journal of Irrigation and Drainage Engineering – volume: 26 start-page: 531 year: 2008 end-page: 545 ident: bib25 article-title: Comparative study of conventional and artificial neural network-based ETo estimation models publication-title: Irrigation Science – volume: 133 start-page: 83 year: 2007 end-page: 89 ident: bib47 article-title: Estimating evapotranspiration using artificial neural network and minimum climatological data publication-title: Journal of Irrigation and Drainage Engineering – volume: 4 start-page: 519 year: 2009 end-page: 528 ident: bib43 article-title: Time-lagged recurrent network for forecasting episodic event suspended sediment load in Typhoon Prone Area publication-title: International Journal of Physical Sciences – volume: 26 start-page: 253 year: 2008 end-page: 259 ident: bib18 article-title: Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment publication-title: Irrigation Science – volume: 23 start-page: 825 year: 2008 end-page: 837 ident: bib4 article-title: Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks publication-title: Water Resources Management – volume: 48 start-page: 349 year: 2003 end-page: 361 ident: bib5 article-title: Estimation, forecasting and extrapolation of river, flows by artificial neural networks publication-title: Hydrological Sciences Journal – volume: 120 start-page: 1132 year: 1994 end-page: 1139 ident: bib12 article-title: Defining and using reference evapotranspiration publication-title: Journal of Irrigation and Drainage Engineering – volume: 129 start-page: 214 year: 2003 end-page: 218 ident: bib35 article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique publication-title: Journal of Irrigation and Drainage Engineering – volume: 52 start-page: 836 year: 2007 end-page: 839 ident: bib21 article-title: Reply to discussion of generalized regression neural networks for evapotranspiration modelling by D. Koutsoyiannis publication-title: Hydrological Sciences Journal – volume: 52 start-page: 563 year: 2007 end-page: 578 ident: bib29 article-title: Modelling the dynamics of the evapotranspiration process using genetic programming publication-title: Hydrological Sciences Journal – volume: 11 start-page: 457 year: 2009 end-page: 466 ident: bib44 article-title: Neural Networks Approaches for Modeling River Suspended Sediment Concentration Due to Tropical Storms publication-title: Global NEST Journal – volume: 95 start-page: 77 year: 2008 end-page: 84 ident: bib46 article-title: Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China publication-title: Agricultural Water Management – volume: 6 start-page: 880 year: 2007 end-page: 887 ident: bib39 article-title: Assessment of evapotranspiration based on data information models at production sites in Burkina Faso publication-title: WSEAS Transactions on Computers – volume: 6 start-page: 704 year: 2008 end-page: 713 ident: bib42 article-title: Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina publication-title: WSEAS Transactions on Computers – volume: 95 start-page: 1153 year: 2008 end-page: 1160 ident: bib28 article-title: Water use assessment in muskmelon by the Penman–Monteith “one-step” approach publication-title: Agricultural Water Management – reference: Li, F.Z., Beswick, A., 2005. Sensitivity of the FAO-56 crop reference evapotranspiration to different input data. Technical report. Queensland Government, Natural Resources and Mines, pp. 1–14. – volume: 133 start-page: 368 year: 2007 end-page: 379 ident: bib23 article-title: Adaptive neurofuzzy computing technique for evapotranspiration estimation publication-title: Journal of Irrigation and Drainage Engineering – start-page: 1 year: 2005 end-page: 13 ident: bib30 article-title: Validation of the FAO methodology for computing ETo with limited data: application to south Bulgaria publication-title: European Regional Conference – reference: Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration, guideline for computing water requirements. Irrigation Drainage Paper No. 56. FAO, Rome, Italy. – volume: 20 start-page: 783 year: 2005 end-page: 796 ident: bib10 article-title: Evapotranspiration models compared on a Sierra Nevada forest ecosystem publication-title: Environmental Modeling and Software – volume: 71 start-page: 1 year: 2005 end-page: 17 ident: bib45 article-title: Performance of the Priestley–Taylor equation in the semi-arid climate of North China publication-title: Agricultural Water Management – volume: 12 start-page: 123 year: 2008 end-page: 139 ident: bib9 article-title: Comparison of artificial intelligence techniques for river flow forecasting publication-title: Hydrology and Earth System Sciences – volume: 125 start-page: 26 year: 1999 ident: 10.1016/j.agwat.2010.01.002_bib36 article-title: Adjusting temperature parameters to reflect well-water conditions publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(1999)125:1(26) – volume: 82 start-page: 371 year: 2006 ident: 10.1016/j.agwat.2010.01.002_bib2 article-title: Daily reference evapotranspiration estimates by the “Copais” approach publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2005.08.001 – volume: 6 start-page: 704 issue: 7 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib42 article-title: Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina publication-title: WSEAS Transactions on Computers – year: 1991 ident: 10.1016/j.agwat.2010.01.002_bib32 – ident: 10.1016/j.agwat.2010.01.002_bib27 – volume: 351 start-page: 299 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib20 article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2007.12.014 – year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib7 article-title: Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems publication-title: Irrigation and Drainage – volume: 112 start-page: 1242 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib34 article-title: Combining the triangle method with thermal inertia to estimate regional evapotranspiration—applied to MSG-SEVIRI data in the Senegal River basin publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.08.013 – volume: 27 start-page: 35 issue: 1 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib19 article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment publication-title: Irrigation Science doi: 10.1007/s00271-008-0119-y – volume: 95 start-page: 1153 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib28 article-title: Water use assessment in muskmelon by the Penman–Monteith “one-step” approach publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2008.04.013 – volume: 120 start-page: 1132 issue: 6 year: 1994 ident: 10.1016/j.agwat.2010.01.002_bib12 article-title: Defining and using reference evapotranspiration publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(1994)120:6(1132) – volume: 95 start-page: 707 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib16 article-title: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data Application to Tunisia publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2008.01.009 – volume: 133 start-page: 368 issue: 4 year: 2007 ident: 10.1016/j.agwat.2010.01.002_bib23 article-title: Adaptive neurofuzzy computing technique for evapotranspiration estimation publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(2007)133:4(368) – volume: 23 start-page: 825 issue: 5 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib4 article-title: Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks publication-title: Water Resources Management doi: 10.1007/s11269-008-9301-5 – volume: 128 start-page: 224 issue: 4 year: 2002 ident: 10.1016/j.agwat.2010.01.002_bib24 article-title: Estimating evapotranspiration using artificial neural network publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(2002)128:4(224) – volume: 129 start-page: 454 issue: 6 year: 2003 ident: 10.1016/j.agwat.2010.01.002_bib37 article-title: Forecasting of reference evapotranspiration by artificial neural networks publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(2003)129:6(454) – volume: 243 start-page: 192 year: 2001 ident: 10.1016/j.agwat.2010.01.002_bib14 article-title: Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration publication-title: Journal of Hydrology doi: 10.1016/S0022-1694(00)00413-3 – volume: 95 start-page: 77 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib46 article-title: Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2007.09.002 – volume: 52 start-page: 825 issue: 4 year: 2007 ident: 10.1016/j.agwat.2010.01.002_bib1 article-title: Discussion of generalized regression neural networks for evapotranspiration modeling publication-title: Hydrological Sciences Journal doi: 10.1623/hysj.52.4.825 – volume: 48 start-page: 349 issue: 3 year: 2003 ident: 10.1016/j.agwat.2010.01.002_bib5 article-title: Estimation, forecasting and extrapolation of river, flows by artificial neural networks publication-title: Hydrological Sciences Journal doi: 10.1623/hysj.48.3.349.45288 – volume: 129 start-page: 214 issue: 3 year: 2003 ident: 10.1016/j.agwat.2010.01.002_bib35 article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(2003)129:3(214) – volume: 4 start-page: 519 issue: 9 year: 2009 ident: 10.1016/j.agwat.2010.01.002_bib43 article-title: Time-lagged recurrent network for forecasting episodic event suspended sediment load in Typhoon Prone Area publication-title: International Journal of Physical Sciences – volume: 11 start-page: 457 issue: 4 year: 2009 ident: 10.1016/j.agwat.2010.01.002_bib44 article-title: Neural Networks Approaches for Modeling River Suspended Sediment Concentration Due to Tropical Storms publication-title: Global NEST Journal – start-page: 1 year: 2005 ident: 10.1016/j.agwat.2010.01.002_bib30 article-title: Validation of the FAO methodology for computing ETo with limited data: application to south Bulgaria publication-title: European Regional Conference – volume: 5 start-page: 832 issue: 7 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib40 article-title: Computing and modeling for crop yields in Burkina Faso based on climatic data information publication-title: WSEAS Transactions on Information Science and Applications – volume: 12 start-page: 123 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib9 article-title: Comparison of artificial intelligence techniques for river flow forecasting publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-12-123-2008 – volume: 52 start-page: 836 issue: 4 year: 2007 ident: 10.1016/j.agwat.2010.01.002_bib21 article-title: Reply to discussion of generalized regression neural networks for evapotranspiration modelling by D. Koutsoyiannis publication-title: Hydrological Sciences Journal – volume: 26 start-page: 253 issue: 3 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib18 article-title: Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment publication-title: Irrigation Science doi: 10.1007/s00271-007-0090-z – volume: 132 start-page: 564 issue: 6 year: 2006 ident: 10.1016/j.agwat.2010.01.002_bib15 article-title: Sensitivity analyses and sensitivity coefficients of standardized daily ASCE–Penman–Monteith equation publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(2006)132:6(564) – ident: 10.1016/j.agwat.2010.01.002_bib3 – ident: 10.1016/j.agwat.2010.01.002_bib8 – volume: 131 start-page: 316 issue: 4 year: 2005 ident: 10.1016/j.agwat.2010.01.002_bib38 article-title: Temperature-based approaches for estimating reference evapotranspiration publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(2005)131:4(316) – volume: 6 start-page: 880 issue: 6 year: 2007 ident: 10.1016/j.agwat.2010.01.002_bib39 article-title: Assessment of evapotranspiration based on data information models at production sites in Burkina Faso publication-title: WSEAS Transactions on Computers – volume: 52 start-page: 563 issue: 3 year: 2007 ident: 10.1016/j.agwat.2010.01.002_bib29 article-title: Modelling the dynamics of the evapotranspiration process using genetic programming publication-title: Hydrological Sciences Journal doi: 10.1623/hysj.52.3.563 – year: 2000 ident: 10.1016/j.agwat.2010.01.002_bib11 – volume: 11 start-page: 65 issue: 1 year: 2006 ident: 10.1016/j.agwat.2010.01.002_bib17 article-title: Artificial neural network models of daily pan evaporation publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(2006)11:1(65) – volume: 64 start-page: 251 year: 2004 ident: 10.1016/j.agwat.2010.01.002_bib6 article-title: A wind-based qualitative calibration of the Hargreaves ETo estimation equation in semiarid regions publication-title: Agricultural Water Management doi: 10.1016/S0378-3774(03)00199-9 – volume: 103 start-page: 99 year: 2000 ident: 10.1016/j.agwat.2010.01.002_bib33 article-title: The application of climatic data for planning and management of sustainable rainfed and irrigated crop production publication-title: Agricultural and Forest Meteorology doi: 10.1016/S0168-1923(00)00121-0 – volume: 5 start-page: 359 issue: 7 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib41 article-title: Monitoring event-based suspended sediment concentration by artificial neural network models publication-title: WSEAS Transactions on Computers doi: 10.1109/TC.2007.70821 – volume: 95 start-page: 553 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib26 article-title: Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2007.12.011 – volume: 133 start-page: 83 issue: 2 year: 2007 ident: 10.1016/j.agwat.2010.01.002_bib47 article-title: Estimating evapotranspiration using artificial neural network and minimum climatological data publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(2007)133:2(83) – volume: 110 start-page: 263 issue: 33 year: 1984 ident: 10.1016/j.agwat.2010.01.002_bib31 article-title: Data requirement for evapotranspiration estimation publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(1984)110:3(263) – volume: 20 start-page: 783 year: 2005 ident: 10.1016/j.agwat.2010.01.002_bib10 article-title: Evapotranspiration models compared on a Sierra Nevada forest ecosystem publication-title: Environmental Modeling and Software doi: 10.1016/j.envsoft.2004.04.009 – volume: 71 start-page: 1 year: 2005 ident: 10.1016/j.agwat.2010.01.002_bib45 article-title: Performance of the Priestley–Taylor equation in the semi-arid climate of North China publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2004.07.007 – volume: 27 start-page: 417 year: 2009 ident: 10.1016/j.agwat.2010.01.002_bib22 article-title: Modeling monthly evaporation using two different neural computing techniques publication-title: Irrigation Science doi: 10.1007/s00271-009-0158-z – volume: 26 start-page: 531 year: 2008 ident: 10.1016/j.agwat.2010.01.002_bib25 article-title: Comparative study of conventional and artificial neural network-based ETo estimation models publication-title: Irrigation Science doi: 10.1007/s00271-008-0114-3 – volume: 38 start-page: 99 year: 1998 ident: 10.1016/j.agwat.2010.01.002_bib13 article-title: Trends in reference evapo-transpiration in the North East arid zone of Nigeria publication-title: Journal of Arid Environments doi: 10.1006/jare.1997.0327 |
| SSID | ssj0004047 |
| Score | 2.3259058 |
| Snippet | The major problem when dealing with modeling evapotranspiration process is its nonlinear dynamic high complexity. Researchers developed reference... |
| SourceID | proquest repec pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 707 |
| SubjectTerms | Accuracy Agricultural and forest climatology and meteorology. Irrigation. Drainage Agricultural and forest meteorology Agronomy. Soil science and plant productions air temperature Artificial neural networks Back propagation back-propagation neural networks Biological and medical sciences Burkina Faso data analysis equations Evapotranspiration Evapotranspiration Temperature data Feed forward backpropagation Hargreaves Performance Sudano-Sahelian zone Feed forward backpropagation Fundamental and applied biological sciences. Psychology General agronomy. Plant production Hargreaves Learning theory mathematical models meteorological parameters Neural networks Penman-Monteith equation Relative humidity Sahel solar radiation Sudano-Sahelian zone Temperature data Water balance and requirements. Evapotranspiration wind wind speed |
| Title | Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone |
| URI | https://dx.doi.org/10.1016/j.agwat.2010.01.002 http://econpapers.repec.org/article/eeeagiwat/v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707-714.htm https://www.proquest.com/docview/1671424576 https://www.proquest.com/docview/46541767 https://www.proquest.com/docview/745632625 |
| Volume | 97 |
| WOSCitedRecordID | wos000275764000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2283 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: AIEXJ dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6lgd4QFy1chlG4g0ytbk5eaymIUAwIXVj48lyXLvN2JKobUrHn-WvcHxJ0q7qBAgenFSRL2nOF5_jk8_nIPTKjxMOli13_DDxHJ970om5HziMkZ5UAaOEDrv45SM5OorOzuLPrdbPai_M4oJkWbRcxsV_FTVcA2GrrbN_IO66U7gAv0HocASxw_G3BD-YavqP8oSrYJX6pKnemlGoM98o90CdX0QF_C7yuQ5ynlo8aKK5WL4uzDYC5RQZliOW5c6QTYT2jPzIszUW0WA8bcJ4fGcq9uLlBrXm1Hqnv5bOp7T5_i-mE4MbkcmygSvoUcsCHoqrUV6aGVBFZp6tD3eqh7vG5LGuDPMVfsWVUe2xWZkCPUXeICaPz74wU3REPEcF7Vmdww3H12I1WJmQicmpa3U7MRtWN9SG8WCc77MxPB_L9-srX1ujJWvuohCCjVOoRxfUYzGBwxUU1QhOKZQASgEFxqYwIp3ML3dQxyVBHLVRZ_D-8OxDs3W3p3Pg1X-0CoylKYgbt7PNeNqRLFesXjaDF1uajCxrS6bOVBSCr1hOx_fQXbvkwQMD1fuoJbIH6E4jQPEQfWtAiw1osQUtBtDiCrS4Bi3eBC22oMUWtDjN8DXQYgXaR-jk7eHxwTvHpgFxeBCFcyd2uWBB4kXSdUcR9yLGQh6BHcWY5_nSZ31BvIB7Po-YDCSTUcITIUeuAOMzgQaPUTuD7ncRFionE6j4HieJL-KIcSLVJjZPEuZyn3SRWz1fym2MfJWq5YJWZMhzqoVCtbh7fQpC6aI3daPChIi5uXpYCY5aK9dYrxTQeHPDXRAzXAftT0-GruIcwGQKC7qwi_bWZF_fBxjocQgquIteVmCgoD_UR0GWibyc0X5I1GbXQHXyYksdFXOxT0J4PHhLDQLrMFgIukEXHWio1XfwV6_Lk3_Sy1N0u5llnqH2fFqK5-gWX8zT2XTPvom_AJiPJ60 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+for+modeling+reference+evapotranspiration+complex+process+in+Sudano-Sahelian+zone&rft.jtitle=Agricultural+water+management&rft.au=Wang%2C+Yu-Min&rft.au=Kerh%2C+Tienfuan&rft.au=Traore%2C+Seydou&rft.series=Agricultural+Water+Management&rft.date=2010-05-01&rft.pub=Elsevier&rft.issn=0378-3774&rft.eissn=1873-2283&rft.volume=97&rft.issue=5&rft.spage=707&rft.epage=714&rft_id=info:doi/10.1016%2Fj.agwat.2010.01.002&rft.externalDocID=eeeagiwat_v_3a97_3ay_3a2010_3ai_3a5_3ap_3a707_714_htm |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |