Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee
•This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots.•The main physiological, theoretical and methodological features of transcranial magnetic stimulation (TMS) are described.•Instructions for practical use of non-invasive stimulation...
Saved in:
| Published in: | Clinical neurophysiology Vol. 126; no. 6; pp. 1071 - 1107 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.06.2015
|
| Subjects: | |
| ISSN: | 1388-2457, 1872-8952, 1872-8952 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots.•The main physiological, theoretical and methodological features of transcranial magnetic stimulation (TMS) are described.•Instructions for practical use of non-invasive stimulation in clinical applications and research are provided.
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience.
Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014).
This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. |
|---|---|
| AbstractList | These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. Highlights • This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots. • The main physiological, theoretical and methodological features of transcranial magnetic stimulation (TMS) are described. • Instructions for practical use of non-invasive stimulation in clinical applications and research are provided. •This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots.•The main physiological, theoretical and methodological features of transcranial magnetic stimulation (TMS) are described.•Instructions for practical use of non-invasive stimulation in clinical applications and research are provided. These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. |
| Author | Miniussi, C. Ferreri, F. Nitsche, M.A. Hallett, M. Walsh, V. Ugawa, Y. Paulus, W. Chen, R. Di Lazzaro, V. Rossini, P.M. Matsumoto, H. Ziemann, U. Rossi, S. Siebner, H.R. Di Iorio, R. Daskalakis, Z. George, M.S. Lefaucheur, J.P. Burke, D. Pascual-Leone, A. Cohen, L.G. Rothwell, J.C. Langguth, B. Fitzgerald, P.B. |
| AuthorAffiliation | s Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany u Institute of Neurology, University College London, London, United Kingdom m Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany p IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy d Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA h Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia k Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, Créteil, France i Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA q Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany o Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy z Department of Neurology & Stroke, and Hertie Institute f |
| AuthorAffiliation_xml | – name: n Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan – name: u Institute of Neurology, University College London, London, United Kingdom – name: z Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany – name: f Department of Neurology, University Campus Bio-medico, Rome, Italy – name: g Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland – name: l EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France – name: o Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy – name: j Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA – name: d Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA – name: r Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA – name: b Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia – name: m Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany – name: p IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy – name: e Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada – name: c Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada – name: w Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark – name: x Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan – name: q Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany – name: v Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark – name: y Institute of Cognitive Neuroscience, University College London, London, United Kingdom – name: s Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany – name: k Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, Créteil, France – name: a Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy – name: h Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia – name: i Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA – name: t Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy |
| Author_xml | – sequence: 1 givenname: P.M. surname: Rossini fullname: Rossini, P.M. organization: Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy – sequence: 2 givenname: D. surname: Burke fullname: Burke, D. organization: Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia – sequence: 3 givenname: R. surname: Chen fullname: Chen, R. organization: Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada – sequence: 4 givenname: L.G. surname: Cohen fullname: Cohen, L.G. organization: Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA – sequence: 5 givenname: Z. surname: Daskalakis fullname: Daskalakis, Z. organization: Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada – sequence: 6 givenname: R. surname: Di Iorio fullname: Di Iorio, R. email: r.diiorio@live.it organization: Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy – sequence: 7 givenname: V. surname: Di Lazzaro fullname: Di Lazzaro, V. organization: Department of Neurology, University Campus Bio-medico, Rome, Italy – sequence: 8 givenname: F. surname: Ferreri fullname: Ferreri, F. organization: Department of Neurology, University Campus Bio-medico, Rome, Italy – sequence: 9 givenname: P.B. surname: Fitzgerald fullname: Fitzgerald, P.B. organization: Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia – sequence: 10 givenname: M.S. surname: George fullname: George, M.S. organization: Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA – sequence: 11 givenname: M. surname: Hallett fullname: Hallett, M. organization: Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA – sequence: 12 givenname: J.P. surname: Lefaucheur fullname: Lefaucheur, J.P. organization: Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, Créteil, France – sequence: 13 givenname: B. surname: Langguth fullname: Langguth, B. organization: Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany – sequence: 14 givenname: H. surname: Matsumoto fullname: Matsumoto, H. organization: Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan – sequence: 15 givenname: C. surname: Miniussi fullname: Miniussi, C. organization: Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy – sequence: 16 givenname: M.A. surname: Nitsche fullname: Nitsche, M.A. organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany – sequence: 17 givenname: A. surname: Pascual-Leone fullname: Pascual-Leone, A. organization: Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA – sequence: 18 givenname: W. surname: Paulus fullname: Paulus, W. organization: Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany – sequence: 19 givenname: S. surname: Rossi fullname: Rossi, S. organization: Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy – sequence: 20 givenname: J.C. surname: Rothwell fullname: Rothwell, J.C. organization: Institute of Neurology, University College London, London, United Kingdom – sequence: 21 givenname: H.R. surname: Siebner fullname: Siebner, H.R. organization: Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark – sequence: 22 givenname: Y. surname: Ugawa fullname: Ugawa, Y. organization: Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan – sequence: 23 givenname: V. surname: Walsh fullname: Walsh, V. organization: Institute of Cognitive Neuroscience, University College London, London, United Kingdom – sequence: 24 givenname: U. surname: Ziemann fullname: Ziemann, U. organization: Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25797650$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUs1u1DAQjlAR_YE3QMhHDk2wkzhxKoRUVhQqVeUAnC3HmXS9JHZqOyv1fXkQJt1tBUjAyXHm-_HMfMfJgXUWkuQloxmjrHqzyfRg7LTOcsp4RvOMUvYkOWKizlPR8PwAvwsh0rzk9WFyHMKGUlrTMn-WHOa8buqK06Pkx7WzqbFbFcwWCAygozdaDUTZjozqxkI0moRoxnlQ0ThLXE_iGkjrlbGnJEzGIlo7350S71wM98wJvJnW4LFkwW8hnJH3aKHJ5I3VZhpgj_NOQzd7vPbOo8AcjQWydPb4CiyC8npN1DQN-Hd5RUbOLZmnTkVYAJPzkfTejUggl9lFtsquM7Jy42hiBHiePO3VEODF_jxJvl18-Lr6lF59_ni5Or9KNRdVTMtWVKxmhWJtz-q2alVfMKaYUGXFBNCGVazLGy56KAV0qim6RvOKKgqCFQUvTpJ3O91pbkfoNNiIE5DY86j8nXTKyN8r1qzljdvKquAUd4ICr_cC3t3OEKIcTdAwDMqCm4NkVVPWlBdUIPTVr16PJg-rRcDZDqC9C8FDL7WJ98NDazNIRuWSI7mRuxzJJUeS5hJzhOTyD_KD_n9o-wEATnlrwMuHTX6HOwgbN3tMC_YhAxLklyWgSz4ZX7LJFoG3fxeQnTP_9v8Jmh_9LQ |
| CitedBy_id | crossref_primary_10_1016_j_neucli_2021_12_006 crossref_primary_10_3389_fnagi_2022_1077218 crossref_primary_10_1111_psyp_14728 crossref_primary_10_1016_j_brs_2025_05_115 crossref_primary_10_3389_fnins_2020_00314 crossref_primary_10_1016_j_brs_2016_02_005 crossref_primary_10_1097_MD_0000000000022452 crossref_primary_10_1016_j_jelekin_2016_03_003 crossref_primary_10_1038_s41598_020_79812_y crossref_primary_10_1016_j_cpr_2024_102511 crossref_primary_10_1088_1741_2552_ad367a crossref_primary_10_5604_01_3001_0055_0954 crossref_primary_10_1176_appi_ajp_2019_19090957 crossref_primary_10_1097_MD_0000000000009008 crossref_primary_10_1162_imag_a_00419 crossref_primary_10_3390_app132312679 crossref_primary_10_1016_j_yebeh_2017_09_011 crossref_primary_10_1177_10538135251325435 crossref_primary_10_1002_advs_202404254 crossref_primary_10_3389_fpsyg_2018_02509 crossref_primary_10_1007_s10548_016_0536_9 crossref_primary_10_2196_50714 crossref_primary_10_1016_j_clinph_2021_05_035 crossref_primary_10_1016_j_jpain_2023_11_023 crossref_primary_10_3389_fneur_2025_1587060 crossref_primary_10_3390_brainsci13081154 crossref_primary_10_1016_j_clinph_2021_12_010 crossref_primary_10_1016_j_bpsc_2021_11_004 crossref_primary_10_1212_WNL_0000000000006438 crossref_primary_10_3390_children9070945 crossref_primary_10_1016_j_clinph_2021_12_018 crossref_primary_10_3389_fnagi_2018_00379 crossref_primary_10_1002_hbm_23274 crossref_primary_10_1016_j_transm_2025_100183 crossref_primary_10_1038_s41386_022_01453_8 crossref_primary_10_1097_PHM_0000000000002377 crossref_primary_10_1016_j_transm_2025_100186 crossref_primary_10_1097_PR9_0000000000000725 crossref_primary_10_1113_JP277036 crossref_primary_10_1007_s10072_021_05187_1 crossref_primary_10_1016_j_transm_2025_100181 crossref_primary_10_1007_s00221_018_5364_6 crossref_primary_10_1016_j_clinph_2015_06_011 crossref_primary_10_1002_aur_3222 crossref_primary_10_1016_j_neuropsychologia_2020_107496 crossref_primary_10_1016_j_neuropsychologia_2020_107497 crossref_primary_10_3389_fnins_2021_773792 crossref_primary_10_1016_j_clinph_2019_04_721 crossref_primary_10_1016_j_neuroscience_2022_05_021 crossref_primary_10_1089_brain_2020_0949 crossref_primary_10_1016_j_neulet_2020_135483 crossref_primary_10_1016_j_transm_2025_100194 crossref_primary_10_1002_acn3_51535 crossref_primary_10_1016_j_brs_2018_05_006 crossref_primary_10_1016_j_jneumeth_2020_108998 crossref_primary_10_3389_fneur_2022_804528 crossref_primary_10_1016_j_neurobiolaging_2020_05_017 crossref_primary_10_1097_MD_0000000000020282 crossref_primary_10_1016_j_neucli_2018_04_003 crossref_primary_10_1016_j_neucli_2024_103012 crossref_primary_10_1002_ajmg_b_33051 crossref_primary_10_1177_15459683241233259 crossref_primary_10_3389_fnins_2021_623692 crossref_primary_10_1212_WNL_0000000000007748 crossref_primary_10_1016_j_clinph_2019_04_711 crossref_primary_10_1080_08990220_2021_1914019 crossref_primary_10_1186_s12883_019_1526_9 crossref_primary_10_2196_49702 crossref_primary_10_1177_15459683211017509 crossref_primary_10_1186_s13195_024_01607_4 crossref_primary_10_1371_journal_pone_0177560 crossref_primary_10_1002_brb3_2569 crossref_primary_10_1371_journal_pone_0282751 crossref_primary_10_1016_j_cortex_2020_01_012 crossref_primary_10_1039_D2BM02059A crossref_primary_10_1152_jn_00261_2025 crossref_primary_10_1111_ane_12852 crossref_primary_10_1186_s13195_019_0555_3 crossref_primary_10_3389_fneur_2018_00982 crossref_primary_10_1007_s00221_018_5200_z crossref_primary_10_1016_j_clinph_2021_03_001 crossref_primary_10_1177_1545968317712470 crossref_primary_10_1016_j_ynirp_2022_100099 crossref_primary_10_1002_ejp_2313 crossref_primary_10_3389_fnins_2020_00363 crossref_primary_10_3390_cells12081193 crossref_primary_10_3389_fneur_2024_1423013 crossref_primary_10_1016_j_exger_2015_06_006 crossref_primary_10_1016_j_expneurol_2022_114106 crossref_primary_10_1177_0300060519854626 crossref_primary_10_1002_ana_25712 crossref_primary_10_1088_1741_2552_ac9d65 crossref_primary_10_1016_j_clinph_2024_03_018 crossref_primary_10_1016_j_clinph_2024_10_011 crossref_primary_10_1038_s41598_023_32894_w crossref_primary_10_1016_j_ijpsycho_2022_08_005 crossref_primary_10_1515_bmt_2016_0162 crossref_primary_10_1016_j_abrep_2025_100627 crossref_primary_10_1298_ptr_E9911 crossref_primary_10_1002_jnr_24514 crossref_primary_10_1152_jn_00268_2022 crossref_primary_10_1007_s00221_019_05579_y crossref_primary_10_1007_s00221_020_06010_7 crossref_primary_10_1152_jn_00268_2021 crossref_primary_10_1016_j_brainres_2022_148092 crossref_primary_10_1007_s00221_022_06413_8 crossref_primary_10_1016_j_expneurol_2025_115409 crossref_primary_10_1016_j_neuroimage_2024_120527 crossref_primary_10_1212_WNL_0000000000006867 crossref_primary_10_1007_s12671_025_02519_6 crossref_primary_10_1016_j_neuroimage_2017_12_048 crossref_primary_10_14309_ajg_0000000000003295 crossref_primary_10_1016_j_brs_2024_02_011 crossref_primary_10_1016_j_neulet_2024_137986 crossref_primary_10_3389_fncel_2016_00092 crossref_primary_10_1016_j_neuroscience_2020_11_011 crossref_primary_10_1016_j_brainres_2023_148380 crossref_primary_10_1073_pnas_1905534116 crossref_primary_10_1016_j_clinph_2021_03_021 crossref_primary_10_1371_journal_pone_0190165 crossref_primary_10_1055_a_2078_4823 crossref_primary_10_1186_s13195_023_01164_2 crossref_primary_10_1017_S1355617719000766 crossref_primary_10_1016_j_brs_2024_02_003 crossref_primary_10_1177_1545968319860483 crossref_primary_10_1016_j_seizure_2024_07_001 crossref_primary_10_1152_jn_00381_2016 crossref_primary_10_1016_j_clinph_2020_08_017 crossref_primary_10_1016_j_smhs_2024_12_002 crossref_primary_10_1016_j_clinph_2025_2110757 crossref_primary_10_1016_j_brainresbull_2024_110972 crossref_primary_10_1055_a_1416_3874 crossref_primary_10_1038_sc_2016_47 crossref_primary_10_3389_fnagi_2018_00307 crossref_primary_10_1016_j_brs_2021_04_026 crossref_primary_10_1016_j_clinph_2024_12_001 crossref_primary_10_1002_hbm_24975 crossref_primary_10_3389_fneur_2020_00422 crossref_primary_10_1016_j_brs_2020_09_005 crossref_primary_10_1371_journal_pone_0281867 crossref_primary_10_1016_j_clinph_2024_12_009 crossref_primary_10_3389_fnins_2020_00729 crossref_primary_10_1093_cercor_bhy134 crossref_primary_10_1016_j_sleep_2017_06_021 crossref_primary_10_1016_j_dib_2025_111467 crossref_primary_10_3389_fnsys_2019_00077 crossref_primary_10_1016_j_clinph_2025_2110747 crossref_primary_10_1007_s10072_019_04147_0 crossref_primary_10_1016_j_neuroscience_2016_06_015 crossref_primary_10_1016_j_parkreldis_2023_105869 crossref_primary_10_3389_fnhum_2018_00026 crossref_primary_10_1002_hbm_25812 crossref_primary_10_1016_j_psyneuen_2020_105070 crossref_primary_10_1016_j_neuroscience_2025_03_068 crossref_primary_10_1177_26331055221145002 crossref_primary_10_3389_fneur_2021_680733 crossref_primary_10_1016_j_neubiorev_2025_106338 crossref_primary_10_1523_JNEUROSCI_0782_24_2024 crossref_primary_10_1093_cercor_bhab380 crossref_primary_10_1016_j_neulet_2021_136220 crossref_primary_10_3389_fpsyg_2022_998062 crossref_primary_10_3389_fneur_2020_633224 crossref_primary_10_1155_2021_4716161 crossref_primary_10_1016_j_aanat_2025_152695 crossref_primary_10_1038_srep23599 crossref_primary_10_1016_j_neuroscience_2017_12_008 crossref_primary_10_1016_j_neuroscience_2020_04_022 crossref_primary_10_1109_TBME_2021_3055434 crossref_primary_10_1186_s13195_018_0423_6 crossref_primary_10_1016_j_neuroscience_2020_04_016 crossref_primary_10_3233_RNN_170785 crossref_primary_10_1007_s11064_018_2484_0 crossref_primary_10_1016_j_clinph_2018_06_003 crossref_primary_10_1136_bmjopen_2017_016566 crossref_primary_10_1016_j_jns_2025_123478 crossref_primary_10_1113_JP288503 crossref_primary_10_1016_j_jelekin_2018_04_009 crossref_primary_10_1038_s41598_021_94494_w crossref_primary_10_3390_ijms20112818 crossref_primary_10_1523_JNEUROSCI_2123_16_2017 crossref_primary_10_3390_life13061376 crossref_primary_10_17116_jnevro202312311175 crossref_primary_10_1371_journal_pone_0173114 crossref_primary_10_3233_RNN_170758 crossref_primary_10_1038_sc_2016_87 crossref_primary_10_1007_s00221_022_06492_7 crossref_primary_10_1038_s41598_020_80743_x crossref_primary_10_1016_j_brs_2021_11_016 crossref_primary_10_1016_j_brs_2021_11_014 crossref_primary_10_1016_j_neuroimage_2020_117023 crossref_primary_10_1002_nau_23718 crossref_primary_10_1016_j_clinph_2024_05_014 crossref_primary_10_1038_s41598_018_27502_1 crossref_primary_10_1016_j_neuroscience_2018_09_044 crossref_primary_10_3233_RNN_170773 crossref_primary_10_1016_j_brainres_2024_149111 crossref_primary_10_1177_15459683241300547 crossref_primary_10_1038_s41380_024_02405_y crossref_primary_10_3389_fnins_2024_1362607 crossref_primary_10_1016_j_nicl_2024_103705 crossref_primary_10_3389_fneur_2020_584664 crossref_primary_10_1016_j_brs_2018_09_015 crossref_primary_10_1093_cercor_bhad515 crossref_primary_10_1038_s41598_017_11980_w crossref_primary_10_1111_1460_6984_13039 crossref_primary_10_3233_NRE_151292 crossref_primary_10_1002_hipo_23054 crossref_primary_10_1371_journal_pone_0305545 crossref_primary_10_1016_j_cortex_2018_08_004 crossref_primary_10_1523_JNEUROSCI_1952_19_2019 crossref_primary_10_1007_s00221_018_5199_1 crossref_primary_10_1016_j_jad_2022_02_005 crossref_primary_10_1016_j_cortex_2022_06_018 crossref_primary_10_1016_j_neulet_2022_136460 crossref_primary_10_3389_fneur_2024_1454220 crossref_primary_10_1007_s00701_024_06308_3 crossref_primary_10_3233_RNN_170735 crossref_primary_10_1007_s00421_016_3451_6 crossref_primary_10_1016_j_neulet_2025_138283 crossref_primary_10_1016_j_clinph_2024_12_027 crossref_primary_10_3389_fnins_2023_1221777 crossref_primary_10_3233_RNN_170733 crossref_primary_10_1016_j_neuroimage_2020_117485 crossref_primary_10_3390_brainsci12050639 crossref_primary_10_1113_JP287204 crossref_primary_10_1007_s11065_022_09534_7 crossref_primary_10_1088_1741_2552_ab3187 crossref_primary_10_1111_ejn_13321 crossref_primary_10_1155_2017_6751810 crossref_primary_10_1016_j_ejpn_2025_03_013 crossref_primary_10_3233_JAD_180293 crossref_primary_10_1016_j_neuroimage_2018_09_002 crossref_primary_10_3233_RNN_170745 crossref_primary_10_1371_journal_pone_0259931 crossref_primary_10_1007_s00221_021_06277_4 crossref_primary_10_3389_fphys_2018_00827 crossref_primary_10_1007_s00221_021_06144_2 crossref_primary_10_1177_20552173221143398 crossref_primary_10_1016_j_brs_2016_11_009 crossref_primary_10_1093_braincomms_fcaf101 crossref_primary_10_1016_j_gaitpost_2019_03_018 crossref_primary_10_1177_0300060520928737 crossref_primary_10_1093_cercor_bhad021 crossref_primary_10_1152_jn_00148_2018 crossref_primary_10_1016_j_cognition_2021_104663 crossref_primary_10_1186_s13063_024_07913_4 crossref_primary_10_1016_j_clinph_2017_07_394 crossref_primary_10_1038_s41598_022_04957_x crossref_primary_10_3389_fnins_2022_866245 crossref_primary_10_1111_ner_12874 crossref_primary_10_1016_j_neuropsychologia_2017_04_016 crossref_primary_10_1007_s00415_019_09419_5 crossref_primary_10_3389_fneur_2020_583268 crossref_primary_10_1007_s11062_020_09875_0 crossref_primary_10_1016_j_clinph_2020_06_015 crossref_primary_10_1016_j_clinph_2015_11_012 crossref_primary_10_3390_brainsci8120225 crossref_primary_10_3758_s13415_020_00786_5 crossref_primary_10_1016_j_biopsych_2023_12_004 crossref_primary_10_1186_s12868_018_0434_z crossref_primary_10_1371_journal_pone_0173672 crossref_primary_10_1016_j_clinph_2019_03_011 crossref_primary_10_1038_s41598_020_64717_7 crossref_primary_10_1016_j_clinph_2019_03_015 crossref_primary_10_1016_j_nrleng_2016_03_009 crossref_primary_10_3389_fnagi_2019_00248 crossref_primary_10_3389_fpsyg_2020_00685 crossref_primary_10_1007_s00429_017_1500_5 crossref_primary_10_1097_MD_0000000000028576 crossref_primary_10_1016_j_neuroscience_2021_08_028 crossref_primary_10_1212_WNL_0000000000012662 crossref_primary_10_3389_fpsyg_2019_00993 crossref_primary_10_1093_cercor_bhw386 crossref_primary_10_1016_j_sleep_2020_03_001 crossref_primary_10_3390_brainsci11020145 crossref_primary_10_3390_app12157437 crossref_primary_10_1186_s40673_016_0057_z crossref_primary_10_1016_j_nanoen_2022_107486 crossref_primary_10_1016_j_neucli_2016_05_001 crossref_primary_10_3389_fnint_2020_00013 crossref_primary_10_1097_WNR_0000000000000508 crossref_primary_10_1016_j_clinph_2016_05_013 crossref_primary_10_3389_fpsyt_2025_1526225 crossref_primary_10_1136_svn_2022_001568 crossref_primary_10_1007_s12311_016_0840_7 crossref_primary_10_1007_s12311_022_01419_y crossref_primary_10_1016_j_jneumeth_2025_110559 crossref_primary_10_1152_jn_00527_2020 crossref_primary_10_3389_fnins_2023_1079432 crossref_primary_10_3390_brainsci9030063 crossref_primary_10_1007_s00221_022_06462_z crossref_primary_10_3390_brainsci9030062 crossref_primary_10_1016_j_jneumeth_2024_110267 crossref_primary_10_1016_j_neuroscience_2024_06_008 crossref_primary_10_1371_journal_pone_0252023 crossref_primary_10_1016_j_jneumeth_2022_109631 crossref_primary_10_4103_ijmr_IJMR_97_18 crossref_primary_10_31083_j_jin2303054 crossref_primary_10_1093_brain_awac203 crossref_primary_10_1088_1361_6560_abe223 crossref_primary_10_1113_JP277849 crossref_primary_10_1371_journal_pone_0208747 crossref_primary_10_1162_jocn_a_01838 crossref_primary_10_1371_journal_pone_0217266 crossref_primary_10_1016_j_brs_2015_05_010 crossref_primary_10_1016_j_nrl_2018_03_023 crossref_primary_10_1093_cercor_bhab280 crossref_primary_10_1002_pri_2111 crossref_primary_10_1111_ejn_15438 crossref_primary_10_1016_j_neucli_2016_05_070 crossref_primary_10_1093_brain_awz181 crossref_primary_10_1177_1352458519865734 crossref_primary_10_1016_j_brs_2018_01_004 crossref_primary_10_1016_j_brs_2018_01_001 crossref_primary_10_3390_brainsci11070897 crossref_primary_10_2217_pmt_2023_0004 crossref_primary_10_3390_biomedicines11051373 crossref_primary_10_1002_pri_2102 crossref_primary_10_1007_s11357_021_00508_w crossref_primary_10_3389_fnhum_2019_00200 crossref_primary_10_1017_cjn_2020_169 crossref_primary_10_1177_00315125221086254 crossref_primary_10_1038_s41598_022_18774_9 crossref_primary_10_3389_fnbeh_2018_00197 crossref_primary_10_1093_scan_nsy022 crossref_primary_10_1007_s00221_018_5261_z crossref_primary_10_3390_ijms26041754 crossref_primary_10_1016_j_ctim_2018_09_013 crossref_primary_10_1371_journal_pone_0207476 crossref_primary_10_3390_brainsci15080839 crossref_primary_10_1007_s10072_025_08249_w crossref_primary_10_1162_jocn_a_00967 crossref_primary_10_3389_fnins_2021_633988 crossref_primary_10_3389_fneur_2021_673560 crossref_primary_10_3389_fnint_2020_00045 crossref_primary_10_1007_s00221_020_05812_z crossref_primary_10_1016_j_msard_2023_104514 crossref_primary_10_1016_j_clinph_2022_09_003 crossref_primary_10_1016_j_jneumeth_2022_109662 crossref_primary_10_1007_s11060_024_04931_9 crossref_primary_10_1007_s00221_019_05691_z crossref_primary_10_1016_j_brainres_2017_08_015 crossref_primary_10_1007_s11910_022_01224_4 crossref_primary_10_1007_s10072_021_05335_7 crossref_primary_10_1016_j_neubiorev_2021_07_019 crossref_primary_10_3389_fnagi_2020_00200 crossref_primary_10_3389_fnins_2023_1121043 crossref_primary_10_1016_j_ibneur_2025_03_005 crossref_primary_10_1016_j_neubiorev_2024_105933 crossref_primary_10_1038_s41598_019_49166_1 crossref_primary_10_1113_JP283244 crossref_primary_10_1111_ejn_15467 crossref_primary_10_1016_j_arr_2024_102509 crossref_primary_10_1016_j_neubiorev_2016_03_006 crossref_primary_10_1186_s13063_021_05308_3 crossref_primary_10_3389_fnhum_2024_1408818 crossref_primary_10_3389_fnins_2023_1301075 crossref_primary_10_1016_j_clinph_2022_09_006 crossref_primary_10_1016_j_psychres_2025_116616 crossref_primary_10_1155_2019_7638675 crossref_primary_10_1016_j_clinph_2022_09_009 crossref_primary_10_1016_j_clinph_2020_06_024 crossref_primary_10_1038_s41598_022_12225_1 crossref_primary_10_3389_fneur_2024_1472837 crossref_primary_10_1113_JP282393 crossref_primary_10_1155_2016_7365609 crossref_primary_10_3389_fnmol_2022_879909 crossref_primary_10_1016_j_clinph_2020_06_023 crossref_primary_10_1016_j_cortex_2023_05_009 crossref_primary_10_1186_s12891_023_07146_7 crossref_primary_10_1016_j_neulet_2016_09_034 crossref_primary_10_1016_j_wneu_2018_11_114 crossref_primary_10_1007_s40120_021_00300_0 crossref_primary_10_1113_JP284500 crossref_primary_10_1186_s12883_024_03720_1 crossref_primary_10_1016_j_cub_2020_08_104 crossref_primary_10_3389_fnins_2017_00088 crossref_primary_10_1016_j_neuroimage_2016_02_012 crossref_primary_10_1039_D4RA04258A crossref_primary_10_1016_j_neuropsychologia_2018_01_043 crossref_primary_10_1016_j_neubiorev_2017_11_018 crossref_primary_10_1038_s41598_022_23444_x crossref_primary_10_1186_s13102_019_0120_1 crossref_primary_10_1016_j_autneu_2022_103023 crossref_primary_10_1038_s41598_023_31825_z crossref_primary_10_1007_s11682_021_00605_6 crossref_primary_10_1016_j_neulet_2016_09_038 crossref_primary_10_1109_ACCESS_2020_3033075 crossref_primary_10_1371_journal_pone_0186007 crossref_primary_10_1016_j_neubiorev_2023_105273 crossref_primary_10_1088_1741_2552_acdcbb crossref_primary_10_3389_fncir_2021_675365 crossref_primary_10_1016_j_jaac_2024_08_487 crossref_primary_10_1016_j_jneumeth_2019_108444 crossref_primary_10_1016_S1634_7072_16_81782_1 crossref_primary_10_3171_2016_11_JNS162322 crossref_primary_10_1038_s41598_019_55858_5 crossref_primary_10_1111_ejn_15002 crossref_primary_10_1111_ejn_14154 crossref_primary_10_25259_SNI_124_2019 crossref_primary_10_1038_s41598_021_04175_x crossref_primary_10_1111_ner_13314 crossref_primary_10_1007_s00421_023_05141_3 crossref_primary_10_1016_j_procir_2019_04_288 crossref_primary_10_1186_s12891_022_05540_1 crossref_primary_10_1186_s12888_023_05243_4 crossref_primary_10_1038_s41598_021_83449_w crossref_primary_10_1016_j_clinph_2020_04_010 crossref_primary_10_1186_s12984_025_01557_4 crossref_primary_10_1007_s10072_016_2693_8 crossref_primary_10_1016_j_jocn_2025_111234 crossref_primary_10_1007_s00415_017_8731_5 crossref_primary_10_1016_j_brs_2021_08_022 crossref_primary_10_1016_j_clinph_2021_10_014 crossref_primary_10_1038_s41386_023_01575_7 crossref_primary_10_1016_j_neulet_2023_137191 crossref_primary_10_1002_hbm_70057 crossref_primary_10_1177_1559325816685467 crossref_primary_10_1371_journal_pone_0261373 crossref_primary_10_1016_j_brainresbull_2019_05_004 crossref_primary_10_1155_2024_5673579 crossref_primary_10_1016_j_cognition_2024_105963 crossref_primary_10_1016_j_seizure_2025_06_020 crossref_primary_10_1111_psyp_14234 crossref_primary_10_1016_j_brs_2015_09_013 crossref_primary_10_1186_s13063_022_06359_w crossref_primary_10_3389_fnins_2018_00068 crossref_primary_10_1097_YCT_0000000000000513 crossref_primary_10_1088_1741_2552_aa9c8c crossref_primary_10_1016_j_brs_2015_07_027 crossref_primary_10_1016_j_jad_2024_09_024 crossref_primary_10_1038_s41467_024_55202_0 crossref_primary_10_1016_j_msard_2024_105741 crossref_primary_10_1016_j_neurot_2024_e00497 crossref_primary_10_1016_j_brs_2018_03_008 crossref_primary_10_1038_s41598_021_97168_9 crossref_primary_10_1016_j_clinph_2022_07_495 crossref_primary_10_1111_ejn_16365 crossref_primary_10_1016_j_bbr_2022_113733 crossref_primary_10_1002_mus_27328 crossref_primary_10_1016_j_brs_2018_03_015 crossref_primary_10_1007_s00429_021_02410_9 crossref_primary_10_1038_s41598_018_19698_z crossref_primary_10_1097_MD_0000000000031774 crossref_primary_10_1109_TMAG_2015_2458297 crossref_primary_10_1055_a_2280_6340 crossref_primary_10_1016_j_neuron_2024_09_001 crossref_primary_10_3389_fneur_2021_650830 crossref_primary_10_1016_j_apmr_2023_12_002 crossref_primary_10_3389_fnhum_2020_00342 crossref_primary_10_1016_j_neurobiolaging_2021_06_007 crossref_primary_10_1016_j_brs_2018_03_004 crossref_primary_10_1016_j_brs_2018_03_002 crossref_primary_10_1002_ana_25677 crossref_primary_10_1016_j_neulet_2017_04_033 crossref_primary_10_1016_j_neurom_2022_10_043 crossref_primary_10_1016_j_neuroscience_2015_09_056 crossref_primary_10_1016_j_neulet_2017_04_032 crossref_primary_10_1097_WNR_0000000000001809 crossref_primary_10_3389_fnins_2023_1180816 crossref_primary_10_1093_cercor_bhw346 crossref_primary_10_1007_s11517_021_02315_z crossref_primary_10_7554_eLife_92088 crossref_primary_10_3390_brainsci11030384 crossref_primary_10_1016_j_smrv_2024_102027 crossref_primary_10_1002_jmv_28838 crossref_primary_10_1016_j_cortex_2016_09_002 crossref_primary_10_1016_j_neuroscience_2022_01_004 crossref_primary_10_1111_ejn_16386 crossref_primary_10_1177_1545968317718269 crossref_primary_10_1111_ner_12459 crossref_primary_10_1038_s41583_022_00598_1 crossref_primary_10_1007_s12311_019_01093_7 crossref_primary_10_1016_j_neurom_2022_10_055 crossref_primary_10_3390_brainsci14040371 crossref_primary_10_1109_TMAG_2022_3147219 crossref_primary_10_3389_fpsyt_2017_00096 crossref_primary_10_1016_j_brs_2022_01_009 crossref_primary_10_1097_WNR_0000000000000941 crossref_primary_10_1080_14737175_2016_1194202 crossref_primary_10_1111_ejn_16395 crossref_primary_10_1016_j_addbeh_2020_106657 crossref_primary_10_1016_j_wneu_2025_124381 crossref_primary_10_3389_fneur_2022_983643 crossref_primary_10_1080_17434440_2025_2563614 crossref_primary_10_1007_s11682_019_00082_y crossref_primary_10_1155_2021_9164543 crossref_primary_10_1177_1756286419878317 crossref_primary_10_1111_ner_12444 crossref_primary_10_1016_j_neuroimage_2024_120874 crossref_primary_10_3389_fnhum_2016_00017 crossref_primary_10_1007_s10072_021_05188_0 crossref_primary_10_1016_j_brainresbull_2018_05_016 crossref_primary_10_1007_s00421_025_05834_x crossref_primary_10_2196_resprot_8692 crossref_primary_10_1088_2057_1976_adabeb crossref_primary_10_1523_JNEUROSCI_0173_24_2025 crossref_primary_10_1016_j_pneurobio_2017_07_001 crossref_primary_10_1038_s41598_019_48750_9 crossref_primary_10_3389_fnins_2019_00304 crossref_primary_10_1016_j_wneu_2017_03_114 crossref_primary_10_1016_j_neurobiolaging_2024_05_011 crossref_primary_10_3389_fneur_2017_00182 crossref_primary_10_1111_ejn_15197 crossref_primary_10_1177_1545968319862552 crossref_primary_10_1007_s11055_023_01412_w crossref_primary_10_1155_2020_8820881 crossref_primary_10_3390_ijms21061948 crossref_primary_10_1152_jn_00320_2021 crossref_primary_10_1111_ejn_15191 crossref_primary_10_1111_jvim_15919 crossref_primary_10_1016_j_clinph_2025_04_001 crossref_primary_10_1016_j_heliyon_2023_e15767 crossref_primary_10_1080_10749357_2016_1138670 crossref_primary_10_1113_JP281885 crossref_primary_10_1016_j_neulet_2021_135884 crossref_primary_10_1007_s00701_017_3397_4 crossref_primary_10_1038_s41598_021_90663_z crossref_primary_10_1113_EP086480 crossref_primary_10_1016_j_neucli_2020_10_001 crossref_primary_10_3389_fnhum_2016_00487 crossref_primary_10_1371_journal_pone_0282671 crossref_primary_10_1007_s00115_019_00799_7 crossref_primary_10_1038_s41598_024_51622_6 crossref_primary_10_1139_apnm_2018_0643 crossref_primary_10_1007_s11055_021_01048_8 crossref_primary_10_1002_trc2_12033 crossref_primary_10_1088_1741_2552_adbcdb crossref_primary_10_1016_j_clinph_2019_06_006 crossref_primary_10_1038_s41598_021_92768_x crossref_primary_10_1523_JNEUROSCI_1406_22_2023 crossref_primary_10_1016_j_clinph_2020_11_018 crossref_primary_10_1016_j_neucli_2017_02_003 crossref_primary_10_1088_1741_2552_adfd8b crossref_primary_10_1038_s41596_022_00776_6 crossref_primary_10_1111_cns_14303 crossref_primary_10_1152_jn_00505_2019 crossref_primary_10_1016_j_clinph_2017_03_030 crossref_primary_10_1016_j_ejpn_2021_02_008 crossref_primary_10_1155_2022_7536783 crossref_primary_10_3390_cancers16122192 crossref_primary_10_3390_jcm11040951 crossref_primary_10_3758_s13423_022_02089_x crossref_primary_10_1016_j_clinph_2020_02_012 crossref_primary_10_1016_j_clinph_2025_2110809 crossref_primary_10_1016_j_yebeh_2017_11_031 crossref_primary_10_1007_s00221_025_07003_0 crossref_primary_10_1016_j_clinph_2025_2110801 crossref_primary_10_3390_brainsci14040332 crossref_primary_10_1016_j_clinph_2019_12_410 crossref_primary_10_1186_s12888_020_02769_9 crossref_primary_10_1016_j_clinph_2019_12_413 crossref_primary_10_1111_ejn_16073 crossref_primary_10_1016_j_clinph_2025_04_012 crossref_primary_10_1016_j_jns_2021_120129 crossref_primary_10_1088_1741_2552_abe68a crossref_primary_10_3390_cancers13020207 crossref_primary_10_3389_fneur_2022_698200 crossref_primary_10_1002_adma_202409942 crossref_primary_10_3390_brainsci12060701 crossref_primary_10_1017_cjn_2024_43 crossref_primary_10_1186_s12868_020_00600_5 crossref_primary_10_3389_fnhum_2021_617146 crossref_primary_10_1016_j_psychres_2022_114431 crossref_primary_10_17116_jnevro202512505156 crossref_primary_10_1162_jocn_a_01003 crossref_primary_10_3389_fnhum_2018_00118 crossref_primary_10_1186_s12868_018_0484_2 crossref_primary_10_1016_j_neuron_2022_10_017 crossref_primary_10_1139_apnm_2020_0456 crossref_primary_10_1523_JNEUROSCI_3129_16_2017 crossref_primary_10_3390_cells13100792 crossref_primary_10_1016_j_brs_2017_05_005 crossref_primary_10_1016_j_neulet_2019_01_050 crossref_primary_10_1111_ejn_13827 crossref_primary_10_3389_fphys_2017_00695 crossref_primary_10_1016_j_ijchp_2022_100330 crossref_primary_10_1016_j_jneumeth_2020_108893 crossref_primary_10_1007_s10548_016_0470_x crossref_primary_10_1016_j_nicl_2025_103731 crossref_primary_10_1016_j_ebr_2021_100501 crossref_primary_10_1016_j_rvsc_2019_03_022 crossref_primary_10_1503_jpn_190060 crossref_primary_10_3389_fnagi_2017_00420 crossref_primary_10_3389_fpsyt_2022_876136 crossref_primary_10_1016_j_neures_2017_11_005 crossref_primary_10_1038_s41531_022_00420_w crossref_primary_10_1007_s00221_022_06534_0 crossref_primary_10_1016_j_neuroimage_2018_03_044 crossref_primary_10_3390_s23010497 crossref_primary_10_1186_s12984_019_0589_6 crossref_primary_10_1007_s00221_023_06725_3 crossref_primary_10_1016_j_brs_2022_08_024 crossref_primary_10_1016_j_neulet_2023_137551 crossref_primary_10_1371_journal_pbio_3002452 crossref_primary_10_3389_fnhum_2021_684367 crossref_primary_10_1186_s13023_019_1181_7 crossref_primary_10_3389_fnagi_2022_971858 crossref_primary_10_1016_j_clinph_2024_08_005 crossref_primary_10_3389_fneur_2020_00566 crossref_primary_10_3389_fneur_2022_991099 crossref_primary_10_1007_s12264_024_01347_3 crossref_primary_10_3233_JAD_160505 crossref_primary_10_1515_tnsci_2022_0235 crossref_primary_10_3389_fnhum_2022_929917 crossref_primary_10_1016_j_jns_2023_120770 crossref_primary_10_1371_journal_pone_0185936 crossref_primary_10_3389_fneur_2024_1473254 crossref_primary_10_1093_cercor_bhaa309 crossref_primary_10_1016_j_brs_2025_04_014 crossref_primary_10_3390_brainsci11030405 crossref_primary_10_1016_j_neuroscience_2023_09_011 crossref_primary_10_3389_fmed_2022_679053 crossref_primary_10_1152_jn_00079_2017 crossref_primary_10_1097_MD_0000000000014307 crossref_primary_10_1038_s41598_025_20294_1 crossref_primary_10_1186_s13102_020_00212_w crossref_primary_10_1016_j_jns_2018_08_014 crossref_primary_10_1186_s11689_022_09433_1 crossref_primary_10_3389_fnins_2024_1363860 crossref_primary_10_3390_life13122305 crossref_primary_10_3390_ijms21093135 crossref_primary_10_1016_j_neulet_2019_134653 crossref_primary_10_1111_joor_13655 crossref_primary_10_1016_j_clineuro_2015_12_022 crossref_primary_10_3389_fninf_2020_00028 crossref_primary_10_1371_journal_pcbi_1011572 crossref_primary_10_3390_brainsci12060761 crossref_primary_10_1113_JP278638 crossref_primary_10_3390_brainsci13070989 crossref_primary_10_1016_j_cub_2019_06_024 crossref_primary_10_4103_1673_5374_197134 crossref_primary_10_1007_s00429_019_01909_6 crossref_primary_10_3389_fpsyt_2020_00732 crossref_primary_10_1523_JNEUROSCI_1953_19_2019 crossref_primary_10_1113_JP279966 crossref_primary_10_1111_sms_12582 crossref_primary_10_3233_NRE_220074 crossref_primary_10_3389_fnsys_2023_1128205 crossref_primary_10_1186_s12883_021_02406_2 crossref_primary_10_1016_j_clinph_2023_03_012 crossref_primary_10_1016_j_nicl_2018_101620 crossref_primary_10_1113_JP280966 crossref_primary_10_3390_brainsci11111517 crossref_primary_10_1007_s00421_024_05626_9 crossref_primary_10_1016_j_clinph_2023_03_010 crossref_primary_10_1152_jn_00393_2016 crossref_primary_10_1186_s12984_024_01421_x crossref_primary_10_1016_j_clinph_2019_08_020 crossref_primary_10_3390_app13095679 crossref_primary_10_1093_ptj_pzx008 crossref_primary_10_1016_j_neubiorev_2021_10_040 crossref_primary_10_1177_1545968319826052 crossref_primary_10_1002_jor_24062 crossref_primary_10_1038_s41598_020_72909_4 crossref_primary_10_1016_j_neuropsychologia_2025_109079 crossref_primary_10_1155_2022_7195699 crossref_primary_10_1155_2016_8154969 crossref_primary_10_1007_s00221_020_05788_w crossref_primary_10_1007_s00429_022_02533_7 crossref_primary_10_1002_mds_30197 crossref_primary_10_1016_j_parkreldis_2022_10_006 crossref_primary_10_1152_japplphysiol_00010_2024 crossref_primary_10_1016_j_neuroscience_2019_10_051 crossref_primary_10_1186_s12987_020_0167_0 crossref_primary_10_1016_j_brs_2020_03_020 crossref_primary_10_1002_cpt_3521 crossref_primary_10_1007_s10548_019_00714_y crossref_primary_10_1016_j_brainresbull_2019_02_002 crossref_primary_10_1016_j_cortex_2017_07_020 crossref_primary_10_3389_fnagi_2017_00016 crossref_primary_10_1016_j_brs_2017_07_011 crossref_primary_10_1007_s42399_019_00113_1 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105889 crossref_primary_10_1016_j_brs_2017_07_010 crossref_primary_10_1016_j_medengphy_2016_04_025 crossref_primary_10_1097_MD_0000000000038723 crossref_primary_10_1186_s12905_021_01275_8 crossref_primary_10_1155_2015_616242 crossref_primary_10_1519_JSC_0000000000003884 crossref_primary_10_1016_j_ynirp_2022_100132 crossref_primary_10_1016_j_sleep_2020_03_030 crossref_primary_10_3390_brainsci12010061 crossref_primary_10_1016_j_brs_2017_07_009 crossref_primary_10_1016_j_neuroscience_2017_07_028 crossref_primary_10_3389_fnhum_2019_00190 crossref_primary_10_1007_s10548_021_00867_9 crossref_primary_10_1152_jn_00069_2023 crossref_primary_10_2196_30163 crossref_primary_10_7717_peerj_17155 crossref_primary_10_1007_s00221_016_4639_z crossref_primary_10_3233_JAD_200608 crossref_primary_10_1113_EP087347 crossref_primary_10_1111_sms_12538 crossref_primary_10_1093_cercor_bhad404 crossref_primary_10_1016_j_pneurobio_2023_102548 crossref_primary_10_3389_fnhum_2019_00185 crossref_primary_10_1016_j_neucli_2022_07_002 crossref_primary_10_1016_j_physbeh_2017_07_013 crossref_primary_10_1016_j_arcmed_2024_103031 crossref_primary_10_1016_j_cortex_2021_04_012 crossref_primary_10_1016_j_neuroimage_2023_120188 crossref_primary_10_1016_j_clinph_2017_03_003 crossref_primary_10_3390_jcm12216734 crossref_primary_10_3390_biomedicines13081920 crossref_primary_10_1177_1756286418759973 crossref_primary_10_3389_fnhum_2019_00195 crossref_primary_10_1016_j_neubiorev_2023_105300 crossref_primary_10_1016_j_brs_2025_02_021 crossref_primary_10_1155_2016_7043767 crossref_primary_10_1177_2055217319844796 crossref_primary_10_1016_j_arr_2016_05_006 crossref_primary_10_1016_j_jpain_2019_05_001 crossref_primary_10_1016_j_bjane_2025_844639 crossref_primary_10_1016_S0140_6736_18_30863_8 crossref_primary_10_3389_fncir_2022_986669 crossref_primary_10_1097_WNP_0000000000000707 crossref_primary_10_3390_brainsci14111092 crossref_primary_10_1093_cercor_bhw245 crossref_primary_10_1002_hbm_26086 crossref_primary_10_1113_JP283137 crossref_primary_10_1038_ijo_2017_150 crossref_primary_10_1088_1741_2552_acf1cc crossref_primary_10_1016_j_clinph_2015_04_064 crossref_primary_10_1016_j_clinph_2021_08_006 crossref_primary_10_1088_1741_2552_ad0add crossref_primary_10_1152_jn_00497_2019 crossref_primary_10_3390_sym13112219 crossref_primary_10_1016_j_neuroscience_2019_02_019 crossref_primary_10_1016_j_jpain_2019_05_010 crossref_primary_10_1016_j_bpsc_2021_07_005 crossref_primary_10_3389_fneur_2023_1212876 crossref_primary_10_1097_WNR_0000000000000886 crossref_primary_10_1016_j_brs_2021_02_005 crossref_primary_10_1016_j_eplepsyres_2020_106278 crossref_primary_10_1016_j_brs_2021_02_003 crossref_primary_10_1002_mco2_335 crossref_primary_10_1093_brain_awab257 crossref_primary_10_1016_j_brs_2025_02_008 crossref_primary_10_1002_acn3_670 crossref_primary_10_1097_HJH_0000000000001367 crossref_primary_10_3389_fnhum_2020_592013 crossref_primary_10_3389_fneur_2018_01020 crossref_primary_10_1111_epi_17466 crossref_primary_10_1016_j_clinph_2022_10_017 crossref_primary_10_1016_j_brs_2018_09_009 crossref_primary_10_1162_jocn_a_01943 crossref_primary_10_1080_14737175_2022_2170784 crossref_primary_10_3390_brainsci11020266 crossref_primary_10_1016_j_jpain_2020_08_004 crossref_primary_10_1152_jn_00064_2025 crossref_primary_10_1038_s41598_022_17055_9 crossref_primary_10_1038_s41598_022_23040_z crossref_primary_10_1007_s10072_020_04691_0 crossref_primary_10_3233_RNN_150569 crossref_primary_10_1111_ner_12773 crossref_primary_10_1177_1759091417711512 crossref_primary_10_1016_j_brs_2018_11_015 crossref_primary_10_3390_brainsci15090969 crossref_primary_10_1007_s00221_018_5349_5 crossref_primary_10_1016_j_cub_2023_05_027 crossref_primary_10_1038_srep38396 crossref_primary_10_1111_psyp_14194 crossref_primary_10_1002_hbm_23816 crossref_primary_10_1097_YCT_0000000000000477 crossref_primary_10_1007_s00221_018_5314_3 crossref_primary_10_3390_brainsci11020252 crossref_primary_10_1002_bem_22235 crossref_primary_10_3389_fneur_2018_00179 crossref_primary_10_1177_09645284211057560 crossref_primary_10_1002_hbm_26045 crossref_primary_10_1016_j_clinph_2025_2111369 crossref_primary_10_1016_j_neuron_2021_02_024 crossref_primary_10_4085_1062_6050_0066_23 crossref_primary_10_1016_j_neuropsychologia_2017_11_004 crossref_primary_10_1017_sjp_2016_89 crossref_primary_10_4085_1062_6050_414_17 crossref_primary_10_1177_03331024231195780 crossref_primary_10_1016_j_tvjl_2016_08_006 crossref_primary_10_1080_09638288_2021_1925979 crossref_primary_10_1097_j_pain_0000000000001712 crossref_primary_10_1016_j_biopsycho_2017_02_008 crossref_primary_10_1155_2022_9419154 crossref_primary_10_3390_biom11030359 crossref_primary_10_1080_15376516_2022_2101038 crossref_primary_10_3390_brainsci15050457 crossref_primary_10_1007_s00429_016_1355_1 crossref_primary_10_1371_journal_pone_0195276 crossref_primary_10_1186_s12984_022_01049_9 crossref_primary_10_3389_fneur_2024_1345832 crossref_primary_10_1038_s41598_021_03281_0 crossref_primary_10_3389_fnagi_2022_995000 crossref_primary_10_1007_s12311_023_01622_5 crossref_primary_10_1177_19714009211067409 crossref_primary_10_1152_japplphysiol_01016_2017 crossref_primary_10_3389_fneur_2018_00189 crossref_primary_10_1093_brain_awac157 crossref_primary_10_1016_j_neulet_2022_136753 crossref_primary_10_3389_fpsyt_2020_559966 crossref_primary_10_1007_s00421_022_04982_8 crossref_primary_10_1016_j_neurom_2024_09_002 crossref_primary_10_1002_adma_202400346 crossref_primary_10_3389_fpain_2025_1593746 crossref_primary_10_1155_2018_7589601 crossref_primary_10_1186_s12984_020_00792_1 crossref_primary_10_1007_s10548_018_0655_6 crossref_primary_10_3390_brainsci11060715 crossref_primary_10_1016_j_jad_2022_09_153 crossref_primary_10_3389_fnins_2023_1100464 crossref_primary_10_1016_j_neulet_2020_134760 crossref_primary_10_1080_08990220_2017_1292238 crossref_primary_10_2147_NSS_S253281 crossref_primary_10_1016_j_neuroimage_2018_10_076 crossref_primary_10_1134_S0022093025040118 crossref_primary_10_1038_s41598_025_10830_4 crossref_primary_10_3390_biomedicines10102410 crossref_primary_10_1016_j_cortex_2019_10_016 crossref_primary_10_1016_j_cortex_2022_03_007 crossref_primary_10_1093_cercor_bhw294 crossref_primary_10_1093_cercor_bhw292 crossref_primary_10_1093_cercor_bhad370 crossref_primary_10_1038_s41467_024_49478_5 crossref_primary_10_1016_j_neuroimage_2023_119915 crossref_primary_10_1016_j_eplepsyres_2024_107426 crossref_primary_10_1016_j_brs_2020_09_010 crossref_primary_10_1016_j_pmrj_2016_02_004 crossref_primary_10_1038_s41526_020_00116_6 crossref_primary_10_1186_s13063_024_08451_9 crossref_primary_10_1007_s10548_017_0589_4 crossref_primary_10_1007_s00701_016_2970_6 crossref_primary_10_1177_1545968321989338 crossref_primary_10_1016_j_brs_2020_09_016 crossref_primary_10_1097_WNP_0000000000000784 crossref_primary_10_3389_fnins_2021_665258 crossref_primary_10_1038_s41598_018_33187_3 crossref_primary_10_1080_10749357_2018_1466971 crossref_primary_10_1016_j_neurot_2024_e00330 crossref_primary_10_3389_fnins_2019_00388 crossref_primary_10_5535_arm_2019_43_3_352 crossref_primary_10_3389_fnins_2019_01237 crossref_primary_10_1016_j_pmrj_2017_10_001 crossref_primary_10_1002_cpt_70038 crossref_primary_10_1152_jn_00832_2016 crossref_primary_10_1016_j_cub_2021_04_043 crossref_primary_10_1109_TBME_2015_2507572 crossref_primary_10_1038_s41598_023_37775_w crossref_primary_10_1097_j_pain_0000000000001351 crossref_primary_10_1016_j_pjnns_2018_05_004 crossref_primary_10_1007_s00221_021_06183_9 crossref_primary_10_1016_j_jad_2024_08_120 crossref_primary_10_1016_j_brs_2019_06_015 crossref_primary_10_1016_j_nicl_2020_102536 crossref_primary_10_1016_j_brs_2019_06_012 crossref_primary_10_1111_ejn_15124 crossref_primary_10_1016_j_cortex_2018_02_004 crossref_primary_10_1063_5_0207131 crossref_primary_10_1371_journal_pone_0226452 crossref_primary_10_1109_TNSRE_2019_2926543 crossref_primary_10_3389_fneur_2022_813965 crossref_primary_10_1523_ENEURO_0111_25_2025 crossref_primary_10_1016_j_isci_2024_109140 crossref_primary_10_1016_j_clinph_2017_07_410 crossref_primary_10_3389_fnhum_2022_887246 crossref_primary_10_1002_hbm_26022 crossref_primary_10_1002_tee_23237 crossref_primary_10_1080_13554794_2022_2068374 crossref_primary_10_2147_NDT_S414782 crossref_primary_10_1016_j_brs_2016_08_004 crossref_primary_10_1016_j_brs_2025_08_021 crossref_primary_10_1016_j_rehab_2017_04_003 crossref_primary_10_1098_rstb_2016_0016 crossref_primary_10_1016_j_neurobiolaging_2019_04_008 crossref_primary_10_1111_ane_13289 crossref_primary_10_1136_bmjopen_2020_037332 crossref_primary_10_1016_j_clinph_2019_10_023 crossref_primary_10_1002_ana_27305 crossref_primary_10_1016_j_neuroimage_2025_121156 crossref_primary_10_3389_fnbeh_2022_831901 crossref_primary_10_1016_j_neuroscience_2019_08_043 crossref_primary_10_1152_jn_00663_2018 crossref_primary_10_1111_dmcn_14490 crossref_primary_10_3389_fbioe_2022_975037 crossref_primary_10_1007_s00701_017_3187_z crossref_primary_10_1016_j_bandc_2018_11_003 crossref_primary_10_3389_fnins_2023_1135995 crossref_primary_10_1016_j_jneumeth_2021_109293 crossref_primary_10_1002_nbm_3618 crossref_primary_10_1111_psyp_14591 crossref_primary_10_1016_j_neuropharm_2023_109761 crossref_primary_10_1016_j_neucli_2018_10_002 crossref_primary_10_1016_j_neuropsychologia_2020_107541 crossref_primary_10_1038_s41598_020_64390_w crossref_primary_10_1113_JP283560 crossref_primary_10_3389_fnins_2020_00264 crossref_primary_10_1002_hbm_26007 crossref_primary_10_7554_eLife_32740 crossref_primary_10_1002_mds_27479 crossref_primary_10_1007_s11065_018_9376_6 crossref_primary_10_1007_s00221_019_05683_z crossref_primary_10_1016_j_nbd_2020_105159 crossref_primary_10_1016_j_neuron_2022_12_030 crossref_primary_10_4274_tjcamh_galenos_2022_04695 crossref_primary_10_1073_pnas_1911240117 crossref_primary_10_1007_s00429_017_1403_5 crossref_primary_10_1016_j_neuroimage_2020_117702 crossref_primary_10_1088_2516_1091_adfeaa crossref_primary_10_3389_fnhum_2023_1152204 crossref_primary_10_1016_j_neuropsychologia_2019_01_003 crossref_primary_10_1007_s12311_021_01267_2 crossref_primary_10_1088_1741_2552_ac3207 crossref_primary_10_1038_s41539_025_00299_1 crossref_primary_10_1038_s41598_025_13558_3 crossref_primary_10_1152_jn_00774_2019 crossref_primary_10_3389_fnhum_2022_994138 crossref_primary_10_1007_s00701_018_3475_2 crossref_primary_10_1016_j_neuroscience_2025_06_014 crossref_primary_10_1093_scan_nsw129 crossref_primary_10_3389_fnhum_2022_845476 crossref_primary_10_3390_medicina60122061 crossref_primary_10_3389_fnins_2018_00361 crossref_primary_10_1016_j_transm_2025_100169 crossref_primary_10_1016_j_neurobiolaging_2025_04_010 crossref_primary_10_1152_jn_00711_2018 crossref_primary_10_1016_j_brs_2024_11_006 crossref_primary_10_1007_s11357_025_01545_5 crossref_primary_10_1088_1741_2552_abfc1e crossref_primary_10_3389_fnins_2023_1198222 crossref_primary_10_1007_s11055_023_01433_5 crossref_primary_10_1016_j_jveb_2019_07_004 crossref_primary_10_3390_brainsci11020224 crossref_primary_10_1016_j_dscb_2025_100221 crossref_primary_10_1038_s41598_020_65944_8 crossref_primary_10_1016_j_jneumeth_2020_108959 crossref_primary_10_3389_fnins_2018_00393 crossref_primary_10_1016_j_jneumeth_2020_108957 crossref_primary_10_1093_cercor_bhaf157 crossref_primary_10_1109_TBCAS_2020_2981012 crossref_primary_10_3389_fnhum_2015_00556 crossref_primary_10_3389_fnins_2025_1579988 crossref_primary_10_1016_j_neuroimage_2023_119991 crossref_primary_10_1113_JP285706 crossref_primary_10_1007_s10548_019_00741_9 crossref_primary_10_1080_00222895_2020_1723480 crossref_primary_10_1088_1741_2552_acfa22 crossref_primary_10_1016_j_jneumeth_2020_108950 crossref_primary_10_1093_cercor_bhw212 crossref_primary_10_1016_j_msard_2018_12_029 crossref_primary_10_1016_j_plrev_2019_10_005 crossref_primary_10_1055_a_2483_5556 crossref_primary_10_1016_j_jneumeth_2017_09_012 crossref_primary_10_3389_fphys_2020_01042 crossref_primary_10_1016_j_brs_2019_06_029 crossref_primary_10_1016_j_brainres_2023_148534 crossref_primary_10_1111_cns_70486 crossref_primary_10_1016_j_neuroscience_2023_03_007 crossref_primary_10_1124_pr_119_017772 crossref_primary_10_1016_j_neuropsychologia_2018_08_002 crossref_primary_10_1016_j_brainres_2018_08_029 crossref_primary_10_1371_journal_pone_0242941 crossref_primary_10_3389_fneur_2021_627975 crossref_primary_10_1002_brb3_3211 crossref_primary_10_1016_j_sleep_2021_10_017 crossref_primary_10_1080_09638288_2023_2228690 crossref_primary_10_1088_1361_6560_ac8f0f crossref_primary_10_3390_sci3030032 crossref_primary_10_1016_j_brainresbull_2023_110851 crossref_primary_10_1162_jocn_a_01165 crossref_primary_10_3389_fnins_2020_00559 crossref_primary_10_1080_00207454_2024_2401418 crossref_primary_10_1016_j_msard_2020_102039 crossref_primary_10_1186_s12984_024_01486_8 crossref_primary_10_3390_jcm11092291 crossref_primary_10_1016_j_neucli_2018_05_039 crossref_primary_10_1007_s00221_023_06585_x crossref_primary_10_1177_15459683241268583 crossref_primary_10_1007_s10548_018_0660_9 crossref_primary_10_1007_s00784_023_05412_5 crossref_primary_10_1097_WNP_0000000000001003 crossref_primary_10_1152_jn_00163_2019 crossref_primary_10_1162_jocn_a_01171 crossref_primary_10_1002_mds_30011 crossref_primary_10_1016_j_clinph_2021_02_405 crossref_primary_10_1109_TBME_2024_3350693 crossref_primary_10_1111_cns_70583 crossref_primary_10_31083_j_jin2308161 crossref_primary_10_1016_j_neuroimage_2020_117698 crossref_primary_10_1016_j_nicl_2020_102383 crossref_primary_10_31083_j_jin2308160 crossref_primary_10_1016_j_neurot_2025_e00556 crossref_primary_10_1002_hbm_24329 crossref_primary_10_1016_j_brainresbull_2025_111484 crossref_primary_10_1111_sms_13394 crossref_primary_10_1002_acn3_70044 crossref_primary_10_1002_acn3_70041 crossref_primary_10_1371_journal_pone_0184910 crossref_primary_10_1016_j_neuroscience_2020_10_002 crossref_primary_10_1523_JNEUROSCI_1470_18_2018 crossref_primary_10_1016_j_parkreldis_2024_107217 crossref_primary_10_3389_fnhum_2016_00598 crossref_primary_10_3389_fnins_2019_00447 crossref_primary_10_1186_s12888_025_06719_1 crossref_primary_10_3389_fnhum_2023_1237712 crossref_primary_10_1007_s00221_020_05926_4 crossref_primary_10_1016_j_pnpbp_2022_110537 crossref_primary_10_1007_s00221_019_05599_8 crossref_primary_10_1113_EP087664 crossref_primary_10_1080_00222895_2024_2441860 crossref_primary_10_1111_ene_14515 crossref_primary_10_1080_08990220_2020_1828056 crossref_primary_10_1007_s13246_023_01263_2 crossref_primary_10_1111_ner_13062 crossref_primary_10_1016_j_clinph_2024_02_007 crossref_primary_10_1016_j_sleep_2018_02_008 crossref_primary_10_1002_ejp_864 crossref_primary_10_1093_sleep_zsz242 crossref_primary_10_1007_s00429_017_1550_8 crossref_primary_10_1007_s00221_016_4603_y crossref_primary_10_1177_15459683211046272 crossref_primary_10_1007_s00221_021_06044_5 crossref_primary_10_1523_JNEUROSCI_0659_24_2024 crossref_primary_10_1016_j_brs_2021_05_013 crossref_primary_10_1093_cercor_bhac404 crossref_primary_10_1016_j_clinph_2023_07_010 crossref_primary_10_1111_ejn_13934 crossref_primary_10_1007_s00221_024_06930_8 crossref_primary_10_3389_fnhum_2023_1177594 crossref_primary_10_1159_000545553 crossref_primary_10_1152_jn_00655_2018 crossref_primary_10_1177_15459683231215331 crossref_primary_10_1038_s41380_024_02630_5 crossref_primary_10_1016_j_neuroimage_2023_120427 crossref_primary_10_1111_ner_13488 crossref_primary_10_1016_j_ibneur_2022_08_005 crossref_primary_10_1111_jcmm_13423 crossref_primary_10_1038_npp_2016_80 crossref_primary_10_1038_s41598_024_69345_z crossref_primary_10_3892_etm_2021_9626 crossref_primary_10_3389_fpsyg_2023_1175217 crossref_primary_10_1016_j_jpain_2023_10_020 crossref_primary_10_1177_1545968320981960 crossref_primary_10_3390_brainsci10020083 crossref_primary_10_3390_brainsci13010137 crossref_primary_10_3390_toxins16010009 crossref_primary_10_3389_fnagi_2018_00177 crossref_primary_10_3390_ijms21082977 crossref_primary_10_1109_TMAG_2018_2850328 crossref_primary_10_3389_fneur_2025_1486591 crossref_primary_10_1177_1094428116658960 crossref_primary_10_1007_s11916_021_00960_5 crossref_primary_10_1038_s41531_024_00860_6 crossref_primary_10_3233_RNN_211172 crossref_primary_10_1016_j_neuroscience_2019_05_041 crossref_primary_10_1016_j_brs_2021_12_001 crossref_primary_10_1111_pcn_12936 crossref_primary_10_1016_j_arr_2022_101746 crossref_primary_10_1002_brb3_1015 crossref_primary_10_1523_JNEUROSCI_1609_22_2022 crossref_primary_10_3389_fneur_2019_00535 crossref_primary_10_1155_2018_3273246 crossref_primary_10_3389_fnins_2021_749042 crossref_primary_10_1016_j_pbb_2021_173240 crossref_primary_10_1016_j_clinph_2025_2110969 crossref_primary_10_3389_fnagi_2021_636184 crossref_primary_10_1007_s12311_025_01902_2 crossref_primary_10_1016_j_neuroimage_2017_02_075 crossref_primary_10_1016_j_wneu_2019_09_080 crossref_primary_10_1136_jnnp_2020_323487 crossref_primary_10_3389_fnins_2019_00895 crossref_primary_10_1007_s00221_019_05577_0 crossref_primary_10_1109_TNSRE_2022_3192761 crossref_primary_10_3389_fnins_2020_00106 crossref_primary_10_3389_fonc_2019_00446 crossref_primary_10_1016_j_jmpt_2019_10_007 crossref_primary_10_3390_brainsci10020063 crossref_primary_10_1111_ner_13496 crossref_primary_10_1016_j_heliyon_2024_e35563 crossref_primary_10_1186_s12987_022_00385_1 crossref_primary_10_17650_2222_8721_2020_10_1_64_74 crossref_primary_10_1016_j_clinthera_2020_05_017 crossref_primary_10_1007_s13311_022_01213_y crossref_primary_10_3233_RNN_211195 crossref_primary_10_1093_scan_nsae057 crossref_primary_10_1093_cercor_bhaa270 crossref_primary_10_1016_j_neulet_2018_02_045 crossref_primary_10_1016_j_brs_2016_12_008 crossref_primary_10_1113_EP091782 crossref_primary_10_1038_s41598_017_13708_2 crossref_primary_10_3389_fnhum_2019_00008 crossref_primary_10_1016_j_neuroscience_2019_05_065 crossref_primary_10_1109_TNSRE_2019_2925904 crossref_primary_10_1109_TNSRE_2019_2923724 crossref_primary_10_1371_journal_pone_0266000 crossref_primary_10_3390_app13010636 crossref_primary_10_1016_j_neuropsychologia_2023_108561 crossref_primary_10_3389_fnins_2020_589107 crossref_primary_10_1038_s41393_022_00768_z crossref_primary_10_1021_acs_chemrev_4c00468 crossref_primary_10_1088_1741_2560_13_3_031003 crossref_primary_10_1016_j_nicl_2025_103802 crossref_primary_10_3390_brainsci14080760 crossref_primary_10_1093_brain_awy155 crossref_primary_10_3233_JAD_210311 crossref_primary_10_3390_bioengineering9100562 crossref_primary_10_1088_1361_6560_ad0219 crossref_primary_10_1016_j_clinph_2024_04_010 crossref_primary_10_2147_NDT_S359855 crossref_primary_10_1016_j_brs_2021_03_002 crossref_primary_10_3389_fnins_2022_886909 crossref_primary_10_1038_s41598_017_19077_0 crossref_primary_10_3389_fninf_2019_00023 crossref_primary_10_1016_j_dscb_2022_100062 crossref_primary_10_4103_1673_5374_250581 crossref_primary_10_3389_fnagi_2021_737281 crossref_primary_10_3389_fnagi_2022_807151 crossref_primary_10_1016_j_brs_2024_01_003 crossref_primary_10_1017_cjn_2025_79 crossref_primary_10_1016_j_neucli_2015_12_003 crossref_primary_10_1097_PEP_0000000000000886 crossref_primary_10_3390_brainsci12121654 crossref_primary_10_1038_srep35719 crossref_primary_10_1111_ejn_13529 crossref_primary_10_1111_psyp_12732 crossref_primary_10_1155_2019_5190671 crossref_primary_10_1111_aor_14660 crossref_primary_10_1177_1545968321999049 crossref_primary_10_1016_j_brs_2024_01_004 crossref_primary_10_1371_journal_pone_0233999 crossref_primary_10_3389_fneur_2019_00967 crossref_primary_10_1371_journal_pone_0257554 crossref_primary_10_1016_j_neuroimage_2020_117279 crossref_primary_10_1113_JP276359 crossref_primary_10_1016_j_bandl_2025_105536 crossref_primary_10_1002_gps_5091 crossref_primary_10_3390_jcm8081208 crossref_primary_10_1113_JP278536 crossref_primary_10_1016_j_cveq_2022_04_002 crossref_primary_10_1016_j_bpsc_2024_12_005 crossref_primary_10_31083_j_jin2206164 crossref_primary_10_1016_j_brainres_2022_147850 crossref_primary_10_1016_j_brs_2023_08_001 crossref_primary_10_1111_epi_16634 crossref_primary_10_1162_IMAG_a_92 crossref_primary_10_1186_s13063_021_05042_w crossref_primary_10_1080_14737175_2019_1567332 crossref_primary_10_1136_bmjopen_2023_082019 crossref_primary_10_3390_brainsci12121637 crossref_primary_10_1016_j_neurobiolaging_2020_08_021 crossref_primary_10_1136_bmjopen_2023_073532 crossref_primary_10_1016_j_neuroimage_2023_120027 crossref_primary_10_1016_j_nrleng_2020_05_004 crossref_primary_10_47924_neurotarget2024467 crossref_primary_10_3389_fnins_2021_709368 crossref_primary_10_1097_PHM_0000000000002543 crossref_primary_10_3390_nu13051530 crossref_primary_10_1371_journal_pone_0242056 crossref_primary_10_1001_jamanetworkopen_2019_5578 crossref_primary_10_1016_j_clinph_2024_11_004 crossref_primary_10_1371_journal_pone_0292733 crossref_primary_10_1016_j_brs_2023_08_010 crossref_primary_10_1088_1741_2552_add20d crossref_primary_10_1002_ejp_841 crossref_primary_10_1007_s00421_016_3475_y crossref_primary_10_1016_j_jns_2017_11_006 crossref_primary_10_1016_j_clinph_2020_09_025 crossref_primary_10_3390_brainsci15070754 crossref_primary_10_1016_j_clinph_2018_12_015 crossref_primary_10_1111_ene_16281 crossref_primary_10_1249_MSS_0000000000002055 crossref_primary_10_3389_fnhum_2022_943469 crossref_primary_10_1007_s10548_015_0442_6 crossref_primary_10_1016_j_brs_2018_08_003 crossref_primary_10_1002_ejp_811 crossref_primary_10_1016_j_neulet_2018_02_065 crossref_primary_10_1002_ejp_4786 crossref_primary_10_3389_fnins_2021_627445 crossref_primary_10_1002_mds_27727 crossref_primary_10_1016_j_jneumeth_2025_110374 crossref_primary_10_1016_j_neuroscience_2020_03_014 crossref_primary_10_1177_1073858418776891 crossref_primary_10_1038_s41598_023_38841_z crossref_primary_10_1016_j_msard_2025_106693 crossref_primary_10_1002_mdc3_14349 crossref_primary_10_1016_j_jelekin_2015_07_006 crossref_primary_10_1016_j_neulet_2021_136039 crossref_primary_10_1016_j_xpro_2025_103622 crossref_primary_10_3389_fpsyt_2022_823158 crossref_primary_10_1016_j_brainres_2021_147523 crossref_primary_10_1016_j_brainres_2020_147227 crossref_primary_10_1109_TNSRE_2021_3095842 crossref_primary_10_1016_j_brainres_2024_149372 crossref_primary_10_1093_cercor_bhz283 crossref_primary_10_3233_RNN_160706 crossref_primary_10_1093_sleep_zsaf083 crossref_primary_10_1016_j_neuropsychologia_2024_108832 crossref_primary_10_1162_jocn_a_01510 crossref_primary_10_3389_fneur_2020_582262 crossref_primary_10_1016_j_cortex_2022_12_013 crossref_primary_10_3389_fnins_2017_00710 crossref_primary_10_1038_s41593_017_0054_4 crossref_primary_10_3389_fphys_2018_01822 crossref_primary_10_1007_s10548_017_0577_8 crossref_primary_10_1016_j_cortex_2025_07_006 crossref_primary_10_1038_s41598_023_49250_7 crossref_primary_10_1016_j_bbr_2019_112027 crossref_primary_10_1007_s00429_022_02453_6 crossref_primary_10_1007_s00415_025_13229_3 crossref_primary_10_1242_jeb_123158 crossref_primary_10_3389_fmedt_2024_1297552 crossref_primary_10_3233_NRE_220265 crossref_primary_10_1016_j_clinph_2024_06_004 crossref_primary_10_1016_j_clinph_2024_06_006 crossref_primary_10_2196_50030 crossref_primary_10_3389_fnins_2021_769848 crossref_primary_10_1016_j_brs_2022_04_018 crossref_primary_10_3389_fnins_2018_00683 crossref_primary_10_1002_acr_24118 crossref_primary_10_1016_j_clinph_2022_03_019 crossref_primary_10_4103_0366_6999_245267 crossref_primary_10_1007_s40501_020_00230_y crossref_primary_10_1016_j_neubiorev_2024_105726 crossref_primary_10_1093_cercor_bhae130 crossref_primary_10_1007_s12264_021_00781_x crossref_primary_10_3389_fnins_2023_1143072 crossref_primary_10_1016_j_neuroscience_2018_08_011 crossref_primary_10_3389_fneur_2018_01141 crossref_primary_10_3390_prosthesis5040083 crossref_primary_10_3389_fpsyt_2024_1279072 crossref_primary_10_1111_psyp_14069 crossref_primary_10_1111_ejn_14321 crossref_primary_10_3389_fnagi_2022_897837 crossref_primary_10_1016_j_visres_2025_108639 crossref_primary_10_12998_wjcc_v7_i13_1582 crossref_primary_10_3389_fneur_2020_584374 crossref_primary_10_1016_j_jneumeth_2018_08_023 crossref_primary_10_3389_fnagi_2019_00012 crossref_primary_10_1016_j_clinph_2022_03_009 crossref_primary_10_1038_s42003_022_03762_6 crossref_primary_10_3389_fnins_2020_580712 crossref_primary_10_1007_s00221_019_05614_y crossref_primary_10_1016_j_nbd_2023_106137 crossref_primary_10_1016_j_bbr_2023_114704 crossref_primary_10_1007_s00221_022_06375_x crossref_primary_10_3389_fnhum_2021_693207 crossref_primary_10_1016_j_jpsychires_2024_11_055 crossref_primary_10_1111_psyp_14078 crossref_primary_10_3390_jpm10040274 crossref_primary_10_1519_JSC_0000000000004954 crossref_primary_10_1016_j_neuroimage_2025_121428 crossref_primary_10_7717_peerj_12729 crossref_primary_10_1177_1545968321104131 crossref_primary_10_1016_j_brs_2020_01_016 crossref_primary_10_5765_jkacap_240039 crossref_primary_10_1016_j_jneumeth_2018_08_007 crossref_primary_10_3389_fnins_2022_935268 crossref_primary_10_1523_JNEUROSCI_0390_20_2021 crossref_primary_10_1152_jn_00027_2021 crossref_primary_10_1111_ejn_15675 crossref_primary_10_3389_fnhum_2025_1559631 crossref_primary_10_1016_j_bbr_2018_11_005 crossref_primary_10_14814_phy2_15941 crossref_primary_10_3390_biom14070760 crossref_primary_10_1111_ejn_16539 crossref_primary_10_1152_jn_00488_2018 crossref_primary_10_1016_j_neulet_2017_01_032 crossref_primary_10_1093_texcom_tgad005 crossref_primary_10_1007_s00221_018_05465_z crossref_primary_10_1016_j_clinph_2018_02_124 crossref_primary_10_1093_brain_awae210 crossref_primary_10_3389_fnhum_2023_1228859 crossref_primary_10_1016_j_neuroimage_2025_121014 crossref_primary_10_1186_s42234_025_00169_6 crossref_primary_10_3390_brainsci14020165 crossref_primary_10_1016_j_neuropharm_2020_108268 crossref_primary_10_1152_japplphysiol_00206_2023 crossref_primary_10_1152_jn_00459_2024 crossref_primary_10_3390_brainsci11010121 crossref_primary_10_1111_ejn_15683 crossref_primary_10_59717_j_xinn_life_2024_100082 crossref_primary_10_1016_j_clinph_2025_01_002 crossref_primary_10_1007_s00429_019_01891_z crossref_primary_10_1016_j_cortex_2015_11_003 crossref_primary_10_1109_TMTT_2021_3075726 crossref_primary_10_1007_s00221_019_05649_1 crossref_primary_10_1016_j_neuroscience_2021_07_023 crossref_primary_10_1186_s13063_023_07491_x crossref_primary_10_1007_s12021_022_09585_4 crossref_primary_10_3233_RNN_160655 crossref_primary_10_1016_j_clinph_2025_01_010 crossref_primary_10_1016_j_brs_2017_09_008 crossref_primary_10_1088_1741_2552_ab8ccf crossref_primary_10_1016_j_jneumeth_2021_109143 crossref_primary_10_1016_j_psyneuen_2021_105201 crossref_primary_10_1016_j_clinph_2018_04_604 crossref_primary_10_1016_j_cortex_2019_04_025 crossref_primary_10_1016_j_clinph_2016_04_001 crossref_primary_10_1002_acn3_587 crossref_primary_10_1016_j_parkreldis_2021_06_018 crossref_primary_10_17650_2222_8721_2021_11_2_35_47 crossref_primary_10_1016_j_neuroscience_2021_07_019 crossref_primary_10_1055_a_2071_7668 crossref_primary_10_3389_fneur_2019_00096 crossref_primary_10_1016_j_jelekin_2025_103048 crossref_primary_10_1016_j_clinph_2018_07_002 crossref_primary_10_11124_JBISRIR_2016_2002352 crossref_primary_10_3390_medicina61091685 crossref_primary_10_3389_fpsyt_2024_1400414 crossref_primary_10_1152_jn_00296_2025 crossref_primary_10_1136_jnnp_2017_317371 crossref_primary_10_3390_biomedicines11020409 crossref_primary_10_1097_j_pain_0000000000000510 crossref_primary_10_1093_cercor_bhad259 crossref_primary_10_1249_MSS_0000000000000733 crossref_primary_10_1177_1550059416630483 crossref_primary_10_1016_j_neucli_2020_12_006 crossref_primary_10_3389_fnhum_2023_1247104 crossref_primary_10_1016_j_brs_2019_10_002 crossref_primary_10_1016_j_jpain_2018_05_004 crossref_primary_10_1016_j_brs_2019_10_007 crossref_primary_10_1038_srep40715 crossref_primary_10_1016_j_jneumeth_2016_09_002 crossref_primary_10_1016_j_arr_2018_03_001 crossref_primary_10_3389_fnhum_2020_00153 crossref_primary_10_1007_s10548_020_00773_6 crossref_primary_10_3390_brainsci9080177 crossref_primary_10_3389_fneur_2021_678198 crossref_primary_10_1080_09638288_2024_2337107 crossref_primary_10_1371_journal_pone_0302762 crossref_primary_10_1088_1361_6560_abcde7 crossref_primary_10_3390_brainsci14020124 crossref_primary_10_1016_j_clinph_2025_03_048 crossref_primary_10_1176_appi_ajp_20240643 crossref_primary_10_1111_ejn_70089 crossref_primary_10_1016_j_clinph_2025_03_044 crossref_primary_10_1016_j_neuroimage_2025_121050 crossref_primary_10_3390_life13081697 crossref_primary_10_1088_2516_1091_ab7cc4 crossref_primary_10_1016_j_sleep_2020_06_019 crossref_primary_10_4103_0028_3886_373648 crossref_primary_10_1016_j_neuroscience_2020_12_023 crossref_primary_10_1016_j_neuroscience_2024_07_022 crossref_primary_10_3389_fneur_2022_868792 crossref_primary_10_1002_hbm_26107 crossref_primary_10_1136_bmjopen_2023_074037 crossref_primary_10_1007_s00221_021_06160_2 crossref_primary_10_1093_brain_awad395 crossref_primary_10_1097_NPT_0000000000000308 crossref_primary_10_1017_cjn_2021_158 crossref_primary_10_1177_15459683211041311 crossref_primary_10_3390_jcm10163633 crossref_primary_10_1093_scan_nsaa036 crossref_primary_10_1038_s41598_021_98920_x crossref_primary_10_3390_cancers12113233 crossref_primary_10_14814_phy2_15527 crossref_primary_10_1016_j_neurom_2024_11_010 crossref_primary_10_1016_j_sleep_2016_08_003 crossref_primary_10_1007_s00421_020_04567_3 crossref_primary_10_1016_j_clinph_2025_02_269 crossref_primary_10_1152_jn_00030_2019 crossref_primary_10_1007_s00221_020_05801_2 crossref_primary_10_1016_j_neubiorev_2016_02_016 crossref_primary_10_1038_s41531_024_00793_0 crossref_primary_10_1113_JP287804 crossref_primary_10_3389_fpsyg_2022_813444 crossref_primary_10_1152_jn_00641_2018 crossref_primary_10_1002_jnr_24319 crossref_primary_10_1093_scan_nsw029 crossref_primary_10_3233_RNN_190934 crossref_primary_10_3390_brainsci13020349 crossref_primary_10_1249_MSS_0000000000001622 crossref_primary_10_1155_2023_3051175 crossref_primary_10_3389_fneur_2023_1064718 crossref_primary_10_1016_j_brainres_2016_11_004 crossref_primary_10_1016_j_neucli_2022_03_004 crossref_primary_10_1016_j_neucli_2022_03_005 crossref_primary_10_1016_j_jneumeth_2019_03_021 crossref_primary_10_1177_15333175251322351 crossref_primary_10_1186_s13063_024_08708_3 crossref_primary_10_1016_j_jneumeth_2022_109486 crossref_primary_10_1177_1545968320909796 crossref_primary_10_1111_ner_13525 crossref_primary_10_1016_j_baga_2016_01_006 crossref_primary_10_1007_s00421_025_05707_3 crossref_primary_10_1016_j_neuroimage_2024_120701 crossref_primary_10_3233_JAD_215531 crossref_primary_10_1089_brain_2021_0180 crossref_primary_10_1155_2019_1328453 crossref_primary_10_1186_s12888_023_04666_3 crossref_primary_10_1007_s00221_023_06563_3 crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_07_012 crossref_primary_10_1155_2020_8896423 crossref_primary_10_1016_j_clinph_2016_06_025 crossref_primary_10_3389_fneur_2020_00193 crossref_primary_10_3390_jcm8071037 crossref_primary_10_1088_1741_2552_ac572c crossref_primary_10_3389_fpsyg_2018_01857 crossref_primary_10_1002_nau_25205 crossref_primary_10_1002_hbm_70267 crossref_primary_10_1016_j_clinph_2019_02_020 crossref_primary_10_3389_fnins_2018_00240 crossref_primary_10_1038_s41398_021_01451_2 crossref_primary_10_1016_j_clinph_2020_03_019 crossref_primary_10_1177_15459683241268537 crossref_primary_10_1109_TNSRE_2019_2914475 crossref_primary_10_1038_s41598_025_13185_y crossref_primary_10_3390_brainsci11101357 crossref_primary_10_1016_j_clinph_2016_06_013 crossref_primary_10_1016_j_neulet_2017_03_021 crossref_primary_10_3233_RNN_190908 crossref_primary_10_3233_RNN_211207 crossref_primary_10_1002_jor_24666 crossref_primary_10_1080_17434440_2023_2299310 crossref_primary_10_1152_jn_00510_2018 crossref_primary_10_3389_fneur_2025_1503946 crossref_primary_10_1109_ACCESS_2024_3350734 crossref_primary_10_1186_s12998_019_0265_8 crossref_primary_10_1177_1545968318785044 crossref_primary_10_1186_s12984_025_01688_8 crossref_primary_10_1177_15459683241292615 crossref_primary_10_1371_journal_pone_0224175 crossref_primary_10_3389_fnins_2020_00186 crossref_primary_10_1136_bmjopen_2024_096126 crossref_primary_10_1016_j_neurot_2025_e00577 crossref_primary_10_3389_fnhum_2017_00413 crossref_primary_10_1080_13554794_2019_1636069 crossref_primary_10_1177_1545968318785043 crossref_primary_10_1097_MD_0000000000038152 crossref_primary_10_1111_apha_12807 crossref_primary_10_3389_fnins_2023_1234033 crossref_primary_10_1016_j_sleep_2019_12_009 crossref_primary_10_1007_s10548_019_00716_w crossref_primary_10_1002_brb3_3575 crossref_primary_10_1310_sci2504_340 crossref_primary_10_3390_ijms242216456 crossref_primary_10_1038_s42003_020_0764_0 crossref_primary_10_3389_fnins_2023_1116273 crossref_primary_10_1016_j_neuroimage_2016_01_051 crossref_primary_10_1134_S0362119719080036 crossref_primary_10_1093_cercor_bhz195 crossref_primary_10_1007_s13311_016_0487_6 crossref_primary_10_1016_j_acra_2022_03_016 crossref_primary_10_3389_fncir_2023_1163346 crossref_primary_10_3233_RNN_211237 crossref_primary_10_1007_s12311_025_01871_6 crossref_primary_10_1016_j_brainres_2025_149715 crossref_primary_10_1371_journal_pone_0312183 crossref_primary_10_3389_fneur_2018_00825 crossref_primary_10_1111_phpp_12957 crossref_primary_10_3171_2019_9_FOCUS19640 crossref_primary_10_3389_fnbeh_2017_00169 crossref_primary_10_1016_j_cobeha_2024_101396 crossref_primary_10_1055_a_1272_9435 crossref_primary_10_1016_j_pnpbp_2021_110387 crossref_primary_10_1016_j_bspc_2023_104781 crossref_primary_10_1016_j_neulet_2020_135345 crossref_primary_10_1016_j_clinph_2020_03_022 crossref_primary_10_1038_s41598_024_64665_6 crossref_primary_10_1016_j_smrv_2025_102117 crossref_primary_10_1016_j_brs_2023_02_009 crossref_primary_10_1016_j_neuroimage_2018_04_011 crossref_primary_10_1016_j_clinph_2020_10_003 crossref_primary_10_3389_fneur_2019_01319 crossref_primary_10_1038_s41598_024_60984_w crossref_primary_10_3389_fnhum_2018_00303 crossref_primary_10_1016_j_brs_2022_07_005 crossref_primary_10_3390_jcm10112449 crossref_primary_10_1007_s13760_025_02796_x crossref_primary_10_1002_hbm_24448 crossref_primary_10_3389_fneur_2019_00461 crossref_primary_10_1155_2019_6430596 crossref_primary_10_3390_app15105236 crossref_primary_10_1016_j_brs_2020_12_009 crossref_primary_10_1113_JP282983 crossref_primary_10_1016_j_brs_2019_07_008 crossref_primary_10_1016_j_brs_2019_07_009 crossref_primary_10_1016_j_brainres_2021_147673 crossref_primary_10_1016_j_neuroimage_2017_09_023 crossref_primary_10_1016_j_bpsc_2024_08_009 crossref_primary_10_1177_25424823251377988 crossref_primary_10_1016_j_neubiorev_2022_104867 crossref_primary_10_1186_s10194_016_0712_z crossref_primary_10_1155_2024_5532347 crossref_primary_10_1016_j_brs_2019_07_012 crossref_primary_10_1111_sms_14111 crossref_primary_10_3389_fncel_2016_00175 crossref_primary_10_1097_WNP_0000000000000499 crossref_primary_10_3390_brainsci13091291 crossref_primary_10_1016_j_heliyon_2024_e30192 crossref_primary_10_1186_s13063_017_2280_1 crossref_primary_10_1155_2018_1318093 crossref_primary_10_1523_JNEUROSCI_2511_16_2017 crossref_primary_10_3389_fnhum_2021_656975 crossref_primary_10_1016_j_brainres_2021_147687 crossref_primary_10_1016_j_cortex_2015_07_027 crossref_primary_10_1016_j_brat_2024_104548 crossref_primary_10_1152_jn_00449_2015 crossref_primary_10_3389_fnins_2021_647517 crossref_primary_10_1113_EP087557 crossref_primary_10_3390_brainsci12080970 crossref_primary_10_3389_fnhum_2025_1548478 crossref_primary_10_1016_j_jevs_2022_103912 crossref_primary_10_1016_j_brs_2019_07_024 crossref_primary_10_1016_j_cortex_2021_03_019 crossref_primary_10_1016_j_clinph_2017_02_011 crossref_primary_10_1186_s12883_022_03036_y crossref_primary_10_3389_fneur_2021_699014 crossref_primary_10_1111_ejn_14904 crossref_primary_10_1038_s41598_024_59927_2 crossref_primary_10_7554_eLife_76411 crossref_primary_10_1016_j_cub_2020_06_091 crossref_primary_10_1088_1741_2552_ac1f2b crossref_primary_10_1016_j_clinph_2024_09_023 crossref_primary_10_3390_bs8110105 crossref_primary_10_1371_journal_pone_0217826 crossref_primary_10_1007_s00701_016_2968_0 crossref_primary_10_3389_fneur_2022_1000940 crossref_primary_10_1016_j_neuroimage_2020_117541 crossref_primary_10_1016_j_cortex_2020_08_004 crossref_primary_10_1152_jn_00328_2021 crossref_primary_10_1016_j_brs_2017_11_016 crossref_primary_10_1109_TNSRE_2023_3343621 crossref_primary_10_1007_s00221_021_06163_z crossref_primary_10_1038_s41598_023_29920_2 crossref_primary_10_1016_j_brs_2017_11_013 crossref_primary_10_1093_scan_nsad033 crossref_primary_10_1371_journal_pone_0184828 crossref_primary_10_3233_RNN_170801 crossref_primary_10_1152_japplphysiol_00367_2022 crossref_primary_10_1176_appi_ajp_2020_20060821 crossref_primary_10_1007_s10072_023_06877_8 crossref_primary_10_1007_s10072_023_06779_9 crossref_primary_10_1007_s00221_023_06616_7 crossref_primary_10_1016_j_sleep_2019_03_021 crossref_primary_10_1038_s41598_023_34801_9 crossref_primary_10_3390_s21020637 crossref_primary_10_1016_j_apmr_2024_05_025 crossref_primary_10_1016_j_bandc_2023_106105 crossref_primary_10_3390_brainsci11040432 crossref_primary_10_1016_j_schres_2023_10_005 crossref_primary_10_3389_fneur_2024_1520727 crossref_primary_10_1177_09226028251330850 crossref_primary_10_1007_s00115_018_0586_1 crossref_primary_10_3389_fnhum_2020_00292 crossref_primary_10_1186_s13024_023_00665_w crossref_primary_10_1007_s00421_021_04839_6 crossref_primary_10_1155_2017_1421326 crossref_primary_10_1097_MD_0000000000035834 crossref_primary_10_3389_fresc_2023_1053577 crossref_primary_10_3389_fnhum_2024_1500502 crossref_primary_10_1016_j_neulet_2022_137026 crossref_primary_10_1093_arclin_acx092 crossref_primary_10_1016_j_brs_2017_04_001 crossref_primary_10_1016_j_nrl_2016_03_008 crossref_primary_10_1016_j_schres_2017_04_045 crossref_primary_10_3389_fnins_2021_771064 crossref_primary_10_1016_j_brs_2023_11_009 crossref_primary_10_1016_j_heliyon_2023_e19912 crossref_primary_10_1016_j_tins_2018_02_007 crossref_primary_10_1080_00207454_2023_2263817 crossref_primary_10_1016_j_neurol_2016_02_004 crossref_primary_10_3758_s13415_020_00793_6 crossref_primary_10_1016_j_neuroscience_2018_03_051 crossref_primary_10_4103_1673_5374_295345 crossref_primary_10_1371_journal_pcbi_1011350 crossref_primary_10_1016_j_neucli_2023_102845 crossref_primary_10_1016_j_brs_2020_10_014 crossref_primary_10_1016_j_brs_2020_10_015 crossref_primary_10_1038_s41598_021_01348_6 crossref_primary_10_1097_NRL_0000000000000345 crossref_primary_10_1016_j_clinph_2022_04_004 crossref_primary_10_1088_1361_6560_aae932 crossref_primary_10_1016_j_clinph_2019_05_022 crossref_primary_10_1016_j_ibneur_2023_07_002 crossref_primary_10_1016_j_clinph_2018_04_749 crossref_primary_10_1016_j_ijpsycho_2017_09_005 crossref_primary_10_1016_j_neurobiolaging_2018_06_035 crossref_primary_10_1080_09205071_2016_1216807 crossref_primary_10_1038_s42003_022_03190_6 crossref_primary_10_1177_15459683211054184 crossref_primary_10_1016_j_clinph_2019_09_030 crossref_primary_10_1111_ejn_14957 crossref_primary_10_17650_2222_8721_2025_15_2_58_64 crossref_primary_10_3389_fneur_2022_1010328 crossref_primary_10_1007_s10072_024_07365_3 crossref_primary_10_1007_s13760_024_02472_6 crossref_primary_10_1016_j_brs_2020_02_027 crossref_primary_10_1162_jocn_a_01698 crossref_primary_10_3390_diagnostics9040155 crossref_primary_10_1016_j_brs_2020_02_029 crossref_primary_10_1016_j_cortex_2017_08_035 crossref_primary_10_1038_s41598_023_45512_6 crossref_primary_10_1152_jn_00345_2018 crossref_primary_10_1016_j_brainres_2022_147999 crossref_primary_10_1038_s41467_025_58095_9 crossref_primary_10_1515_bmt_2016_0240 crossref_primary_10_3390_ijms19082243 crossref_primary_10_1186_s13063_021_05873_7 crossref_primary_10_1007_s00221_020_05777_z crossref_primary_10_1080_17588928_2018_1484723 crossref_primary_10_7554_eLife_65099 crossref_primary_10_1002_hbm_23545 crossref_primary_10_1016_j_clinph_2017_04_006 crossref_primary_10_3389_fncir_2016_00090 crossref_primary_10_1016_j_brs_2025_03_017 crossref_primary_10_1016_j_neuron_2015_07_032 crossref_primary_10_3233_JAD_220012 crossref_primary_10_1016_j_yebeh_2020_107479 crossref_primary_10_17816_ACEN_2017_1_6171 crossref_primary_10_3389_fnhum_2023_1227194 crossref_primary_10_3390_brainsci11091196 crossref_primary_10_1007_s12264_025_01407_2 crossref_primary_10_1038_s41598_022_05397_3 crossref_primary_10_3389_fncir_2016_00098 crossref_primary_10_1016_j_neuroimage_2021_118781 crossref_primary_10_1016_j_neulet_2017_01_065 crossref_primary_10_1038_s41598_021_97876_2 crossref_primary_10_1093_cercor_bhz159 crossref_primary_10_1016_j_clinph_2017_04_021 crossref_primary_10_1186_s12938_025_01393_6 crossref_primary_10_1007_s10548_020_00800_6 crossref_primary_10_1097_WNP_0000000000000902 crossref_primary_10_3390_brainsci11091118 crossref_primary_10_1016_j_cortex_2021_11_015 crossref_primary_10_3389_fnagi_2017_00263 crossref_primary_10_3390_brainsci11091114 crossref_primary_10_1016_j_neucli_2023_102894 crossref_primary_10_1016_j_sleep_2016_05_010 crossref_primary_10_3390_brainsci11050648 crossref_primary_10_1016_j_brs_2018_12_972 crossref_primary_10_1016_j_neurobiolaging_2024_12_008 crossref_primary_10_1093_cercor_bhz145 crossref_primary_10_1523_JNEUROSCI_1669_23_2024 crossref_primary_10_1016_j_sleep_2019_01_007 crossref_primary_10_1038_s41386_018_0040_x crossref_primary_10_1016_j_jns_2018_07_022 crossref_primary_10_1038_s41598_018_28487_7 crossref_primary_10_1016_j_clinph_2021_09_013 crossref_primary_10_1136_bmjopen_2021_053476 crossref_primary_10_1063_5_0259735 crossref_primary_10_1016_j_clinph_2017_10_008 crossref_primary_10_1007_s00221_021_06069_w crossref_primary_10_1016_j_neures_2025_02_003 crossref_primary_10_1016_j_brainres_2022_147959 crossref_primary_10_1038_s41598_022_17463_x crossref_primary_10_1080_00222895_2018_1446125 crossref_primary_10_1016_j_ijpsycho_2018_04_004 crossref_primary_10_1155_2018_4593095 crossref_primary_10_1038_s41598_024_59232_y crossref_primary_10_1016_j_neurom_2021_12_007 crossref_primary_10_1016_j_ijpsycho_2021_08_008 crossref_primary_10_1016_j_neuropsychologia_2022_108348 crossref_primary_10_3389_fnins_2018_00954 crossref_primary_10_3390_biomimetics7030127 crossref_primary_10_1152_jn_00476_2021 crossref_primary_10_1152_jn_00554_2019 crossref_primary_10_1159_000480053 crossref_primary_10_1016_j_heliyon_2024_e35834 crossref_primary_10_1016_j_clinph_2023_10_017 crossref_primary_10_3233_JAD_210661 crossref_primary_10_1155_2018_5036184 crossref_primary_10_1155_2021_6695530 crossref_primary_10_1007_s00221_015_4527_y crossref_primary_10_1016_j_neurobiolaging_2018_12_018 crossref_primary_10_1111_ejn_15867 crossref_primary_10_1016_j_clinph_2019_07_025 crossref_primary_10_1016_j_clinph_2021_01_032 crossref_primary_10_1016_j_clinph_2019_07_027 crossref_primary_10_3390_neurolint16030043 crossref_primary_10_1002_hbm_24829 crossref_primary_10_1016_j_clinph_2023_04_014 crossref_primary_10_1016_j_nicl_2019_101706 crossref_primary_10_3389_fneur_2022_880161 crossref_primary_10_1186_s12883_022_02977_8 crossref_primary_10_1155_2017_2038573 crossref_primary_10_1155_2018_9875326 crossref_primary_10_1016_j_clinph_2023_04_010 crossref_primary_10_1155_2020_3069639 crossref_primary_10_3389_fneur_2024_1376782 crossref_primary_10_1016_j_jns_2020_117271 crossref_primary_10_3390_brainsci14070695 crossref_primary_10_1016_j_clinph_2021_01_024 crossref_primary_10_1016_j_brainres_2019_146394 crossref_primary_10_3389_fnins_2021_644951 crossref_primary_10_1111_ejn_15753 crossref_primary_10_1007_s00221_015_4398_2 crossref_primary_10_1155_2016_5716179 crossref_primary_10_1016_j_clinph_2023_04_003 crossref_primary_10_1016_j_brs_2025_09_008 crossref_primary_10_3389_fnhum_2022_920538 crossref_primary_10_3390_toxins13060392 crossref_primary_10_1007_s10072_023_07268_9 crossref_primary_10_1016_j_clinph_2023_12_128 crossref_primary_10_1016_j_clinph_2023_12_129 crossref_primary_10_3389_fnins_2022_788538 crossref_primary_10_1007_s00421_025_05939_3 crossref_primary_10_1016_j_neulet_2017_10_059 crossref_primary_10_1016_j_neucli_2025_103091 crossref_primary_10_3389_fnagi_2020_00129 crossref_primary_10_3389_fnins_2016_00157 crossref_primary_10_1016_j_clinph_2021_01_011 crossref_primary_10_1002_brb3_1702 crossref_primary_10_1007_s00415_023_11669_3 crossref_primary_10_1097_WNP_0000000000000954 crossref_primary_10_3390_brainsci11091203 crossref_primary_10_1111_acps_12565 crossref_primary_10_3390_jcm10132875 crossref_primary_10_1016_j_brainres_2016_06_012 crossref_primary_10_1016_j_jneumeth_2021_109430 crossref_primary_10_1186_s40337_023_00852_6 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107562 crossref_primary_10_3389_fnagi_2017_00189 crossref_primary_10_1016_j_brs_2015_12_005 crossref_primary_10_1002_wcs_1469 crossref_primary_10_1016_j_clinph_2019_11_005 crossref_primary_10_1113_JP285562 crossref_primary_10_1016_j_medj_2021_12_001 crossref_primary_10_3233_NRE_201606 crossref_primary_10_3390_biomedicines11051464 crossref_primary_10_1016_j_clinph_2017_06_001 crossref_primary_10_3389_fnhum_2022_920526 crossref_primary_10_1007_s00221_021_06257_8 crossref_primary_10_1016_j_neuroimage_2019_116486 crossref_primary_10_1016_j_pnpbp_2017_07_005 crossref_primary_10_1016_j_neuroimage_2025_121301 crossref_primary_10_1523_JNEUROSCI_0181_25_2025 crossref_primary_10_1017_cjn_2018_379 crossref_primary_10_1016_j_jsps_2020_06_016 crossref_primary_10_1007_s10548_016_0486_2 crossref_primary_10_1152_jn_00068_2017 crossref_primary_10_3390_jpm11060536 crossref_primary_10_1016_j_clinph_2016_05_363 crossref_primary_10_1002_brb3_1734 crossref_primary_10_1007_s12274_022_4119_7 crossref_primary_10_1139_apnm_2018_0077 crossref_primary_10_1038_srep14122 crossref_primary_10_1016_j_sleep_2019_01_052 crossref_primary_10_1089_cap_2015_0166 crossref_primary_10_1152_jn_00237_2024 crossref_primary_10_1088_1741_2552_ac7894 crossref_primary_10_3389_fncom_2022_946514 crossref_primary_10_1016_j_clinph_2015_03_002 crossref_primary_10_1016_j_jenvp_2023_102111 crossref_primary_10_1016_j_neuroscience_2017_06_014 crossref_primary_10_3390_jcm12010092 crossref_primary_10_1016_j_neuroimage_2022_119419 crossref_primary_10_1038_s41598_022_14271_1 crossref_primary_10_1038_s41598_021_91040_6 crossref_primary_10_4103_1673_5374_221143 crossref_primary_10_1016_j_jchemneu_2018_02_006 crossref_primary_10_1176_appi_ajp_2020_20071050 crossref_primary_10_1186_s12984_025_01663_3 crossref_primary_10_1016_j_jneumeth_2017_06_020 crossref_primary_10_1007_s10072_024_07611_8 crossref_primary_10_1016_j_neubiorev_2024_105862 crossref_primary_10_1016_j_neuroimage_2025_121306 crossref_primary_10_1016_j_brs_2019_03_009 crossref_primary_10_1186_s12917_018_1620_z crossref_primary_10_1016_j_clinph_2019_11_057 crossref_primary_10_1007_s00221_022_06496_3 crossref_primary_10_1007_s12311_022_01416_1 crossref_primary_10_1002_ana_27103 crossref_primary_10_1016_j_bbr_2023_114661 crossref_primary_10_1016_j_clinph_2017_06_037 crossref_primary_10_1111_ejn_70161 crossref_primary_10_1177_02692155211072189 crossref_primary_10_3389_fnagi_2021_595288 crossref_primary_10_1177_15459683221119761 crossref_primary_10_3389_fncir_2022_973561 crossref_primary_10_1016_j_clinph_2021_07_024 crossref_primary_10_1016_j_clinph_2021_07_019 crossref_primary_10_1002_adfm_202200691 crossref_primary_10_1080_24740527_2017_1422116 crossref_primary_10_3389_fnins_2021_800436 crossref_primary_10_1016_j_parkreldis_2019_07_022 crossref_primary_10_3390_bioengineering10101118 crossref_primary_10_1016_j_neucli_2020_05_001 crossref_primary_10_1016_j_neucli_2020_05_002 crossref_primary_10_1155_2019_9278270 crossref_primary_10_3389_fncir_2016_00073 crossref_primary_10_1093_cercor_bhae452 crossref_primary_10_1016_j_pnpbp_2018_11_004 crossref_primary_10_3390_biomedicines12050955 crossref_primary_10_1080_2050571X_2024_2378613 crossref_primary_10_1111_ejn_14488 crossref_primary_10_1113_JP284204 crossref_primary_10_3390_app12042125 crossref_primary_10_3390_brainsci10110806 crossref_primary_10_1371_journal_pone_0233843 crossref_primary_10_3389_fnhum_2019_00349 crossref_primary_10_1007_s11011_016_9848_4 crossref_primary_10_1152_jn_00705_2019 crossref_primary_10_1016_j_neuroimage_2020_117082 crossref_primary_10_1016_j_neubiorev_2023_105532 crossref_primary_10_3389_fnagi_2022_909733 crossref_primary_10_1016_j_neubiorev_2024_105811 crossref_primary_10_1016_j_bioactmat_2024_08_025 crossref_primary_10_3389_fnins_2024_1415257 crossref_primary_10_1111_acps_70014 crossref_primary_10_3727_036012921X16321477053863 crossref_primary_10_3389_fonc_2018_00572 crossref_primary_10_1038_s41598_017_03547_6 crossref_primary_10_3389_fnhum_2019_00359 crossref_primary_10_3390_brainsci9080200 crossref_primary_10_1109_TNSRE_2020_3038406 crossref_primary_10_1007_s00221_020_05857_0 crossref_primary_10_3389_fnagi_2021_693611 crossref_primary_10_7705_biomedica_7040 crossref_primary_10_1016_j_neulet_2016_02_047 crossref_primary_10_3390_bios13020220 crossref_primary_10_1371_journal_pone_0272114 crossref_primary_10_1177_15459683251351883 crossref_primary_10_1503_jpn_180064 crossref_primary_10_1016_j_cnp_2025_06_003 crossref_primary_10_3233_JAD_190986 crossref_primary_10_1111_ejn_13178 crossref_primary_10_1016_j_actbio_2021_08_010 crossref_primary_10_1016_j_clinph_2017_08_002 crossref_primary_10_1080_09593985_2020_1802797 crossref_primary_10_3389_fneur_2024_1427142 crossref_primary_10_3390_jcm14113633 crossref_primary_10_3389_fnhum_2021_640642 crossref_primary_10_1016_j_cortex_2023_10_013 crossref_primary_10_1152_jn_00718_2020 crossref_primary_10_1016_j_msksp_2024_103204 crossref_primary_10_3233_RNN_231371 crossref_primary_10_1002_hbm_25383 crossref_primary_10_3389_fpsyg_2022_814633 crossref_primary_10_3389_fnagi_2023_1119508 crossref_primary_10_1038_s41598_022_13091_7 crossref_primary_10_1016_j_brainres_2022_148057 crossref_primary_10_1007_s11065_020_09456_2 crossref_primary_10_1111_ner_12589 crossref_primary_10_1371_journal_pone_0299611 crossref_primary_10_1016_j_jad_2021_03_010 crossref_primary_10_1002_mus_26780 crossref_primary_10_1007_s00415_024_12398_x crossref_primary_10_1016_j_jelekin_2023_102782 crossref_primary_10_1249_MSS_0000000000002839 crossref_primary_10_1093_cercor_bhae096 crossref_primary_10_1016_j_neuroscience_2024_12_018 crossref_primary_10_1007_s40675_024_00282_z crossref_primary_10_1109_TNSRE_2017_2779135 crossref_primary_10_3389_fnhum_2020_00250 crossref_primary_10_1186_s40814_022_01223_9 crossref_primary_10_1097_WNP_0000000000000532 crossref_primary_10_3389_fneur_2022_903648 crossref_primary_10_1007_s10548_024_01071_1 crossref_primary_10_2169_internalmedicine_4667_24 crossref_primary_10_1111_ejn_15389 crossref_primary_10_1016_j_clinph_2018_01_066 crossref_primary_10_1016_j_brs_2022_09_013 crossref_primary_10_1016_j_smrv_2022_101735 crossref_primary_10_1097_j_pain_0000000000003301 crossref_primary_10_4103_nsn_nsn_199_21 crossref_primary_10_3390_brainsci14030253 crossref_primary_10_1155_2019_5618303 crossref_primary_10_1371_journal_pone_0271283 crossref_primary_10_1109_TNSRE_2023_3338226 crossref_primary_10_1111_cns_70280 crossref_primary_10_7554_eLife_92088_3 crossref_primary_10_1007_s00221_023_06575_z crossref_primary_10_1002_da_23100 crossref_primary_10_1111_bcp_15232 crossref_primary_10_1016_j_brs_2019_05_017 crossref_primary_10_3390_biomedicines11030958 crossref_primary_10_1177_15500594211052815 crossref_primary_10_1152_jn_00143_2023 crossref_primary_10_3389_fneur_2017_00380 crossref_primary_10_2340_jrm_v56_41021 crossref_primary_10_1016_j_neulet_2023_137293 crossref_primary_10_1016_j_bpsc_2022_12_005 crossref_primary_10_1016_j_eplepsyres_2016_06_004 crossref_primary_10_1016_j_jad_2024_03_061 crossref_primary_10_1002_hbm_26679 crossref_primary_10_3389_fnhum_2017_00309 crossref_primary_10_1016_j_neuroscience_2019_07_038 crossref_primary_10_1016_j_heliyon_2024_e37121 crossref_primary_10_3389_fnins_2021_688569 crossref_primary_10_1002_acn3_51039 crossref_primary_10_1016_j_techsoc_2025_102890 crossref_primary_10_3390_s23084175 crossref_primary_10_7554_eLife_50371 crossref_primary_10_1161_STROKEAHA_123_042924 crossref_primary_10_1007_s00701_017_3417_4 crossref_primary_10_3389_fnhum_2021_787487 crossref_primary_10_1016_j_jneumeth_2019_108521 crossref_primary_10_3389_fnins_2022_1041932 crossref_primary_10_1016_j_neuroimage_2018_11_036 crossref_primary_10_1111_ejn_16257 crossref_primary_10_1111_ejn_14077 crossref_primary_10_3389_fpsyt_2024_1401008 crossref_primary_10_3389_fcell_2022_989471 crossref_primary_10_1155_2021_8966584 crossref_primary_10_1002_hbm_23158 crossref_primary_10_1016_j_brs_2019_05_015 crossref_primary_10_3389_fnhum_2021_753259 crossref_primary_10_1016_j_neuroimage_2017_03_001 crossref_primary_10_1186_s12984_024_01535_2 crossref_primary_10_1088_1361_6560_ad6f69 crossref_primary_10_3389_fpsyt_2022_768288 crossref_primary_10_1016_j_neurom_2023_11_006 crossref_primary_10_1016_j_wneu_2018_03_136 crossref_primary_10_1007_s40122_025_00770_2 crossref_primary_10_14814_phy2_70223 crossref_primary_10_1016_j_brs_2024_10_004 crossref_primary_10_1097_WNP_0000000000000568 crossref_primary_10_1371_journal_pone_0252965 crossref_primary_10_1016_j_clinph_2017_08_023 crossref_primary_10_1088_1741_2552_ad5404 crossref_primary_10_3389_fonc_2022_1084404 crossref_primary_10_1016_j_ejpn_2023_10_004 crossref_primary_10_3390_s23104661 crossref_primary_10_1016_j_psychsport_2018_08_006 crossref_primary_10_3390_ctn9020020 crossref_primary_10_1371_journal_pone_0302829 crossref_primary_10_1016_j_neucli_2017_03_002 crossref_primary_10_1080_21641846_2025_2513807 crossref_primary_10_1088_1741_2552_ad9ee0 crossref_primary_10_1111_ene_13105 crossref_primary_10_1111_psyp_14312 crossref_primary_10_1155_2019_2184398 crossref_primary_10_3389_fnhum_2022_800349 crossref_primary_10_1027_0269_8803_a000331 crossref_primary_10_1111_ejn_14097 crossref_primary_10_1177_21677026221103136 crossref_primary_10_1016_j_neuropsychologia_2024_109008 crossref_primary_10_1186_s40673_017_0064_8 crossref_primary_10_1007_s00429_022_02574_y crossref_primary_10_1016_j_clinph_2021_05_009 crossref_primary_10_3389_fnhum_2020_00202 crossref_primary_10_1007_s00421_025_05904_0 crossref_primary_10_1007_s00787_022_02021_7 crossref_primary_10_3389_fneur_2019_00364 crossref_primary_10_3390_healthcare4030067 crossref_primary_10_1016_j_clinph_2020_10_028 crossref_primary_10_1016_j_brainres_2017_12_007 crossref_primary_10_3389_fnins_2022_851463 |
| Cites_doi | 10.1152/jn.00900.2002 10.1523/JNEUROSCI.4792-11.2012 10.1007/s002210050806 10.1016/S1388-2457(02)00026-3 10.1002/hbm.22306 10.1007/s00221-006-0402-1 10.1002/ana.410180514 10.1111/j.1469-7793.1998.249bz.x 10.1001/archpsyc.56.4.315 10.1093/brain/120.5.839 10.1097/WNR.0b013e328349433a 10.1016/j.jns.2009.10.014 10.1007/s00415-013-7072-2 10.1016/j.clinph.2009.04.023 10.1113/jphysiol.1996.sp021734 10.1111/j.1460-9568.2007.05603.x 10.1016/0168-5597(91)90053-Z 10.1136/jnnp.2003.022236 10.2169/internalmedicine.31.1084 10.1371/journal.pone.0092354 10.1126/science.1117256 10.1016/j.brainres.2012.04.045 10.1002/ana.410290413 10.1007/BF00230207 10.1523/JNEUROSCI.1636-08.2008 10.1002/ana.410370208 10.1111/j.1469-7793.1998.181bi.x 10.1016/j.brs.2008.06.006 10.1007/BF00833916 10.1002/ana.410340108 10.1093/brain/110.5.1191 10.1016/0168-5597(92)90076-N 10.1152/jn.00071.2012 10.1016/j.clinph.2011.05.023 10.1097/WNP.0b013e31829dda6b 10.1016/j.neuroimage.2013.05.018 10.1016/j.brs.2009.09.001 10.1016/j.brainres.2012.07.043 10.1002/da.21969 10.1016/S1388-2457(99)00060-7 10.1016/S0006-3223(01)01153-2 10.1152/jn.00383.2003 10.1007/BF02454139 10.1016/S0140-6736(85)92413-4 10.1016/j.clinph.2011.11.037 10.1007/s00221-004-2134-4 10.1016/S0987-7053(01)00260-X 10.1038/nn0901-948 10.1016/j.biopsych.2009.04.034 10.1016/j.neuroimage.2013.03.061 10.1007/s002210000543 10.1016/j.neuron.2004.12.033 10.1016/S0925-4927(01)00121-4 10.1007/978-3-211-35205-2_11 10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M 10.1038/285227a0 10.1111/j.1460-9568.2011.07674.x 10.1113/jphysiol.1997.sp021905 10.1002/hbm.20360 10.1152/jn.00781.2010 10.1016/0168-5597(91)90072-6 10.1016/0168-5597(92)90053-E 10.1016/0924-980X(96)95664-7 10.1016/j.clinph.2003.10.032 10.1007/s10072-012-0950-z 10.1093/cercor/bhs304 10.1016/j.cub.2011.05.049 10.1136/jnnp.2004.055806 10.1016/j.brs.2011.01.002 10.1113/jphysiol.1990.sp018104 10.1111/j.1460-9568.2011.07924.x 10.1016/j.neuroimage.2005.05.013 10.1016/j.jns.2009.04.003 10.1016/S1567-424X(09)70205-3 10.1371/journal.pone.0086794 10.1227/NEU.0b013e3182889e01 10.1016/0013-4694(88)90191-5 10.1016/S1567-424X(09)70395-2 10.1007/978-3-7091-9160-6_37 10.1111/j.1600-0404.1988.tb03660.x 10.1016/j.neucli.2010.01.001 10.1016/j.clinph.2010.09.022 10.1016/j.neuroimage.2014.04.065 10.1016/0013-4694(95)00213-8 10.1016/0006-8993(87)90203-4 10.1111/j.1600-0404.1995.tb00151.x 10.1113/jphysiol.2011.216978 10.1016/j.clinph.2008.12.003 10.1016/j.clinph.2009.11.078 10.1113/jphysiol.1995.sp020898 10.3171/2013.11.JNS13952 10.1016/j.pain.2013.03.016 10.1016/j.brs.2012.09.008 10.1016/0168-5597(92)90081-L 10.1002/mus.23430 10.1016/j.brs.2008.11.002 10.1136/jnnp.52.2.213 10.1016/j.clinph.2012.09.018 10.1016/j.neuroimage.2010.07.061 10.1523/JNEUROSCI.0598-07.2007 10.1016/j.nec.2011.01.002 10.1016/0168-5597(91)90011-L 10.1113/jphysiol.1967.sp008273 10.1016/0304-3940(90)90321-Y 10.1038/npp.2008.22 10.1016/j.biopsych.2008.10.029 10.1038/npp.2008.233 10.1016/j.clinph.2004.03.006 10.1016/j.clinph.2014.05.021 10.1113/jphysiol.1986.sp016190 10.1017/S0317167100040476 10.1523/JNEUROSCI.0445-09.2009 10.1113/jphysiol.2009.179101 10.1016/j.neuroimage.2004.09.048 10.1002/hbm.10159 10.1212/WNL.52.3.529 10.1097/00004691-200208000-00006 10.1016/S0006-3223(00)00785-X 10.1016/j.clinph.2013.07.004 10.1016/j.brs.2012.02.003 10.1097/00004691-200007000-00005 10.1016/j.jneumeth.2013.07.016 10.1098/rspb.1998.0328 10.1371/journal.pone.0003069 10.1038/npp.2008.211 10.36076/ppj.2014/17/53 10.1161/01.STR.28.1.110 10.1016/0013-4694(85)91094-6 10.1111/ejn.12069 10.1016/j.neulet.2010.04.059 10.1016/j.clinph.2008.05.031 10.1016/S0028-3932(98)00096-7 10.1016/S1474-4422(10)70054-5 10.1002/hbm.22300 10.1007/PL00005641 10.1212/01.WNL.0000147296.97980.CA 10.1111/j.1469-8986.2011.01218.x 10.1097/00006123-198701000-00033 10.1152/jn.2000.83.3.1426 10.1113/jphysiol.2005.092155 10.1002/ana.20521 10.1093/cercor/bhs147 10.1007/s002210050878 10.1016/j.ejpain.2010.08.002 10.1523/JNEUROSCI.17-09-03178.1997 10.1111/j.1460-9568.2006.04605.x 10.1016/0168-5597(91)90019-T 10.1016/S1388-2457(02)00144-X 10.1016/S1388-2457(01)00471-0 10.1038/nn.3422 10.1016/0006-8993(75)90364-9 10.1016/S1474-4422(03)00321-1 10.1176/appi.ajp.2008.07111733 10.4088/JCP.v66n1205 10.1002/(SICI)1097-4598(199705)20:5<570::AID-MUS5>3.0.CO;2-6 10.1006/nimg.2001.0918 10.1212/WNL.44.4.735 10.1113/jphysiol.1989.sp017626 10.1002/hbm.20006 10.1007/s10548-009-0123-4 10.1007/s002210050919 10.1007/s10548-009-0083-8 10.1016/j.clinph.2009.02.003 10.1016/S1385-299X(99)00055-0 10.1016/0168-5597(92)90115-R 10.1016/j.clinph.2012.05.001 10.1523/JNEUROSCI.4714-13.2014 10.1016/j.clinph.2006.05.006 10.1097/00124509-200409000-00007 10.1136/jnnp.2007.135327 10.1016/S0304-3940(00)01616-5 10.1007/s002210050938 10.1007/s12311-011-0329-3 10.1016/j.nicl.2014.03.004 10.3109/10253890.2014.905533 10.1097/00001756-199510020-00008 10.1016/j.clinph.2009.08.016 10.1097/00001756-200109170-00041 10.1016/0168-5597(91)90105-7 10.1002/hbm.20608 10.1016/j.jneumeth.2007.06.030 10.1016/S1567-424X(09)70453-2 10.1097/WNR.0b013e328011b89a 10.1007/BF00228638 10.1093/brain/115.6.1947 10.1002/ana.410370603 10.1016/j.clinph.2013.06.187 10.1177/1545968311423110 10.1113/jphysiol.1993.sp019467 10.1523/JNEUROSCI.5089-13.2014 10.1097/WCO.0000000000000071 10.1152/jn.01230.2004 10.1097/00006324-200305000-00010 10.1136/jnnp.54.7.618 10.1006/nimg.2001.0849 10.1016/j.clinph.2013.08.015 10.1371/journal.pone.0060358 10.1016/j.neuroscience.2008.01.043 10.1007/s00221-006-0551-2 10.1016/j.brainresrev.2006.01.008 10.1152/jn.00640.2010 10.1152/jn.00172.2010 10.1523/JNEUROSCI.2320-07.2007 10.1111/j.1460-9568.2004.03277.x 10.1113/jphysiol.1992.sp019243 10.1152/jn.2001.86.4.1983 10.1113/jphysiol.2008.152793 10.1016/S1388-2457(01)00633-2 10.1007/BF00229634 10.1016/0013-4694(86)90145-8 10.1152/jn.00387.2013 10.1016/j.neuroimage.2013.04.067 10.1212/01.wnl.0000325481.61471.f0 10.1016/j.pain.2012.04.009 10.1002/da.20027 10.1007/s00415-004-0545-6 10.1093/neuonc/nou007 10.1007/s00221-002-1234-2 10.1016/j.tics.2008.09.004 10.1007/s00221-006-0548-x 10.1016/j.clinph.2006.05.030 10.1016/j.clinph.2005.10.029 10.1016/s1388-2457(02)00331-0 10.1159/000116617 10.1093/brain/121.3.437 10.1016/j.brs.2012.07.003 10.1016/0168-5597(94)90077-9 10.1016/S1388-2457(98)00027-3 10.1016/j.clinph.2007.07.006 10.1097/00004691-199807000-00002 10.1113/jphysiol.2002.030122 10.1212/01.wnl.0000247138.85330.88 10.1016/0013-4694(94)90029-9 10.1016/j.neuron.2007.06.026 10.1093/brain/122.2.265 10.1016/j.pain.2011.01.034 10.1007/s002210100722 10.1016/j.clinph.2010.12.034 10.1007/s00221-012-3117-5 10.1007/s00221-010-2293-4 10.1016/S1388-2457(01)00721-0 10.1016/j.brs.2014.02.004 10.1016/j.neucli.2010.01.006 10.1016/j.brainres.2004.06.009 10.1016/S0304-3940(99)00574-1 10.1093/brain/awg273 10.1016/S0028-3932(00)00130-5 10.1113/jphysiol.2002.023317 10.1016/0168-5597(89)90030-0 10.1016/j.brainresbull.2005.11.003 10.1016/j.pain.2005.12.001 10.1016/j.clinph.2004.11.008 10.1111/j.1469-8749.2000.tb00076.x 10.1016/B978-0-444-53497-2.00035-8 10.1016/0140-6736(92)91679-3 10.1016/j.eplepsyres.2013.04.001 10.1113/jphysiol.2003.044313 10.1113/jphysiol.2007.142059 10.1016/0168-5597(89)90036-1 10.1016/j.brs.2008.07.002 10.1371/journal.pone.0026113 10.1113/jphysiol.1993.sp019864 10.1111/j.1749-6632.1992.tb49632.x 10.1007/s002219900224 10.1016/j.clinph.2012.07.005 10.1016/j.brs.2014.01.004 10.1152/jn.91046.2008 10.1016/j.clinph.2012.07.004 10.1093/cercor/bhn201 10.1016/j.clinph.2009.07.035 10.1113/jphysiol.2005.084954 10.1007/s002210100862 10.1152/jn.00360.2006 10.1007/BF00229631 10.3389/fnhum.2012.00352 10.1152/jn.00782.2009 10.1212/WNL.48.5.1406 10.1016/0168-5597(93)90086-5 10.1212/WNL.41.5.697 10.1016/j.clinph.2004.02.005 10.1016/S0140-6736(96)01219-6 10.1111/j.1469-7793.1999.0591t.x 10.1016/S0893-133X(02)00355-X 10.1097/00006123-198701000-00022 10.1016/j.brs.2008.09.006 10.3389/fnhum.2013.00687 10.1007/s002210100863 10.1179/1743132812Y.0000000045 10.1093/brain/awl002 10.1016/S0140-6736(82)90670-5 10.1113/jphysiol.1995.sp020704 10.1007/s00221-003-1502-9 10.1016/j.tins.2014.08.003 10.1111/j.1600-0404.1994.tb02650.x 10.1113/jphysiol.1990.sp018103 10.1016/S1361-8415(98)80008-X 10.1016/0168-5597(91)90002-F 10.1242/jeb.115.1.105 10.1016/j.clinph.2010.04.014 10.1093/brain/110.5.1173 10.1113/jphysiol.1991.sp018738 10.1016/S1388-2457(01)00523-5 10.1016/0013-4694(71)90188-X 10.1002/mus.880131207 10.1016/S1388-2457(00)00513-7 10.1371/journal.pone.0010281 10.1016/j.clinph.2009.01.004 10.1177/1550059413513723 10.1016/j.clinph.2007.07.005 10.1016/j.jpain.2010.02.006 10.1136/jnnp.57.1.108 10.1016/0006-8993(94)91026-X 10.1007/s10548-013-0277-y 10.1007/s004150050215 10.1007/BF02513307 10.1113/jphysiol.1939.sp003798 10.1016/j.brs.2010.09.004 10.1111/j.1469-7793.1998.625bq.x 10.1016/0168-5597(91)90077-B 10.1016/0006-8993(88)90491-X 10.1007/s00221-006-0365-2 10.1016/j.jpain.2011.05.004 10.1016/j.biopsych.2012.08.020 10.1016/j.pain.2011.05.033 10.1016/S0149-7634(98)00048-7 10.1016/0924-980X(96)95150-4 10.1002/j.1532-2149.2012.00150.x 10.1016/j.clinph.2012.12.049 10.1016/j.brs.2014.02.009 10.1016/j.jns.2004.08.008 10.1113/jphysiol.2006.114025 10.3171/JNS-07/09/0555 10.1016/j.neubiorev.2010.06.005 10.1152/jn.01140.2005 10.1016/j.clinph.2009.03.001 10.1113/jphysiol.2008.156596 10.1038/nn.3751 10.1016/S0028-3932(98)00093-1 10.1093/brain/75.4.510 10.1176/jnp.12.3.376 10.1136/jnnp.49.3.251 10.1002/mus.880131102 10.1016/0304-3940(93)90401-6 10.1016/j.brs.2010.06.002 10.1159/000116396 10.1177/1073858410390225 10.1016/j.clinph.2006.03.025 10.1113/jphysiol.2014.274316 10.1093/cercor/bhm239 10.3109/02699052.2014.920524 10.1016/0168-5597(93)90095-7 10.1016/0168-5597(89)90039-7 10.1016/j.clinph.2012.01.010 10.1016/S0079-6123(08)61603-9 10.1016/j.neuroimage.2010.07.056 10.1016/0168-5597(92)90094-R 10.1007/s00221-001-0988-2 10.1515/revneuro-2013-0019 10.1007/s00221-009-1723-7 10.1016/0924-980X(95)00264-L 10.1016/j.jneumeth.2012.05.014 10.1007/BF00227284 10.1016/j.clinph.2003.12.025 10.1038/35036239 10.1016/S0924-980X(97)96017-3 10.1152/jn.1998.80.6.2870 10.1523/JNEUROSCI.0703-04.2004 10.1016/0168-5597(92)90048-G 10.1093/brain/117.4.847 10.1016/0022-510X(93)90102-5 10.1046/j.1460-9568.2003.02858.x 10.1016/S1388-2457(99)00103-0 10.1111/j.1469-7793.2001.0307l.x 10.1016/j.clinph.2013.09.011 10.1152/jn.00796.2011 10.1016/j.pain.2008.10.009 10.1113/jphysiol.2003.045674 10.1088/0031-9155/59/1/203 10.1152/jn.1965.28.3.560 10.1088/1741-2560/11/5/056013 10.1002/ana.410400306 10.1016/j.clinph.2013.11.038 10.1111/j.1469-7793.1999.0895p.x 10.1016/S0006-3223(00)01039-8 10.1111/j.1469-7793.2001.01047.x 10.1093/brain/122.9.1731 10.1016/j.brs.2010.01.001 10.4103/0028-3886.72183 10.1016/j.brs.2010.09.008 10.1002/ana.20651 10.1080/09602011.2011.562689 10.3928/00485713-20140609-05 10.1016/j.jad.2006.06.027 10.1016/j.clinph.2007.12.022 10.1212/WNL.45.2.303 10.1113/jphysiol.2001.013094 10.1179/1743132811Y.0000000045 10.1016/j.clinph.2007.09.124 10.1097/WNP.0000000000000057 10.1016/S0006-8993(98)00505-8 10.1016/j.clinph.2006.06.712 10.1016/j.clinph.2013.08.001 10.1016/j.clinph.2009.11.016 10.1136/jnnp.51.8.1069 10.1152/jn.1954.17.4.345 10.3109/15622970903170835 10.1212/WNL.48.5.1398 10.1016/j.clinph.2005.10.011 10.1016/0006-8993(92)91256-E 10.1152/jn.00390.2013 10.1113/jphysiol.1993.sp019912 10.1016/j.neulet.2003.11.037 10.1016/S1388-2457(03)00320-1 10.1016/j.neubiorev.2013.06.014 10.1097/00006123-198701000-00035 10.1152/jn.00950.2002 10.1016/j.clinph.2012.04.014 10.1136/jnnp.2006.105056 10.1016/0168-5597(93)90116-7 10.1097/00006123-198701000-00024 10.1002/(SICI)1097-4598(199705)20:5<535::AID-MUS1>3.0.CO;2-A 10.1016/j.clinph.2006.09.023 10.1016/0013-4694(76)90151-6 10.1016/j.jns.2013.06.005 10.1111/j.1600-0404.1991.tb05003.x 10.1136/jnnp.52.9.1025 10.1016/j.clinph.2007.05.062 10.1016/j.clinph.2003.10.009 10.1097/00001756-199711100-00024 10.1016/j.neucli.2009.10.004 10.1006/nimg.2000.0701 10.1111/j.1460-9568.2009.06864.x 10.1113/jphysiol.1993.sp019732 10.1097/00004691-199104000-00007 10.1016/0006-8993(95)00113-5 10.1212/01.wnl.0000242731.10074.3c 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1007/s00221-003-1455-z 10.1016/j.neucli.2004.02.001 10.1212/WNL.0b013e3182919029 10.1162/089892903770007344 10.1111/ejn.12505 10.1016/j.clinph.2013.01.011 10.1152/jn.1974.37.6.1338 10.1097/00001756-200003200-00010 10.1146/annurev.bioeng.9.061206.133100 10.1113/jphysiol.2002.029454 10.1371/journal.pone.0057069 10.1016/S0006-8993(00)01975-2 10.1016/S0140-6736(84)92683-7 10.1111/j.1469-7793.1998.607bn.x 10.1016/j.clinph.2011.03.025 10.1136/jnnp-2012-304019 10.1016/0168-5597(93)90073-X 10.1016/j.clineuro.2009.11.005 10.1097/AJP.0b013e31820d2733 10.1093/brain/123.5.992 10.1093/brain/123.3.572 10.1111/j.1469-7793.2000.t01-1-00503.x 10.1177/0333102413515340 10.1212/WNL.43.1_Part_1.186 10.1016/S1388-2457(02)00018-4 10.1136/adc.63.11.1347 10.1113/jphysiol.1987.sp016621 10.1016/S1388-2457(99)00141-8 10.1113/jphysiol.2006.104901 10.1002/ana.410360410 |
| ContentType | Journal Article |
| Copyright | 2015 International Federation of Clinical Neurophysiology. International Federation of Clinical Neurophysiology. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved. |
| Copyright_xml | – notice: 2015 International Federation of Clinical Neurophysiology. – notice: International Federation of Clinical Neurophysiology. – notice: Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.clinph.2015.02.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-8952 |
| EndPage | 1107 |
| ExternalDocumentID | PMC6350257 25797650 10_1016_j_clinph_2015_02_001 1_s2_0_S1388245715000711 S1388245715000711 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 NS999999 |
| GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IHE J1W K-O KOM L7B M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSZ T5K UAP UNMZH UV1 VH1 X7M XOL XPP Z5R ZGI ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG VQA 9DU AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c586t-4b861713a1bf17b6baf311a18a4618e09161d2958fe48eda93d9c560a0e813353 |
| ISICitedReferencesCount | 2110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353785000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1388-2457 1872-8952 |
| IngestDate | Tue Sep 30 16:51:42 EDT 2025 Sun Sep 28 02:49:33 EDT 2025 Mon Jul 21 05:57:10 EDT 2025 Sat Nov 29 07:02:23 EST 2025 Tue Nov 18 22:13:32 EST 2025 Sun Feb 23 10:20:06 EST 2025 Tue Oct 14 19:30:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Transcranial magnetic stimulation TMS measures Excitability threshold Non-invasive stimulation Human cortex Clinical neurophysiology |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c586t-4b861713a1bf17b6baf311a18a4618e09161d2958fe48eda93d9c560a0e813353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6350257 |
| PMID | 25797650 |
| PQID | 1694705308 |
| PQPubID | 23479 |
| PageCount | 37 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6350257 proquest_miscellaneous_1694705308 pubmed_primary_25797650 crossref_citationtrail_10_1016_j_clinph_2015_02_001 crossref_primary_10_1016_j_clinph_2015_02_001 elsevier_clinicalkeyesjournals_1_s2_0_S1388245715000711 elsevier_clinicalkey_doi_10_1016_j_clinph_2015_02_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-01 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Clinical neurophysiology |
| PublicationTitleAlternate | Clin Neurophysiol |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Patton, Amassian (b1585) 1954; 17 Bikmullina, Bäumer, Zittel, Munchau (b0160) 2009; 120 Dayan, Censor, Buch, Sandrini, Cohen (b0385) 2013; 16 Cash, Ziemann, Murray, Thickbroom (b0245) 2010; 103 Najib, Bashir, Edwards, Rotenberg, Pascual-Leone (b1445) 2011; 22 Bikmullina, Kičić, Carlson, Nikulin (b0165) 2009; 194 Wahl, Lauterbach-Soon, Hattingen, Jung, Singer, Volz (b2315) 2007; 27 Veniero, Bortoletto, Miniussi (b2275) 2013; 6 Chen, Corwell, Hallett (b0275) 1999; 129 Watanabe, Hanajima, Shirota, Ohminami, Tsutsumi, Terao (b2370) 2014; 35 André-Obadia, Peyron, Mertens, Mauguiere, Laurent, Garcia-Larrea (b0055) 2006; 117 Plassman, Gandevia (b1680) 1989; 52 Caspers, Speckmann, Lehmenkuhler (b0250) 1980; 54 Fitzgerald, Hoy, McQueen, Maller, Herring, Segrave (b0605) 2009; 34 Lopez-Alonso, Cheeran, Rio-Rodriguez, Fernandez-Del-Olmo (b1160) 2014; 7 Fuhr, Agostino, Hallett (b0640) 1991; 81 Siebner, Rothwell (b1960) 2003; 148 Ugawa (b2225) 1999; 51 Di Lazzaro, Restuccia, Molinari, Leggio, Nardone, Fogli (b0410) 1994; 57 Mazevet, Pierrot-Deseilligny, Rothwell (b1300) 1996; 109 Wolters, Sandbrink, Schlottmann, Kunesch, Stefan, Cohen (b2405) 2003; 89 Rösler, Niraula, Strack, Zdunczyk, Schilt, Savolainen (b1795) 2014; 125 Deng, Lisanby, Peterchev (b0395) 2014; 125 Lipton, Dodick, Silberstein, Saper, Aurora, Pearlman (b1150) 2010; 9 Mills, Murray (b1345) 1985; 18 Van Der Werf, Paus (b2250) 2006; 175 Nitsche, Paulus (b1510) 2011; 29 Di Lazzaro, Oliviero, Saturno, Pilato, Insola, Mazzone (b0445) 2001; 138 Iezzi, Suppa, Conte (b0850) 2011; 33 Picht, Krieg, Sollmann, Rösler, Niraula, Neuvonen (b1650) 2013; 72 Rothwell, Thompson, Day, Dick, Kachi, Cowan (b1870) 1987; 110 Schlaepfer, George, Mayberg (b1925) 2010; 11 Melgari, Pasqualetti, Pauri, Rossini (b1320) 2008; 3 Rossi, Hallett, Rossini, Pascual-Leone (b1810) 2009; 120 Saitoh, Hirayama, Kishima, Oshino, Hirata, Kato (b1885) 2006; 99 Hess, Mills, Murray (b0810) 1987; 388 Ziemann, Tergau, Wassermann, Wischer, Hildebrandt, Paulus (b2435) 1998; 511 Ugawa, Rothwell, Day, Thompson, Marsden (b2175) 1989; 52 André-Obadia, Mertens, Gueguen, Peyron, Garcia-Larrea (b0060) 2008; 71 Tomberg, Caramia (b2130) 1991; 81 Inghilleri, Berardelli, Marchetti, Manfredi (b0880) 1996; 109 Ravnborg, Blinkenberg, Dahl (b1730) 1991; 81 Kernell, Chien-Ping (b0945) 1967; 191 Hirayama, Saitoh, Kishima, Shimokawa, Oshino, Hirata (b0820) 2006; 122 Quartarone, Bagnato, Rizzo, Siebner, Dattola, Scalfari (b1710) 2003; 126 Miniussi, Cappa, Cohen, Floel, Fregni, Nitsche (b1365) 2008; 4 Matsumoto, Octaviana, Terao, Hanajima, Yugeta, Hamada (b1245) 2009; 284 Terao, Ugawa, Sakai, Uesaka, Kohara, Kanazawa (b2070) 1994; 89 Nikulin, Kičić, Kähkönen, Ilmoniemi (b1495) 2003; 18 Lioumis, Kičić, Savolainen, Makela, Kähkönen (b1155) 2009; 30 Komssi, Kähkönen (b1005) 2006; 52 Day, Rothwell, Thompson, Dick, Cowan, Berardelli (b0375) 1987; 110 Rotem, Neef, Neef, Agudelo-Toro, Rakhmilevitch, Paulus (b1860) 2014; 9 Kammer, Beck, Thielscher, Laubis-Herrmann, Topka (b0935) 2001; 112 Pötter-Nerger, Fischer, Mastroeni, Groppa, Deuschl, Volkmann (b1690) 2009; 102 Rossi, Cappa, Babiloni, Pasqualetti, Miniussi, Carducci (b1800) 2001; 4 Pierrot-Deseilligny, Burke (b1665) 2012 Veniero, Maioli, Miniussi (b2265) 2010; 3 Khedr, Kotb, Kamel, Ahmed, Sadek, Rothwell (b0950) 2005; 76 Esser, Hill, Tononi (b0525) 2005; 94 Garcia Dominguez, Radhu, Farzan, Daskalakis (b0665) 2014; 9 Bäumer, Bock, Koch, Lange, Rothwell, Siebner (b0125) 2006; 572 Cicinelli, Traversa, Bassi, Scivoletto, Rossini (b0300) 1997; 20 Kähkönen, Wilenius (b0925) 2007; 166 Ugawa, Kohara, Shimpo, Mannen (b2180) 1990; 30 Lefaucheur, Ménard-Lefaucheur, Goujon, Keravel, Nguyen (b1110) 2011; 12 Incesu, Secil, Tokucoglu, Gurgor, Özdemirkiran, Akhan (b0870) 2013; 124 Misra, Kalita, Bhoi (b1395) 2013; 260 Boyd, Rothwell, Cowan, Webb, Morley, Asselman (b0195) 1986; 49 Nakatani-Enomoto, Hanajima, Hamada, Terao, Matusmoto, Shirota (b1455) 2012; 123 Orth, Rothwell (b1545) 2004; 115 Maccabee, Lipitz, Desudchit, Golub, Nitti, Bania (b1175) 1996; 101 Ranck (b1725) 1975; 98 Di Lazzaro, Dileone, Pilato, Capone, Musumeci, Ranieri (b0480) 2011; 105 Pascual-Leone, Rubio, Pallardo, Catala (b1580) 1996; 348 Ragazzoni, Pirulli, Veniero, Feurra, Cincotta, Giovannelli (b1720) 2013; 8 Merabet, Theoret, Pascual-Leone (b1325) 2003; 80 George, Wassermann, Williams, Callahan, Ketter, Basser (b0680) 1995; 6 Matsumoto, Hanajima, Shirota, Hamada, Terao, Ohminami (b1250) 2010; 121 Stewart, Walsh, Rothwell (b2030) 2001; 39 Massimini, Ferrarelli, Sarasso, Tononi (b1230) 2012; 150 Roshan, Paradiso, Chen (b1790) 2003; 151 Ugawa, Uesaka, Terao, Hanajima, Kanazawa (b2215) 1995; 37 Nitsche, Paulus (b1505) 2000; 527 Civardi, Cantello, Asselman, Rothwell (b0315) 2001; 14 Awiszus (b0085) 2011; 4 Claus (b0325) 1990; 13 Mills, Murray (b1350) 1986; 63 Lemon, Baker, Davis, Kirkwood, Maier, Yang (b1130) 1998; 218 Van Der Werf, Sadikot, Strafella, Paus (b2255) 2006; 175 Nielsen, Petersen, Ballegaard (b1490) 1995; 484 Pascual-Leone, Gates, Dhuna (b1565) 1991; 41 Stefan, Kunesch, Cohen, Benecke, Classen (b2005) 2000; 123 Burke, Hicks, Stephen (b0210) 1990; 425 Rossini, Marciani, Caramia, Hassan, Cracco (b1820) 1986 Limoge, Robert, Stanley (b1145) 1999; 23 Goto, Saitoh, Hashimoto, Hirata, Kishima, Oshino (b0705) 2008; 140 Di Lazzaro, Pilato, Oliviero, Dileone, Saturno, Mazzone (b0470) 2006; 96 Fietzek, Heinen, Berweck, Maute, Hufschmidt, Schulte-Monting (b0580) 2000; 42 Peinemann, Reimer, Loer, Quartarone, Munchau, Conrad (b1615) 2004; 115 Zangen, Roth, Voller, Hallett (b2420) 2005; 116 Padberg, Zwanzger, Keck, Kathmann, Mikhaiel, Ella (b1560) 2002; 27 Ni, Charab, Gunraj, Nelson, Udupa, Yeh (b1470) 2011; 105 Chu (b0295) 1989; 74 Di Lazzaro, Oliviero, Profice, Ferrara, Saturno, Pilato (b0420) 1999; 110 Julkunen, Säisänen, Könönen, Vanninen, Kälviäinen, Mervaala (b0905) 2013; 106 Gamboa, Antal, Moliadze, Paulus (b0650) 2010; 204 Ferreri, Ponzo, Vollero, Guerra, Di Pino, Petrichella (b0570) 2014; 32 Oliveri, Rossini, Cicinelli, Traversa, Pasqualetti, Filippi (b1525) 2000; 5 Boroojerdi, Foltys, Krings, Spetzger, Thron, Topper (b0185) 1999; 110 Li, Nahas, Anderson, Kozel, George (b1135) 2004; 20 Filmer, Dux, Mattingley (b0585) 2014; 37 Tarapore, Findlay, Honma, Mizuiri, Houde, Berger (b2060) 2013; 82 Tsubokawa, Katayama, Yamamoto, Hirayama, Koyama (b2150) 1991; 52 Wolters, Schmidt, Schramm, Zeller, Naumann, Kunesch (b2410) 2005; 565 Silbert, Patterson, Pevcic, Windnagel, Thickbroom (b1970) 2013; 124 Amassian, Cracco, Maccabee, Cracco, Rudell, Eberle (b0035) 1989; 74 Duron, Khater-Boidin (b0505) 1988; 306 Traversa, Cicinelli, Pasqualetti, Filippi, Rossini (b2140) 1998; 803 Hanajima, Ugawa, Terao, Enomoto, Shiio, Mochizuki (b0765) 2002; 538 Gilio, Rizzo, Siebner, Rothwell (b0690) 2003; 551 Kundu, Johnson, Postle (b1045) 2014; 112 Fisher (b0595) 2002; 113 Bashir, Perez, Horvath, Pascual-Leone (b0120) 2013; 30 Abbruzzese, Schenone, Scramuzza (b0005) 1993; 89 Rossini, Caramia, Zarola (b1830) 1987; 20 Di Lazzaro, Rothwell, Oliviero, Profice, Insola, Mazzone (b0425) 1999; 129 Rusu, Murakami, Ziemann, Triesch (b1880) 2014; 7 Haug, Schönle, Knobloch, Köhne (b0835) 1992; 85 Reutens, Puce, Berkovic (b1745) 1993; 43 Walsh, Cowey (b2325) 2000; 1 Edgley, Eyre, Lemon, Miller (b0515) 1997; 120 Pierrot-Deseilligny, Bussel, Held, Katz (b1660) 1976; 40 Barr, Farzan, Rajji, Voineskos, Blumberger, Arenovich (b0115) 2013; 73 Johnson, Baig, Ramsey, Lisanby, Avery, McDonald (b0895) 2013; 6 Pinto, Chen (b1670) 2001; 140 Maccabee, Amassian, Eberle, Cracco (b1170) 1993; 460 Ridding, Inzelberg, Rothwell (b1755) 1995; 37 Davey, Smith, Savic, Maskill, Ellaway, Frankel (b0370) 1999; 127 Doeltgen, Ridding (b0495) 2011; 122 Cincotta, Giovannelli, Borgheresi, Balestrieri, Toscani, Zaccara (b0310) 2010; 3 Matsumoto, Tokushige, Hashida, Hanajima, Terao, Ugawa (b1295) 2013; 6 Barker, Jalinous, Freeston (b0105) 1985; 1 Rossini, Barker, Berardelli, Caramia, Caruso, Cracco (b1850) 1994; 91 Tobimatsu, Sun, Fukui, Kato (b2105) 1998; 245 Paus, Sipila, Strafella (b1605) 2001; 86 Salvador, Silva, Basser, Miranda (b1900) 2011; 122 Frantseva, Cui, Farzan, Chinta, Perez Velazquez, Daskalakis (b0615) 2014; 24 Vernet, Bashir, Yoo, Perez, Najib, Pascual-Leone (b2280) 2013; 37 Lang, Harms, Weyh, Lemon, Paulus, Rothwell (b1060) 2006; 117 Di Lazzaro, Restuccia, Oliviero, Profice, Ferrara, Insola (b0415) 1998; 508 Fisher, Nakamura, Bestmann, Rothwell, Bostock (b0590) 2002; 143 Han, Kim, Lim (b0755) 2001; 112 Thut, Veniero, Romei, Miniussi, Schyns, Gross (b2100) 2011; 21 Maertens de Noordhout, Pepin, Schoenen, Delwaide (b1190) 1992; 85 Ziemann (b2460) 2011; 17 Peurala, Muller-Dahlhaus, Arai, Ziemann (b1635) 2008; 119 Amassian, Cracco, Maccabee, Cracco (b0040) 1992; 85 Stefan, Kunesch, Benecke, Cohen, Classen (b2010) 2002; 543 Ugawa, Kanazawa (b2230) 1999; 110 Arai, Lu, Ugawa, Ziemann (b0075) 2012; 220 Brasil-Neto, Cammarota, Valls-Solé, Pascual-Leone, Hallett, Cohen (b0200) 1995; 92 Ferreri, Vecchio, Ponzo, Pasqualetti, Rossini (b0575) 2014; 35 Pleger, Janssen, Schwenkreis, Volker, Maier, Tegenthoff (b1685) 2004; 356 Westin, Bassi, Lisanby, Luber (b2390) 2014; 125 Komssi, Kähkönen, Ilmoniemi (b1000) 2004; 21 Casula, Tarantino, Basso, Arcara, Marino, Toffolo (b0255) 2014; 98 Herbsman, Avery, Ramsey, Holtzheimer, Wadjik, Hardaway (b0790) 2009; 66 Ferbert, Priori, Rothwell, Day, Colebatch, Marsden (b0545) 1992; 453 Casarotto, Romero Lauro, Bellina, Casali, Rosanova, Pigorini (b0235) 2010; 5 Triggs, Calvanio, Macdonell, Cros, Chiappa (b2145) 1994; 636 Boroojerdi, Battaglia, Muellbacher, Cohen (b0190) 2001; 112 Casarotto, Määttä, Herukka, Pigorini, Napolitani, Gosseries (b0240) 2011; 22 Ferreri, Pasqualetti, Määttä, Ponzo, Ferrarelli, Tononi (b0555) 2011; 54 Classen, Wolters, Stefan, Wycislo, Sandbrink, Schmidt (b0320) 2004; 57 Desmedt (b0400) 1983; 39 Matsumoto, Hanajima, Terao, Yugeta, Hamada, Shirota (b1260) 2010; 290 Stewart, Walsh, Frith, Rothwell (b2025) 2001; 13 Kähkönen, Wilenius, Komssi, Ilmoniemi (b0915) 2004; 115 Ahdab, Ayache, Brugières, Goujon, Lefaucheur (b0015) 2010; 40 Hamada, Terao, Hanajima, Shirota, Nakatani-Enomoto, Furubayashi (b0740) 2008; 586 Henn Di Lazzaro (10.1016/j.clinph.2015.02.001_b0420) 1999; 110 Hamada (10.1016/j.clinph.2015.02.001_b0745) 2009; 587 Matsumoto (10.1016/j.clinph.2015.02.001_b1285) 2013; 124 Lefaucheur (10.1016/j.clinph.2015.02.001_b1120) 2013; 116 Virtanen (10.1016/j.clinph.2015.02.001_b2290) 1999; 37 Rossini (10.1016/j.clinph.2015.02.001_b1845) 1992; 5 Kähkönen (10.1016/j.clinph.2015.02.001_b0910) 2001; 14 Mhalla (10.1016/j.clinph.2015.02.001_b1340) 2011; 152 Kundu (10.1016/j.clinph.2015.02.001_b1045) 2014; 112 Ugawa (10.1016/j.clinph.2015.02.001_b2175) 1989; 52 George (10.1016/j.clinph.2015.02.001_b0680) 1995; 6 Huber (10.1016/j.clinph.2015.02.001_b0845) 2008; 28 Traversa (10.1016/j.clinph.2015.02.001_b2135) 1997; 28 Kujirai (10.1016/j.clinph.2015.02.001_b1035) 1993; 471 Chen (10.1016/j.clinph.2015.02.001_b0275) 1999; 129 Fisher (10.1016/j.clinph.2015.02.001_b0590) 2002; 143 Seyal (10.1016/j.clinph.2015.02.001_b1930) 1992; 85 Cracco (10.1016/j.clinph.2015.02.001_b0355) 1989; 74 Plassman (10.1016/j.clinph.2015.02.001_b1680) 1989; 52 Rossini (10.1016/j.clinph.2015.02.001_b1855) 1995; 676 Stagg (10.1016/j.clinph.2015.02.001_b1995) 2011; 1 Merton (10.1016/j.clinph.2015.02.001_b1330) 1980; 285 Fisher (10.1016/j.clinph.2015.02.001_b0595) 2002; 113 Amassian (10.1016/j.clinph.2015.02.001_b0035) 1989; 74 Furby (10.1016/j.clinph.2015.02.001_b0645) 1992; 239 Person (10.1016/j.clinph.2015.02.001_b1620) 1978; 18 McAllister (10.1016/j.clinph.2015.02.001_b1305) 2009; 120 Caspers (10.1016/j.clinph.2015.02.001_b0250) 1980; 54 Melgari (10.1016/j.clinph.2015.02.001_b1320) 2008; 3 Ugawa (10.1016/j.clinph.2015.02.001_b2180) 1990; 30 Ugawa (10.1016/j.clinph.2015.02.001_b2200) 1993; 160 Herbsman (10.1016/j.clinph.2015.02.001_b0790) 2009; 66 Iezzi (10.1016/j.clinph.2015.02.001_b0850) 2011; 33 Pfurtscheller (10.1016/j.clinph.2015.02.001_b1640) 1999; 110 Claus (10.1016/j.clinph.2015.02.001_b0325) 1990; 13 Peurala (10.1016/j.clinph.2015.02.001_b1635) 2008; 119 Ziemann (10.1016/j.clinph.2015.02.001_b2435) 1998; 511 Ziemann (10.1016/j.clinph.2015.02.001_b2455) 2008; 1 Kimiskidis (10.1016/j.clinph.2015.02.001_b0965) 2006; 173 Reato (10.1016/j.clinph.2015.02.001_b1735) 2013; 7 Ghezzi (10.1016/j.clinph.2015.02.001_b0685) 1991; 84 Groppa (10.1016/j.clinph.2015.02.001_b0715) 2012; 123 Matsumoto (10.1016/j.clinph.2015.02.001_b1270) 2010; 3 de Jesus (10.1016/j.clinph.2015.02.001_b0390) 2014; 125 Di Lazzaro (10.1016/j.clinph.2015.02.001_b0490) 2014; 592 Ziemann (10.1016/j.clinph.2015.02.001_b2465) 2014 Fuggetta (10.1016/j.clinph.2015.02.001_b0635) 2005; 27 Stefan (10.1016/j.clinph.2015.02.001_b2005) 2000; 123 Di Lazzaro (10.1016/j.clinph.2015.02.001_b0470) 2006; 96 Massimini (10.1016/j.clinph.2015.02.001_b1230) 2012; 150 Pascual-Leone (10.1016/j.clinph.2015.02.001_b1575) 1994; 117 Chen (10.1016/j.clinph.2015.02.001_b0265) 1997; 48 Short (10.1016/j.clinph.2015.02.001_b1945) 2011; 152 Terao (10.1016/j.clinph.2015.02.001_b2080) 2002; 19 Rossi (10.1016/j.clinph.2015.02.001_b1800) 2001; 4 Cicinelli (10.1016/j.clinph.2015.02.001_b0305) 2000; 11 O’Reardon (10.1016/j.clinph.2015.02.001_b1540) 2005; 66 Nakamura (10.1016/j.clinph.2015.02.001_b1450) 1997; 498 Rosenkranz (10.1016/j.clinph.2015.02.001_b1785) 2006; 23 Peinemann (10.1016/j.clinph.2015.02.001_b1610) 2000; 296 Fuhr (10.1016/j.clinph.2015.02.001_b0640) 1991; 81 Bergmann (10.1016/j.clinph.2015.02.001_b0150) 2012; 32 Fregni (10.1016/j.clinph.2015.02.001_b0630) 2011; 15 Komssi (10.1016/j.clinph.2015.02.001_b1000) 2004; 21 Wolters (10.1016/j.clinph.2015.02.001_b2410) 2005; 565 Di Lazzaro (10.1016/j.clinph.2015.02.001_b0415) 1998; 508 Mills (10.1016/j.clinph.2015.02.001_b1360) 1997; 20 Suzuki (10.1016/j.clinph.2015.02.001_b2040) 2012; 1473 Shafi (10.1016/j.clinph.2015.02.001_b1935) 2014; 27 Di Lazzaro (10.1016/j.clinph.2015.02.001_b0480) 2011; 105 Lefaucheur (10.1016/j.clinph.2015.02.001_b1070) 2001; 12 Ettinger (10.1016/j.clinph.2015.02.001_b0535) 1998; 2 Hallett (10.1016/j.clinph.2015.02.001_b0735) 2007; 55 Peinemann (10.1016/j.clinph.2015.02.001_b1615) 2004; 115 Chen (10.1016/j.clinph.2015.02.001_b0270) 1998; 80 Matsumoto (10.1016/j.clinph.2015.02.001_b1260) 2010; 290 Dayan (10.1016/j.clinph.2015.02.001_b0385) 2013; 16 Komssi (10.1016/j.clinph.2015.02.001_b1005) 2006; 52 Amassian (10.1016/j.clinph.2015.02.001_b0045) 1998; 15 Richter (10.1016/j.clinph.2015.02.001_b1750) 2013; 8 Herwig (10.1016/j.clinph.2015.02.001_b0805) 2002; 113 Maegaki (10.1016/j.clinph.2015.02.001_b1185) 1997; 105 Werhahn (10.1016/j.clinph.2015.02.001_b2375) 1994; 93 Garassus (10.1016/j.clinph.2015.02.001_b0660) 1993; 33 Freeman (10.1016/j.clinph.2015.02.001_b0620) 1971; 31 Lefaucheur (10.1016/j.clinph.2015.02.001_b1125) 2014; 125 Adrian (10.1016/j.clinph.2015.02.001_b0010) 1939; 97 Terao (10.1016/j.clinph.2015.02.001_b2075) 2000; 859 Casula (10.1016/j.clinph.2015.02.001_b0255) 2014; 98 Filmer (10.1016/j.clinph.2015.02.001_b0585) 2014; 37 Qi (10.1016/j.clinph.2015.02.001_b1705) 2011; 4 Borckardt (10.1016/j.clinph.2015.02.001_b0180) 2011; 27 Chen (10.1016/j.clinph.2015.02.001_b0280) 1999; 128 Amassian (10.1016/j.clinph.2015.02.001_b0040) 1992; 85 Kimiskidis (10.1016/j.clinph.2015.02.001_b0960) 2005; 163 Talelli (10.1016/j.clinph.2015.02.001_b2055) 2007; 118 Reutens (10.1016/j.clinph.2015.02.001_b1745) 1993; 43 Barker (10.1016/j.clinph.2015.02.001_b0110) 1987; 20 Pitcher (10.1016/j.clinph.2015.02.001_b1675) 2003; 546 Davey (10.1016/j.clinph.2015.02.001_b0370) 1999; 127 Han (10.1016/j.clinph.2015.02.001_b0755) 2001; 112 Matsumoto (10.1016/j.clinph.2015.02.001_b1245) 2009; 284 Stetkarova (10.1016/j.clinph.2015.02.001_b2020) 2013; 124 Kimiskidis (10.1016/j.clinph.2015.02.001_b0970) 2014; 27 Ni (10.1016/j.clinph.2015.02.001_b1485) 2014; 34 Ziemann (10.1016/j.clinph.2015.02.001_b2430) 1996; 496 Talairach (10.1016/j.clinph.2015.02.001_b2050) 1988 Mylius (10.1016/j.clinph.2015.02.001_b1435) 2013; 78 Li (10.1016/j.clinph.2015.02.001_b1135) 2004; 20 Herwig (10.1016/j.clinph.2015.02.001_b0800) 2001; 50 Stewart (10.1016/j.clinph.2015.02.001_b2025) 2001; 13 Sparing (10.1016/j.clinph.2015.02.001_b1990) 2008; 29 André-Obadia (10.1016/j.clinph.2015.02.001_b0055) 2006; 117 Doeltgen (10.1016/j.clinph.2015.02.001_b0495) 2011; 122 Ugawa (10.1016/j.clinph.2015.02.001_b2230) 1999; 110 Wu (10.1016/j.clinph.2015.02.001_b2415) 2012; 208 Ruohonen (10.1016/j.clinph.2015.02.001_b1875) 2010; 40 Barker (10.1016/j.clinph.2015.02.001_b0105) 1985; 1 Komssi (10.1016/j.clinph.2015.02.001_b1010) 2007; 18 Matsumoto (10.1016/j.clinph.2015.02.001_b1255) 2010; 112 Shirota (10.1016/j.clinph.2015.02.001_b1940) 2011; 122 Ziemann (10.1016/j.clinph.2015.02.001_b2460) 2011; 17 Mills (10.1016/j.clinph.2015.02.001_b1345) 1985; 18 Sanger (10.1016/j.clinph.2015.02.001_b1910) 2001; 530 Ugawa (10.1016/j.clinph.2015.02.001_b2165) 1988; 78 Ugawa (10.1016/j.clinph.2015.02.001_b2220) 1996; 101 Keil (10.1016/j.clinph.2015.02.001_b0940) 2014; 111 Henneman (10.1016/j.clinph.2015.02.001_b0775) 1965; 28 Tabaraud (10.1016/j.clinph.2015.02.001_b2045) 1989; 145 Di Lazzaro (10.1016/j.clinph.2015.02.001_b0485) 2013; 7 Bikmullina (10.1016/j.clinph.2015.02.001_b0165) 2009; 194 Van Der Werf (10.1016/j.clinph.2015.02.001_b2255) 2006; 175 Valls-Solé (10.1016/j.clinph.2015.02.001_b2245) 1994; 44 Opitz (10.1016/j.clinph.2015.02.001_b1530) 2013; 81 Wassermann (10.1016/j.clinph.2015.02.001_b2360) 2002; 113 Goldsworthy (10.1016/j.clinph.2015.02.001_b0695) 2012; 123 Ugawa (10.1016/j.clinph.2015.02.001_b2190) 1991; 29 Lefaucheur (10.1016/j.clinph.2015.02.001_b1095) 2006; 67 Rossini (10.1016/j.clinph.2015.02.001_b1820) 1986 Ahmed (10.1016/j.clinph.2015.02.001_b0020) 2011; 33 Vucic (10.1016/j.clinph.2015.02.001_b2295) 2006; 117 Lemon (10.1016/j.clinph.2015.02.001_b1130) 1998; 218 Mueller (10.1016/j.clinph.2015.02.001_b1415) 2014; 17 Bonato (10.1016/j.clinph.2015.02.001_b0170) 2006; 117 Pleger (10.1016/j.clinph.2015.02.001_b1685) 2004; 356 Vernet (10.1016/j.clinph.2015.02.001_b2285) 2014; 125 Ni (10.1016/j.clinph.2015.02.001_b1465) 2009; 19 Civardi (10.1016/j.clinph.2015.02.001_b0315) 2001; 14 Daskalakis (10.1016/j.clinph.2015.02.001_b0365) 2012; 1463 Müller (10.1016/j.clinph.2015.02.001_b1420) 1991; 81 Hosomi (10.1016/j.clinph.2015.02.001_b0825) 2008; 119 Tokimura (10.1016/j.clinph.2015.02.001_b2115) 1996; 103 Henneman (10.1016/j.clinph.2015.02.001_b0780) 1974; 37 Ugawa (10.1016/j.clinph.2015.02.001_b2195) 1992; 115 McDonnell (10.1016/j.clinph.2015.02.001_b1315) 2006; 173 Grossheinrich (10.1016/j.clinph.2015.02.001_b0720) 2009; 65 Tokimura (10.1016/j.clinph.2015.02.001_b2120) 2000; 523 Matsumoto (10.1016/j.clinph.2015.02.001_b1250) 2010; 121 Paus (10.1016/j.clinph.2015.02.001_b1605) 2001; 86 Fitzgerald (10.1016/j.clinph.2015.02.001_b0600) 2006; 117 Edgley (10.1016/j.clinph.2015.02.001_b0515) 1997; 120 Lefaucheur (10.1016/j.clinph.2015.02.001_b1080) 2004; 34 Müller-Dahlhaus (10.1016/j.clinph.2015.02.001_b1425) 2008; 586 Peters (10.1016/j.clinph.2015.02.001_b1630) 2013; 109 Matsumoto (10.1016/j.clinph.2015.02.001_b1240) 2009; 120 Herwig (10.1016/j.clinph.2015.02.001_b0795) 2001; 108 Ridding (10.1016/j.clinph.2015.02.001_b1755) 1995; 37 Arai (10.1016/j.clinph.2015.02.001_b0070) 2007; 118 Haug (10.1016/j.clinph.2015.02.001_b0835) 1992; 85 Devanne (10.1016/j.clinph.2015.02.001_b0405) 1997; 114 Ferrarelli (10.1016/j.clinph.2015.02.001_b0550) 2008; 165 Ziemann (10.1016/j.clinph.2015.02.001_b2445) 2000; 17 Thielscher (10.1016/j.clinph.2015.02.001_b2090) 2011; 54 Bashir (10.1016/j.clinph.2015.02.001_b0120) 2013; 30 Rossini (10.1016/j.clinph.2015.02.001_b1825) 1987; 415 Wahl (10.1016/j.clinph.2015.02.001_b2315) 2007; 27 Amassian (10.1016/j.clinph.2015.02.001_b0030) 1987; 20 Hanajima (10.1016/j.clinph.2015.02.001_b0760) 1998; 509 Duron (10.1016/j.clinph.2015.02.001_b0505) 1988; 306 Julkunen (10.1016/j.clinph.2015.02.001_b0905) 2013; 106 Hess (10.1016/j.clinph.2015.02.001_b0810) 1987; 388 Van Der Werf (10.1016/j.clinph.2015.02.001_b2250) 2006; 175 Kähkönen (10.1016/j.clinph.2015.02.001_b0915) 2004; 115 Rossini (10.1016/j.clinph.2015.02.001_b1835) 1988; 458 Ziemann (10.1016/j.clinph.2015.02.001_b2425) 1996; 40 Baker (10.1016/j.clinph.2015.02.001_b0100) 2003; 550 Taylor (10.1016/j.clinph.2015.02.001_b2065) 2007; 97 Jahansha |
| References_xml | – volume: 34 start-page: 464 year: 2014 end-page: 472 ident: b0340 article-title: Randomized, proof-of-principle clinical trial of active transcranial magnetic stimulation in chronic migraine publication-title: Cephalalgia – volume: 592 start-page: 4115 year: 2014 end-page: 4128 ident: b0490 article-title: Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex publication-title: J Physiol – volume: 30 start-page: 390 year: 2013 end-page: 395 ident: b0120 article-title: Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects publication-title: J Clin Neurophysiol – start-page: 1364 year: 2004 end-page: 1369 ident: b1550 article-title: Optimising the detection of upper motor neuron fuction dysfunction in amyotrophic lateral sclerosis: a transcranial magnetic stimulation study publication-title: J Neurol – volume: 27 start-page: 896 year: 2005 end-page: 908 ident: b0635 article-title: Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study publication-title: Neuroimage – volume: 124 start-page: 1055 year: 2013 end-page: 1067 ident: b1285 article-title: Magnetic-motor-root stimulation: review publication-title: Clin Neurophysiol – volume: 25 start-page: 3461 year: 2007 end-page: 3468 ident: b1410 article-title: Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation publication-title: Eur J Neurosci – volume: 7 start-page: 687 year: 2013 ident: b1735 article-title: Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies publication-title: Front Hum Neurosci – volume: 12 start-page: 376 year: 2000 end-page: 384 ident: b1015 article-title: How the distance from coil to cortex relates to age, motor threshold and possibly the antidepressant response to repetitive transcranial magnetic stimulation publication-title: J Neuropsychiatry Clin Neurosci – volume: 115 start-page: 583 year: 2004 end-page: 588 ident: b0915 article-title: Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation publication-title: Clin Neurophysiol – volume: 37 start-page: 742 year: 2014 end-page: 753 ident: b0585 article-title: Applications of transcranial direct current stimulation for understanding brain function publication-title: Trends Neurosci – volume: 4 start-page: 145 year: 2011 end-page: 151 ident: b0655 article-title: Impact of repetitive theta burst stimulation on motor cortex excitability publication-title: Brain Stimul – volume: 34 start-page: 91 year: 2004 end-page: 95 ident: b1080 article-title: Neuropathic pain controlled for more than a year by monthly sessions of repetitive transcranial magnetic stimulation of the motor cortex publication-title: Neurophysiol Clin – volume: 143 start-page: 240 year: 2002 end-page: 248 ident: b0590 article-title: Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking publication-title: Exp Brain Res – volume: 124 start-page: 1364 year: 2013 end-page: 1372 ident: b1625 article-title: Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation publication-title: Clin Neurophysiol – volume: 85 start-page: 355 year: 1992 end-page: 364 ident: b2240 article-title: Human motor evoked responses to paired transcranial magnetic stimuli publication-title: Electroencephalogr Clin Neurophysiol – volume: 6 start-page: 363 year: 2013 end-page: 370 ident: b1985 article-title: Opposite optimal current flow directions for induction of neuroplasticity and excitation threshold in the human motor cortex publication-title: Brain Stimul – volume: 115 start-page: 112 year: 2004 end-page: 115 ident: b0455 article-title: Direct recording of the output of the motor cortex produced by transcranial magnetic stimulation in a patient with cerebral cortex atrophy publication-title: Clin Neurophysiol – volume: 517 start-page: 591 year: 1999 end-page: 597 ident: b2385 article-title: Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans publication-title: J Physiol (Lond) – volume: 13 start-page: 472 year: 2001 end-page: 478 ident: b2025 article-title: TMS produces two dissociable types of speech disruption publication-title: Neuroimage – volume: 34 start-page: 121 year: 2013 end-page: 122 ident: b1280 article-title: Neurophysiological analysis of the cauda equina in POEMS syndrome publication-title: Neurol Sci – volume: 105 start-page: 2150 year: 2011 end-page: 2156 ident: b0480 article-title: Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation publication-title: J Neurophysiol – volume: 412 start-page: 449 year: 1989 end-page: 473 ident: b0380 article-title: Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses publication-title: J Physiol (Lond) – volume: 81 start-page: 257 year: 1991 end-page: 262 ident: b0640 article-title: Spinal motor neuron excitability during the silent period after cortical stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 339 start-page: 362 year: 1992 end-page: 363 ident: b1740 article-title: Increased cortical excitability in generalised epilepsy demonstrated with transcranial magnetic stimulation publication-title: Lancet – volume: 35 start-page: 516 year: 2011 end-page: 536 ident: b1905 article-title: The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues publication-title: Neurosci Biobehav Rev – volume: 103 start-page: 263 year: 1996 end-page: 272 ident: b2115 article-title: Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex publication-title: Electroencephalogr Clin Neurophysiol – volume: 21 start-page: 154 year: 2004 end-page: 164 ident: b1000 article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation publication-title: Hum Brain Mapp – volume: 112 start-page: 131 year: 2010 end-page: 136 ident: b1255 article-title: Efferent and afferent evoked potentials in patients with adrenomyeloneuropathy publication-title: Clin Neurol Neurosurg – volume: 112 start-page: 54 year: 1990 end-page: 58 ident: b0145 article-title: Descending volley after electrical and magnetic transcranial stimulation in man publication-title: Neurosci Lett – volume: 117 start-page: 847 year: 1994 end-page: 858 ident: b1575 article-title: Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex publication-title: Brain – volume: 218 start-page: 202 year: 1998 end-page: 215 ident: b1130 article-title: The importance of the cortico-motoneuronal system for control of grasp publication-title: Novartis Found Symp – volume: 118 start-page: 1815 year: 2007 end-page: 1823 ident: b2055 article-title: Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation publication-title: Clin Neurophysiol – volume: 81 start-page: 319 year: 1991 end-page: 322 ident: b2130 article-title: Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 33 start-page: 953 year: 2011 end-page: 958 ident: b0020 article-title: Long-term antalgic effects of repetitive transcranial magnetic stimulation of motor cortex and serum beta endorphin in patients with phantom pain publication-title: Neurol Res – volume: 56 start-page: 315 year: 1999 end-page: 320 ident: b0975 article-title: Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study publication-title: Arch Gen Psychiatry – volume: 122 start-page: 1908 year: 2011 end-page: 1923 ident: b1555 article-title: Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex publication-title: Clin Neurophysiol – volume: 123 start-page: 2256 year: 2012 end-page: 2263 ident: b0695 article-title: A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex publication-title: Clin Neurophysiol – volume: 40 start-page: 367 year: 1996 end-page: 378 ident: b2425 article-title: Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study publication-title: Ann Neurol – volume: 114 start-page: 329 year: 1997 end-page: 338 ident: b0405 article-title: Input–output properties and gain changes in the human corticospinal pathway publication-title: Exp brain res – volume: 89 start-page: 131 year: 1993 end-page: 137 ident: b1700 article-title: Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle publication-title: Electroencephalogr Clin Neurophysiol – volume: 89 start-page: 2339 year: 2003 end-page: 2345 ident: b2405 article-title: A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex publication-title: J Neurophysiol – volume: 59 start-page: 560 year: 2002 end-page: 561 ident: b1405 article-title: Antidepressant effects of repetitive transcranial magnetic stimulation in the elderly: correlation between effect size and coil-cortex distance publication-title: Arch Gen Psychiatry – volume: 51 start-page: 65 year: 1999 end-page: 75 ident: b2225 article-title: Stimulation at the foramen magnum level publication-title: Electroencephalogr Clin Neurophysiol Suppl – volume: 75 start-page: 612 year: 2004 end-page: 616 ident: b1085 article-title: Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain publication-title: J Neurol Neurosurg Psychiatry – volume: 1473 start-page: 114 year: 2012 end-page: 123 ident: b2040 article-title: Reciprocal changes in input–output curves of motor evoked potentials while learning motor skills publication-title: Brain Res – volume: 97 start-page: 271 year: 2007 end-page: 276 ident: b2065 article-title: Stimulus waveform influences the efficacy of repetitive transcranial magnetic stimulation publication-title: J Affect Disord – volume: 105 start-page: 102 year: 1997 end-page: 108 ident: b1185 article-title: Magnetic stimulation of the lumbosacral vertebral column in children: normal values and possible sites of stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 13 start-page: 1125 year: 1990 end-page: 1132 ident: b0325 article-title: Central motor conduction: method and normal results publication-title: Muscle Nerve – volume: 17 start-page: 397 year: 2000 end-page: 405 ident: b2445 article-title: I-waves in motor cortex publication-title: J Clin Neurophysiol – volume: 165 start-page: 996 year: 2008 end-page: 1005 ident: b0550 article-title: Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study publication-title: Am J Psychiatry – volume: 28 start-page: 7911 year: 2008 end-page: 7918 ident: b0845 article-title: Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep publication-title: J Neurosci – volume: 54 start-page: 90 year: 2011 end-page: 102 ident: b0555 article-title: Human brain connectivity during single and paired pulse transcranial magnetic stimulation publication-title: Neuroimage – volume: 75 start-page: 510 year: 1952 end-page: 525 ident: b1140 article-title: The cortical representation of motor units publication-title: Brain – volume: 36 start-page: 618 year: 1994 end-page: 624 ident: b2205 article-title: Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans publication-title: Ann Neurol – volume: 42 start-page: 220 year: 2000 end-page: 227 ident: b0580 article-title: Development of the corticospinal system and hand motor function: central conduction times and motor performance tests publication-title: Dev Med Child Neurol – volume: 348 start-page: 233 year: 1996 end-page: 237 ident: b1580 article-title: Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression publication-title: Lancet – volume: 40 start-page: 279 year: 1976 end-page: 287 ident: b1660 article-title: Excitability of human motoneurones after discharge in a conditioning reflex publication-title: Electroencephalogr Clin Neurophysiol – volume: 441 start-page: 57 year: 1991 end-page: 72 ident: b2185 article-title: Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man publication-title: J Physiol (Lond) – volume: 538 start-page: 253 year: 2002 end-page: 261 ident: b0765 article-title: Mechanisms of intracortical I-wave facilitation elicited by paired-pulse magnetic stimulation in humans publication-title: J Physiol – volume: 3 start-page: e3069 year: 2008 ident: b1320 article-title: Muscles in “concert”: study of primary motor cortex upper limb functional topography publication-title: PLoS One – volume: 306 start-page: 495 year: 1988 end-page: 500 ident: b0505 article-title: Activation of motor pathways in neonates at term by percutaneous stimulation of the motor cortex and spinal cord publication-title: C R Acad Sci III – volume: 219 start-page: 297 year: 2013 end-page: 311 ident: b0730 article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations publication-title: J Neurosci Methods – volume: 40 start-page: 27 year: 2010 end-page: 36 ident: b0015 article-title: Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression publication-title: Neurophysiol Clin – volume: 47 start-page: 156 year: 2000 end-page: 157 ident: b1440 article-title: Feasibility and efficacy of left prefrontal rTMS as a maintenance antidepressant publication-title: Biol Psychiatry – volume: 27 start-page: 12132 year: 2007 end-page: 12138 ident: b2315 article-title: Human motor corpus callosum: topography, somatotopy, and link between microstructure and function publication-title: J Neurosci – volume: 45 start-page: 201 year: 2005 end-page: 206 ident: b0840 article-title: Theta burst stimulation of the human motor cortex publication-title: Neuron – volume: 124 start-page: 708 year: 2013 end-page: 712 ident: b1970 article-title: A comparison of relative-frequency and threshold hunting methods to determine stimulus intensity in transcranial magnetic stimulation publication-title: Clin Neurophysiol – volume: 9 start-page: e86794 year: 2014 ident: b1860 article-title: Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields publication-title: PLoS One – volume: 114 start-page: 239 year: 2003 end-page: 247 ident: b0025 article-title: Proximal nerve conduction by high-voltage electrical stimulation in S1 radiculopathies and acquired demyelinating neuropathies publication-title: Clin Neurophysiol – volume: 285 start-page: 227 year: 1980 ident: b1330 article-title: Stimulation of the cerebral cortex in the intact human subject publication-title: Nature – volume: 415 start-page: 211 year: 1987 end-page: 225 ident: b1825 article-title: Central motor tract propagation in man: studies with non-invasive, unifocal, scalp stimulation publication-title: Brain Res – volume: 118 start-page: 2227 year: 2007 end-page: 2233 ident: b0070 article-title: Differences in after-effect between monophasic and biphasic high-frequency rTMS of the human motor cortex publication-title: Clin Neurophysiol – volume: 496 start-page: 873 year: 1996 end-page: 881 ident: b2430 article-title: Interaction between intracortical inhibition and facilitation in human motor cortex publication-title: J Physiol (Lond) – volume: 110 start-page: 1191 year: 1987 end-page: 1209 ident: b0375 article-title: Motor cortex stimulation in intact man. [2] Multiple descending volleys publication-title: Brain – volume: 112 start-page: 593 year: 2001 end-page: 599 ident: b0755 article-title: Optimization of facilitation related to threshold in transcranial magnetic stimulation publication-title: Clin Neurophysiol – volume: 101 start-page: 153 year: 1996 end-page: 166 ident: b1175 article-title: A new method using neuromagnetic stimulation to measure conduction time within the cauda equina publication-title: Electroencephalogr Clin Neurophysiol – volume: 6 start-page: 538 year: 2013 end-page: 540 ident: b1295 article-title: Focal lesion in upper part of brachial plexus can be detected by magnetic cervical motor root stimulation publication-title: Brain Stimul – volume: 458 start-page: 20 year: 1988 end-page: 30 ident: b1835 article-title: Pre-movement facilitation of motor-evoked potentials in man during transcranial stimulation of the central motor pathways publication-title: Brain Res – volume: 12 start-page: 1102 year: 2011 end-page: 1111 ident: b1110 article-title: Predictive value of rTMS in the identification of responders to epidural motor cortex stimulation therapy for pain publication-title: J Pain – volume: 120 start-page: 1003 year: 2009 end-page: 1008 ident: b1400 article-title: Hysteresis effects on the input–output curve of motor evoked potentials publication-title: Clin Neurophysiol – volume: 120 start-page: 1033 year: 2014 end-page: 1041 ident: b1770 article-title: Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol publication-title: J Neurosurg – volume: 28 start-page: 110 year: 1997 end-page: 117 ident: b2135 article-title: Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses publication-title: Stroke – volume: 23 start-page: 1593 year: 2013 end-page: 1605 ident: b0750 article-title: The role of interneuron networks in driving human motor cortical plasticity publication-title: Cereb Cortex – volume: 37 start-page: 155 year: 1997 end-page: 167 ident: b2400 article-title: Segmental conduction times in the motor nervous system publication-title: Electromyogr Clin Neurophysiol – volume: 31 start-page: 246 year: 2014 end-page: 252 ident: b1040 article-title: Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation publication-title: J Clin Neurophysiol. – volume: 3 start-page: 119 year: 2010 end-page: 123 ident: b0310 article-title: Optically tracked neuronavigation increases the stability of hand-held focal coil positioning: evidence from “transcranial” magnetic stimulation-induced electrical field measurements publication-title: Brain Stimul – volume: 82 start-page: 260 year: 2013 end-page: 272 ident: b2060 article-title: Language mapping with navigated repetitive TMS: proof of technique and validation publication-title: Neuroimage – volume: 466 start-page: 521 year: 1993 end-page: 534 ident: b0875 article-title: Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction publication-title: J Physiol – volume: 123 start-page: 1415 year: 2012 end-page: 1421 ident: b1455 article-title: Bidirectional modulation of sensory cortical excitability by quadripulse magnetic stimulation (QPS) in humans publication-title: Clin Neurophysiol – volume: 23 start-page: 822 year: 2006 end-page: 829 ident: b1785 article-title: Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex publication-title: Eur J Neurosci – volume: 15 start-page: 288 year: 1998 end-page: 304 ident: b0045 article-title: Transcranial magnetic stimulation in study of the visual pathway publication-title: J Clin Neurophysiol – volume: 537 start-page: 1047 year: 2001 end-page: 1058 ident: b0440 article-title: Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans publication-title: J Physiol – volume: 79 start-page: 1044 year: 2008 end-page: 1049 ident: b1100 article-title: Motor cortex rTMS in chronic neuropathic pain: pain relief is associated with thermal sensory perception improvement publication-title: J Neurol Neurosurg Psychiatry – volume: 245 start-page: 256 year: 1998 end-page: 261 ident: b2105 article-title: Effects of sex, height and age on motor evoked potentials with magnetic stimulation publication-title: J Neurol – volume: 85 start-page: 397 year: 1992 end-page: 401 ident: b1930 article-title: Suppression of cutaneous perception by magnetic pulse stimulation of the human brain publication-title: Electroencephol Clin Neurophysiol – volume: 116 start-page: 329 year: 2013 end-page: 342 ident: b1590 article-title: Transcranial publication-title: Handb Clin Neurol – volume: 129 start-page: 494 year: 1999 end-page: 499 ident: b0425 article-title: Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex publication-title: Exp Brain Res – volume: 377 start-page: 333 year: 1986 end-page: 347 ident: b0350 article-title: The effect of percutaneous motor cortex stimulation on H reflexes in muscles of the arm and leg in intact man publication-title: J Physiol (Lond) – volume: 191 start-page: 653 year: 1967 end-page: 672 ident: b0945 article-title: Responses of the pyramidal tract to stimulation of the baboon’s motor cortex publication-title: J Physiol – volume: 113 start-page: 24 year: 1997 end-page: 32 ident: b1895 article-title: Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil publication-title: Exp Brain Res – volume: 1 start-page: 5845 year: 2011 end-page: 5855 ident: b1995 article-title: Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex publication-title: J Physiol – volume: 45 start-page: 303 year: 1995 end-page: 306 ident: b1180 article-title: Magnetic cortical stimulation in acute spinal cord injury publication-title: Neurology – volume: 425 start-page: 301 year: 1990 end-page: 320 ident: b0510 article-title: Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey publication-title: J Physiol – volume: 120 start-page: 770 year: 2009 end-page: 775 ident: b1240 article-title: Magnetic lumbosacral motor root stimulation with a flat, large round coil publication-title: Clin Neurophysiol – volume: 3 start-page: 1578 year: 2010 end-page: 1588 ident: b2265 article-title: Potentiation of short-latency cortical responses by high-frequency repetitive transcranial magnetic stimulation publication-title: J Neurophysiol – volume: 37 start-page: 1702 year: 2013 end-page: 1712 ident: b1380 article-title: Modelling non-invasive brain stimulation in cognitive neuroscience publication-title: Neurosci Biobehav Rev – volume: 89 start-page: 616 year: 1993 ident: b0225 article-title: Latency jump of “relaxed” versus “contracted” motor evoked potentials as a marker of cortico-spinal maturation publication-title: Electroencephalogr Clin Neurophysiol – volume: 543 start-page: 699 year: 2002 end-page: 708 ident: b2010 article-title: Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation publication-title: J Physiol – volume: 141 start-page: 121 year: 2001 end-page: 127 ident: b0435 article-title: Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans publication-title: Exp Brain Res – volume: 6 start-page: e26113 year: 2011 ident: b1500 article-title: New insights into Alzheimer’s disease progression: a combined TMS and structural MRI study publication-title: PLoS One – volume: 425 start-page: 283 year: 1990 end-page: 299 ident: b0210 article-title: Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex publication-title: J Physiol – volume: 551 start-page: 563 year: 2003 end-page: 573 ident: b0690 article-title: Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex publication-title: J Physiol – volume: 84 start-page: 503 year: 1991 end-page: 506 ident: b0685 article-title: Study of central and peripheral motor conduction in normal subjects publication-title: Acta Neurol Scand – volume: 265 start-page: 537 year: 1998 end-page: 543 ident: b2320 article-title: Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5 publication-title: Proc Biol Sci – volume: 26 start-page: 344 year: 2012 end-page: 352 ident: b1515 article-title: Neural correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on central pain after stroke publication-title: Neurorehabil Neural Repair – volume: 123 start-page: 858 year: 2012 end-page: 882 ident: b0715 article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee publication-title: Clin Neurophysiol – volume: 128 start-page: 539 year: 1999 end-page: 542 ident: b0280 article-title: Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings publication-title: Exp Brain Res – volume: 4 start-page: 500 year: 2014 end-page: 507 ident: b1535 article-title: Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions publication-title: Neuroimage Clin – volume: 7 start-page: 365 year: 2014 end-page: 371 ident: b0815 article-title: Inter- and intra-individual variability following intermittent theta burst stimulation: implications for rehabilitation and recovery publication-title: Brain Stimul – volume: 39 start-page: 1485 year: 2014 end-page: 1490 ident: b0260 article-title: Task-dependent changes in late inhibitory and disinhibitory actions within the primary motor cortex in humans publication-title: Eur J Neurosci – volume: 117 start-page: 2584 year: 2006 end-page: 2596 ident: b0600 article-title: A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition publication-title: Clin Neurophysiol – volume: 2 start-page: 58 year: 2009 end-page: 80 ident: b1965 article-title: Consensus paper: combining transcranial stimulation with neuroimaging publication-title: Brain Stimul – volume: 586 start-page: 4489 year: 2008 end-page: 4500 ident: b2035 article-title: Theta burst stimulation induces after-effects on contralateral primary motor cortex excitability in humans publication-title: J Physiol – volume: 32 start-page: 243 year: 2012 end-page: 253 ident: b0150 article-title: EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation publication-title: J Neurosci – volume: 175 start-page: 246 year: 2006 end-page: 255 ident: b2255 article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. II. Thalamocortical contributions publication-title: Exp Brain Res – volume: 109 start-page: 158 year: 1996 end-page: 163 ident: b2355 article-title: Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscle publication-title: Exp Brain Res – volume: 523 start-page: 03 year: 2000 end-page: 513 ident: b2120 article-title: Short latency inhibition of human hand motor cortex by somatosensory input from the hand publication-title: J Physiol (Lond) – volume: 27 start-page: 6815 year: 2007 end-page: 6822 ident: b0985 article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex publication-title: J Neurosci – volume: 4 start-page: 326 year: 2008 end-page: 336 ident: b1365 article-title: Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation publication-title: Brain Stimul – volume: 120 start-page: 1724 year: 2009 end-page: 1731 ident: b0130 article-title: Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest–a bifocal TMS study publication-title: Clin Neurophysiol – volume: 119 start-page: 2291 year: 2008 end-page: 2297 ident: b1635 article-title: Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF) publication-title: Clin Neurophysiol – volume: 1 start-page: 164 year: 2008 end-page: 182 ident: b2455 article-title: Consensus: motor cortex plasticity protocols publication-title: Brain Stimul – volume: 8 start-page: e60358 year: 2013 ident: b1750 article-title: Optimal coil orientation for transcranial magnetic stimulation publication-title: PLoS One – volume: 498 start-page: 817 year: 1997 end-page: 823 ident: b1450 article-title: Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans publication-title: J Physiol (Lond) – volume: 119 start-page: 71 year: 2008 end-page: 79 ident: b0900 article-title: Changes in motor cortical excitability induced by high-frequency repetitive transcranial magnetic stimulation of different stimulation durations publication-title: Clin Neurophysiol – volume: 57 start-page: 108 year: 1994 end-page: 110 ident: b0410 article-title: Excitability of the motor cortex to magnetic stimulation in patients with cerebellar lesions publication-title: J Neurol Neurosurg Psychiatry – volume: 9 start-page: 373 year: 2010 end-page: 380 ident: b1150 article-title: Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham controlled trial publication-title: Lancet Neurol – year: 2008 ident: b2365 article-title: The oxford handbook of transcranial stimulation – volume: 80 start-page: 1746 year: 2013 end-page: 1753 ident: b1480 article-title: Increased motor cortical facilitation and decreased inhibition in Parkinson’s Disease publication-title: Neurology – volume: 29 start-page: 135 year: 1989 end-page: 140 ident: b2170 article-title: Physiologic analysis of central motor pathways–simultaneous recording from multiple relaxed muscles publication-title: Eur Neurol – volume: 110 start-page: 1173 year: 1987 end-page: 1190 ident: b1870 article-title: Motor cortex stimulation in intact man. General characteristics of EMG responses in different muscles publication-title: Brain – volume: 309 start-page: 2228 year: 2005 end-page: 2232 ident: b1225 article-title: Breakdown of cortical effective connectivity during sleep publication-title: Science – volume: 45 start-page: 40 year: 2014 end-page: 49 ident: b1915 article-title: Quantifying cortical EEG responses to TMS in (un)consciousness publication-title: Clin EEG Neurosci – volume: 572 start-page: 857 year: 2006 end-page: 868 ident: b0125 article-title: Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways publication-title: J Physiol – volume: 116 start-page: 775 year: 2005 end-page: 779 ident: b2420 article-title: Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil publication-title: Clin Neurophysiol – volume: 94 start-page: 622 year: 2005 end-page: 639 ident: b0525 article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits publication-title: J Neurophysiol – volume: 115 start-page: 1076 year: 2004 end-page: 1082 ident: b1545 article-title: The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse publication-title: Clin Neurophysiol – volume: 160 start-page: 153 year: 1993 end-page: 155 ident: b2200 article-title: Interhemispheric facilitation of the hand area of the human motor cortex publication-title: Neurosci Letts – volume: 15 start-page: 948 year: 2003 end-page: 960 ident: b1765 article-title: Studies in cognition: the problems solved and created by transcranial magnetic stimulation publication-title: J Cogn Neurosci – volume: 18 start-page: 437 year: 1978 end-page: 456 ident: b1620 article-title: Study of orthodromic and antidromic effects of nerve stimulation on single motoneurones of human hand muscles publication-title: Electromyogr Clin Neurophysiol – volume: 530 start-page: 307 year: 2001 end-page: 317 ident: b1910 article-title: Interactions between two different inhibitory systems in the human motor cortex publication-title: J Physiol (Lond) – volume: 23 start-page: 529 year: 1999 end-page: 538 ident: b1145 article-title: Transcutaneous cranial electrical stimulation (TCES): a review 1998 publication-title: Neurosci Biobehav Rev – volume: 27 start-page: 638 year: 2002 end-page: 645 ident: b1560 article-title: Repetitive Transcranial Magnetic Stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity publication-title: Neuropsychopharmacology – volume: 284 start-page: 46 year: 2009 end-page: 51 ident: b1245 article-title: Magnetic stimulation of the cauda equina in the spinal canal with a flat, large round coil publication-title: J Neurol Sci – volume: 44 start-page: 735 year: 1994 end-page: 741 ident: b2245 article-title: Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease publication-title: Neurology – volume: 52 start-page: 529 year: 1999 end-page: 537 ident: b1955 article-title: Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp publication-title: Neurology – volume: 20 start-page: 570 year: 1997 end-page: 576 ident: b1360 article-title: Corticomotor threshold to magnetic stimulation: normal values and repeatability publication-title: Muscle Nerve – volume: 125 start-page: 142 year: 2014 end-page: 147 ident: b2390 article-title: Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications publication-title: Clin Neurophysiol – volume: 109 start-page: 467 year: 1996 end-page: 472 ident: b0880 article-title: Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans publication-title: Exp Brain Res – volume: 60 start-page: 1409 year: 2008 end-page: 1414 ident: b1235 article-title: Clinical signs, neurophysiological evaluation, and medication of spasticity–review publication-title: Brain Nerve – volume: 101 start-page: 247 year: 1996 end-page: 254 ident: b2220 article-title: Clinical utility of magnetic corticospinal tract stimulation at the foramen magnum level publication-title: Electroencephalogr Clin Neurophysiol – volume: 151 start-page: 330 year: 2003 end-page: 337 ident: b1790 article-title: Two phases of short-interval intracortical inhibition publication-title: Exp Brain Res – volume: 98 start-page: 417 year: 1975 end-page: 440 ident: b1725 article-title: Which elements are excited in electrical stimulation of mammalian central nervous system: a review publication-title: Brain Res – volume: 57 start-page: 563 year: 2004 end-page: 569 ident: b0320 article-title: Paired associative stimulation publication-title: Suppl Clin Neurophysiol – volume: 37 start-page: 191 year: 1999 end-page: 198 ident: b0930 article-title: Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship publication-title: Neuropsychologia – volume: 21 start-page: 579 year: 2011 end-page: 601 ident: b1375 article-title: Transcranial magnetic stimulation in cognitive rehabilitation publication-title: Neuropsychol Rehabil – volume: 29 start-page: 418 year: 1991 end-page: 427 ident: b2190 article-title: Percutaneous electrical stimulation of corticospinal pathways at the level of the pyramidal decussation in humans publication-title: Ann Neurol – volume: 22 start-page: 233 year: 2011 end-page: 251 ident: b1445 article-title: Transcranial brain stimulation: clinical applications and future directions publication-title: Neurosurg Clin N Am – volume: 113 start-page: 462 year: 2002 end-page: 468 ident: b0805 article-title: Spatial congruence of neuronavigated transcranial magnetic stimulation and functional neuroimaging publication-title: Clin Neurophysiol – volume: 81 start-page: 238 year: 1991 end-page: 239 ident: b2110 article-title: The measurement of electric field, and the influence of surface charge, in magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 97 start-page: 153 year: 1939 end-page: 199 ident: b0010 article-title: Impulses in the pyramidal tract publication-title: J Physiol – volume: 92 start-page: 66 year: 2004 end-page: 72 ident: b2015 article-title: Modulation of associative human motor cortical plasticity by attention publication-title: J Neurophysiol – volume: 65 start-page: 778 year: 2009 end-page: 784 ident: b0720 article-title: Theta burst stimulation of the prefrontal cortex: safety and impact on cognition, mood, and resting electroencephalogram publication-title: Biol Psychiatry – volume: 107 start-page: 555 year: 2007 end-page: 559 ident: b1890 article-title: Reduction of intractable deafferentation pain due to spinal cord or peripheral lesion by high-frequency repetitive transcranial magnetic stimulation of the primary motor cortex publication-title: J Neurosurg – volume: 14 start-page: 1444 year: 2001 end-page: 1453 ident: b0315 article-title: Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans publication-title: Neuroimage – volume: 24 start-page: 7939 year: 2004 end-page: 7944 ident: b1805 article-title: Age-related functional changes of prefrontal cortex in long-term memory: a repetitive transcranial magnetic stimulation study publication-title: J Neurosci – volume: 125 start-page: 755 year: 2014 end-page: 762 ident: b0390 article-title: Determining optimal rTMS parameters through changes in cortical inhibition publication-title: Clin Neurophysiol – volume: 102 start-page: 3180 year: 2009 end-page: 3190 ident: b1690 article-title: Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs publication-title: J Neurophysiol – volume: 110 start-page: 1641 year: 1999 end-page: 1645 ident: b2230 article-title: Motor-evoked potentials: unusual findings publication-title: Clin Neurophysiol – volume: 85 start-page: 158 year: 1992 end-page: 160 ident: b0835 article-title: Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 49 start-page: 251 year: 1986 end-page: 257 ident: b0195 article-title: A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities publication-title: J Neurol Neurosurg Psychiatry – volume: 331 start-page: 174 year: 2013 end-page: 176 ident: b1290 article-title: A conduction block in sciatic nerves can be detected by magnetic motor root stimulation publication-title: J Neurol Sci – volume: 37 start-page: 703 year: 1995 end-page: 713 ident: b2215 article-title: Magnetic stimulation over the cerebellum in humans publication-title: Ann Neurol – volume: 84 start-page: 1161 year: 2013 end-page: 1170 ident: b2305 article-title: Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights publication-title: J Neurol Neurosurg Psychiatry – volume: 29 start-page: 463 year: 2011 end-page: 492 ident: b1510 article-title: Transcranial direct current stimulation–update 2011 publication-title: Restor Neurol Neurosci – volume: 31 start-page: 1084 year: 1992 end-page: 1087 ident: b1205 article-title: Central motor conductivity in aged people publication-title: Intern Med – volume: 20 start-page: 183 year: 1987 end-page: 191 ident: b1830 article-title: Mechanisms of nervous propagation along central motor pathways: non invasive evaluation in healthy subjects and in patients with neurological disease publication-title: Neurosurgery – volume: 9 start-page: e92354 year: 2014 ident: b0665 article-title: Characterizing long interval cortical inhibition over the time-frequency domain publication-title: PLoS One – volume: 18 start-page: 601 year: 1985 end-page: 605 ident: b1345 article-title: Corticospinal tract conduction time in multiple sclerosis publication-title: Ann Neurol – volume: 173 start-page: 603 year: 2006 end-page: 611 ident: b0965 article-title: Lorazepam-induced effects on silent period and corticomotor excitability publication-title: Exp Brain Res – volume: 81 start-page: 443 year: 1991 end-page: 449 ident: b2125 article-title: Optimal transcranial magnetic stimulation sites for the assessment of motor function publication-title: Electroencephalogr Clin Neurophysiol – volume: 8 start-page: 200 year: 1991 end-page: 202 ident: b0050 article-title: American Electroencephalographic Society guidelines for standard electrode position nomenclature publication-title: J Clin Neurophysiol – volume: 22 start-page: 592 year: 2011 end-page: 597 ident: b0240 article-title: Transcranial magnetic stimulation-evoked EEG/cortical potentials in physiological and pathological aging publication-title: Neuroreport – volume: 356 start-page: 87 year: 2004 end-page: 90 ident: b1685 article-title: Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception in complex regional pain syndrome type I publication-title: Neurosci Lett – volume: 115 start-page: 1519 year: 2004 end-page: 1526 ident: b1615 article-title: Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex publication-title: Clin Neurophysiol – volume: 117 start-page: 1699 year: 2006 end-page: 1707 ident: b0170 article-title: Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study publication-title: Clin Neurophysiol – volume: 54 start-page: 3 year: 1980 end-page: 15 ident: b0250 article-title: Electrogenesis of cortical DC potentials publication-title: Prog Brain Res – volume: 125 start-page: 526 year: 2014 end-page: 536 ident: b1795 article-title: Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity publication-title: Clin Neurophysiol – volume: 86 start-page: 1983 year: 2001 end-page: 1990 ident: b1605 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study publication-title: J Neurophysiol – volume: 122 start-page: 1411 year: 2011 end-page: 1416 ident: b0495 article-title: Low-intensity, short-interval theta burst stimulation modulates excitatory but not inhibitory motor networks publication-title: Clin Neurophysiol – volume: 575 start-page: 657 year: 2006 end-page: 670 ident: b1715 article-title: Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans publication-title: J Physiol – volume: 453 start-page: 525 year: 1992 end-page: 546 ident: b0545 article-title: Interhemispheric inhibition of the human motor cortex publication-title: J Physiol (Lond) – volume: 5 start-page: 25 year: 2000 end-page: 29 ident: b1525 article-title: Neurophysiological evaluation of tactile space perception deficits through transcranial magnetic stimulation publication-title: Brain Res Protoc – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: b1640 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin Neurophysiol – volume: 30 start-page: 1387 year: 2009 end-page: 1396 ident: b1155 article-title: Reproducibility of TMS-evoked EEG responses publication-title: Hum Brain Mapp – volume: 32 start-page: 281 year: 2014 end-page: 292 ident: b0570 article-title: Does an intraneural interface short-term implant for robotic hand control modulate sensorimotor cortical integration? An EEG–TMS co-registration study on a human amputee publication-title: Restor Neurol Neurosci – volume: 676 start-page: 314 year: 1995 end-page: 324 ident: b1855 article-title: Magnetic transcranial stimulation in healthy humans: influence on the behavior of upper limb motor units publication-title: Brain Res – volume: 34 start-page: 1255 year: 2009 end-page: 1262 ident: b0605 article-title: A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression publication-title: Neuropsychopharmacology – volume: 8 start-page: 3537 year: 1997 end-page: 3540 ident: b0860 article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity publication-title: Neuroreport – volume: 110 start-page: 699 year: 1999 end-page: 704 ident: b0185 article-title: Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging publication-title: Clin Neurophysiol – volume: 152 start-page: 2477 year: 2011 end-page: 2484 ident: b1945 article-title: Ten sessions of adjunctive left prefrontal rTMS significantly reduces fibromyalgia pain: a randomized, controlled pilot study publication-title: Pain – volume: 2 start-page: 133 year: 1998 end-page: 142 ident: b0535 article-title: Experimentation with a transcranial magnetic stimulation system for functional brain mapping publication-title: Med Image Anal – volume: 154 start-page: 1065 year: 2013 end-page: 1072 ident: b0830 article-title: Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: a randomized, multicenter, double-blind, crossover, sham-controlled trial publication-title: Pain – volume: 527 start-page: 633 year: 2000 end-page: 639 ident: b1505 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J Physiol – volume: 78 start-page: 849 year: 2007 end-page: 852 ident: b2300 article-title: Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis publication-title: J Neurol Neurosurg Psychiatry – volume: 121 start-page: 1930 year: 2010 end-page: 1933 ident: b1250 article-title: Cortico-conus motor conduction time (CCCT) for leg muscles publication-title: Clin Neurophysiol – volume: 113 start-page: 317 year: 2002 end-page: 335 ident: b0595 article-title: Electrophysiology of radiculopathies publication-title: Clin Neurophysiol – volume: 27 start-page: 172 year: 2014 end-page: 191 ident: b1935 article-title: Modulation of EEG functional connectivity networks in subjects undergoing repetitive transcranial magnetic stimulation publication-title: Brain Topogr – volume: 91 start-page: 79 year: 1994 end-page: 92 ident: b1850 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee publication-title: Electroencephalogr Clin Neurophysiol – volume: 4 start-page: 58 year: 2011 end-page: 59 ident: b0085 article-title: Fast estimation of transcranial magnetic stimulation motor threshold: is it safe? publication-title: Brain Stimul – volume: 569 start-page: 315 year: 2005 end-page: 323 ident: b0465 article-title: Dissociated effects of diazepam and lorazepam on short latency afferent ì inhibition publication-title: J Physiol – volume: 546 start-page: 605 year: 2003 end-page: 613 ident: b1675 article-title: Age and sex differences in human motor cortex input–output characteristics publication-title: J Physiol – volume: 121 start-page: 426 year: 2010 end-page: 430 ident: b1865 article-title: Breaks during 5Hz rTMS are essential for facilitatory after effects publication-title: Clin Neurophysiol – year: 1986 ident: b1820 article-title: Transcutaneous stimulation of motor cerebral cortex and spine: non invasive evaluation of central afferent transmission – volume: 124 start-page: 197 year: 2013 end-page: 203 ident: b0870 article-title: Diagnostic value of lumbar root stimulation at the early stage of Guillain-Barré syndrome publication-title: Clin Neurophysiol – volume: 113 start-page: 175 year: 2002 end-page: 184 ident: b0995 article-title: Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation publication-title: Clin Neurophysiol – volume: 16 start-page: 838 year: 2013 end-page: 844 ident: b0385 article-title: Noninvasive brain stimulation: from physiology to network dynamics and back publication-title: Nat Neurosci – volume: 37 start-page: 219 year: 1999 end-page: 224 ident: b1600 article-title: Imaging the brain before, during, and after transcranial magnetic stimulation publication-title: Neuropsychologia – volume: 19 start-page: 1950 year: 2004 end-page: 1962 ident: b0155 article-title: Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits publication-title: Eur J Neurosci – volume: 239 start-page: 152 year: 1992 end-page: 156 ident: b0645 article-title: Motor evoked potentials to magnetic stimulation: technical considerations and normative data from 50 subjects publication-title: J Neurol – volume: 85 start-page: 265 year: 1992 end-page: 272 ident: b0040 article-title: Cerebello-frontal cortical projections in humans studied with the magnetic coil publication-title: Electroencephalogr Clin Neurophysiol – volume: 110 start-page: 1297 year: 1999 end-page: 1307 ident: b0420 article-title: The diagnostic value of motor evoked potentials publication-title: Clin Neurophysiol – volume: 22 start-page: 36 year: 1995 end-page: 42 ident: b2210 article-title: Electrical stimulation of the human descending motor tracts at several levels publication-title: Can J Neurol Sci – volume: 108 start-page: 123 year: 2001 end-page: 131 ident: b0795 article-title: The navigation of transcranial magnetic stimulation publication-title: Psychiatry Res – volume: 52 start-page: 213 year: 1989 end-page: 217 ident: b1680 article-title: High-voltage stimulation over the human spinal cord: sources of latency variation publication-title: J Neurol Neurosurg Psychiatry – volume: 34 start-page: 7314 year: 2014 end-page: 7321 ident: b1485 article-title: Heterosynaptic modulation of motor cortical plasticity in human publication-title: J Neurosci – volume: 44 start-page: 279 year: 2014 end-page: 283 ident: b1920 article-title: The science of transcranial magnetic stimulation publication-title: Psychiat Ann – volume: 34 start-page: 1543 year: 2009 end-page: 1551 ident: b0540 article-title: Suppression of gamma-oscillations in the dorsolateral prefrontal cortex following long interval cortical inhibition: a TMS–EEG study publication-title: Neuropsychopharmacology – volume: 20 start-page: 535 year: 1997 end-page: 542 ident: b0300 article-title: Interhemispheric differences of hand muscle representation in human motor cortex publication-title: Muscle Nerve – volume: 166 start-page: 104 year: 2007 end-page: 108 ident: b0925 article-title: Effects of alcohol on TMS-evoked N100 responses publication-title: J Neurosci Methods – year: 2012 ident: b1665 article-title: The circuitry of the human spinal cord. Spinal and supraspinal control of movement – volume: 593 start-page: 14 year: 1992 end-page: 19 ident: b1840 article-title: Age-related changes of motor evoked potentials in healthy humans: noninvasive evaluation of central and peripheral motor tracts excitability and conductivity publication-title: Brain Res – volume: 16 start-page: 1403 year: 2012 end-page: 1413 ident: b1115 article-title: Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: influence of theta burst stimulation priming publication-title: Eur J Pain – volume: 46 start-page: 932 year: 2012 end-page: 936 ident: b1275 article-title: Aging influences central motor conduction less than peripheral motor conduction: a transcranial magnetic stimulation study publication-title: Muscle Nerve – volume: 260 start-page: 2793 year: 2013 end-page: 2801 ident: b1395 article-title: High-rate repetitive transcranial magnetic stimulation in migraine prophylaxis: a randomized, placebo-controlled study publication-title: J Neurol – volume: 120 start-page: 2008 year: 2009 end-page: 2039 ident: b1810 article-title: Safety of TMS consensus group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research publication-title: Clin Neurophysiol – volume: 17 start-page: 53 year: 2014 end-page: 62 ident: b0065 article-title: Is Life better after motor cortex stimulation for pain control? Results at long-term and their prediction by preoperative rTMS publication-title: Pain Physician – volume: 70 start-page: 26 year: 1988 end-page: 32 ident: b2000 article-title: Enhancement of motor cortical excitability in humans by non-invasive⧹electrical stimulation appears prior to voluntary movement publication-title: Electroencephalogr Clin Neurophysiol – volume: 152 start-page: 1119 year: 2008 end-page: 1129 ident: b0955 article-title: Bilateral changes in excitability of sensorimotor cortices during unilateral movement: combined electroencephalographic and transcranial magnetic stimulation study publication-title: Neuroscience – volume: 69 start-page: 86 year: 2006 end-page: 94 ident: b0530 article-title: A direct demonstration of cortical LTP in humans: a combined TMS/EEG study publication-title: Brain Res Bull – volume: 131 start-page: 1 year: 2000 end-page: 9 ident: b0890 article-title: Transcranial magnetic stimulation studies of cognition: an emerging field publication-title: Exp Brain Res – volume: 20 start-page: 164 year: 1987 end-page: 168 ident: b1355 article-title: Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications publication-title: Neurosurgery – volume: 12 start-page: 447 year: 2008 end-page: 454 ident: b1975 article-title: State-dependency in brain stimulation studies of perception and cognition publication-title: Trends Cogn Sci – volume: 59 start-page: 203 year: 2014 end-page: 218 ident: b1050 article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area publication-title: Phys Med Biol – volume: 66 start-page: 1524 year: 2005 end-page: 1528 ident: b1540 article-title: Long-term maintenance therapy for major depressive disorder with rTMS publication-title: J Clin Psychiatry – volume: 121 start-page: 437 year: 1998 end-page: 450 ident: b1195 article-title: Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials publication-title: Brain – volume: 117 start-page: 838 year: 2006 end-page: 844 ident: b1980 article-title: Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex publication-title: Clin Neurophysiol – volume: 31 start-page: 366 year: 1992 end-page: 368 ident: b2155 article-title: Magnetic stimulation of the human brain publication-title: Ann NY Acad Sci – volume: 29 start-page: 7679 year: 2009 end-page: 7685 ident: b1780 article-title: Natural frequencies of human corticothalamic circuits publication-title: J Neurosci – volume: 487 start-page: 541 year: 1995 end-page: 548 ident: b1760 article-title: The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex publication-title: J Physiol (Lond) – volume: 7 start-page: 372 year: 2014 end-page: 380 ident: b1160 article-title: Inter-individual variability in response to non-invasive brain stimulation paradigms publication-title: Brain Stimul – volume: 80 start-page: 356 year: 2003 end-page: 368 ident: b1325 article-title: Transcranial magnetic stimulation as an investigative tool in the study of visual function publication-title: Optom Vis Sci – volume: 11 start-page: 701 year: 2000 end-page: 707 ident: b0305 article-title: Transcranial magnetic stimulation reveals an interhemispheric asymmetry of cortical inhibition in focal epilepsy publication-title: Neuroreport – volume: 40 start-page: 1 year: 2010 end-page: 5 ident: b1105 article-title: Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation publication-title: Neurophysiol Clin – volume: 51 start-page: 1069 year: 1988 end-page: 1074 ident: b2160 article-title: Central motor and sensory conduction in adrenoleukomyeloneuropathy, cerebrotendinous xanthomatosis, HTLV-1-associated myelopathy and tabes dorsalis publication-title: J Neurol Neurosurg Psychiatry – volume: 127 start-page: 382 year: 1999 end-page: 390 ident: b0370 article-title: Comparison of input–output patterns in the corticospinal system of normal subjects and incomplete spinal cord injured patients publication-title: Exp Brain Res – volume: 11 start-page: 2 year: 2010 end-page: 18 ident: b1925 article-title: WFSBP guidelines on brain stimulation treatments in psychiatry publication-title: World J Biol Psychiatry – volume: 150 start-page: 44 year: 2012 end-page: 55 ident: b1230 article-title: Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies.Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies publication-title: Arch Ital Biol – volume: 24 start-page: 431 year: 2013 end-page: 442 ident: b0565 article-title: TMS and TMS–EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex publication-title: Rev Neurosci – volume: 106 start-page: 103 year: 2013 end-page: 112 ident: b0905 article-title: TMS–EEG reveals impaired intracortical interactions and coherence in Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1) publication-title: Epilepsy Res – volume: 227 start-page: 67 year: 2004 end-page: 71 ident: b0205 article-title: RTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study publication-title: J Neurol Sci – volume: 208 start-page: 161 year: 2012 end-page: 164 ident: b2415 article-title: Effects of 30Hz theta burst transcranial magnetic stimulation on the primary motor cortex publication-title: J Neurosci Methods – volume: 122 start-page: 22 year: 2006 end-page: 27 ident: b0820 article-title: Reduction of intractable deafferentation pain by navigation-guided repetitive transcranial magnetic stimulation of the primary motor cortex publication-title: Pain – volume: 24 start-page: 211 year: 2014 end-page: 221 ident: b0615 article-title: Disrupted cortical conductivity in schizophrenia: TMS–EEG study publication-title: Cereb Cortex – volume: 140 start-page: 509 year: 2008 end-page: 518 ident: b0705 article-title: Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation publication-title: Pain – volume: 116 start-page: 423 year: 2013 end-page: 440 ident: b1120 article-title: Pain publication-title: Handb Clin Neurol – volume: 92 start-page: 383 year: 1995 end-page: 386 ident: b0200 article-title: Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex publication-title: Acta Neurol Scand – volume: 54 start-page: 618 year: 1991 end-page: 623 ident: b2095 article-title: Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation of the motor cortex publication-title: J Neurol Neurosurg Psychiatry – volume: 272 start-page: 33 year: 1999 end-page: 36 ident: b1065 article-title: Plasticity of cortical hand muscle representation in patients with hemifacial spasm publication-title: Neurosci Lett – volume: 17 start-page: 368 year: 2011 end-page: 381 ident: b2460 article-title: Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex publication-title: Neuroscientist – volume: 78 start-page: 224 year: 2013 end-page: 232 ident: b1435 article-title: Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age publication-title: Neuroimage – volume: 63 start-page: 2266 year: 2004 end-page: 2271 ident: b0460 article-title: Role of motor evoked potentials in diagnosis of cauda equine and lumbosacral cord lesions publication-title: Neurology – volume: 118 start-page: 308 year: 2007 end-page: 316 ident: b0885 article-title: Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man publication-title: Clin Neurophysiol – volume: 13 start-page: 995 year: 1990 end-page: 1011 ident: b0520 article-title: Clinical experience with transcranial magnetic stimulation publication-title: Muscle Nerve – volume: 99 start-page: 57 year: 2006 end-page: 59 ident: b1885 article-title: Stimulation of primary motor cortex for intractable deafferentation pain publication-title: Acta Neurochir Suppl – volume: 80 start-page: 2870 year: 1998 end-page: 2881 ident: b0270 article-title: Intracortical inhibition and facilitation in different representations of the human motor cortex publication-title: J Neurophysiol – volume: 117 start-page: 1536 year: 2006 end-page: 1544 ident: b0055 article-title: Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy publication-title: Clin Neurophysiol – volume: 89 start-page: 335 year: 1993 end-page: 340 ident: b0005 article-title: Impairment of central motor conduction in diabetic patients publication-title: Electroencephalogr Clin Neurophysiol – volume: 31 start-page: 170 year: 1971 end-page: 172 ident: b0620 article-title: An electronic stimulus artifact suppressor publication-title: Electroencephalogr Clin Neurophysiol – volume: 123 start-page: 572 year: 2000 end-page: 584 ident: b2005 article-title: Induction of plasticity in the human motor cortex by paired associative stimulation publication-title: Brain – volume: 73 start-page: 510 year: 2013 end-page: 517 ident: b0115 article-title: Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial publication-title: Biol Psychiatry – volume: 153 start-page: 1350 year: 2012 end-page: 1363 ident: b1430 article-title: Noninvasive cortical modulation of experimental pain publication-title: Pain – volume: 125 start-page: 396 year: 2014 end-page: 405 ident: b0095 article-title: Assessement of quadriceps strength, endurance and fatigue in FSHD and CMT: benefits and limits of femoral nerve magnetic stimulation publication-title: Clin Neurophysiol – volume: 89 start-page: 1256 year: 2003 end-page: 1264 ident: b0290 article-title: Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex publication-title: J Neurophysiol – volume: 16 start-page: 1274 year: 2014 end-page: 1282 ident: b1020 article-title: Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions publication-title: Neuro Oncol – volume: 96 start-page: 1337 year: 2006 end-page: 1346 ident: b1030 article-title: Associative plasticity in human motor cortex during voluntary muscle contraction publication-title: J Neurophysiol – volume: 19 start-page: 1654 year: 2009 end-page: 1665 ident: b1465 article-title: Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human publication-title: Cereb Cortex – volume: 30 start-page: 14 year: 1990 end-page: 18 ident: b2180 article-title: Magneto-electrical stimulation of central motor pathways compared with percutaneous electrical stimulation publication-title: Eur Neurol – volume: 112 start-page: 1781 year: 2001 end-page: 1792 ident: b0725 article-title: Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials publication-title: Clin Neurophysiol – volume: 48 start-page: 1381 year: 2011 end-page: 1389 ident: b2270 article-title: Alpha-generation as basic response-signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: a TMS/EEG co-registration study publication-title: Psychophysiology – volume: 50 start-page: 58 year: 2001 end-page: 61 ident: b0800 article-title: Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation publication-title: Biol Psychiatry – volume: 509 start-page: 607 year: 1998 end-page: 618 ident: b0760 article-title: Paired-pulse magnetic stimulation of the motor cortex: differences among I waves publication-title: J Physiol – volume: 112 start-page: 1885 year: 2014 end-page: 1893 ident: b1045 article-title: Pre-stimulation phase predicts the TMS-evoked response publication-title: J Neurophysiol – volume: 39 start-page: 227 year: 1983 end-page: 251 ident: b0400 article-title: Size principle of motoneuron recruitment and the calibration of muscle force and speed in man publication-title: Adv Neurol – volume: 74 start-page: 417 year: 1989 end-page: 424 ident: b0355 article-title: Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 6 start-page: 1853 year: 1995 end-page: 1856 ident: b0680 article-title: Daily repetitive Transcranial Magnetic Stimulation (rTMS) improves mood in depression publication-title: NeuroReport – volume: 35 start-page: 1896 year: 2014 end-page: 1905 ident: b2370 article-title: Bidirectional effects on inter-hemispheric resting state functional connectivity induced by excitatory and inhibitory repetitive transcranial magnetic stimulation publication-title: Hum Brain Mapp – volume: 175 start-page: 231 year: 2006 end-page: 245 ident: b2250 article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions publication-title: Exp Brain Res – volume: 125 start-page: 320 year: 2014 end-page: 326 ident: b2285 article-title: Reproducibility of the effects of theta burst stimulation on motor cortical plasticity in healthy participants publication-title: Clin Neurophysiol – volume: 115 start-page: 1717 year: 2004 end-page: 1729 ident: b2450 article-title: TMS and drugs publication-title: Clin Neurophysiol – volume: 111 start-page: 513 year: 2014 end-page: 519 ident: b0940 article-title: Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials publication-title: J Neurophysiol – volume: 115 start-page: 255 year: 2004 end-page: 266 ident: b0450 article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans publication-title: Clin Neurophysiol – volume: 28 start-page: 1180 year: 2014 end-page: 1189 ident: b1460 article-title: Transcranial magnetic stimulation combined with high-density EEG in altered states of consciousness publication-title: Brain Inj – volume: 122 start-page: 1731 year: 1999 end-page: 1739 ident: b1520 article-title: Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage publication-title: Brain – volume: 6 start-page: 108 year: 2013 end-page: 117 ident: b0895 article-title: Prefrontal rTMS for treating depression: location and intensity results from the OPT TMS multi-site clinical trial publication-title: Brain Stimul – volume: 40 start-page: 7 year: 2010 end-page: 17 ident: b1875 article-title: Navigated transcranial magnetic stimulation publication-title: Neurophysiol Clin – volume: 152 start-page: 1478 year: 2011 end-page: 1485 ident: b1340 article-title: Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia publication-title: Pain – volume: 101 start-page: 58 year: 1996 end-page: 66 ident: b2380 article-title: Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex publication-title: Electroencephalogr Clin Neurophysiol – volume: 20 start-page: 100 year: 1987 end-page: 109 ident: b0110 article-title: Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation publication-title: Neurosurgery – volume: 58 start-page: 971 year: 2005 end-page: 972 ident: b0625 article-title: Treatment of chronic visceral pain with brain stimulation publication-title: Ann Neurol – volume: 31 start-page: 247 year: 2001 end-page: 252 ident: b1075 article-title: Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex publication-title: Neurophysiol Clin – volume: 471 start-page: 501 year: 1993 end-page: 519 ident: b1035 article-title: Corticocortical inhibition in human motor cortex publication-title: J Physiol (Lond) – volume: 8 start-page: e57069 year: 2013 ident: b1720 article-title: Vegetative versus minimally conscious states: a study using TMS–EEG, sensory and event-related potentials publication-title: PLoS One – volume: 81 start-page: 63 year: 1991 end-page: 70 ident: b1420 article-title: Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico motoneuronal projections publication-title: Electroencephalogr Clin Neurophysiol – volume: 37 start-page: 322 year: 1999 end-page: 326 ident: b2290 article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation publication-title: Med Biol Eng Comput – volume: 81 start-page: 90 year: 1991 end-page: 101 ident: b1220 article-title: Non-invasive evaluation of central motor tract excitability changes following peripheral nerve stimulation in healthy humans publication-title: Electroencephalogr Clin Neurophysiol – volume: 56 start-page: 13 year: 2003 end-page: 23 ident: b0080 article-title: TMS and threshold hunting publication-title: Suppl Clin Neurophysiol – volume: 123 start-page: 992 year: 2000 end-page: 1000 ident: b0220 article-title: The effects of a volatile anaesthetic on the excitability of human corticospinal axons publication-title: Brain – volume: 565 start-page: 1039 year: 2005 end-page: 1052 ident: b2410 article-title: Timing dependent plasticity in human primary somatosensory cortex publication-title: J Physiol – volume: 85 start-page: 1 year: 1992 end-page: 8 ident: b2340 article-title: Noninvasive mapping of muscle representations in human motor cortex publication-title: Electroencephalogr Clin Neurophysiol – volume: 11 start-page: 382 year: 1994 end-page: 396 ident: b0500 article-title: Motor areas of the cerebral cortex publication-title: J Clin Neurophysiol – volume: 18 start-page: 2046 year: 2008 end-page: 2053 ident: b0670 article-title: Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity publication-title: Cereb Cortex – volume: 121 start-page: 492 year: 2010 end-page: 501 ident: b1215 article-title: EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations publication-title: Clin Neurophysiol – volume: 120 start-page: 839 year: 1997 end-page: 853 ident: b0515 article-title: Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey publication-title: Brain – volume: 125 start-page: 1202 year: 2014 end-page: 1212 ident: b0395 article-title: Coil design considerations for deep transcranial magnetic stimulation publication-title: Clin Neurophysiol – volume: 194 start-page: 517 year: 2009 end-page: 526 ident: b0165 article-title: Electrophysiological correlates of short-latency afferent inhibition: a combined EEG and TMS study publication-title: Exp Brain Res – volume: 11 start-page: 440 year: 2012 end-page: 442 ident: b0710 article-title: Cerebellar stimulation in ataxia publication-title: Cerebellum – volume: 52 start-page: 137 year: 1991 end-page: 139 ident: b2150 article-title: Chronic motor cortex stimulation for the treatment of central pain publication-title: Acta Neurochir Suppl (Wien) – volume: 17 start-page: 345 year: 1954 end-page: 363 ident: b1585 article-title: Single- and multiple-unit analysis of cortical stage of pyramidal tract activation publication-title: J Neurophysiol – volume: 117 start-page: 2292 year: 2006 end-page: 2301 ident: b1060 article-title: Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability publication-title: Clin Neurophysiol – volume: 290 start-page: 112 year: 2010 end-page: 114 ident: b1260 article-title: Prominent cauda equina involvement in patients with chronic inflammatory demyelinating polyradiculoneuropathy publication-title: J Neurol Sci – volume: 22 start-page: 249 year: 2010 end-page: 256 ident: b1370 article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience publication-title: Brain Topogr – volume: 118 start-page: 2207 year: 2007 end-page: 2214 ident: b0475 article-title: Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study publication-title: Clin Neurophysiol – volume: 1 start-page: 73 year: 2000 end-page: 79 ident: b2325 article-title: Transcranial magnetic stimulation and cognitive neuroscience publication-title: Nat Rev Neurosci – volume: 11 start-page: 056013 year: 2014 ident: b1055 article-title: Multi-scale simulations predict responses to non invasive nerve root stimulation publication-title: J Neural Eng – volume: 140 start-page: 505 year: 2001 end-page: 510 ident: b1670 article-title: Suppression of the motor cortex by magnetic stimulation of the cerebellum publication-title: Exp Brain Res – volume: 115 start-page: 105 year: 1985 end-page: 112 ident: b0785 article-title: The size-principle: a deterministic output emerges from a set of probabilistic connections publication-title: J Exp Biol – volume: 93 start-page: 138 year: 1994 end-page: 146 ident: b2375 article-title: The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle publication-title: Electroencephalogr Clin Neurophysiol – volume: 18 start-page: 1206 year: 2003 end-page: 1212 ident: b1495 article-title: Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement publication-title: Eur J Neurosci – volume: 1028 start-page: 1 year: 2004 end-page: 8 ident: b1655 article-title: Effect of Vigabatrin on motor responses to transcranial magnetic stimulation: an effective tool to investigate in vivo GABAergic cortical inhibition in humans publication-title: Brain Res – volume: 22 start-page: 233 year: 2010 end-page: 248 ident: b0865 article-title: Methodology for combined TMS and EEG publication-title: Brain Topogr – volume: 83 start-page: 1426 year: 2000 end-page: 1434 ident: b0285 article-title: Facilitatory I wave interaction in proximal arm and lower limb muscle representations of the human motor cortex publication-title: J Neurophysiol – volume: 138 start-page: 268 year: 2001 end-page: 273 ident: b0445 article-title: The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation publication-title: Exp Brain Res – volume: 117 start-page: 392 year: 2006 end-page: 397 ident: b2295 article-title: Cervical nerve root stimulation. Part I: technical aspects and normal data publication-title: Clin Neurophysiol – volume: 135 start-page: 455 year: 2000 end-page: 461 ident: b0430 article-title: Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex publication-title: Exp Brain Res – volume: 508 start-page: 625 year: 1998 end-page: 633 ident: b0415 article-title: Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans publication-title: J Physiol – volume: 550 start-page: 529 year: 2003 end-page: 534 ident: b0100 article-title: EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts publication-title: J Physiol – volume: 586 start-page: 495 year: 2008 end-page: 514 ident: b1425 article-title: Inhibitory circuits and the nature of their interactions in the human motor cortex a pharmacological TMS study publication-title: J Physiol – volume: 4 start-page: 281 year: 2011 end-page: 293 ident: b1475 article-title: Triple-pulse TMS to study interactions between neural circuits in human cortex publication-title: Brain Stimul – volume: 74 start-page: 481 year: 1989 end-page: 485 ident: b0295 article-title: Motor evoked potentials with magnetic stimulation: correlations with height publication-title: Electroencephalogr Clin Neurophysiol – volume: 460 start-page: 201 year: 1993 end-page: 219 ident: b1170 article-title: Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation publication-title: J Physiol – volume: 296 start-page: 21 year: 2000 end-page: 24 ident: b1610 article-title: Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition publication-title: Neurosci Lett – volume: 17 start-page: 3178 year: 1997 end-page: 3184 ident: b1595 article-title: Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex publication-title: J Neurosci – volume: 6 start-page: 352 year: 2013 ident: b2275 article-title: Cortical modulation of short-latency TMS-evoked potentials publication-title: Front Hum Neurosci – volume: 20 start-page: 153 year: 1989 ident: b1165 article-title: Electromagnetic stimulation of the nervous system. I. Normal values in the central nervous system and a comparison with electric stimulation publication-title: EEG–EMG – volume: 39 start-page: 415 year: 2001 end-page: 419 ident: b2030 article-title: Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study publication-title: Neuropsychologia – volume: 29 start-page: 82 year: 2008 end-page: 96 ident: b1990 article-title: Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies publication-title: Human Brain Map – volume: 151 start-page: 427 year: 2003 end-page: 434 ident: b0770 article-title: Furhter evidence to support different mechanisms underlying intracortical inhibition of the motor cortex publication-title: Exp Brain Res – volume: 52 start-page: 1025 year: 1989 end-page: 1032 ident: b2175 article-title: Magnetic stimulation over the spinal enlargements publication-title: J Neurol Neurosurg Psychiatry – volume: 37 start-page: 598 year: 2013 end-page: 606 ident: b2280 article-title: Insights on the neural basis of motor plasticity induced by theta burst stimulation from TMS–EEG publication-title: Eur J Neurosci – volume: 545 start-page: 153 year: 2002 end-page: 167 ident: b0855 article-title: Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity publication-title: J Physiol (Lond) – volume: 41 start-page: 697 year: 1991 end-page: 702 ident: b1565 article-title: Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation publication-title: Neurology – volume: 17 start-page: 219 year: 2014 end-page: 223 ident: b0330 article-title: Day differences in the cortisol awakening response predict day differences in synaptic plasticity in the brain publication-title: Stress – volume: 20 start-page: 74 year: 1987 end-page: 93 ident: b0030 article-title: Physiological basis of motor effects of a transient stimulus to cerebral cortex publication-title: Neurosurgery – volume: 35 start-page: 1969 year: 2014 end-page: 1980 ident: b0575 article-title: Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG–TMS study publication-title: Hum Brain Mapp – volume: 122 start-page: 265 year: 1999 end-page: 279 ident: b1200 article-title: A clinical study of motor evoked potentials using a triple stimulation technique publication-title: Brain – volume: 112 start-page: 931 year: 2001 end-page: 937 ident: b0190 article-title: Mechanisms influencing stimulus-response properties of the human corticospinal system publication-title: Clin Neurophysiol – volume: 2 start-page: 50 year: 2009 end-page: 54 ident: b0135 article-title: An efficient and accurate new method for locating the F3 position for prefrontal TMS applications publication-title: Brain Stimul – volume: 48 start-page: 1398 year: 1997 end-page: 1403 ident: b0265 article-title: Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation publication-title: Neurology – volume: 2 start-page: 145 year: 2003 end-page: 156 ident: b0980 article-title: Transcranial magnetic stimulation in neurology publication-title: Lancet Neurol – volume: 54 start-page: 234 year: 2011 end-page: 243 ident: b2090 article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation publication-title: NeuroImage – volume: 48 start-page: 1406 year: 1997 end-page: 1416 ident: b1025 article-title: Functional magnetic resonance imaging and transcranial stimulation: complementary approaches in the evaluation of cortical motor function publication-title: Neurology – volume: 4 start-page: 948 year: 2001 end-page: 952 ident: b1800 article-title: Prefrontal cortex in long-term memory: an “interference” approach using magnetic stimulation publication-title: Nat Neurosci – volume: 55 start-page: 187 year: 2007 end-page: 199 ident: b0735 article-title: Transcranial magnetic stimulation: a primer publication-title: Neuron – volume: 122 start-page: 2044 year: 2011 end-page: 2048 ident: b1940 article-title: Inter individual variation in the efficient stimulation site for magnetic brainstem stimulation publication-title: Clin Neurophysiol – volume: 37 start-page: 1338 year: 1974 end-page: 1349 ident: b0780 article-title: Rank order of motoneurons within a pool: law of combination publication-title: J Neurophysiol – volume: 66 start-page: 509 year: 2009 end-page: 515 ident: b0790 article-title: More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response publication-title: Biol Psychiatry – volume: 119 start-page: 993 year: 2008 end-page: 1001 ident: b0825 article-title: Electrical stimulation of primary motor cortex within the central sulcus for intractable neuropathic pain publication-title: Clin Neurophysiol – volume: 5 start-page: e10281 year: 2010 ident: b0235 article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time publication-title: PLoS One – volume: 518 start-page: 895 year: 1999 end-page: 906 ident: b2440 article-title: Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles publication-title: J Physiol – volume: 220 start-page: 79 year: 2012 end-page: 87 ident: b0075 article-title: Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study publication-title: Exp Brain Res – volume: 67 start-page: 1568 year: 2006 end-page: 1574 ident: b1090 article-title: Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain publication-title: Neurology – volume: 21 start-page: 1209 year: 1998 end-page: 1212 ident: b1950 article-title: Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia publication-title: Muscle Nerve – volume: 148 start-page: 1 year: 2003 end-page: 16 ident: b1960 article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity publication-title: Exp Brain Res – volume: 129 start-page: 77 year: 1999 end-page: 86 ident: b0275 article-title: Modulation of motor cortex excitability by median nerve and digit stimulation publication-title: Exp Brain Res – volume: 94 start-page: 489 year: 1993 end-page: 498 ident: b1775 article-title: On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects publication-title: Exp Brain Res – volume: 115 start-page: 1947 year: 1992 end-page: 1961 ident: b2195 article-title: Stimulation of corticospinal pathways at the level of the pyramidal decussation in neurological disorders publication-title: Brain – year: 2003 ident: b2330 article-title: Transcranial magnetic stimulation: a neurochronometrics of mind – volume: 122 start-page: 748 year: 2011 end-page: 758 ident: b1900 article-title: Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry publication-title: Clin Neurophysiol – volume: 129 start-page: 809 year: 2006 end-page: 819 ident: b2335 article-title: Motor system activation after subcortical stroke depends on corticospinal system integrity publication-title: Brain – volume: 30 start-page: 913 year: 2009 end-page: 923 ident: b0175 article-title: Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS–EEG publication-title: Eur J Neurosci – volume: 145 start-page: 690 year: 1989 ident: b2045 article-title: Study of central motor pathways using cortical magnetic stimulation and spinal electrical stimulation: results in 20 normal subjects publication-title: Rev Neurol (Paris) – volume: 126 start-page: 2586 year: 2003 end-page: 2596 ident: b1710 article-title: Abnormal associative plasticity of the human motor cortex in writer’s cramp publication-title: Brain – volume: 4 start-page: 50 year: 2011 end-page: 57 ident: b1705 article-title: Fast estimation of transcranial magnetic stimulation motor threshold publication-title: Brain Stimul – volume: 22 start-page: 1 year: 2004 end-page: 14 ident: b0610 article-title: Column-based model of electric field excitation of cerebral cortex publication-title: Hum Brain Mapp – volume: 27 start-page: 236 year: 2014 end-page: 241 ident: b0970 article-title: Transcranial magnetic stimulation for the diagnosis and treatment of epilepsy publication-title: Curr Opin Neurol – volume: 34 start-page: 547 year: 2012 end-page: 551 ident: b1390 article-title: High frequency repetitive transcranial magnetic stimulation (rTMS) is effective in migraine prophylaxis: an open labeled study publication-title: Neurol Res – volume: 20 start-page: 98 year: 2004 end-page: 100 ident: b1135 article-title: Can left prefrontal rTMS be used as a maintenance treatment for bipolar depression? publication-title: Depress Anxiety – volume: 11 start-page: 1203 year: 2010 end-page: 1210 ident: b1645 article-title: Repetitive transcranial magnetic stimulation is efficacious as an add-on to pharmacological therapy in complex regional pain syndrome (CRPS) type I publication-title: J Pain – volume: 109 start-page: 1214 year: 2013 end-page: 1227 ident: b1630 article-title: On the feasibility of concurrent human TMS–EEG–fMRI measurements publication-title: J Neurophysiol – volume: 51 start-page: 48 year: 1999 end-page: 54 ident: b2085 article-title: Methodology and application of TMS mapping publication-title: Electroencephalogr Clin Neurophysiol Suppl – volume: 7 start-page: 401 year: 2014 end-page: 414 ident: b1880 article-title: A model of TMS-induced I-waves in motor cortex publication-title: Brain Stimul – volume: 28 start-page: 560 year: 1965 end-page: 580 ident: b0775 article-title: Functional significance of cell size in spinal motoneurons publication-title: J Neurophysiol – volume: 98 start-page: 225 year: 2014 end-page: 232 ident: b0255 article-title: Low-frequency rTMS inhibitory effects in the primary motor cortex: insights from TMS-evoked potentials publication-title: Neuroimage – volume: 61 start-page: 272 year: 1985 end-page: 286 ident: b1815 article-title: Nervous propagation along ‘central’ motor pathways in intact man: characteristics of motor responses to ‘bifocal’ and ‘unifocal’ spine and scalp non-invasive stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 510 start-page: 249 year: 1998 end-page: 259 ident: b0675 article-title: Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract publication-title: J Physiol (Lond) – volume: 109 start-page: 495 year: 1996 end-page: 499 ident: b1300 article-title: A propriospinal-like contribution to electromyographic responses evoked in wrist extensor muscles by transcranial stimulation of the motor cortex in man publication-title: Exp Brain Res – volume: 484 start-page: 791 year: 1995 end-page: 802 ident: b1490 article-title: Latency of effects evoked by electrical and magnetic brain stimulation in lower limb motoneurones in man publication-title: J Physiol Lond – volume: 7 start-page: 18 year: 2013 ident: b0485 article-title: The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex publication-title: Front Neural Circ – volume: 3 start-page: 153 year: 2010 end-page: 160 ident: b1270 article-title: Supramaximal responses can be elicited in hand muscles by magnetic stimulation of the cervical motor roots publication-title: Brain Stimul – volume: 120 start-page: 610 year: 2009 end-page: 618 ident: b0160 article-title: Sensory afferent inhibition within and between limbs in humans publication-title: Clin Neurophysiol – volume: 27 start-page: 486 year: 2011 end-page: 494 ident: b0180 article-title: A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters publication-title: Clin J Pain – volume: 204 start-page: 181 year: 2010 end-page: 187 ident: b0650 article-title: Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation publication-title: Exp Brain Res – volume: 33 start-page: 1908 year: 2011 end-page: 1915 ident: b0850 article-title: Li Voti P, Bologna M, Berardelli A. Short-term and long-term plasticity interaction in human primary motor cortex publication-title: Eur J Neurosci – volume: 78 start-page: 297 year: 1988 end-page: 306 ident: b2165 article-title: Central motor conduction in cerebrovascular disease and motor neuron disease publication-title: Acta Neurol Scand – volume: 388 start-page: 397 year: 1987 end-page: 419 ident: b0810 article-title: Responses in small hand muscles from magnetic stimulation of the human brain publication-title: J Physiol – volume: 103 start-page: 511 year: 2010 end-page: 518 ident: b0245 article-title: Late cortical disinhibition in human motor cortex: a triple-pulse transcranial magnetic stimulation study publication-title: J Neurophysiol – volume: 37 start-page: 181 year: 1995 end-page: 188 ident: b1755 article-title: Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease publication-title: Ann Neurol – volume: 43 start-page: 186 year: 1993 end-page: 192 ident: b1745 article-title: Cortical hyperexcitability in progressive myoclonus epilepsy: a study with transcranial magnetic stimulation publication-title: Neurology – volume: 35 start-page: 125 year: 2012 end-page: 134 ident: b0700 article-title: The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex publication-title: Eur J Neurosci – volume: 85 start-page: 110 year: 1992 end-page: 115 ident: b1190 article-title: Percutaneous magnetic stimulation of the motor cortex in migraine publication-title: Electroencephalogr Clin Neurophysiol – volume: 34 start-page: 5603 year: 2014 end-page: 5612 ident: b1695 article-title: TMS–EEG signatures of GABAergic neurotransmission in the human cortex publication-title: J Neurosci – volume: 63 start-page: 1347 year: 1988 end-page: 1352 ident: b0990 article-title: Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex publication-title: Arch Dis Child – volume: 71 start-page: 833 year: 2008 end-page: 840 ident: b0060 article-title: Pain relief by rTMS: differential effect of current flow but no specific action on pain subtypes publication-title: Neurology – volume: 29 start-page: 587 year: 2012 end-page: 596 ident: b0230 article-title: Transcranial Magnetic Stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice publication-title: Depress Anxiety – volume: 34 start-page: 33 year: 1993 end-page: 37 ident: b1570 article-title: Modulation of motor cortical outputs to the reading hand of braille readers publication-title: Ann Neurol – volume: 113 start-page: 1165 year: 2002 end-page: 1171 ident: b2360 article-title: Variation in the response to transcranial magnetic brain stimulation in the general population publication-title: Clin Neurophysiol – volume: 17 start-page: 1130 year: 2014 end-page: 1136 ident: b1415 article-title: Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non human primates publication-title: Nat Neurosci – volume: 803 start-page: 1 year: 1998 end-page: 8 ident: b2140 article-title: Follow-up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke publication-title: Brain Res – volume: 120 start-page: 1392 year: 2009 end-page: 1399 ident: b2260 article-title: TMS–EEG co-registration: on TMS-induced artifact publication-title: Clin Neurophysiol – volume: 15 start-page: 53 year: 2011 end-page: 60 ident: b0630 article-title: Clinical effects and brain metabolic correlates in non-invasive cortical neuromodulation for visceral pain publication-title: Eur J Pain – volume: 76 start-page: 833 year: 2005 end-page: 838 ident: b0950 article-title: Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain publication-title: J Neurol Neurosurg Psychiatry – volume: 96 start-page: 1765 year: 2006 end-page: 1771 ident: b0470 article-title: Origin of facilitation of motor evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans publication-title: J Neurophysiol – volume: 859 start-page: 137 year: 2000 end-page: 146 ident: b2075 article-title: Predominant activation of I1-waves from the leg motor area by transcranial magnetic stimulation publication-title: Brain Res – volume: 105 start-page: 749 year: 2011 end-page: 756 ident: b1470 article-title: Transcranial magnetic stimulation in different current directions activates separate cortical circuits publication-title: J Neurophysiol – volume: 173 start-page: 86 year: 2006 end-page: 93 ident: b1315 article-title: The role of GABA(B) receptors in intracortical inhibition in the human motor cortex publication-title: Exp Brain Res – volume: 58 start-page: 58 year: 2005 end-page: 67 ident: b0140 article-title: Electroencephalographic response to transcranial magnetic stimulation in children: Evidence for giant inhibitory potentials publication-title: Ann Neurol – volume: 511 start-page: 181 year: 1998 end-page: 190 ident: b2435 article-title: Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation publication-title: J Physiol (Lond) – volume: 587 start-page: 4845 year: 2009 end-page: 4862 ident: b0745 article-title: Primary motor cortical metaplasticity induced by priming over the supplementary motor area publication-title: J Physiol – volume: 33 start-page: 3 year: 1993 end-page: 10 ident: b0660 article-title: Assessment of motor conduction times using magnetic stimulation of brain, spinal cord and peripheral nerve publication-title: Electromyogr Clin Neurophysiol – volume: 586 start-page: 3927 year: 2008 end-page: 3947 ident: b0740 article-title: Bidirectional long term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation publication-title: J Physiol – volume: 123 start-page: 2319 year: 2012 end-page: 2320 ident: b0090 article-title: On relative frequency estimation of transcranial magnetic stimulation motor threshold publication-title: Clin Neurophysiol – volume: 58 start-page: 796 year: 2010 end-page: 797 ident: b1265 article-title: Magnetic augmented translumbosacral stimulation coil stimulation method for accurate evaluation of corticospinal tract function in peripheral neuropathy publication-title: Neurol India – volume: 33 start-page: 2860 year: 2008 end-page: 2869 ident: b0360 article-title: Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS–EEG study publication-title: Neuropsychopharmacology – volume: 63 start-page: 582 year: 1986 end-page: 589 ident: b1350 article-title: Electrical stimulation over the human vertebral column: which neural elements are excited? publication-title: Electroencephalogr Clin Neurophysiol – volume: 2 start-page: 304 year: 1984 end-page: 307 ident: b0345 article-title: Abnormalities in central motor pathway conduction in multiple sclerosis publication-title: Lancet – volume: 470 start-page: 383 year: 1993 end-page: 393 ident: b0215 article-title: Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation publication-title: J Physiol (Lond) – volume: 12 start-page: 2963 year: 2001 end-page: 2965 ident: b1070 article-title: Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex publication-title: Neuroreport – volume: 120 start-page: 820 year: 2009 end-page: 826 ident: b1305 article-title: Selective modulation of intracortical inhibition by low-intensity theta burst stimulation publication-title: Clin Neurophysiol – volume: 21 start-page: 1176 year: 2011 end-page: 1185 ident: b2100 article-title: Rhythmic TMS causes local entrainment of natural oscillatory signatures publication-title: Curr Biol – volume: 1463 start-page: 93 year: 2012 end-page: 107 ident: b0365 article-title: Combined transcranial magnetic stimulation and electroencephalography: its past, present and future publication-title: Brain Res – volume: 20 start-page: 160 year: 2004 end-page: 165 ident: b1385 article-title: The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision publication-title: J ECT – volume: 1 start-page: 1106 year: 1985 end-page: 1107 ident: b0105 article-title: Non-invasive magnetic stimulation of human motor cortex publication-title: Lancet – volume: 52 start-page: 183 year: 2006 end-page: 192 ident: b1005 article-title: The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research publication-title: Brain Res Rev – volume: 125 start-page: 2150 year: 2014 end-page: 2206 ident: b1125 article-title: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) publication-title: Clin Neurophysiol – volume: 118 start-page: 134 year: 1993 end-page: 144 ident: b2395 article-title: Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles publication-title: J Neurol Sci – volume: 14 start-page: 322 year: 2001 end-page: 328 ident: b0910 article-title: Ethanol modulates cortical activity: direct evidence with combined TMS and EEG publication-title: Neuroimage – volume: 163 start-page: 21 year: 2005 end-page: 31 ident: b0960 article-title: Silent period to transcranial magnetic stimulation: construction and properties of stimulus-response curves in healthy volunteers publication-title: Exp Brain Res – volume: 19 start-page: 322 year: 2002 end-page: 343 ident: b2080 article-title: Basic mechanisms of TMS publication-title: J Clin Neurophysiol – volume: 54 start-page: 216 year: 2002 end-page: 222 ident: b2235 article-title: Stimulation at the foramen magnum level as a tool to separate cortical from spinal cord excitability changes publication-title: Adv Clin Neurophysiol Suppl – volume: 18 start-page: 13 year: 2007 end-page: 16 ident: b1010 article-title: Excitation threshold of the motor cortex estimated with transcranial magnetic stimulation electroencephalography publication-title: Neuroreport – volume: 89 start-page: 424 year: 1993 end-page: 433 ident: b2345 article-title: Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle publication-title: Electroencephalogr Clin Neurophysiol – volume: 24 start-page: 955 year: 2005 end-page: 960 ident: b0920 article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans publication-title: Neuroimage – year: 1988 ident: b2050 article-title: Co-planar stereotaxic atlas of the human brain – volume: 81 start-page: 253 year: 2013 end-page: 264 ident: b1530 article-title: Physiological observations validate finite element models for estimating subject specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex publication-title: Neuroimage – volume: 81 start-page: 195 year: 1991 end-page: 201 ident: b1730 article-title: Standardization of facilitation of compound muscle action potentials evoked by magnetic stimulation of the cortex. Results in healthy volunteers and in patients with multiple sclerosis publication-title: Electroencephalogr Clin Neurophysiol – volume: 100 start-page: 121 year: 1994 end-page: 132 ident: b2350 article-title: Cortical motor representation of the ipsilateral hand and arm publication-title: Exp Brain Res – volume: 2 start-page: 597 year: 1982 end-page: 600 ident: b1335 article-title: Scope of a technique for electrical stimulation of human brain, spinal cord and muscle publication-title: Lancet – volume: 5 start-page: 697 year: 1992 end-page: 703 ident: b1845 article-title: Central conduction studies and magnetic stimulation publication-title: Curr Opin Neurol Neurosurg – volume: 89 start-page: 378 year: 1994 end-page: 383 ident: b2070 article-title: Transcranial stimulation of the leg area of the motor cortex in humans publication-title: Acta Neurol Scand – volume: 67 start-page: 1998 year: 2006 end-page: 2004 ident: b1095 article-title: Somatotopic organization of the analgesic effects of motor cortex rTMS in neuropathic pain publication-title: Neurology – volume: 108 start-page: 314 year: 2012 end-page: 323 ident: b0560 article-title: Human brain cortical correlates of short-latency afferent inhibition: a combined EEG–TMS study publication-title: J Neurophysiol – volume: 72 start-page: 808 year: 2013 end-page: 819 ident: b1650 article-title: A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery publication-title: Neurosurgery – volume: 478 start-page: 24 year: 2010 end-page: 28 ident: b1210 article-title: The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation publication-title: Neurosci Lett – volume: 49 start-page: 454 year: 2001 end-page: 459 ident: b1310 article-title: The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex publication-title: Biol Psychiatry – year: 2014 ident: b2465 article-title: TMS & drugs revisited publication-title: Clin Neurophysiol – volume: 74 start-page: 458 year: 1989 end-page: 462 ident: b0035 article-title: Suppression of visual perception by magnetic coil stimulation of human occipital cortex publication-title: Electroencephalogr Clin Neurophysiol – volume: 636 start-page: 270 year: 1994 end-page: 276 ident: b2145 article-title: Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation publication-title: Brain Res – volume: 9 start-page: 527 year: 2007 end-page: 565 ident: b2310 article-title: Noninvasive human brain stimulation publication-title: Annu Rev Biomed Eng – volume: 124 start-page: 339 year: 2013 end-page: 345 ident: b2020 article-title: Differential effect of baclofen on cortical and spinal inhibitory circuits publication-title: Clin Neurophysiol – volume: 112 start-page: 250 year: 2001 end-page: 258 ident: b0935 article-title: Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types publication-title: Clin Neurophysiol – volume: 89 start-page: 2339 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b2405 article-title: A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex publication-title: J Neurophysiol doi: 10.1152/jn.00900.2002 – volume: 32 start-page: 243 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0150 article-title: EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4792-11.2012 – volume: 51 start-page: 48 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b2085 article-title: Methodology and application of TMS mapping publication-title: Electroencephalogr Clin Neurophysiol Suppl – volume: 127 start-page: 382 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b0370 article-title: Comparison of input–output patterns in the corticospinal system of normal subjects and incomplete spinal cord injured patients publication-title: Exp Brain Res doi: 10.1007/s002210050806 – volume: 113 start-page: 462 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b0805 article-title: Spatial congruence of neuronavigated transcranial magnetic stimulation and functional neuroimaging publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00026-3 – volume: 35 start-page: 1969 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0575 article-title: Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG–TMS study publication-title: Hum Brain Mapp doi: 10.1002/hbm.22306 – volume: 173 start-page: 603 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b0965 article-title: Lorazepam-induced effects on silent period and corticomotor excitability publication-title: Exp Brain Res doi: 10.1007/s00221-006-0402-1 – volume: 18 start-page: 601 year: 1985 ident: 10.1016/j.clinph.2015.02.001_b1345 article-title: Corticospinal tract conduction time in multiple sclerosis publication-title: Ann Neurol doi: 10.1002/ana.410180514 – volume: 510 start-page: 249 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b0675 article-title: Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract publication-title: J Physiol (Lond) doi: 10.1111/j.1469-7793.1998.249bz.x – volume: 56 start-page: 315 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b0975 article-title: Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.56.4.315 – volume: 120 start-page: 839 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b0515 article-title: Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey publication-title: Brain doi: 10.1093/brain/120.5.839 – volume: 22 start-page: 592 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0240 article-title: Transcranial magnetic stimulation-evoked EEG/cortical potentials in physiological and pathological aging publication-title: Neuroreport doi: 10.1097/WNR.0b013e328349433a – volume: 290 start-page: 112 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1260 article-title: Prominent cauda equina involvement in patients with chronic inflammatory demyelinating polyradiculoneuropathy publication-title: J Neurol Sci doi: 10.1016/j.jns.2009.10.014 – volume: 260 start-page: 2793 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1395 article-title: High-rate repetitive transcranial magnetic stimulation in migraine prophylaxis: a randomized, placebo-controlled study publication-title: J Neurol doi: 10.1007/s00415-013-7072-2 – volume: 120 start-page: 1392 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b2260 article-title: TMS–EEG co-registration: on TMS-induced artifact publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.04.023 – volume: 496 start-page: 873 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b2430 article-title: Interaction between intracortical inhibition and facilitation in human motor cortex publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1996.sp021734 – volume: 25 start-page: 3461 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b1410 article-title: Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2007.05603.x – volume: 81 start-page: 443 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b2125 article-title: Optimal transcranial magnetic stimulation sites for the assessment of motor function publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(91)90053-Z – volume: 75 start-page: 612 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1085 article-title: Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2003.022236 – volume: 31 start-page: 1084 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b1205 article-title: Central motor conductivity in aged people publication-title: Intern Med doi: 10.2169/internalmedicine.31.1084 – volume: 9 start-page: e92354 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0665 article-title: Characterizing long interval cortical inhibition over the time-frequency domain publication-title: PLoS One doi: 10.1371/journal.pone.0092354 – volume: 309 start-page: 2228 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b1225 article-title: Breakdown of cortical effective connectivity during sleep publication-title: Science doi: 10.1126/science.1117256 – volume: 1463 start-page: 93 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0365 article-title: Combined transcranial magnetic stimulation and electroencephalography: its past, present and future publication-title: Brain Res doi: 10.1016/j.brainres.2012.04.045 – volume: 29 start-page: 418 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b2190 article-title: Percutaneous electrical stimulation of corticospinal pathways at the level of the pyramidal decussation in humans publication-title: Ann Neurol doi: 10.1002/ana.410290413 – volume: 94 start-page: 489 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b1775 article-title: On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects publication-title: Exp Brain Res doi: 10.1007/BF00230207 – volume: 28 start-page: 7911 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0845 article-title: Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1636-08.2008 – volume: 37 start-page: 181 year: 1995 ident: 10.1016/j.clinph.2015.02.001_b1755 article-title: Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease publication-title: Ann Neurol doi: 10.1002/ana.410370208 – volume: 511 start-page: 181 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b2435 article-title: Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation publication-title: J Physiol (Lond) doi: 10.1111/j.1469-7793.1998.181bi.x – volume: 1 start-page: 164 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b2455 article-title: Consensus: motor cortex plasticity protocols publication-title: Brain Stimul doi: 10.1016/j.brs.2008.06.006 – volume: 239 start-page: 152 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b0645 article-title: Motor evoked potentials to magnetic stimulation: technical considerations and normative data from 50 subjects publication-title: J Neurol doi: 10.1007/BF00833916 – volume: 34 start-page: 33 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b1570 article-title: Modulation of motor cortical outputs to the reading hand of braille readers publication-title: Ann Neurol doi: 10.1002/ana.410340108 – volume: 110 start-page: 1191 year: 1987 ident: 10.1016/j.clinph.2015.02.001_b0375 article-title: Motor cortex stimulation in intact man. [2] Multiple descending volleys publication-title: Brain doi: 10.1093/brain/110.5.1191 – volume: 85 start-page: 110 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b1190 article-title: Percutaneous magnetic stimulation of the motor cortex in migraine publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(92)90076-N – volume: 109 start-page: 1214 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1630 article-title: On the feasibility of concurrent human TMS–EEG–fMRI measurements publication-title: J Neurophysiol doi: 10.1152/jn.00071.2012 – volume: 122 start-page: 1908 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1555 article-title: Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2011.05.023 – volume: 30 start-page: 390 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0120 article-title: Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects publication-title: J Clin Neurophysiol doi: 10.1097/WNP.0b013e31829dda6b – volume: 82 start-page: 260 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b2060 article-title: Language mapping with navigated repetitive TMS: proof of technique and validation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.018 – volume: 3 start-page: 153 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1270 article-title: Supramaximal responses can be elicited in hand muscles by magnetic stimulation of the cervical motor roots publication-title: Brain Stimul doi: 10.1016/j.brs.2009.09.001 – volume: 1473 start-page: 114 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b2040 article-title: Reciprocal changes in input–output curves of motor evoked potentials while learning motor skills publication-title: Brain Res doi: 10.1016/j.brainres.2012.07.043 – volume: 29 start-page: 587 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0230 article-title: Transcranial Magnetic Stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice publication-title: Depress Anxiety doi: 10.1002/da.21969 – volume: 110 start-page: 1297 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b0420 article-title: The diagnostic value of motor evoked potentials publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00060-7 – volume: 50 start-page: 58 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0800 article-title: Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(01)01153-2 – volume: 92 start-page: 66 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b2015 article-title: Modulation of associative human motor cortical plasticity by attention publication-title: J Neurophysiol doi: 10.1152/jn.00383.2003 – volume: 113 start-page: 24 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b1895 article-title: Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil publication-title: Exp Brain Res doi: 10.1007/BF02454139 – volume: 1 start-page: 1106 year: 1985 ident: 10.1016/j.clinph.2015.02.001_b0105 article-title: Non-invasive magnetic stimulation of human motor cortex publication-title: Lancet doi: 10.1016/S0140-6736(85)92413-4 – volume: 123 start-page: 1415 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b1455 article-title: Bidirectional modulation of sensory cortical excitability by quadripulse magnetic stimulation (QPS) in humans publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2011.11.037 – volume: 163 start-page: 21 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b0960 article-title: Silent period to transcranial magnetic stimulation: construction and properties of stimulus-response curves in healthy volunteers publication-title: Exp Brain Res doi: 10.1007/s00221-004-2134-4 – volume: 31 start-page: 247 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b1075 article-title: Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex publication-title: Neurophysiol Clin doi: 10.1016/S0987-7053(01)00260-X – volume: 4 start-page: 948 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b1800 article-title: Prefrontal cortex in long-term memory: an “interference” approach using magnetic stimulation publication-title: Nat Neurosci doi: 10.1038/nn0901-948 – volume: 66 start-page: 509 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0790 article-title: More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2009.04.034 – volume: 78 start-page: 224 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1435 article-title: Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.061 – volume: 135 start-page: 455 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b0430 article-title: Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex publication-title: Exp Brain Res doi: 10.1007/s002210000543 – volume: 45 start-page: 201 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b0840 article-title: Theta burst stimulation of the human motor cortex publication-title: Neuron doi: 10.1016/j.neuron.2004.12.033 – volume: 108 start-page: 123 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0795 article-title: The navigation of transcranial magnetic stimulation publication-title: Psychiatry Res doi: 10.1016/S0925-4927(01)00121-4 – volume: 99 start-page: 57 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1885 article-title: Stimulation of primary motor cortex for intractable deafferentation pain publication-title: Acta Neurochir Suppl doi: 10.1007/978-3-211-35205-2_11 – volume: 11 start-page: 382 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b0500 article-title: Motor areas of the cerebral cortex publication-title: J Clin Neurophysiol – volume: 21 start-page: 1209 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b1950 article-title: Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M – volume: 285 start-page: 227 year: 1980 ident: 10.1016/j.clinph.2015.02.001_b1330 article-title: Stimulation of the cerebral cortex in the intact human subject publication-title: Nature doi: 10.1038/285227a0 – volume: 29 start-page: 463 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1510 article-title: Transcranial direct current stimulation–update 2011 publication-title: Restor Neurol Neurosci – volume: 33 start-page: 1908 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0850 article-title: Li Voti P, Bologna M, Berardelli A. Short-term and long-term plasticity interaction in human primary motor cortex publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2011.07674.x – volume: 20 start-page: 153 year: 1989 ident: 10.1016/j.clinph.2015.02.001_b1165 article-title: Electromagnetic stimulation of the nervous system. I. Normal values in the central nervous system and a comparison with electric stimulation publication-title: EEG–EMG – volume: 498 start-page: 817 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b1450 article-title: Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1997.sp021905 – volume: 29 start-page: 82 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b1990 article-title: Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies publication-title: Human Brain Map doi: 10.1002/hbm.20360 – volume: 105 start-page: 2150 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0480 article-title: Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation publication-title: J Neurophysiol doi: 10.1152/jn.00781.2010 – volume: 81 start-page: 195 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b1730 article-title: Standardization of facilitation of compound muscle action potentials evoked by magnetic stimulation of the cortex. Results in healthy volunteers and in patients with multiple sclerosis publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(91)90072-6 – volume: 85 start-page: 397 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b1930 article-title: Suppression of cutaneous perception by magnetic pulse stimulation of the human brain publication-title: Electroencephol Clin Neurophysiol doi: 10.1016/0168-5597(92)90053-E – volume: 103 start-page: 263 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b2115 article-title: Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0924-980X(96)95664-7 – volume: 115 start-page: 583 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b0915 article-title: Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2003.10.032 – volume: 34 start-page: 121 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1280 article-title: Neurophysiological analysis of the cauda equina in POEMS syndrome publication-title: Neurol Sci doi: 10.1007/s10072-012-0950-z – volume: 24 start-page: 211 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0615 article-title: Disrupted cortical conductivity in schizophrenia: TMS–EEG study publication-title: Cereb Cortex doi: 10.1093/cercor/bhs304 – volume: 21 start-page: 1176 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b2100 article-title: Rhythmic TMS causes local entrainment of natural oscillatory signatures publication-title: Curr Biol doi: 10.1016/j.cub.2011.05.049 – volume: 76 start-page: 833 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b0950 article-title: Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2004.055806 – volume: 4 start-page: 281 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1475 article-title: Triple-pulse TMS to study interactions between neural circuits in human cortex publication-title: Brain Stimul doi: 10.1016/j.brs.2011.01.002 – volume: 425 start-page: 301 year: 1990 ident: 10.1016/j.clinph.2015.02.001_b0510 article-title: Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey publication-title: J Physiol doi: 10.1113/jphysiol.1990.sp018104 – volume: 35 start-page: 125 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0700 article-title: The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2011.07924.x – volume: 27 start-page: 896 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b0635 article-title: Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.013 – volume: 284 start-page: 46 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1245 article-title: Magnetic stimulation of the cauda equina in the spinal canal with a flat, large round coil publication-title: J Neurol Sci doi: 10.1016/j.jns.2009.04.003 – volume: 56 start-page: 13 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b0080 article-title: TMS and threshold hunting publication-title: Suppl Clin Neurophysiol doi: 10.1016/S1567-424X(09)70205-3 – volume: 9 start-page: e86794 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1860 article-title: Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields publication-title: PLoS One doi: 10.1371/journal.pone.0086794 – volume: 72 start-page: 808 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1650 article-title: A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery publication-title: Neurosurgery doi: 10.1227/NEU.0b013e3182889e01 – volume: 70 start-page: 26 year: 1988 ident: 10.1016/j.clinph.2015.02.001_b2000 article-title: Enhancement of motor cortical excitability in humans by non-invasive⧹electrical stimulation appears prior to voluntary movement publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(88)90191-5 – volume: 57 start-page: 563 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b0320 article-title: Paired associative stimulation publication-title: Suppl Clin Neurophysiol doi: 10.1016/S1567-424X(09)70395-2 – volume: 52 start-page: 137 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b2150 article-title: Chronic motor cortex stimulation for the treatment of central pain publication-title: Acta Neurochir Suppl (Wien) doi: 10.1007/978-3-7091-9160-6_37 – volume: 78 start-page: 297 year: 1988 ident: 10.1016/j.clinph.2015.02.001_b2165 article-title: Central motor conduction in cerebrovascular disease and motor neuron disease publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.1988.tb03660.x – volume: 40 start-page: 27 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b0015 article-title: Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression publication-title: Neurophysiol Clin doi: 10.1016/j.neucli.2010.01.001 – volume: 122 start-page: 748 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1900 article-title: Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2010.09.022 – volume: 60 start-page: 1409 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b1235 article-title: Clinical signs, neurophysiological evaluation, and medication of spasticity–review publication-title: Brain Nerve – volume: 98 start-page: 225 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0255 article-title: Low-frequency rTMS inhibitory effects in the primary motor cortex: insights from TMS-evoked potentials publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.065 – volume: 101 start-page: 58 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b2380 article-title: Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(95)00213-8 – volume: 415 start-page: 211 year: 1987 ident: 10.1016/j.clinph.2015.02.001_b1825 article-title: Central motor tract propagation in man: studies with non-invasive, unifocal, scalp stimulation publication-title: Brain Res doi: 10.1016/0006-8993(87)90203-4 – volume: 92 start-page: 383 year: 1995 ident: 10.1016/j.clinph.2015.02.001_b0200 article-title: Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.1995.tb00151.x – volume: 1 start-page: 5845 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1995 article-title: Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex publication-title: J Physiol doi: 10.1113/jphysiol.2011.216978 – volume: 120 start-page: 610 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0160 article-title: Sensory afferent inhibition within and between limbs in humans publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.12.003 – volume: 121 start-page: 492 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1215 article-title: EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.11.078 – volume: 150 start-page: 44 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b1230 article-title: Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies.Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies publication-title: Arch Ital Biol – volume: 487 start-page: 541 year: 1995 ident: 10.1016/j.clinph.2015.02.001_b1760 article-title: The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1995.sp020898 – volume: 120 start-page: 1033 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1770 article-title: Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol publication-title: J Neurosurg doi: 10.3171/2013.11.JNS13952 – volume: 154 start-page: 1065 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0830 article-title: Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: a randomized, multicenter, double-blind, crossover, sham-controlled trial publication-title: Pain doi: 10.1016/j.pain.2013.03.016 – volume: 6 start-page: 538 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1295 article-title: Focal lesion in upper part of brachial plexus can be detected by magnetic cervical motor root stimulation publication-title: Brain Stimul doi: 10.1016/j.brs.2012.09.008 – volume: 85 start-page: 158 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b0835 article-title: Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(92)90081-L – volume: 46 start-page: 932 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b1275 article-title: Aging influences central motor conduction less than peripheral motor conduction: a transcranial magnetic stimulation study publication-title: Muscle Nerve doi: 10.1002/mus.23430 – volume: 2 start-page: 58 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1965 article-title: Consensus paper: combining transcranial stimulation with neuroimaging publication-title: Brain Stimul doi: 10.1016/j.brs.2008.11.002 – volume: 52 start-page: 213 year: 1989 ident: 10.1016/j.clinph.2015.02.001_b1680 article-title: High-voltage stimulation over the human spinal cord: sources of latency variation publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.52.2.213 – volume: 124 start-page: 708 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1970 article-title: A comparison of relative-frequency and threshold hunting methods to determine stimulus intensity in transcranial magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.09.018 – volume: 54 start-page: 234 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b2090 article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.061 – volume: 27 start-page: 6815 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b0985 article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0598-07.2007 – volume: 22 start-page: 233 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1445 article-title: Transcranial brain stimulation: clinical applications and future directions publication-title: Neurosurg Clin N Am doi: 10.1016/j.nec.2011.01.002 – volume: 81 start-page: 257 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b0640 article-title: Spinal motor neuron excitability during the silent period after cortical stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(91)90011-L – volume: 191 start-page: 653 year: 1967 ident: 10.1016/j.clinph.2015.02.001_b0945 article-title: Responses of the pyramidal tract to stimulation of the baboon’s motor cortex publication-title: J Physiol doi: 10.1113/jphysiol.1967.sp008273 – volume: 112 start-page: 54 year: 1990 ident: 10.1016/j.clinph.2015.02.001_b0145 article-title: Descending volley after electrical and magnetic transcranial stimulation in man publication-title: Neurosci Lett doi: 10.1016/0304-3940(90)90321-Y – volume: 33 start-page: 2860 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0360 article-title: Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS–EEG study publication-title: Neuropsychopharmacology doi: 10.1038/npp.2008.22 – volume: 65 start-page: 778 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0720 article-title: Theta burst stimulation of the prefrontal cortex: safety and impact on cognition, mood, and resting electroencephalogram publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2008.10.029 – volume: 34 start-page: 1255 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0605 article-title: A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression publication-title: Neuropsychopharmacology doi: 10.1038/npp.2008.233 – volume: 115 start-page: 1717 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b2450 article-title: TMS and drugs publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.03.006 – volume: 125 start-page: 2150 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1125 article-title: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.05.021 – volume: 377 start-page: 333 year: 1986 ident: 10.1016/j.clinph.2015.02.001_b0350 article-title: The effect of percutaneous motor cortex stimulation on H reflexes in muscles of the arm and leg in intact man publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1986.sp016190 – volume: 22 start-page: 36 year: 1995 ident: 10.1016/j.clinph.2015.02.001_b2210 article-title: Electrical stimulation of the human descending motor tracts at several levels publication-title: Can J Neurol Sci doi: 10.1017/S0317167100040476 – volume: 29 start-page: 7679 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1780 article-title: Natural frequencies of human corticothalamic circuits publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0445-09.2009 – volume: 587 start-page: 4845 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0745 article-title: Primary motor cortical metaplasticity induced by priming over the supplementary motor area publication-title: J Physiol doi: 10.1113/jphysiol.2009.179101 – volume: 24 start-page: 955 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b0920 article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.09.048 – volume: 21 start-page: 154 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1000 article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation publication-title: Hum Brain Mapp doi: 10.1002/hbm.10159 – volume: 52 start-page: 529 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b1955 article-title: Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp publication-title: Neurology doi: 10.1212/WNL.52.3.529 – volume: 19 start-page: 322 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b2080 article-title: Basic mechanisms of TMS publication-title: J Clin Neurophysiol doi: 10.1097/00004691-200208000-00006 – volume: 47 start-page: 156 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b1440 article-title: Feasibility and efficacy of left prefrontal rTMS as a maintenance antidepressant publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(00)00785-X – volume: 125 start-page: 320 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b2285 article-title: Reproducibility of the effects of theta burst stimulation on motor cortical plasticity in healthy participants publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.07.004 – volume: 6 start-page: 108 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0895 article-title: Prefrontal rTMS for treating depression: location and intensity results from the OPT TMS multi-site clinical trial publication-title: Brain Stimul doi: 10.1016/j.brs.2012.02.003 – volume: 17 start-page: 397 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b2445 article-title: I-waves in motor cortex publication-title: J Clin Neurophysiol doi: 10.1097/00004691-200007000-00005 – volume: 219 start-page: 297 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0730 article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2013.07.016 – volume: 265 start-page: 537 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b2320 article-title: Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5 publication-title: Proc Biol Sci doi: 10.1098/rspb.1998.0328 – volume: 3 start-page: e3069 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b1320 article-title: Muscles in “concert”: study of primary motor cortex upper limb functional topography publication-title: PLoS One doi: 10.1371/journal.pone.0003069 – volume: 34 start-page: 1543 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0540 article-title: Suppression of gamma-oscillations in the dorsolateral prefrontal cortex following long interval cortical inhibition: a TMS–EEG study publication-title: Neuropsychopharmacology doi: 10.1038/npp.2008.211 – volume: 17 start-page: 53 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0065 article-title: Is Life better after motor cortex stimulation for pain control? Results at long-term and their prediction by preoperative rTMS publication-title: Pain Physician doi: 10.36076/ppj.2014/17/53 – volume: 28 start-page: 110 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b2135 article-title: Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses publication-title: Stroke doi: 10.1161/01.STR.28.1.110 – volume: 61 start-page: 272 year: 1985 ident: 10.1016/j.clinph.2015.02.001_b1815 article-title: Nervous propagation along ‘central’ motor pathways in intact man: characteristics of motor responses to ‘bifocal’ and ‘unifocal’ spine and scalp non-invasive stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(85)91094-6 – volume: 37 start-page: 598 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b2280 article-title: Insights on the neural basis of motor plasticity induced by theta burst stimulation from TMS–EEG publication-title: Eur J Neurosci doi: 10.1111/ejn.12069 – volume: 478 start-page: 24 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1210 article-title: The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation publication-title: Neurosci Lett doi: 10.1016/j.neulet.2010.04.059 – volume: 119 start-page: 2291 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b1635 article-title: Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF) publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.05.031 – volume: 37 start-page: 219 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b1600 article-title: Imaging the brain before, during, and after transcranial magnetic stimulation publication-title: Neuropsychologia doi: 10.1016/S0028-3932(98)00096-7 – volume: 9 start-page: 373 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1150 article-title: Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham controlled trial publication-title: Lancet Neurol doi: 10.1016/S1474-4422(10)70054-5 – volume: 35 start-page: 1896 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b2370 article-title: Bidirectional effects on inter-hemispheric resting state functional connectivity induced by excitatory and inhibitory repetitive transcranial magnetic stimulation publication-title: Hum Brain Mapp doi: 10.1002/hbm.22300 – volume: 114 start-page: 329 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b0405 article-title: Input–output properties and gain changes in the human corticospinal pathway publication-title: Exp brain res doi: 10.1007/PL00005641 – volume: 63 start-page: 2266 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b0460 article-title: Role of motor evoked potentials in diagnosis of cauda equine and lumbosacral cord lesions publication-title: Neurology doi: 10.1212/01.WNL.0000147296.97980.CA – volume: 48 start-page: 1381 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b2270 article-title: Alpha-generation as basic response-signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: a TMS/EEG co-registration study publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2011.01218.x – volume: 20 start-page: 164 year: 1987 ident: 10.1016/j.clinph.2015.02.001_b1355 article-title: Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications publication-title: Neurosurgery doi: 10.1097/00006123-198701000-00033 – volume: 83 start-page: 1426 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b0285 article-title: Facilitatory I wave interaction in proximal arm and lower limb muscle representations of the human motor cortex publication-title: J Neurophysiol doi: 10.1152/jn.2000.83.3.1426 – volume: 569 start-page: 315 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b0465 article-title: Dissociated effects of diazepam and lorazepam on short latency afferent ì inhibition publication-title: J Physiol doi: 10.1113/jphysiol.2005.092155 – volume: 58 start-page: 58 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b0140 article-title: Electroencephalographic response to transcranial magnetic stimulation in children: Evidence for giant inhibitory potentials publication-title: Ann Neurol doi: 10.1002/ana.20521 – volume: 23 start-page: 1593 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0750 article-title: The role of interneuron networks in driving human motor cortical plasticity publication-title: Cereb Cortex doi: 10.1093/cercor/bhs147 – volume: 128 start-page: 539 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b0280 article-title: Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings publication-title: Exp Brain Res doi: 10.1007/s002210050878 – volume: 15 start-page: 53 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0630 article-title: Clinical effects and brain metabolic correlates in non-invasive cortical neuromodulation for visceral pain publication-title: Eur J Pain doi: 10.1016/j.ejpain.2010.08.002 – volume: 17 start-page: 3178 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b1595 article-title: Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-09-03178.1997 – volume: 23 start-page: 822 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1785 article-title: Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2006.04605.x – volume: 81 start-page: 319 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b2130 article-title: Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(91)90019-T – volume: 113 start-page: 1165 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b2360 article-title: Variation in the response to transcranial magnetic brain stimulation in the general population publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00144-X – volume: 112 start-page: 593 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0755 article-title: Optimization of facilitation related to threshold in transcranial magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(01)00471-0 – volume: 16 start-page: 838 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0385 article-title: Noninvasive brain stimulation: from physiology to network dynamics and back publication-title: Nat Neurosci doi: 10.1038/nn.3422 – volume: 98 start-page: 417 year: 1975 ident: 10.1016/j.clinph.2015.02.001_b1725 article-title: Which elements are excited in electrical stimulation of mammalian central nervous system: a review publication-title: Brain Res doi: 10.1016/0006-8993(75)90364-9 – volume: 2 start-page: 145 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b0980 article-title: Transcranial magnetic stimulation in neurology publication-title: Lancet Neurol doi: 10.1016/S1474-4422(03)00321-1 – volume: 165 start-page: 996 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0550 article-title: Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2008.07111733 – volume: 66 start-page: 1524 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b1540 article-title: Long-term maintenance therapy for major depressive disorder with rTMS publication-title: J Clin Psychiatry doi: 10.4088/JCP.v66n1205 – volume: 20 start-page: 570 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b1360 article-title: Corticomotor threshold to magnetic stimulation: normal values and repeatability publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(199705)20:5<570::AID-MUS5>3.0.CO;2-6 – volume: 14 start-page: 1444 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0315 article-title: Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans publication-title: Neuroimage doi: 10.1006/nimg.2001.0918 – volume: 44 start-page: 735 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b2245 article-title: Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease publication-title: Neurology doi: 10.1212/WNL.44.4.735 – volume: 412 start-page: 449 year: 1989 ident: 10.1016/j.clinph.2015.02.001_b0380 article-title: Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1989.sp017626 – volume: 22 start-page: 1 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b0610 article-title: Column-based model of electric field excitation of cerebral cortex publication-title: Hum Brain Mapp doi: 10.1002/hbm.20006 – volume: 22 start-page: 233 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b0865 article-title: Methodology for combined TMS and EEG publication-title: Brain Topogr doi: 10.1007/s10548-009-0123-4 – volume: 129 start-page: 494 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b0425 article-title: Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex publication-title: Exp Brain Res doi: 10.1007/s002210050919 – volume: 22 start-page: 249 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1370 article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience publication-title: Brain Topogr doi: 10.1007/s10548-009-0083-8 – volume: 120 start-page: 820 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1305 article-title: Selective modulation of intracortical inhibition by low-intensity theta burst stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.02.003 – volume: 5 start-page: 25 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b1525 article-title: Neurophysiological evaluation of tactile space perception deficits through transcranial magnetic stimulation publication-title: Brain Res Protoc doi: 10.1016/S1385-299X(99)00055-0 – volume: 85 start-page: 265 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b0040 article-title: Cerebello-frontal cortical projections in humans studied with the magnetic coil publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(92)90115-R – volume: 123 start-page: 2256 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0695 article-title: A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.05.001 – volume: 34 start-page: 7314 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1485 article-title: Heterosynaptic modulation of motor cortical plasticity in human publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4714-13.2014 – volume: 117 start-page: 1699 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b0170 article-title: Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.05.006 – volume: 20 start-page: 160 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1385 article-title: The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision publication-title: J ECT doi: 10.1097/00124509-200409000-00007 – volume: 79 start-page: 1044 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b1100 article-title: Motor cortex rTMS in chronic neuropathic pain: pain relief is associated with thermal sensory perception improvement publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2007.135327 – volume: 59 start-page: 560 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b1405 article-title: Antidepressant effects of repetitive transcranial magnetic stimulation in the elderly: correlation between effect size and coil-cortex distance publication-title: Arch Gen Psychiatry – volume: 296 start-page: 21 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b1610 article-title: Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition publication-title: Neurosci Lett doi: 10.1016/S0304-3940(00)01616-5 – volume: 129 start-page: 77 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b0275 article-title: Modulation of motor cortex excitability by median nerve and digit stimulation publication-title: Exp Brain Res doi: 10.1007/s002210050938 – volume: 11 start-page: 440 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0710 article-title: Cerebellar stimulation in ataxia publication-title: Cerebellum doi: 10.1007/s12311-011-0329-3 – volume: 4 start-page: 500 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1535 article-title: Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2014.03.004 – volume: 17 start-page: 219 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0330 article-title: Day differences in the cortisol awakening response predict day differences in synaptic plasticity in the brain publication-title: Stress doi: 10.3109/10253890.2014.905533 – volume: 6 start-page: 1853 year: 1995 ident: 10.1016/j.clinph.2015.02.001_b0680 article-title: Daily repetitive Transcranial Magnetic Stimulation (rTMS) improves mood in depression publication-title: NeuroReport doi: 10.1097/00001756-199510020-00008 – volume: 120 start-page: 2008 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1810 article-title: Safety of TMS consensus group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.08.016 – volume: 12 start-page: 2963 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b1070 article-title: Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex publication-title: Neuroreport doi: 10.1097/00001756-200109170-00041 – volume: 81 start-page: 63 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b1420 article-title: Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico motoneuronal projections publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(91)90105-7 – volume: 30 start-page: 1387 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1155 article-title: Reproducibility of TMS-evoked EEG responses publication-title: Hum Brain Mapp doi: 10.1002/hbm.20608 – volume: 166 start-page: 104 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b0925 article-title: Effects of alcohol on TMS-evoked N100 responses publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.06.030 – volume: 54 start-page: 216 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b2235 article-title: Stimulation at the foramen magnum level as a tool to separate cortical from spinal cord excitability changes publication-title: Adv Clin Neurophysiol Suppl doi: 10.1016/S1567-424X(09)70453-2 – volume: 18 start-page: 13 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b1010 article-title: Excitation threshold of the motor cortex estimated with transcranial magnetic stimulation electroencephalography publication-title: Neuroreport doi: 10.1097/WNR.0b013e328011b89a – volume: 109 start-page: 158 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b2355 article-title: Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscle publication-title: Exp Brain Res doi: 10.1007/BF00228638 – volume: 115 start-page: 1947 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b2195 article-title: Stimulation of corticospinal pathways at the level of the pyramidal decussation in neurological disorders publication-title: Brain doi: 10.1093/brain/115.6.1947 – volume: 37 start-page: 703 year: 1995 ident: 10.1016/j.clinph.2015.02.001_b2215 article-title: Magnetic stimulation over the cerebellum in humans publication-title: Ann Neurol doi: 10.1002/ana.410370603 – volume: 125 start-page: 142 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b2390 article-title: Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.06.187 – volume: 26 start-page: 344 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b1515 article-title: Neural correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on central pain after stroke publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968311423110 – volume: 460 start-page: 201 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b1170 article-title: Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation publication-title: J Physiol doi: 10.1113/jphysiol.1993.sp019467 – volume: 34 start-page: 5603 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1695 article-title: TMS–EEG signatures of GABAergic neurotransmission in the human cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5089-13.2014 – volume: 27 start-page: 236 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0970 article-title: Transcranial magnetic stimulation for the diagnosis and treatment of epilepsy publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000071 – volume: 94 start-page: 622 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b0525 article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits publication-title: J Neurophysiol doi: 10.1152/jn.01230.2004 – volume: 80 start-page: 356 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b1325 article-title: Transcranial magnetic stimulation as an investigative tool in the study of visual function publication-title: Optom Vis Sci doi: 10.1097/00006324-200305000-00010 – volume: 54 start-page: 618 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b2095 article-title: Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation of the motor cortex publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.54.7.618 – volume: 14 start-page: 322 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0910 article-title: Ethanol modulates cortical activity: direct evidence with combined TMS and EEG publication-title: Neuroimage doi: 10.1006/nimg.2001.0849 – volume: 125 start-page: 526 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1795 article-title: Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.08.015 – volume: 8 start-page: e60358 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1750 article-title: Optimal coil orientation for transcranial magnetic stimulation publication-title: PLoS One doi: 10.1371/journal.pone.0060358 – volume: 152 start-page: 1119 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0955 article-title: Bilateral changes in excitability of sensorimotor cortices during unilateral movement: combined electroencephalographic and transcranial magnetic stimulation study publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.01.043 – volume: 175 start-page: 231 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b2250 article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions publication-title: Exp Brain Res doi: 10.1007/s00221-006-0551-2 – volume: 52 start-page: 183 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1005 article-title: The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research publication-title: Brain Res Rev doi: 10.1016/j.brainresrev.2006.01.008 – volume: 105 start-page: 749 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1470 article-title: Transcranial magnetic stimulation in different current directions activates separate cortical circuits publication-title: J Neurophysiol doi: 10.1152/jn.00640.2010 – volume: 3 start-page: 1578 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b2265 article-title: Potentiation of short-latency cortical responses by high-frequency repetitive transcranial magnetic stimulation publication-title: J Neurophysiol doi: 10.1152/jn.00172.2010 – volume: 27 start-page: 12132 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b2315 article-title: Human motor corpus callosum: topography, somatotopy, and link between microstructure and function publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2320-07.2007 – volume: 19 start-page: 1950 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b0155 article-title: Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2004.03277.x – volume: 453 start-page: 525 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b0545 article-title: Interhemispheric inhibition of the human motor cortex publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1992.sp019243 – volume: 86 start-page: 1983 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b1605 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study publication-title: J Neurophysiol doi: 10.1152/jn.2001.86.4.1983 – volume: 586 start-page: 3927 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0740 article-title: Bidirectional long term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation publication-title: J Physiol doi: 10.1113/jphysiol.2008.152793 – volume: 112 start-page: 1781 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0725 article-title: Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(01)00633-2 – year: 1986 ident: 10.1016/j.clinph.2015.02.001_b1820 – volume: 109 start-page: 495 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b1300 article-title: A propriospinal-like contribution to electromyographic responses evoked in wrist extensor muscles by transcranial stimulation of the motor cortex in man publication-title: Exp Brain Res doi: 10.1007/BF00229634 – volume: 63 start-page: 582 year: 1986 ident: 10.1016/j.clinph.2015.02.001_b1350 article-title: Electrical stimulation over the human vertebral column: which neural elements are excited? publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(86)90145-8 – volume: 111 start-page: 513 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0940 article-title: Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials publication-title: J Neurophysiol doi: 10.1152/jn.00387.2013 – volume: 81 start-page: 253 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1530 article-title: Physiological observations validate finite element models for estimating subject specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.067 – volume: 71 start-page: 833 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0060 article-title: Pain relief by rTMS: differential effect of current flow but no specific action on pain subtypes publication-title: Neurology doi: 10.1212/01.wnl.0000325481.61471.f0 – volume: 153 start-page: 1350 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b1430 article-title: Noninvasive cortical modulation of experimental pain publication-title: Pain doi: 10.1016/j.pain.2012.04.009 – volume: 20 start-page: 98 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1135 article-title: Can left prefrontal rTMS be used as a maintenance treatment for bipolar depression? publication-title: Depress Anxiety doi: 10.1002/da.20027 – start-page: 1364 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1550 article-title: Optimising the detection of upper motor neuron fuction dysfunction in amyotrophic lateral sclerosis: a transcranial magnetic stimulation study publication-title: J Neurol doi: 10.1007/s00415-004-0545-6 – volume: 16 start-page: 1274 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1020 article-title: Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions publication-title: Neuro Oncol doi: 10.1093/neuonc/nou007 – volume: 148 start-page: 1 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b1960 article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity publication-title: Exp Brain Res doi: 10.1007/s00221-002-1234-2 – volume: 12 start-page: 447 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b1975 article-title: State-dependency in brain stimulation studies of perception and cognition publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2008.09.004 – volume: 175 start-page: 246 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b2255 article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. II. Thalamocortical contributions publication-title: Exp Brain Res doi: 10.1007/s00221-006-0548-x – volume: 117 start-page: 2292 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1060 article-title: Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.05.030 – volume: 117 start-page: 838 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1980 article-title: Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.10.029 – volume: 114 start-page: 239 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b0025 article-title: Proximal nerve conduction by high-voltage electrical stimulation in S1 radiculopathies and acquired demyelinating neuropathies publication-title: Clin Neurophysiol doi: 10.1016/s1388-2457(02)00331-0 – volume: 30 start-page: 14 year: 1990 ident: 10.1016/j.clinph.2015.02.001_b2180 article-title: Magneto-electrical stimulation of central motor pathways compared with percutaneous electrical stimulation publication-title: Eur Neurol doi: 10.1159/000116617 – volume: 121 start-page: 437 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b1195 article-title: Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials publication-title: Brain doi: 10.1093/brain/121.3.437 – volume: 6 start-page: 363 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1985 article-title: Opposite optimal current flow directions for induction of neuroplasticity and excitation threshold in the human motor cortex publication-title: Brain Stimul doi: 10.1016/j.brs.2012.07.003 – volume: 93 start-page: 138 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b2375 article-title: The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(94)90077-9 – volume: 110 start-page: 699 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b0185 article-title: Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(98)00027-3 – volume: 118 start-page: 2227 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b0070 article-title: Differences in after-effect between monophasic and biphasic high-frequency rTMS of the human motor cortex publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2007.07.006 – volume: 15 start-page: 288 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b0045 article-title: Transcranial magnetic stimulation in study of the visual pathway publication-title: J Clin Neurophysiol doi: 10.1097/00004691-199807000-00002 – volume: 545 start-page: 153 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b0855 article-title: Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.2002.030122 – volume: 67 start-page: 1998 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1095 article-title: Somatotopic organization of the analgesic effects of motor cortex rTMS in neuropathic pain publication-title: Neurology doi: 10.1212/01.wnl.0000247138.85330.88 – volume: 91 start-page: 79 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b1850 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(94)90029-9 – volume: 55 start-page: 187 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b0735 article-title: Transcranial magnetic stimulation: a primer publication-title: Neuron doi: 10.1016/j.neuron.2007.06.026 – volume: 122 start-page: 265 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b1200 article-title: A clinical study of motor evoked potentials using a triple stimulation technique publication-title: Brain doi: 10.1093/brain/122.2.265 – volume: 152 start-page: 1478 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1340 article-title: Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia publication-title: Pain doi: 10.1016/j.pain.2011.01.034 – volume: 138 start-page: 268 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0445 article-title: The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation publication-title: Exp Brain Res doi: 10.1007/s002210100722 – volume: 122 start-page: 1411 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0495 article-title: Low-intensity, short-interval theta burst stimulation modulates excitatory but not inhibitory motor networks publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2010.12.034 – volume: 220 start-page: 79 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0075 article-title: Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study publication-title: Exp Brain Res doi: 10.1007/s00221-012-3117-5 – volume: 18 start-page: 437 year: 1978 ident: 10.1016/j.clinph.2015.02.001_b1620 article-title: Study of orthodromic and antidromic effects of nerve stimulation on single motoneurones of human hand muscles publication-title: Electromyogr Clin Neurophysiol – volume: 204 start-page: 181 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b0650 article-title: Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation publication-title: Exp Brain Res doi: 10.1007/s00221-010-2293-4 – volume: 113 start-page: 175 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b0995 article-title: Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(01)00721-0 – volume: 7 start-page: 372 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1160 article-title: Inter-individual variability in response to non-invasive brain stimulation paradigms publication-title: Brain Stimul doi: 10.1016/j.brs.2014.02.004 – volume: 40 start-page: 7 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1875 article-title: Navigated transcranial magnetic stimulation publication-title: Neurophysiol Clin doi: 10.1016/j.neucli.2010.01.006 – volume: 1028 start-page: 1 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1655 article-title: Effect of Vigabatrin on motor responses to transcranial magnetic stimulation: an effective tool to investigate in vivo GABAergic cortical inhibition in humans publication-title: Brain Res doi: 10.1016/j.brainres.2004.06.009 – volume: 272 start-page: 33 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b1065 article-title: Plasticity of cortical hand muscle representation in patients with hemifacial spasm publication-title: Neurosci Lett doi: 10.1016/S0304-3940(99)00574-1 – volume: 126 start-page: 2586 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b1710 article-title: Abnormal associative plasticity of the human motor cortex in writer’s cramp publication-title: Brain doi: 10.1093/brain/awg273 – volume: 39 start-page: 415 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b2030 article-title: Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study publication-title: Neuropsychologia doi: 10.1016/S0028-3932(00)00130-5 – volume: 543 start-page: 699 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b2010 article-title: Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation publication-title: J Physiol doi: 10.1113/jphysiol.2002.023317 – volume: 74 start-page: 417 year: 1989 ident: 10.1016/j.clinph.2015.02.001_b0355 article-title: Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(89)90030-0 – volume: 69 start-page: 86 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b0530 article-title: A direct demonstration of cortical LTP in humans: a combined TMS/EEG study publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2005.11.003 – volume: 122 start-page: 22 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b0820 article-title: Reduction of intractable deafferentation pain by navigation-guided repetitive transcranial magnetic stimulation of the primary motor cortex publication-title: Pain doi: 10.1016/j.pain.2005.12.001 – volume: 116 start-page: 775 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b2420 article-title: Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.11.008 – volume: 42 start-page: 220 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b0580 article-title: Development of the corticospinal system and hand motor function: central conduction times and motor performance tests publication-title: Dev Med Child Neurol doi: 10.1111/j.1469-8749.2000.tb00076.x – volume: 116 start-page: 423 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1120 article-title: Pain publication-title: Handb Clin Neurol doi: 10.1016/B978-0-444-53497-2.00035-8 – volume: 339 start-page: 362 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b1740 article-title: Increased cortical excitability in generalised epilepsy demonstrated with transcranial magnetic stimulation publication-title: Lancet doi: 10.1016/0140-6736(92)91679-3 – volume: 106 start-page: 103 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0905 article-title: TMS–EEG reveals impaired intracortical interactions and coherence in Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1) publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2013.04.001 – volume: 551 start-page: 563 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b0690 article-title: Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex publication-title: J Physiol doi: 10.1113/jphysiol.2003.044313 – volume: 586 start-page: 495 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b1425 article-title: Inhibitory circuits and the nature of their interactions in the human motor cortex a pharmacological TMS study publication-title: J Physiol doi: 10.1113/jphysiol.2007.142059 – volume: 74 start-page: 458 year: 1989 ident: 10.1016/j.clinph.2015.02.001_b0035 article-title: Suppression of visual perception by magnetic coil stimulation of human occipital cortex publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(89)90036-1 – volume: 4 start-page: 326 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b1365 article-title: Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation publication-title: Brain Stimul doi: 10.1016/j.brs.2008.07.002 – volume: 6 start-page: e26113 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1500 article-title: New insights into Alzheimer’s disease progression: a combined TMS and structural MRI study publication-title: PLoS One doi: 10.1371/journal.pone.0026113 – volume: 470 start-page: 383 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b0215 article-title: Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1993.sp019864 – volume: 31 start-page: 366 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b2155 article-title: Magnetic stimulation of the human brain publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.1992.tb49632.x – volume: 131 start-page: 1 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b0890 article-title: Transcranial magnetic stimulation studies of cognition: an emerging field publication-title: Exp Brain Res doi: 10.1007/s002219900224 – volume: 124 start-page: 339 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b2020 article-title: Differential effect of baclofen on cortical and spinal inhibitory circuits publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.07.005 – volume: 7 start-page: 365 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0815 article-title: Inter- and intra-individual variability following intermittent theta burst stimulation: implications for rehabilitation and recovery publication-title: Brain Stimul doi: 10.1016/j.brs.2014.01.004 – volume: 102 start-page: 3180 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1690 article-title: Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs publication-title: J Neurophysiol doi: 10.1152/jn.91046.2008 – volume: 124 start-page: 197 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0870 article-title: Diagnostic value of lumbar root stimulation at the early stage of Guillain-Barré syndrome publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.07.004 – volume: 19 start-page: 1654 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1465 article-title: Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human publication-title: Cereb Cortex doi: 10.1093/cercor/bhn201 – volume: 120 start-page: 1724 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0130 article-title: Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest–a bifocal TMS study publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.07.035 – volume: 565 start-page: 1039 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b2410 article-title: Timing dependent plasticity in human primary somatosensory cortex publication-title: J Physiol doi: 10.1113/jphysiol.2005.084954 – volume: 140 start-page: 505 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b1670 article-title: Suppression of the motor cortex by magnetic stimulation of the cerebellum publication-title: Exp Brain Res doi: 10.1007/s002210100862 – volume: 96 start-page: 1765 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b0470 article-title: Origin of facilitation of motor evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans publication-title: J Neurophysiol doi: 10.1152/jn.00360.2006 – volume: 109 start-page: 467 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b0880 article-title: Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans publication-title: Exp Brain Res doi: 10.1007/BF00229631 – volume: 6 start-page: 352 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b2275 article-title: Cortical modulation of short-latency TMS-evoked potentials publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2012.00352 – volume: 103 start-page: 511 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b0245 article-title: Late cortical disinhibition in human motor cortex: a triple-pulse transcranial magnetic stimulation study publication-title: J Neurophysiol doi: 10.1152/jn.00782.2009 – volume: 48 start-page: 1406 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b1025 article-title: Functional magnetic resonance imaging and transcranial stimulation: complementary approaches in the evaluation of cortical motor function publication-title: Neurology doi: 10.1212/WNL.48.5.1406 – volume: 89 start-page: 616 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b0225 article-title: Latency jump of “relaxed” versus “contracted” motor evoked potentials as a marker of cortico-spinal maturation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(93)90086-5 – volume: 41 start-page: 697 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b1565 article-title: Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation publication-title: Neurology doi: 10.1212/WNL.41.5.697 – volume: 115 start-page: 1519 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1615 article-title: Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.02.005 – volume: 348 start-page: 233 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b1580 article-title: Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression publication-title: Lancet doi: 10.1016/S0140-6736(96)01219-6 – volume: 517 start-page: 591 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b2385 article-title: Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans publication-title: J Physiol (Lond) doi: 10.1111/j.1469-7793.1999.0591t.x – volume: 27 start-page: 638 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b1560 article-title: Repetitive Transcranial Magnetic Stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity publication-title: Neuropsychopharmacology doi: 10.1016/S0893-133X(02)00355-X – volume: 20 start-page: 74 year: 1987 ident: 10.1016/j.clinph.2015.02.001_b0030 article-title: Physiological basis of motor effects of a transient stimulus to cerebral cortex publication-title: Neurosurgery doi: 10.1097/00006123-198701000-00022 – volume: 2 start-page: 50 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0135 article-title: An efficient and accurate new method for locating the F3 position for prefrontal TMS applications publication-title: Brain Stimul doi: 10.1016/j.brs.2008.09.006 – volume: 33 start-page: 3 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b0660 article-title: Assessment of motor conduction times using magnetic stimulation of brain, spinal cord and peripheral nerve publication-title: Electromyogr Clin Neurophysiol – volume: 7 start-page: 687 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1735 article-title: Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00687 – volume: 141 start-page: 121 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0435 article-title: Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans publication-title: Exp Brain Res doi: 10.1007/s002210100863 – volume: 34 start-page: 547 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b1390 article-title: High frequency repetitive transcranial magnetic stimulation (rTMS) is effective in migraine prophylaxis: an open labeled study publication-title: Neurol Res doi: 10.1179/1743132812Y.0000000045 – volume: 129 start-page: 809 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b2335 article-title: Motor system activation after subcortical stroke depends on corticospinal system integrity publication-title: Brain doi: 10.1093/brain/awl002 – volume: 2 start-page: 597 year: 1982 ident: 10.1016/j.clinph.2015.02.001_b1335 article-title: Scope of a technique for electrical stimulation of human brain, spinal cord and muscle publication-title: Lancet doi: 10.1016/S0140-6736(82)90670-5 – volume: 32 start-page: 281 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0570 article-title: Does an intraneural interface short-term implant for robotic hand control modulate sensorimotor cortical integration? An EEG–TMS co-registration study on a human amputee publication-title: Restor Neurol Neurosci – volume: 484 start-page: 791 issue: Pt 3 year: 1995 ident: 10.1016/j.clinph.2015.02.001_b1490 article-title: Latency of effects evoked by electrical and magnetic brain stimulation in lower limb motoneurones in man publication-title: J Physiol Lond doi: 10.1113/jphysiol.1995.sp020704 – volume: 151 start-page: 330 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b1790 article-title: Two phases of short-interval intracortical inhibition publication-title: Exp Brain Res doi: 10.1007/s00221-003-1502-9 – volume: 37 start-page: 742 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0585 article-title: Applications of transcranial direct current stimulation for understanding brain function publication-title: Trends Neurosci doi: 10.1016/j.tins.2014.08.003 – volume: 89 start-page: 378 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b2070 article-title: Transcranial stimulation of the leg area of the motor cortex in humans publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.1994.tb02650.x – volume: 425 start-page: 283 year: 1990 ident: 10.1016/j.clinph.2015.02.001_b0210 article-title: Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex publication-title: J Physiol doi: 10.1113/jphysiol.1990.sp018103 – volume: 2 start-page: 133 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b0535 article-title: Experimentation with a transcranial magnetic stimulation system for functional brain mapping publication-title: Med Image Anal doi: 10.1016/S1361-8415(98)80008-X – volume: 81 start-page: 90 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b1220 article-title: Non-invasive evaluation of central motor tract excitability changes following peripheral nerve stimulation in healthy humans publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(91)90002-F – volume: 115 start-page: 105 year: 1985 ident: 10.1016/j.clinph.2015.02.001_b0785 article-title: The size-principle: a deterministic output emerges from a set of probabilistic connections publication-title: J Exp Biol doi: 10.1242/jeb.115.1.105 – volume: 121 start-page: 1930 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1250 article-title: Cortico-conus motor conduction time (CCCT) for leg muscles publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2010.04.014 – volume: 110 start-page: 1173 year: 1987 ident: 10.1016/j.clinph.2015.02.001_b1870 article-title: Motor cortex stimulation in intact man. General characteristics of EMG responses in different muscles publication-title: Brain doi: 10.1093/brain/110.5.1173 – volume: 306 start-page: 495 year: 1988 ident: 10.1016/j.clinph.2015.02.001_b0505 article-title: Activation of motor pathways in neonates at term by percutaneous stimulation of the motor cortex and spinal cord publication-title: C R Acad Sci III – volume: 441 start-page: 57 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b2185 article-title: Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1991.sp018738 – volume: 112 start-page: 931 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0190 article-title: Mechanisms influencing stimulus-response properties of the human corticospinal system publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(01)00523-5 – volume: 31 start-page: 170 year: 1971 ident: 10.1016/j.clinph.2015.02.001_b0620 article-title: An electronic stimulus artifact suppressor publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(71)90188-X – volume: 13 start-page: 1125 year: 1990 ident: 10.1016/j.clinph.2015.02.001_b0325 article-title: Central motor conduction: method and normal results publication-title: Muscle Nerve doi: 10.1002/mus.880131207 – volume: 112 start-page: 250 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0935 article-title: Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(00)00513-7 – volume: 5 start-page: e10281 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b0235 article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time publication-title: PLoS One doi: 10.1371/journal.pone.0010281 – volume: 120 start-page: 770 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1240 article-title: Magnetic lumbosacral motor root stimulation with a flat, large round coil publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.01.004 – volume: 45 start-page: 40 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1915 article-title: Quantifying cortical EEG responses to TMS in (un)consciousness publication-title: Clin EEG Neurosci doi: 10.1177/1550059413513723 – volume: 118 start-page: 2207 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b0475 article-title: Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2007.07.005 – volume: 11 start-page: 1203 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1645 article-title: Repetitive transcranial magnetic stimulation is efficacious as an add-on to pharmacological therapy in complex regional pain syndrome (CRPS) type I publication-title: J Pain doi: 10.1016/j.jpain.2010.02.006 – volume: 57 start-page: 108 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b0410 article-title: Excitability of the motor cortex to magnetic stimulation in patients with cerebellar lesions publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.57.1.108 – volume: 636 start-page: 270 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b2145 article-title: Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation publication-title: Brain Res doi: 10.1016/0006-8993(94)91026-X – volume: 27 start-page: 172 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1935 article-title: Modulation of EEG functional connectivity networks in subjects undergoing repetitive transcranial magnetic stimulation publication-title: Brain Topogr doi: 10.1007/s10548-013-0277-y – volume: 245 start-page: 256 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b2105 article-title: Effects of sex, height and age on motor evoked potentials with magnetic stimulation publication-title: J Neurol doi: 10.1007/s004150050215 – volume: 37 start-page: 322 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b2290 article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation publication-title: Med Biol Eng Comput doi: 10.1007/BF02513307 – volume: 97 start-page: 153 year: 1939 ident: 10.1016/j.clinph.2015.02.001_b0010 article-title: Impulses in the pyramidal tract publication-title: J Physiol doi: 10.1113/jphysiol.1939.sp003798 – volume: 4 start-page: 58 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0085 article-title: Fast estimation of transcranial magnetic stimulation motor threshold: is it safe? publication-title: Brain Stimul doi: 10.1016/j.brs.2010.09.004 – volume: 508 start-page: 625 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b0415 article-title: Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans publication-title: J Physiol doi: 10.1111/j.1469-7793.1998.625bq.x – volume: 81 start-page: 238 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b2110 article-title: The measurement of electric field, and the influence of surface charge, in magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(91)90077-B – volume: 458 start-page: 20 year: 1988 ident: 10.1016/j.clinph.2015.02.001_b1835 article-title: Pre-movement facilitation of motor-evoked potentials in man during transcranial stimulation of the central motor pathways publication-title: Brain Res doi: 10.1016/0006-8993(88)90491-X – volume: 7 start-page: 18 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0485 article-title: The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex publication-title: Front Neural Circ – volume: 173 start-page: 86 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1315 article-title: The role of GABA(B) receptors in intracortical inhibition in the human motor cortex publication-title: Exp Brain Res doi: 10.1007/s00221-006-0365-2 – volume: 12 start-page: 1102 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1110 article-title: Predictive value of rTMS in the identification of responders to epidural motor cortex stimulation therapy for pain publication-title: J Pain doi: 10.1016/j.jpain.2011.05.004 – volume: 73 start-page: 510 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0115 article-title: Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2012.08.020 – volume: 152 start-page: 2477 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1945 article-title: Ten sessions of adjunctive left prefrontal rTMS significantly reduces fibromyalgia pain: a randomized, controlled pilot study publication-title: Pain doi: 10.1016/j.pain.2011.05.033 – volume: 23 start-page: 529 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b1145 article-title: Transcutaneous cranial electrical stimulation (TCES): a review 1998 publication-title: Neurosci Biobehav Rev doi: 10.1016/S0149-7634(98)00048-7 – volume: 101 start-page: 247 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b2220 article-title: Clinical utility of magnetic corticospinal tract stimulation at the foramen magnum level publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0924-980X(96)95150-4 – volume: 16 start-page: 1403 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b1115 article-title: Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: influence of theta burst stimulation priming publication-title: Eur J Pain doi: 10.1002/j.1532-2149.2012.00150.x – volume: 124 start-page: 1055 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1285 article-title: Magnetic-motor-root stimulation: review publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.12.049 – volume: 7 start-page: 401 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1880 article-title: A model of TMS-induced I-waves in motor cortex publication-title: Brain Stimul doi: 10.1016/j.brs.2014.02.009 – volume: 227 start-page: 67 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b0205 article-title: RTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study publication-title: J Neurol Sci doi: 10.1016/j.jns.2004.08.008 – year: 2012 ident: 10.1016/j.clinph.2015.02.001_b1665 – volume: 575 start-page: 657 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1715 article-title: Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans publication-title: J Physiol doi: 10.1113/jphysiol.2006.114025 – volume: 107 start-page: 555 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b1890 article-title: Reduction of intractable deafferentation pain due to spinal cord or peripheral lesion by high-frequency repetitive transcranial magnetic stimulation of the primary motor cortex publication-title: J Neurosurg doi: 10.3171/JNS-07/09/0555 – volume: 35 start-page: 516 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1905 article-title: The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2010.06.005 – volume: 96 start-page: 1337 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1030 article-title: Associative plasticity in human motor cortex during voluntary muscle contraction publication-title: J Neurophysiol doi: 10.1152/jn.01140.2005 – volume: 120 start-page: 1003 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b1400 article-title: Hysteresis effects on the input–output curve of motor evoked potentials publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.03.001 – volume: 586 start-page: 4489 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b2035 article-title: Theta burst stimulation induces after-effects on contralateral primary motor cortex excitability in humans publication-title: J Physiol doi: 10.1113/jphysiol.2008.156596 – volume: 17 start-page: 1130 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1415 article-title: Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non human primates publication-title: Nat Neurosci doi: 10.1038/nn.3751 – volume: 51 start-page: 65 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b2225 article-title: Stimulation at the foramen magnum level publication-title: Electroencephalogr Clin Neurophysiol Suppl – volume: 37 start-page: 191 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b0930 article-title: Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship publication-title: Neuropsychologia doi: 10.1016/S0028-3932(98)00093-1 – volume: 75 start-page: 510 year: 1952 ident: 10.1016/j.clinph.2015.02.001_b1140 article-title: The cortical representation of motor units publication-title: Brain doi: 10.1093/brain/75.4.510 – volume: 12 start-page: 376 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b1015 article-title: How the distance from coil to cortex relates to age, motor threshold and possibly the antidepressant response to repetitive transcranial magnetic stimulation publication-title: J Neuropsychiatry Clin Neurosci doi: 10.1176/jnp.12.3.376 – year: 1988 ident: 10.1016/j.clinph.2015.02.001_b2050 – volume: 49 start-page: 251 year: 1986 ident: 10.1016/j.clinph.2015.02.001_b0195 article-title: A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.49.3.251 – volume: 13 start-page: 995 year: 1990 ident: 10.1016/j.clinph.2015.02.001_b0520 article-title: Clinical experience with transcranial magnetic stimulation publication-title: Muscle Nerve doi: 10.1002/mus.880131102 – volume: 39 start-page: 227 year: 1983 ident: 10.1016/j.clinph.2015.02.001_b0400 article-title: Size principle of motoneuron recruitment and the calibration of muscle force and speed in man publication-title: Adv Neurol – volume: 160 start-page: 153 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b2200 article-title: Interhemispheric facilitation of the hand area of the human motor cortex publication-title: Neurosci Letts doi: 10.1016/0304-3940(93)90401-6 – volume: 4 start-page: 50 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1705 article-title: Fast estimation of transcranial magnetic stimulation motor threshold publication-title: Brain Stimul doi: 10.1016/j.brs.2010.06.002 – volume: 116 start-page: 329 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1590 article-title: Transcranialelectricand magneticstimulation: technique and paradigms publication-title: Handb Clin Neurol – volume: 29 start-page: 135 year: 1989 ident: 10.1016/j.clinph.2015.02.001_b2170 article-title: Physiologic analysis of central motor pathways–simultaneous recording from multiple relaxed muscles publication-title: Eur Neurol doi: 10.1159/000116396 – year: 2008 ident: 10.1016/j.clinph.2015.02.001_b2365 – volume: 17 start-page: 368 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b2460 article-title: Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex publication-title: Neuroscientist doi: 10.1177/1073858410390225 – volume: 117 start-page: 1536 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b0055 article-title: Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.03.025 – volume: 592 start-page: 4115 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0490 article-title: Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex publication-title: J Physiol doi: 10.1113/jphysiol.2014.274316 – volume: 18 start-page: 2046 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0670 article-title: Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity publication-title: Cereb Cortex doi: 10.1093/cercor/bhm239 – volume: 28 start-page: 1180 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1460 article-title: Transcranial magnetic stimulation combined with high-density EEG in altered states of consciousness publication-title: Brain Inj doi: 10.3109/02699052.2014.920524 – volume: 89 start-page: 131 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b1700 article-title: Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(93)90095-7 – volume: 74 start-page: 481 year: 1989 ident: 10.1016/j.clinph.2015.02.001_b0295 article-title: Motor evoked potentials with magnetic stimulation: correlations with height publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(89)90039-7 – volume: 123 start-page: 858 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0715 article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.01.010 – volume: 54 start-page: 3 year: 1980 ident: 10.1016/j.clinph.2015.02.001_b0250 article-title: Electrogenesis of cortical DC potentials publication-title: Prog Brain Res doi: 10.1016/S0079-6123(08)61603-9 – volume: 54 start-page: 90 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0555 article-title: Human brain connectivity during single and paired pulse transcranial magnetic stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.056 – volume: 85 start-page: 1 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b2340 article-title: Noninvasive mapping of muscle representations in human motor cortex publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(92)90094-R – volume: 143 start-page: 240 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b0590 article-title: Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking publication-title: Exp Brain Res doi: 10.1007/s00221-001-0988-2 – volume: 24 start-page: 431 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b0565 article-title: TMS and TMS–EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex publication-title: Rev Neurosci doi: 10.1515/revneuro-2013-0019 – volume: 194 start-page: 517 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0165 article-title: Electrophysiological correlates of short-latency afferent inhibition: a combined EEG and TMS study publication-title: Exp Brain Res doi: 10.1007/s00221-009-1723-7 – year: 2014 ident: 10.1016/j.clinph.2015.02.001_b2465 article-title: TMS & drugs revisited publication-title: Clin Neurophysiol – volume: 101 start-page: 153 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b1175 article-title: A new method using neuromagnetic stimulation to measure conduction time within the cauda equina publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0924-980X(95)00264-L – volume: 208 start-page: 161 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b2415 article-title: Effects of 30Hz theta burst transcranial magnetic stimulation on the primary motor cortex publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2012.05.014 – volume: 100 start-page: 121 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b2350 article-title: Cortical motor representation of the ipsilateral hand and arm publication-title: Exp Brain Res doi: 10.1007/BF00227284 – volume: 115 start-page: 1076 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1545 article-title: The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2003.12.025 – volume: 37 start-page: 155 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b2400 article-title: Segmental conduction times in the motor nervous system publication-title: Electromyogr Clin Neurophysiol – volume: 1 start-page: 73 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b2325 article-title: Transcranial magnetic stimulation and cognitive neuroscience publication-title: Nat Rev Neurosci doi: 10.1038/35036239 – volume: 105 start-page: 102 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b1185 article-title: Magnetic stimulation of the lumbosacral vertebral column in children: normal values and possible sites of stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0924-980X(97)96017-3 – volume: 80 start-page: 2870 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b0270 article-title: Intracortical inhibition and facilitation in different representations of the human motor cortex publication-title: J Neurophysiol doi: 10.1152/jn.1998.80.6.2870 – volume: 24 start-page: 7939 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1805 article-title: Age-related functional changes of prefrontal cortex in long-term memory: a repetitive transcranial magnetic stimulation study publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0703-04.2004 – volume: 85 start-page: 355 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b2240 article-title: Human motor evoked responses to paired transcranial magnetic stimuli publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(92)90048-G – volume: 117 start-page: 847 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b1575 article-title: Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex publication-title: Brain doi: 10.1093/brain/117.4.847 – volume: 118 start-page: 134 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b2395 article-title: Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles publication-title: J Neurol Sci doi: 10.1016/0022-510X(93)90102-5 – volume: 18 start-page: 1206 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b1495 article-title: Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement publication-title: Eur J Neurosci doi: 10.1046/j.1460-9568.2003.02858.x – volume: 110 start-page: 1641 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b2230 article-title: Motor-evoked potentials: unusual findings publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00103-0 – volume: 530 start-page: 307 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b1910 article-title: Interactions between two different inhibitory systems in the human motor cortex publication-title: J Physiol (Lond) doi: 10.1111/j.1469-7793.2001.0307l.x – volume: 125 start-page: 755 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0390 article-title: Determining optimal rTMS parameters through changes in cortical inhibition publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.09.011 – volume: 108 start-page: 314 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0560 article-title: Human brain cortical correlates of short-latency afferent inhibition: a combined EEG–TMS study publication-title: J Neurophysiol doi: 10.1152/jn.00796.2011 – volume: 140 start-page: 509 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0705 article-title: Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation publication-title: Pain doi: 10.1016/j.pain.2008.10.009 – volume: 550 start-page: 529 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b0100 article-title: EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts publication-title: J Physiol doi: 10.1113/jphysiol.2003.045674 – volume: 59 start-page: 203 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1050 article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area publication-title: Phys Med Biol doi: 10.1088/0031-9155/59/1/203 – volume: 28 start-page: 560 year: 1965 ident: 10.1016/j.clinph.2015.02.001_b0775 article-title: Functional significance of cell size in spinal motoneurons publication-title: J Neurophysiol doi: 10.1152/jn.1965.28.3.560 – volume: 11 start-page: 056013 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1055 article-title: Multi-scale simulations predict responses to non invasive nerve root stimulation publication-title: J Neural Eng doi: 10.1088/1741-2560/11/5/056013 – volume: 40 start-page: 367 year: 1996 ident: 10.1016/j.clinph.2015.02.001_b2425 article-title: Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study publication-title: Ann Neurol doi: 10.1002/ana.410400306 – volume: 125 start-page: 1202 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0395 article-title: Coil design considerations for deep transcranial magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.11.038 – volume: 518 start-page: 895 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b2440 article-title: Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles publication-title: J Physiol doi: 10.1111/j.1469-7793.1999.0895p.x – volume: 49 start-page: 454 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b1310 article-title: The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(00)01039-8 – volume: 537 start-page: 1047 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b0440 article-title: Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans publication-title: J Physiol doi: 10.1111/j.1469-7793.2001.01047.x – volume: 122 start-page: 1731 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b1520 article-title: Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage publication-title: Brain doi: 10.1093/brain/122.9.1731 – volume: 3 start-page: 119 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b0310 article-title: Optically tracked neuronavigation increases the stability of hand-held focal coil positioning: evidence from “transcranial” magnetic stimulation-induced electrical field measurements publication-title: Brain Stimul doi: 10.1016/j.brs.2010.01.001 – volume: 58 start-page: 796 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1265 article-title: Magnetic augmented translumbosacral stimulation coil stimulation method for accurate evaluation of corticospinal tract function in peripheral neuropathy publication-title: Neurol India doi: 10.4103/0028-3886.72183 – volume: 4 start-page: 145 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0655 article-title: Impact of repetitive theta burst stimulation on motor cortex excitability publication-title: Brain Stimul doi: 10.1016/j.brs.2010.09.008 – volume: 218 start-page: 202 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b1130 article-title: The importance of the cortico-motoneuronal system for control of grasp publication-title: Novartis Found Symp – volume: 58 start-page: 971 year: 2005 ident: 10.1016/j.clinph.2015.02.001_b0625 article-title: Treatment of chronic visceral pain with brain stimulation publication-title: Ann Neurol doi: 10.1002/ana.20651 – volume: 21 start-page: 579 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1375 article-title: Transcranial magnetic stimulation in cognitive rehabilitation publication-title: Neuropsychol Rehabil doi: 10.1080/09602011.2011.562689 – volume: 44 start-page: 279 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1920 article-title: The science of transcranial magnetic stimulation publication-title: Psychiat Ann doi: 10.3928/00485713-20140609-05 – volume: 97 start-page: 271 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b2065 article-title: Stimulus waveform influences the efficacy of repetitive transcranial magnetic stimulation publication-title: J Affect Disord doi: 10.1016/j.jad.2006.06.027 – volume: 119 start-page: 993 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0825 article-title: Electrical stimulation of primary motor cortex within the central sulcus for intractable neuropathic pain publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2007.12.022 – volume: 45 start-page: 303 year: 1995 ident: 10.1016/j.clinph.2015.02.001_b1180 article-title: Magnetic cortical stimulation in acute spinal cord injury publication-title: Neurology doi: 10.1212/WNL.45.2.303 – volume: 538 start-page: 253 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b0765 article-title: Mechanisms of intracortical I-wave facilitation elicited by paired-pulse magnetic stimulation in humans publication-title: J Physiol doi: 10.1113/jphysiol.2001.013094 – volume: 33 start-page: 953 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0020 article-title: Long-term antalgic effects of repetitive transcranial magnetic stimulation of motor cortex and serum beta endorphin in patients with phantom pain publication-title: Neurol Res doi: 10.1179/1743132811Y.0000000045 – volume: 119 start-page: 71 year: 2008 ident: 10.1016/j.clinph.2015.02.001_b0900 article-title: Changes in motor cortical excitability induced by high-frequency repetitive transcranial magnetic stimulation of different stimulation durations publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2007.09.124 – volume: 31 start-page: 246 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1040 article-title: Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation publication-title: J Clin Neurophysiol. doi: 10.1097/WNP.0000000000000057 – volume: 803 start-page: 1 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b2140 article-title: Follow-up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke publication-title: Brain Res doi: 10.1016/S0006-8993(98)00505-8 – volume: 117 start-page: 2584 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b0600 article-title: A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.06.712 – volume: 125 start-page: 396 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0095 article-title: Assessement of quadriceps strength, endurance and fatigue in FSHD and CMT: benefits and limits of femoral nerve magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.08.001 – volume: 121 start-page: 426 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1865 article-title: Breaks during 5Hz rTMS are essential for facilitatory after effects publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.11.016 – volume: 51 start-page: 1069 year: 1988 ident: 10.1016/j.clinph.2015.02.001_b2160 article-title: Central motor and sensory conduction in adrenoleukomyeloneuropathy, cerebrotendinous xanthomatosis, HTLV-1-associated myelopathy and tabes dorsalis publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.51.8.1069 – volume: 17 start-page: 345 year: 1954 ident: 10.1016/j.clinph.2015.02.001_b1585 article-title: Single- and multiple-unit analysis of cortical stage of pyramidal tract activation publication-title: J Neurophysiol doi: 10.1152/jn.1954.17.4.345 – volume: 11 start-page: 2 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1925 article-title: WFSBP guidelines on brain stimulation treatments in psychiatry publication-title: World J Biol Psychiatry doi: 10.3109/15622970903170835 – volume: 48 start-page: 1398 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b0265 article-title: Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation publication-title: Neurology doi: 10.1212/WNL.48.5.1398 – year: 2003 ident: 10.1016/j.clinph.2015.02.001_b2330 – volume: 117 start-page: 392 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b2295 article-title: Cervical nerve root stimulation. Part I: technical aspects and normal data publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.10.011 – volume: 593 start-page: 14 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b1840 article-title: Age-related changes of motor evoked potentials in healthy humans: noninvasive evaluation of central and peripheral motor tracts excitability and conductivity publication-title: Brain Res doi: 10.1016/0006-8993(92)91256-E – volume: 112 start-page: 1885 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b1045 article-title: Pre-stimulation phase predicts the TMS-evoked response publication-title: J Neurophysiol doi: 10.1152/jn.00390.2013 – volume: 471 start-page: 501 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b1035 article-title: Corticocortical inhibition in human motor cortex publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1993.sp019912 – volume: 5 start-page: 697 year: 1992 ident: 10.1016/j.clinph.2015.02.001_b1845 article-title: Central conduction studies and magnetic stimulation publication-title: Curr Opin Neurol Neurosurg – volume: 356 start-page: 87 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1685 article-title: Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception in complex regional pain syndrome type I publication-title: Neurosci Lett doi: 10.1016/j.neulet.2003.11.037 – volume: 145 start-page: 690 year: 1989 ident: 10.1016/j.clinph.2015.02.001_b2045 article-title: Study of central motor pathways using cortical magnetic stimulation and spinal electrical stimulation: results in 20 normal subjects publication-title: Rev Neurol (Paris) – volume: 115 start-page: 112 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b0455 article-title: Direct recording of the output of the motor cortex produced by transcranial magnetic stimulation in a patient with cerebral cortex atrophy publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00320-1 – volume: 37 start-page: 1702 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1380 article-title: Modelling non-invasive brain stimulation in cognitive neuroscience publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2013.06.014 – volume: 20 start-page: 183 year: 1987 ident: 10.1016/j.clinph.2015.02.001_b1830 article-title: Mechanisms of nervous propagation along central motor pathways: non invasive evaluation in healthy subjects and in patients with neurological disease publication-title: Neurosurgery doi: 10.1097/00006123-198701000-00035 – volume: 89 start-page: 1256 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b0290 article-title: Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex publication-title: J Neurophysiol doi: 10.1152/jn.00950.2002 – volume: 123 start-page: 2319 year: 2012 ident: 10.1016/j.clinph.2015.02.001_b0090 article-title: On relative frequency estimation of transcranial magnetic stimulation motor threshold publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.04.014 – volume: 78 start-page: 849 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b2300 article-title: Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2006.105056 – volume: 89 start-page: 424 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b2345 article-title: Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(93)90116-7 – volume: 20 start-page: 100 year: 1987 ident: 10.1016/j.clinph.2015.02.001_b0110 article-title: Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation publication-title: Neurosurgery doi: 10.1097/00006123-198701000-00024 – volume: 20 start-page: 535 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b0300 article-title: Interhemispheric differences of hand muscle representation in human motor cortex publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(199705)20:5<535::AID-MUS1>3.0.CO;2-A – volume: 118 start-page: 308 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b0885 article-title: Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.09.023 – volume: 40 start-page: 279 year: 1976 ident: 10.1016/j.clinph.2015.02.001_b1660 article-title: Excitability of human motoneurones after discharge in a conditioning reflex publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(76)90151-6 – volume: 331 start-page: 174 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1290 article-title: A conduction block in sciatic nerves can be detected by magnetic motor root stimulation publication-title: J Neurol Sci doi: 10.1016/j.jns.2013.06.005 – volume: 84 start-page: 503 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b0685 article-title: Study of central and peripheral motor conduction in normal subjects publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.1991.tb05003.x – volume: 52 start-page: 1025 year: 1989 ident: 10.1016/j.clinph.2015.02.001_b2175 article-title: Magnetic stimulation over the spinal enlargements publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.52.9.1025 – volume: 118 start-page: 1815 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b2055 article-title: Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2007.05.062 – volume: 115 start-page: 255 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b0450 article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2003.10.009 – volume: 8 start-page: 3537 year: 1997 ident: 10.1016/j.clinph.2015.02.001_b0860 article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity publication-title: Neuroreport doi: 10.1097/00001756-199711100-00024 – volume: 40 start-page: 1 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1105 article-title: Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation publication-title: Neurophysiol Clin doi: 10.1016/j.neucli.2009.10.004 – volume: 13 start-page: 472 year: 2001 ident: 10.1016/j.clinph.2015.02.001_b2025 article-title: TMS produces two dissociable types of speech disruption publication-title: Neuroimage doi: 10.1006/nimg.2000.0701 – volume: 30 start-page: 913 year: 2009 ident: 10.1016/j.clinph.2015.02.001_b0175 article-title: Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS–EEG publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2009.06864.x – volume: 466 start-page: 521 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b0875 article-title: Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction publication-title: J Physiol doi: 10.1113/jphysiol.1993.sp019732 – volume: 8 start-page: 200 year: 1991 ident: 10.1016/j.clinph.2015.02.001_b0050 article-title: American Electroencephalographic Society guidelines for standard electrode position nomenclature publication-title: J Clin Neurophysiol doi: 10.1097/00004691-199104000-00007 – volume: 676 start-page: 314 year: 1995 ident: 10.1016/j.clinph.2015.02.001_b1855 article-title: Magnetic transcranial stimulation in healthy humans: influence on the behavior of upper limb motor units publication-title: Brain Res doi: 10.1016/0006-8993(95)00113-5 – volume: 67 start-page: 1568 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b1090 article-title: Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain publication-title: Neurology doi: 10.1212/01.wnl.0000242731.10074.3c – volume: 527 start-page: 633 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b1505 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J Physiol doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – volume: 151 start-page: 427 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b0770 article-title: Furhter evidence to support different mechanisms underlying intracortical inhibition of the motor cortex publication-title: Exp Brain Res doi: 10.1007/s00221-003-1455-z – volume: 34 start-page: 91 year: 2004 ident: 10.1016/j.clinph.2015.02.001_b1080 article-title: Neuropathic pain controlled for more than a year by monthly sessions of repetitive transcranial magnetic stimulation of the motor cortex publication-title: Neurophysiol Clin doi: 10.1016/j.neucli.2004.02.001 – volume: 80 start-page: 1746 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1480 article-title: Increased motor cortical facilitation and decreased inhibition in Parkinson’s Disease publication-title: Neurology doi: 10.1212/WNL.0b013e3182919029 – volume: 15 start-page: 948 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b1765 article-title: Studies in cognition: the problems solved and created by transcranial magnetic stimulation publication-title: J Cogn Neurosci doi: 10.1162/089892903770007344 – volume: 39 start-page: 1485 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0260 article-title: Task-dependent changes in late inhibitory and disinhibitory actions within the primary motor cortex in humans publication-title: Eur J Neurosci doi: 10.1111/ejn.12505 – volume: 124 start-page: 1364 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1625 article-title: Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.01.011 – volume: 37 start-page: 1338 year: 1974 ident: 10.1016/j.clinph.2015.02.001_b0780 article-title: Rank order of motoneurons within a pool: law of combination publication-title: J Neurophysiol doi: 10.1152/jn.1974.37.6.1338 – volume: 11 start-page: 701 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b0305 article-title: Transcranial magnetic stimulation reveals an interhemispheric asymmetry of cortical inhibition in focal epilepsy publication-title: Neuroreport doi: 10.1097/00001756-200003200-00010 – volume: 9 start-page: 527 year: 2007 ident: 10.1016/j.clinph.2015.02.001_b2310 article-title: Noninvasive human brain stimulation publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.9.061206.133100 – volume: 546 start-page: 605 year: 2003 ident: 10.1016/j.clinph.2015.02.001_b1675 article-title: Age and sex differences in human motor cortex input–output characteristics publication-title: J Physiol doi: 10.1113/jphysiol.2002.029454 – volume: 8 start-page: e57069 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b1720 article-title: Vegetative versus minimally conscious states: a study using TMS–EEG, sensory and event-related potentials publication-title: PLoS One doi: 10.1371/journal.pone.0057069 – volume: 859 start-page: 137 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b2075 article-title: Predominant activation of I1-waves from the leg motor area by transcranial magnetic stimulation publication-title: Brain Res doi: 10.1016/S0006-8993(00)01975-2 – volume: 2 start-page: 304 year: 1984 ident: 10.1016/j.clinph.2015.02.001_b0345 article-title: Abnormalities in central motor pathway conduction in multiple sclerosis publication-title: Lancet doi: 10.1016/S0140-6736(84)92683-7 – volume: 509 start-page: 607 year: 1998 ident: 10.1016/j.clinph.2015.02.001_b0760 article-title: Paired-pulse magnetic stimulation of the motor cortex: differences among I waves publication-title: J Physiol doi: 10.1111/j.1469-7793.1998.607bn.x – volume: 122 start-page: 2044 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b1940 article-title: Inter individual variation in the efficient stimulation site for magnetic brainstem stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2011.03.025 – volume: 84 start-page: 1161 year: 2013 ident: 10.1016/j.clinph.2015.02.001_b2305 article-title: Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp-2012-304019 – volume: 89 start-page: 335 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b0005 article-title: Impairment of central motor conduction in diabetic patients publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(93)90073-X – volume: 112 start-page: 131 year: 2010 ident: 10.1016/j.clinph.2015.02.001_b1255 article-title: Efferent and afferent evoked potentials in patients with adrenomyeloneuropathy publication-title: Clin Neurol Neurosurg doi: 10.1016/j.clineuro.2009.11.005 – volume: 27 start-page: 486 year: 2011 ident: 10.1016/j.clinph.2015.02.001_b0180 article-title: A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters publication-title: Clin J Pain doi: 10.1097/AJP.0b013e31820d2733 – volume: 123 start-page: 992 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b0220 article-title: The effects of a volatile anaesthetic on the excitability of human corticospinal axons publication-title: Brain doi: 10.1093/brain/123.5.992 – volume: 123 start-page: 572 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b2005 article-title: Induction of plasticity in the human motor cortex by paired associative stimulation publication-title: Brain doi: 10.1093/brain/123.3.572 – volume: 523 start-page: 03 year: 2000 ident: 10.1016/j.clinph.2015.02.001_b2120 article-title: Short latency inhibition of human hand motor cortex by somatosensory input from the hand publication-title: J Physiol (Lond) doi: 10.1111/j.1469-7793.2000.t01-1-00503.x – volume: 34 start-page: 464 year: 2014 ident: 10.1016/j.clinph.2015.02.001_b0340 article-title: Randomized, proof-of-principle clinical trial of active transcranial magnetic stimulation in chronic migraine publication-title: Cephalalgia doi: 10.1177/0333102413515340 – volume: 43 start-page: 186 year: 1993 ident: 10.1016/j.clinph.2015.02.001_b1745 article-title: Cortical hyperexcitability in progressive myoclonus epilepsy: a study with transcranial magnetic stimulation publication-title: Neurology doi: 10.1212/WNL.43.1_Part_1.186 – volume: 113 start-page: 317 year: 2002 ident: 10.1016/j.clinph.2015.02.001_b0595 article-title: Electrophysiology of radiculopathies publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00018-4 – volume: 63 start-page: 1347 year: 1988 ident: 10.1016/j.clinph.2015.02.001_b0990 article-title: Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex publication-title: Arch Dis Child doi: 10.1136/adc.63.11.1347 – volume: 388 start-page: 397 year: 1987 ident: 10.1016/j.clinph.2015.02.001_b0810 article-title: Responses in small hand muscles from magnetic stimulation of the human brain publication-title: J Physiol doi: 10.1113/jphysiol.1987.sp016621 – volume: 110 start-page: 1842 year: 1999 ident: 10.1016/j.clinph.2015.02.001_b1640 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 – volume: 572 start-page: 857 year: 2006 ident: 10.1016/j.clinph.2015.02.001_b0125 article-title: Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways publication-title: J Physiol doi: 10.1113/jphysiol.2006.104901 – volume: 36 start-page: 618 year: 1994 ident: 10.1016/j.clinph.2015.02.001_b2205 article-title: Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans publication-title: Ann Neurol doi: 10.1002/ana.410360410 |
| SSID | ssj0007042 |
| Score | 2.6718602 |
| SecondaryResourceType | review_article |
| Snippet | •This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots.•The main physiological, theoretical and... Highlights • This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots. • The main physiological,... These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic... These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1071 |
| SubjectTerms | Advisory Committees Animals Brain - physiology Clinical neurophysiology Cognition Disorders - diagnosis Cognition Disorders - physiopathology Cognition Disorders - therapy Deep Brain Stimulation - methods Excitability threshold Human cortex Humans Mental Disorders - diagnosis Mental Disorders - physiopathology Mental Disorders - therapy Neurology Non-invasive stimulation Peripheral Nerves - physiology Research Report Spinal Cord - physiology TMS measures Transcranial magnetic stimulation Transcranial Magnetic Stimulation - methods |
| Title | Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1388245715000711 https://www.clinicalkey.es/playcontent/1-s2.0-S1388245715000711 https://www.ncbi.nlm.nih.gov/pubmed/25797650 https://www.proquest.com/docview/1694705308 https://pubmed.ncbi.nlm.nih.gov/PMC6350257 |
| Volume | 126 |
| WOSCitedRecordID | wos000353785000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-8952 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007042 issn: 1388-2457 databaseCode: AIEXJ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1bb9MwFICtbkOIF8SdcpkOEm9dorqJY4e3rtrE0KgmGKhvUS4udGrTqDftB_MneOP4lra7aPDAS1Q1tqPYX47Psc85JuQ9y9ohLaIQv2_GvJCxzBM48Xk4F3SyeIgzrvby_X7K-30xGMRnjcZvFwuzGvOyFJeXcfVfhxr_w8FWobP_MNx1o_gH_sZBxysOO17_auD709IblatU-6WbU27qjACT9EepohZb-GFP7MFdzksgm6Umn8C80idl5dbrHVXrhUnkrJIi6ywE41apHCW1N90hPihvVW7N3pZU02KxRFNeuzHOpvi-qM3WYZjaqd36_LU29tB9tUi5rNQqRGG3M0wADEqhE__Y7_l9X4mwyWixkNtZFlzTOkGnXq_Z2jD4gsrASB9f1TpbrwAfLq1zUu333LPRKvUGWB2_cmqPIbNLJJStXbl8acS64Cj3Y7Yt902ovgV8U4qjSUxvnF7MSseFr7qrUltZlJmMr1vFsfOriaYL5SGqeyaz7pW03u7WDtnrcBajQN7rnhwNPtVqBEdx6mI9tUPi9YeqTNa2mdvUqutm01Xv3w116vwReWjtIOgafh-ThiyfkPufrafHU_JrE2NYYwyIDjiMYQNjmA4BMQaN8QEYiEFBfAAaYV1zjTAYhD-ABhjWAJtyNcCAAIMFGBzAuowDGDYBhm4JFmAwAIMCGCuAAxhqgJ-Rb8dH572Pnj2RxMuZiBZemAnU-GmQ0mxIeRZl6TCgNKUiDSMqJOreES06MRNDGQpZpHFQxDnaFGlbChoELHhOdstpKV8SCIdxHHIuiyzLQtoOsClsop1HXGZ5nAZNErgBTXKbrl-dGjNOnF_mRWKISBQRSbuj3FObxKtrVSZdzR3lmWMlcV2IykOCwN9Rj99UT86tIJwnNJljyeQrDdCGDxmnTJszWPOdQzLBmUxtT6alnC6xRoQdgjpBWzTJC4No_Q4Oc3zuFrx1AZUlf_tOOfqps-WjRYV2HX91a5uvyYO10HhDdhezpXxL7uWrxWg-2yc7fCD27cf5B7TYNcA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+electrical+and+magnetic+stimulation+of+the+brain%2C+spinal+cord%2C+roots+and+peripheral+nerves%3A+Basic+principles+and+procedures+for+routine+clinical+and+research+application.+An+updated+report+from+an+I.F.C.N.+Committee&rft.jtitle=Clinical+neurophysiology&rft.au=Rossini%2C+P+M&rft.au=Burke%2C+D&rft.au=Chen%2C+R&rft.au=Cohen%2C+L+G&rft.date=2015-06-01&rft.eissn=1872-8952&rft.volume=126&rft.issue=6&rft.spage=1071&rft_id=info:doi/10.1016%2Fj.clinph.2015.02.001&rft_id=info%3Apmid%2F25797650&rft.externalDocID=25797650 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245715X00058%2Fcov150h.gif |