Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee

•This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots.•The main physiological, theoretical and methodological features of transcranial magnetic stimulation (TMS) are described.•Instructions for practical use of non-invasive stimulation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Clinical neurophysiology Ročník 126; číslo 6; s. 1071 - 1107
Hlavní autoři: Rossini, P.M., Burke, D., Chen, R., Cohen, L.G., Daskalakis, Z., Di Iorio, R., Di Lazzaro, V., Ferreri, F., Fitzgerald, P.B., George, M.S., Hallett, M., Lefaucheur, J.P., Langguth, B., Matsumoto, H., Miniussi, C., Nitsche, M.A., Pascual-Leone, A., Paulus, W., Rossi, S., Rothwell, J.C., Siebner, H.R., Ugawa, Y., Walsh, V., Ziemann, U.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.06.2015
Témata:
ISSN:1388-2457, 1872-8952, 1872-8952
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots.•The main physiological, theoretical and methodological features of transcranial magnetic stimulation (TMS) are described.•Instructions for practical use of non-invasive stimulation in clinical applications and research are provided. These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
AbstractList These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Highlights • This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots. • The main physiological, theoretical and methodological features of transcranial magnetic stimulation (TMS) are described. • Instructions for practical use of non-invasive stimulation in clinical applications and research are provided.
•This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots.•The main physiological, theoretical and methodological features of transcranial magnetic stimulation (TMS) are described.•Instructions for practical use of non-invasive stimulation in clinical applications and research are provided. These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Author Miniussi, C.
Ferreri, F.
Nitsche, M.A.
Hallett, M.
Walsh, V.
Ugawa, Y.
Paulus, W.
Chen, R.
Di Lazzaro, V.
Rossini, P.M.
Matsumoto, H.
Ziemann, U.
Rossi, S.
Siebner, H.R.
Di Iorio, R.
Daskalakis, Z.
George, M.S.
Lefaucheur, J.P.
Burke, D.
Pascual-Leone, A.
Cohen, L.G.
Rothwell, J.C.
Langguth, B.
Fitzgerald, P.B.
AuthorAffiliation s Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
u Institute of Neurology, University College London, London, United Kingdom
m Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
p IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
d Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
h Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
k Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, Créteil, France
i Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
q Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
o Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy
z Department of Neurology & Stroke, and Hertie Institute f
AuthorAffiliation_xml – name: n Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
– name: u Institute of Neurology, University College London, London, United Kingdom
– name: z Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
– name: f Department of Neurology, University Campus Bio-medico, Rome, Italy
– name: g Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
– name: l EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
– name: o Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy
– name: j Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
– name: d Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
– name: r Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
– name: b Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
– name: m Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
– name: p IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
– name: e Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
– name: c Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
– name: w Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
– name: x Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
– name: q Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
– name: v Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
– name: y Institute of Cognitive Neuroscience, University College London, London, United Kingdom
– name: s Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
– name: k Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, Créteil, France
– name: a Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
– name: h Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
– name: i Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
– name: t Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
Author_xml – sequence: 1
  givenname: P.M.
  surname: Rossini
  fullname: Rossini, P.M.
  organization: Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
– sequence: 2
  givenname: D.
  surname: Burke
  fullname: Burke, D.
  organization: Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
– sequence: 3
  givenname: R.
  surname: Chen
  fullname: Chen, R.
  organization: Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
– sequence: 4
  givenname: L.G.
  surname: Cohen
  fullname: Cohen, L.G.
  organization: Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
– sequence: 5
  givenname: Z.
  surname: Daskalakis
  fullname: Daskalakis, Z.
  organization: Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
– sequence: 6
  givenname: R.
  surname: Di Iorio
  fullname: Di Iorio, R.
  email: r.diiorio@live.it
  organization: Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
– sequence: 7
  givenname: V.
  surname: Di Lazzaro
  fullname: Di Lazzaro, V.
  organization: Department of Neurology, University Campus Bio-medico, Rome, Italy
– sequence: 8
  givenname: F.
  surname: Ferreri
  fullname: Ferreri, F.
  organization: Department of Neurology, University Campus Bio-medico, Rome, Italy
– sequence: 9
  givenname: P.B.
  surname: Fitzgerald
  fullname: Fitzgerald, P.B.
  organization: Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
– sequence: 10
  givenname: M.S.
  surname: George
  fullname: George, M.S.
  organization: Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
– sequence: 11
  givenname: M.
  surname: Hallett
  fullname: Hallett, M.
  organization: Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
– sequence: 12
  givenname: J.P.
  surname: Lefaucheur
  fullname: Lefaucheur, J.P.
  organization: Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, Créteil, France
– sequence: 13
  givenname: B.
  surname: Langguth
  fullname: Langguth, B.
  organization: Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
– sequence: 14
  givenname: H.
  surname: Matsumoto
  fullname: Matsumoto, H.
  organization: Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
– sequence: 15
  givenname: C.
  surname: Miniussi
  fullname: Miniussi, C.
  organization: Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy
– sequence: 16
  givenname: M.A.
  surname: Nitsche
  fullname: Nitsche, M.A.
  organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
– sequence: 17
  givenname: A.
  surname: Pascual-Leone
  fullname: Pascual-Leone, A.
  organization: Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
– sequence: 18
  givenname: W.
  surname: Paulus
  fullname: Paulus, W.
  organization: Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
– sequence: 19
  givenname: S.
  surname: Rossi
  fullname: Rossi, S.
  organization: Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
– sequence: 20
  givenname: J.C.
  surname: Rothwell
  fullname: Rothwell, J.C.
  organization: Institute of Neurology, University College London, London, United Kingdom
– sequence: 21
  givenname: H.R.
  surname: Siebner
  fullname: Siebner, H.R.
  organization: Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
– sequence: 22
  givenname: Y.
  surname: Ugawa
  fullname: Ugawa, Y.
  organization: Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
– sequence: 23
  givenname: V.
  surname: Walsh
  fullname: Walsh, V.
  organization: Institute of Cognitive Neuroscience, University College London, London, United Kingdom
– sequence: 24
  givenname: U.
  surname: Ziemann
  fullname: Ziemann, U.
  organization: Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25797650$$D View this record in MEDLINE/PubMed
BookMark eNqFUs1u1DAQjlAR_YE3QMhHDk2wkzhxKoRUVhQqVeUAnC3HmXS9JHZqOyv1fXkQJt1tBUjAyXHm-_HMfMfJgXUWkuQloxmjrHqzyfRg7LTOcsp4RvOMUvYkOWKizlPR8PwAvwsh0rzk9WFyHMKGUlrTMn-WHOa8buqK06Pkx7WzqbFbFcwWCAygozdaDUTZjozqxkI0moRoxnlQ0ThLXE_iGkjrlbGnJEzGIlo7350S71wM98wJvJnW4LFkwW8hnJH3aKHJ5I3VZhpgj_NOQzd7vPbOo8AcjQWydPb4CiyC8npN1DQN-Hd5RUbOLZmnTkVYAJPzkfTejUggl9lFtsquM7Jy42hiBHiePO3VEODF_jxJvl18-Lr6lF59_ni5Or9KNRdVTMtWVKxmhWJtz-q2alVfMKaYUGXFBNCGVazLGy56KAV0qim6RvOKKgqCFQUvTpJ3O91pbkfoNNiIE5DY86j8nXTKyN8r1qzljdvKquAUd4ICr_cC3t3OEKIcTdAwDMqCm4NkVVPWlBdUIPTVr16PJg-rRcDZDqC9C8FDL7WJ98NDazNIRuWSI7mRuxzJJUeS5hJzhOTyD_KD_n9o-wEATnlrwMuHTX6HOwgbN3tMC_YhAxLklyWgSz4ZX7LJFoG3fxeQnTP_9v8Jmh_9LQ
CitedBy_id crossref_primary_10_1016_j_neucli_2021_12_006
crossref_primary_10_3389_fnagi_2022_1077218
crossref_primary_10_1111_psyp_14728
crossref_primary_10_1016_j_brs_2025_05_115
crossref_primary_10_3389_fnins_2020_00314
crossref_primary_10_1016_j_brs_2016_02_005
crossref_primary_10_1097_MD_0000000000022452
crossref_primary_10_1016_j_jelekin_2016_03_003
crossref_primary_10_1038_s41598_020_79812_y
crossref_primary_10_1016_j_cpr_2024_102511
crossref_primary_10_1088_1741_2552_ad367a
crossref_primary_10_5604_01_3001_0055_0954
crossref_primary_10_1176_appi_ajp_2019_19090957
crossref_primary_10_1097_MD_0000000000009008
crossref_primary_10_1162_imag_a_00419
crossref_primary_10_3390_app132312679
crossref_primary_10_1016_j_yebeh_2017_09_011
crossref_primary_10_1177_10538135251325435
crossref_primary_10_1002_advs_202404254
crossref_primary_10_3389_fpsyg_2018_02509
crossref_primary_10_1007_s10548_016_0536_9
crossref_primary_10_2196_50714
crossref_primary_10_1016_j_clinph_2021_05_035
crossref_primary_10_1016_j_jpain_2023_11_023
crossref_primary_10_3389_fneur_2025_1587060
crossref_primary_10_3390_brainsci13081154
crossref_primary_10_1016_j_clinph_2021_12_010
crossref_primary_10_1016_j_bpsc_2021_11_004
crossref_primary_10_1212_WNL_0000000000006438
crossref_primary_10_3390_children9070945
crossref_primary_10_1016_j_clinph_2021_12_018
crossref_primary_10_3389_fnagi_2018_00379
crossref_primary_10_1002_hbm_23274
crossref_primary_10_1016_j_transm_2025_100183
crossref_primary_10_1038_s41386_022_01453_8
crossref_primary_10_1097_PHM_0000000000002377
crossref_primary_10_1016_j_transm_2025_100186
crossref_primary_10_1097_PR9_0000000000000725
crossref_primary_10_1113_JP277036
crossref_primary_10_1007_s10072_021_05187_1
crossref_primary_10_1016_j_transm_2025_100181
crossref_primary_10_1007_s00221_018_5364_6
crossref_primary_10_1016_j_clinph_2015_06_011
crossref_primary_10_1002_aur_3222
crossref_primary_10_1016_j_neuropsychologia_2020_107496
crossref_primary_10_1016_j_neuropsychologia_2020_107497
crossref_primary_10_3389_fnins_2021_773792
crossref_primary_10_1016_j_clinph_2019_04_721
crossref_primary_10_1016_j_neuroscience_2022_05_021
crossref_primary_10_1089_brain_2020_0949
crossref_primary_10_1016_j_neulet_2020_135483
crossref_primary_10_1016_j_transm_2025_100194
crossref_primary_10_1002_acn3_51535
crossref_primary_10_1016_j_brs_2018_05_006
crossref_primary_10_1016_j_jneumeth_2020_108998
crossref_primary_10_3389_fneur_2022_804528
crossref_primary_10_1016_j_neurobiolaging_2020_05_017
crossref_primary_10_1097_MD_0000000000020282
crossref_primary_10_1016_j_neucli_2018_04_003
crossref_primary_10_1016_j_neucli_2024_103012
crossref_primary_10_1002_ajmg_b_33051
crossref_primary_10_1177_15459683241233259
crossref_primary_10_3389_fnins_2021_623692
crossref_primary_10_1212_WNL_0000000000007748
crossref_primary_10_1016_j_clinph_2019_04_711
crossref_primary_10_1080_08990220_2021_1914019
crossref_primary_10_1186_s12883_019_1526_9
crossref_primary_10_2196_49702
crossref_primary_10_1177_15459683211017509
crossref_primary_10_1186_s13195_024_01607_4
crossref_primary_10_1371_journal_pone_0177560
crossref_primary_10_1002_brb3_2569
crossref_primary_10_1371_journal_pone_0282751
crossref_primary_10_1016_j_cortex_2020_01_012
crossref_primary_10_1039_D2BM02059A
crossref_primary_10_1152_jn_00261_2025
crossref_primary_10_1111_ane_12852
crossref_primary_10_1186_s13195_019_0555_3
crossref_primary_10_3389_fneur_2018_00982
crossref_primary_10_1007_s00221_018_5200_z
crossref_primary_10_1016_j_clinph_2021_03_001
crossref_primary_10_1177_1545968317712470
crossref_primary_10_1016_j_ynirp_2022_100099
crossref_primary_10_1002_ejp_2313
crossref_primary_10_3389_fnins_2020_00363
crossref_primary_10_3390_cells12081193
crossref_primary_10_3389_fneur_2024_1423013
crossref_primary_10_1016_j_exger_2015_06_006
crossref_primary_10_1016_j_expneurol_2022_114106
crossref_primary_10_1177_0300060519854626
crossref_primary_10_1002_ana_25712
crossref_primary_10_1088_1741_2552_ac9d65
crossref_primary_10_1016_j_clinph_2024_03_018
crossref_primary_10_1016_j_clinph_2024_10_011
crossref_primary_10_1038_s41598_023_32894_w
crossref_primary_10_1016_j_ijpsycho_2022_08_005
crossref_primary_10_1515_bmt_2016_0162
crossref_primary_10_1016_j_abrep_2025_100627
crossref_primary_10_1298_ptr_E9911
crossref_primary_10_1002_jnr_24514
crossref_primary_10_1152_jn_00268_2022
crossref_primary_10_1007_s00221_019_05579_y
crossref_primary_10_1007_s00221_020_06010_7
crossref_primary_10_1152_jn_00268_2021
crossref_primary_10_1016_j_brainres_2022_148092
crossref_primary_10_1007_s00221_022_06413_8
crossref_primary_10_1016_j_expneurol_2025_115409
crossref_primary_10_1016_j_neuroimage_2024_120527
crossref_primary_10_1212_WNL_0000000000006867
crossref_primary_10_1007_s12671_025_02519_6
crossref_primary_10_1016_j_neuroimage_2017_12_048
crossref_primary_10_14309_ajg_0000000000003295
crossref_primary_10_1016_j_brs_2024_02_011
crossref_primary_10_1016_j_neulet_2024_137986
crossref_primary_10_3389_fncel_2016_00092
crossref_primary_10_1016_j_neuroscience_2020_11_011
crossref_primary_10_1016_j_brainres_2023_148380
crossref_primary_10_1073_pnas_1905534116
crossref_primary_10_1016_j_clinph_2021_03_021
crossref_primary_10_1371_journal_pone_0190165
crossref_primary_10_1055_a_2078_4823
crossref_primary_10_1186_s13195_023_01164_2
crossref_primary_10_1017_S1355617719000766
crossref_primary_10_1016_j_brs_2024_02_003
crossref_primary_10_1177_1545968319860483
crossref_primary_10_1016_j_seizure_2024_07_001
crossref_primary_10_1152_jn_00381_2016
crossref_primary_10_1016_j_clinph_2020_08_017
crossref_primary_10_1016_j_smhs_2024_12_002
crossref_primary_10_1016_j_clinph_2025_2110757
crossref_primary_10_1016_j_brainresbull_2024_110972
crossref_primary_10_1055_a_1416_3874
crossref_primary_10_1038_sc_2016_47
crossref_primary_10_3389_fnagi_2018_00307
crossref_primary_10_1016_j_brs_2021_04_026
crossref_primary_10_1016_j_clinph_2024_12_001
crossref_primary_10_1002_hbm_24975
crossref_primary_10_3389_fneur_2020_00422
crossref_primary_10_1016_j_brs_2020_09_005
crossref_primary_10_1371_journal_pone_0281867
crossref_primary_10_1016_j_clinph_2024_12_009
crossref_primary_10_3389_fnins_2020_00729
crossref_primary_10_1093_cercor_bhy134
crossref_primary_10_1016_j_sleep_2017_06_021
crossref_primary_10_1016_j_dib_2025_111467
crossref_primary_10_3389_fnsys_2019_00077
crossref_primary_10_1016_j_clinph_2025_2110747
crossref_primary_10_1007_s10072_019_04147_0
crossref_primary_10_1016_j_neuroscience_2016_06_015
crossref_primary_10_1016_j_parkreldis_2023_105869
crossref_primary_10_3389_fnhum_2018_00026
crossref_primary_10_1002_hbm_25812
crossref_primary_10_1016_j_psyneuen_2020_105070
crossref_primary_10_1016_j_neuroscience_2025_03_068
crossref_primary_10_1177_26331055221145002
crossref_primary_10_3389_fneur_2021_680733
crossref_primary_10_1016_j_neubiorev_2025_106338
crossref_primary_10_1523_JNEUROSCI_0782_24_2024
crossref_primary_10_1093_cercor_bhab380
crossref_primary_10_1016_j_neulet_2021_136220
crossref_primary_10_3389_fpsyg_2022_998062
crossref_primary_10_3389_fneur_2020_633224
crossref_primary_10_1155_2021_4716161
crossref_primary_10_1016_j_aanat_2025_152695
crossref_primary_10_1038_srep23599
crossref_primary_10_1016_j_neuroscience_2017_12_008
crossref_primary_10_1016_j_neuroscience_2020_04_022
crossref_primary_10_1109_TBME_2021_3055434
crossref_primary_10_1186_s13195_018_0423_6
crossref_primary_10_1016_j_neuroscience_2020_04_016
crossref_primary_10_3233_RNN_170785
crossref_primary_10_1007_s11064_018_2484_0
crossref_primary_10_1016_j_clinph_2018_06_003
crossref_primary_10_1136_bmjopen_2017_016566
crossref_primary_10_1016_j_jns_2025_123478
crossref_primary_10_1113_JP288503
crossref_primary_10_1016_j_jelekin_2018_04_009
crossref_primary_10_1038_s41598_021_94494_w
crossref_primary_10_3390_ijms20112818
crossref_primary_10_1523_JNEUROSCI_2123_16_2017
crossref_primary_10_3390_life13061376
crossref_primary_10_17116_jnevro202312311175
crossref_primary_10_1371_journal_pone_0173114
crossref_primary_10_3233_RNN_170758
crossref_primary_10_1038_sc_2016_87
crossref_primary_10_1007_s00221_022_06492_7
crossref_primary_10_1038_s41598_020_80743_x
crossref_primary_10_1016_j_brs_2021_11_016
crossref_primary_10_1016_j_brs_2021_11_014
crossref_primary_10_1016_j_neuroimage_2020_117023
crossref_primary_10_1002_nau_23718
crossref_primary_10_1016_j_clinph_2024_05_014
crossref_primary_10_1038_s41598_018_27502_1
crossref_primary_10_1016_j_neuroscience_2018_09_044
crossref_primary_10_3233_RNN_170773
crossref_primary_10_1016_j_brainres_2024_149111
crossref_primary_10_1177_15459683241300547
crossref_primary_10_1038_s41380_024_02405_y
crossref_primary_10_3389_fnins_2024_1362607
crossref_primary_10_1016_j_nicl_2024_103705
crossref_primary_10_3389_fneur_2020_584664
crossref_primary_10_1016_j_brs_2018_09_015
crossref_primary_10_1093_cercor_bhad515
crossref_primary_10_1038_s41598_017_11980_w
crossref_primary_10_1111_1460_6984_13039
crossref_primary_10_3233_NRE_151292
crossref_primary_10_1002_hipo_23054
crossref_primary_10_1371_journal_pone_0305545
crossref_primary_10_1016_j_cortex_2018_08_004
crossref_primary_10_1523_JNEUROSCI_1952_19_2019
crossref_primary_10_1007_s00221_018_5199_1
crossref_primary_10_1016_j_jad_2022_02_005
crossref_primary_10_1016_j_cortex_2022_06_018
crossref_primary_10_1016_j_neulet_2022_136460
crossref_primary_10_3389_fneur_2024_1454220
crossref_primary_10_1007_s00701_024_06308_3
crossref_primary_10_3233_RNN_170735
crossref_primary_10_1007_s00421_016_3451_6
crossref_primary_10_1016_j_neulet_2025_138283
crossref_primary_10_1016_j_clinph_2024_12_027
crossref_primary_10_3389_fnins_2023_1221777
crossref_primary_10_3233_RNN_170733
crossref_primary_10_1016_j_neuroimage_2020_117485
crossref_primary_10_3390_brainsci12050639
crossref_primary_10_1113_JP287204
crossref_primary_10_1007_s11065_022_09534_7
crossref_primary_10_1088_1741_2552_ab3187
crossref_primary_10_1111_ejn_13321
crossref_primary_10_1155_2017_6751810
crossref_primary_10_1016_j_ejpn_2025_03_013
crossref_primary_10_3233_JAD_180293
crossref_primary_10_1016_j_neuroimage_2018_09_002
crossref_primary_10_3233_RNN_170745
crossref_primary_10_1371_journal_pone_0259931
crossref_primary_10_1007_s00221_021_06277_4
crossref_primary_10_3389_fphys_2018_00827
crossref_primary_10_1007_s00221_021_06144_2
crossref_primary_10_1177_20552173221143398
crossref_primary_10_1016_j_brs_2016_11_009
crossref_primary_10_1093_braincomms_fcaf101
crossref_primary_10_1016_j_gaitpost_2019_03_018
crossref_primary_10_1177_0300060520928737
crossref_primary_10_1093_cercor_bhad021
crossref_primary_10_1152_jn_00148_2018
crossref_primary_10_1016_j_cognition_2021_104663
crossref_primary_10_1186_s13063_024_07913_4
crossref_primary_10_1016_j_clinph_2017_07_394
crossref_primary_10_1038_s41598_022_04957_x
crossref_primary_10_3389_fnins_2022_866245
crossref_primary_10_1111_ner_12874
crossref_primary_10_1016_j_neuropsychologia_2017_04_016
crossref_primary_10_1007_s00415_019_09419_5
crossref_primary_10_3389_fneur_2020_583268
crossref_primary_10_1007_s11062_020_09875_0
crossref_primary_10_1016_j_clinph_2020_06_015
crossref_primary_10_1016_j_clinph_2015_11_012
crossref_primary_10_3390_brainsci8120225
crossref_primary_10_3758_s13415_020_00786_5
crossref_primary_10_1016_j_biopsych_2023_12_004
crossref_primary_10_1186_s12868_018_0434_z
crossref_primary_10_1371_journal_pone_0173672
crossref_primary_10_1016_j_clinph_2019_03_011
crossref_primary_10_1038_s41598_020_64717_7
crossref_primary_10_1016_j_clinph_2019_03_015
crossref_primary_10_1016_j_nrleng_2016_03_009
crossref_primary_10_3389_fnagi_2019_00248
crossref_primary_10_3389_fpsyg_2020_00685
crossref_primary_10_1007_s00429_017_1500_5
crossref_primary_10_1097_MD_0000000000028576
crossref_primary_10_1016_j_neuroscience_2021_08_028
crossref_primary_10_1212_WNL_0000000000012662
crossref_primary_10_3389_fpsyg_2019_00993
crossref_primary_10_1093_cercor_bhw386
crossref_primary_10_1016_j_sleep_2020_03_001
crossref_primary_10_3390_brainsci11020145
crossref_primary_10_3390_app12157437
crossref_primary_10_1186_s40673_016_0057_z
crossref_primary_10_1016_j_nanoen_2022_107486
crossref_primary_10_1016_j_neucli_2016_05_001
crossref_primary_10_3389_fnint_2020_00013
crossref_primary_10_1097_WNR_0000000000000508
crossref_primary_10_1016_j_clinph_2016_05_013
crossref_primary_10_3389_fpsyt_2025_1526225
crossref_primary_10_1136_svn_2022_001568
crossref_primary_10_1007_s12311_016_0840_7
crossref_primary_10_1007_s12311_022_01419_y
crossref_primary_10_1016_j_jneumeth_2025_110559
crossref_primary_10_1152_jn_00527_2020
crossref_primary_10_3389_fnins_2023_1079432
crossref_primary_10_3390_brainsci9030063
crossref_primary_10_1007_s00221_022_06462_z
crossref_primary_10_3390_brainsci9030062
crossref_primary_10_1016_j_jneumeth_2024_110267
crossref_primary_10_1016_j_neuroscience_2024_06_008
crossref_primary_10_1371_journal_pone_0252023
crossref_primary_10_1016_j_jneumeth_2022_109631
crossref_primary_10_4103_ijmr_IJMR_97_18
crossref_primary_10_31083_j_jin2303054
crossref_primary_10_1093_brain_awac203
crossref_primary_10_1088_1361_6560_abe223
crossref_primary_10_1113_JP277849
crossref_primary_10_1371_journal_pone_0208747
crossref_primary_10_1162_jocn_a_01838
crossref_primary_10_1371_journal_pone_0217266
crossref_primary_10_1016_j_brs_2015_05_010
crossref_primary_10_1016_j_nrl_2018_03_023
crossref_primary_10_1093_cercor_bhab280
crossref_primary_10_1002_pri_2111
crossref_primary_10_1111_ejn_15438
crossref_primary_10_1016_j_neucli_2016_05_070
crossref_primary_10_1093_brain_awz181
crossref_primary_10_1177_1352458519865734
crossref_primary_10_1016_j_brs_2018_01_004
crossref_primary_10_1016_j_brs_2018_01_001
crossref_primary_10_3390_brainsci11070897
crossref_primary_10_2217_pmt_2023_0004
crossref_primary_10_3390_biomedicines11051373
crossref_primary_10_1002_pri_2102
crossref_primary_10_1007_s11357_021_00508_w
crossref_primary_10_3389_fnhum_2019_00200
crossref_primary_10_1017_cjn_2020_169
crossref_primary_10_1177_00315125221086254
crossref_primary_10_1038_s41598_022_18774_9
crossref_primary_10_3389_fnbeh_2018_00197
crossref_primary_10_1093_scan_nsy022
crossref_primary_10_1007_s00221_018_5261_z
crossref_primary_10_3390_ijms26041754
crossref_primary_10_1016_j_ctim_2018_09_013
crossref_primary_10_1371_journal_pone_0207476
crossref_primary_10_3390_brainsci15080839
crossref_primary_10_1007_s10072_025_08249_w
crossref_primary_10_1162_jocn_a_00967
crossref_primary_10_3389_fnins_2021_633988
crossref_primary_10_3389_fneur_2021_673560
crossref_primary_10_3389_fnint_2020_00045
crossref_primary_10_1007_s00221_020_05812_z
crossref_primary_10_1016_j_msard_2023_104514
crossref_primary_10_1016_j_clinph_2022_09_003
crossref_primary_10_1016_j_jneumeth_2022_109662
crossref_primary_10_1007_s11060_024_04931_9
crossref_primary_10_1007_s00221_019_05691_z
crossref_primary_10_1016_j_brainres_2017_08_015
crossref_primary_10_1007_s11910_022_01224_4
crossref_primary_10_1007_s10072_021_05335_7
crossref_primary_10_1016_j_neubiorev_2021_07_019
crossref_primary_10_3389_fnagi_2020_00200
crossref_primary_10_3389_fnins_2023_1121043
crossref_primary_10_1016_j_ibneur_2025_03_005
crossref_primary_10_1016_j_neubiorev_2024_105933
crossref_primary_10_1038_s41598_019_49166_1
crossref_primary_10_1113_JP283244
crossref_primary_10_1111_ejn_15467
crossref_primary_10_1016_j_arr_2024_102509
crossref_primary_10_1016_j_neubiorev_2016_03_006
crossref_primary_10_1186_s13063_021_05308_3
crossref_primary_10_3389_fnhum_2024_1408818
crossref_primary_10_3389_fnins_2023_1301075
crossref_primary_10_1016_j_clinph_2022_09_006
crossref_primary_10_1016_j_psychres_2025_116616
crossref_primary_10_1155_2019_7638675
crossref_primary_10_1016_j_clinph_2022_09_009
crossref_primary_10_1016_j_clinph_2020_06_024
crossref_primary_10_1038_s41598_022_12225_1
crossref_primary_10_3389_fneur_2024_1472837
crossref_primary_10_1113_JP282393
crossref_primary_10_1155_2016_7365609
crossref_primary_10_3389_fnmol_2022_879909
crossref_primary_10_1016_j_clinph_2020_06_023
crossref_primary_10_1016_j_cortex_2023_05_009
crossref_primary_10_1186_s12891_023_07146_7
crossref_primary_10_1016_j_neulet_2016_09_034
crossref_primary_10_1016_j_wneu_2018_11_114
crossref_primary_10_1007_s40120_021_00300_0
crossref_primary_10_1113_JP284500
crossref_primary_10_1186_s12883_024_03720_1
crossref_primary_10_1016_j_cub_2020_08_104
crossref_primary_10_3389_fnins_2017_00088
crossref_primary_10_1016_j_neuroimage_2016_02_012
crossref_primary_10_1039_D4RA04258A
crossref_primary_10_1016_j_neuropsychologia_2018_01_043
crossref_primary_10_1016_j_neubiorev_2017_11_018
crossref_primary_10_1038_s41598_022_23444_x
crossref_primary_10_1186_s13102_019_0120_1
crossref_primary_10_1016_j_autneu_2022_103023
crossref_primary_10_1038_s41598_023_31825_z
crossref_primary_10_1007_s11682_021_00605_6
crossref_primary_10_1016_j_neulet_2016_09_038
crossref_primary_10_1109_ACCESS_2020_3033075
crossref_primary_10_1371_journal_pone_0186007
crossref_primary_10_1016_j_neubiorev_2023_105273
crossref_primary_10_1088_1741_2552_acdcbb
crossref_primary_10_3389_fncir_2021_675365
crossref_primary_10_1016_j_jaac_2024_08_487
crossref_primary_10_1016_j_jneumeth_2019_108444
crossref_primary_10_1016_S1634_7072_16_81782_1
crossref_primary_10_3171_2016_11_JNS162322
crossref_primary_10_1038_s41598_019_55858_5
crossref_primary_10_1111_ejn_15002
crossref_primary_10_1111_ejn_14154
crossref_primary_10_25259_SNI_124_2019
crossref_primary_10_1038_s41598_021_04175_x
crossref_primary_10_1111_ner_13314
crossref_primary_10_1007_s00421_023_05141_3
crossref_primary_10_1016_j_procir_2019_04_288
crossref_primary_10_1186_s12891_022_05540_1
crossref_primary_10_1186_s12888_023_05243_4
crossref_primary_10_1038_s41598_021_83449_w
crossref_primary_10_1016_j_clinph_2020_04_010
crossref_primary_10_1186_s12984_025_01557_4
crossref_primary_10_1007_s10072_016_2693_8
crossref_primary_10_1016_j_jocn_2025_111234
crossref_primary_10_1007_s00415_017_8731_5
crossref_primary_10_1016_j_brs_2021_08_022
crossref_primary_10_1016_j_clinph_2021_10_014
crossref_primary_10_1038_s41386_023_01575_7
crossref_primary_10_1016_j_neulet_2023_137191
crossref_primary_10_1002_hbm_70057
crossref_primary_10_1177_1559325816685467
crossref_primary_10_1371_journal_pone_0261373
crossref_primary_10_1016_j_brainresbull_2019_05_004
crossref_primary_10_1155_2024_5673579
crossref_primary_10_1016_j_cognition_2024_105963
crossref_primary_10_1016_j_seizure_2025_06_020
crossref_primary_10_1111_psyp_14234
crossref_primary_10_1016_j_brs_2015_09_013
crossref_primary_10_1186_s13063_022_06359_w
crossref_primary_10_3389_fnins_2018_00068
crossref_primary_10_1097_YCT_0000000000000513
crossref_primary_10_1088_1741_2552_aa9c8c
crossref_primary_10_1016_j_brs_2015_07_027
crossref_primary_10_1016_j_jad_2024_09_024
crossref_primary_10_1038_s41467_024_55202_0
crossref_primary_10_1016_j_msard_2024_105741
crossref_primary_10_1016_j_neurot_2024_e00497
crossref_primary_10_1016_j_brs_2018_03_008
crossref_primary_10_1038_s41598_021_97168_9
crossref_primary_10_1016_j_clinph_2022_07_495
crossref_primary_10_1111_ejn_16365
crossref_primary_10_1016_j_bbr_2022_113733
crossref_primary_10_1002_mus_27328
crossref_primary_10_1016_j_brs_2018_03_015
crossref_primary_10_1007_s00429_021_02410_9
crossref_primary_10_1038_s41598_018_19698_z
crossref_primary_10_1097_MD_0000000000031774
crossref_primary_10_1109_TMAG_2015_2458297
crossref_primary_10_1055_a_2280_6340
crossref_primary_10_1016_j_neuron_2024_09_001
crossref_primary_10_3389_fneur_2021_650830
crossref_primary_10_1016_j_apmr_2023_12_002
crossref_primary_10_3389_fnhum_2020_00342
crossref_primary_10_1016_j_neurobiolaging_2021_06_007
crossref_primary_10_1016_j_brs_2018_03_004
crossref_primary_10_1016_j_brs_2018_03_002
crossref_primary_10_1002_ana_25677
crossref_primary_10_1016_j_neulet_2017_04_033
crossref_primary_10_1016_j_neurom_2022_10_043
crossref_primary_10_1016_j_neuroscience_2015_09_056
crossref_primary_10_1016_j_neulet_2017_04_032
crossref_primary_10_1097_WNR_0000000000001809
crossref_primary_10_3389_fnins_2023_1180816
crossref_primary_10_1093_cercor_bhw346
crossref_primary_10_1007_s11517_021_02315_z
crossref_primary_10_7554_eLife_92088
crossref_primary_10_3390_brainsci11030384
crossref_primary_10_1016_j_smrv_2024_102027
crossref_primary_10_1002_jmv_28838
crossref_primary_10_1016_j_cortex_2016_09_002
crossref_primary_10_1016_j_neuroscience_2022_01_004
crossref_primary_10_1111_ejn_16386
crossref_primary_10_1177_1545968317718269
crossref_primary_10_1111_ner_12459
crossref_primary_10_1038_s41583_022_00598_1
crossref_primary_10_1007_s12311_019_01093_7
crossref_primary_10_1016_j_neurom_2022_10_055
crossref_primary_10_3390_brainsci14040371
crossref_primary_10_1109_TMAG_2022_3147219
crossref_primary_10_3389_fpsyt_2017_00096
crossref_primary_10_1016_j_brs_2022_01_009
crossref_primary_10_1097_WNR_0000000000000941
crossref_primary_10_1080_14737175_2016_1194202
crossref_primary_10_1111_ejn_16395
crossref_primary_10_1016_j_addbeh_2020_106657
crossref_primary_10_1016_j_wneu_2025_124381
crossref_primary_10_3389_fneur_2022_983643
crossref_primary_10_1080_17434440_2025_2563614
crossref_primary_10_1007_s11682_019_00082_y
crossref_primary_10_1155_2021_9164543
crossref_primary_10_1177_1756286419878317
crossref_primary_10_1111_ner_12444
crossref_primary_10_1016_j_neuroimage_2024_120874
crossref_primary_10_3389_fnhum_2016_00017
crossref_primary_10_1007_s10072_021_05188_0
crossref_primary_10_1016_j_brainresbull_2018_05_016
crossref_primary_10_1007_s00421_025_05834_x
crossref_primary_10_2196_resprot_8692
crossref_primary_10_1088_2057_1976_adabeb
crossref_primary_10_1523_JNEUROSCI_0173_24_2025
crossref_primary_10_1016_j_pneurobio_2017_07_001
crossref_primary_10_1038_s41598_019_48750_9
crossref_primary_10_3389_fnins_2019_00304
crossref_primary_10_1016_j_wneu_2017_03_114
crossref_primary_10_1016_j_neurobiolaging_2024_05_011
crossref_primary_10_3389_fneur_2017_00182
crossref_primary_10_1111_ejn_15197
crossref_primary_10_1177_1545968319862552
crossref_primary_10_1007_s11055_023_01412_w
crossref_primary_10_1155_2020_8820881
crossref_primary_10_3390_ijms21061948
crossref_primary_10_1152_jn_00320_2021
crossref_primary_10_1111_ejn_15191
crossref_primary_10_1111_jvim_15919
crossref_primary_10_1016_j_clinph_2025_04_001
crossref_primary_10_1016_j_heliyon_2023_e15767
crossref_primary_10_1080_10749357_2016_1138670
crossref_primary_10_1113_JP281885
crossref_primary_10_1016_j_neulet_2021_135884
crossref_primary_10_1007_s00701_017_3397_4
crossref_primary_10_1038_s41598_021_90663_z
crossref_primary_10_1113_EP086480
crossref_primary_10_1016_j_neucli_2020_10_001
crossref_primary_10_3389_fnhum_2016_00487
crossref_primary_10_1371_journal_pone_0282671
crossref_primary_10_1007_s00115_019_00799_7
crossref_primary_10_1038_s41598_024_51622_6
crossref_primary_10_1139_apnm_2018_0643
crossref_primary_10_1007_s11055_021_01048_8
crossref_primary_10_1002_trc2_12033
crossref_primary_10_1088_1741_2552_adbcdb
crossref_primary_10_1016_j_clinph_2019_06_006
crossref_primary_10_1038_s41598_021_92768_x
crossref_primary_10_1523_JNEUROSCI_1406_22_2023
crossref_primary_10_1016_j_clinph_2020_11_018
crossref_primary_10_1016_j_neucli_2017_02_003
crossref_primary_10_1088_1741_2552_adfd8b
crossref_primary_10_1038_s41596_022_00776_6
crossref_primary_10_1111_cns_14303
crossref_primary_10_1152_jn_00505_2019
crossref_primary_10_1016_j_clinph_2017_03_030
crossref_primary_10_1016_j_ejpn_2021_02_008
crossref_primary_10_1155_2022_7536783
crossref_primary_10_3390_cancers16122192
crossref_primary_10_3390_jcm11040951
crossref_primary_10_3758_s13423_022_02089_x
crossref_primary_10_1016_j_clinph_2020_02_012
crossref_primary_10_1016_j_clinph_2025_2110809
crossref_primary_10_1016_j_yebeh_2017_11_031
crossref_primary_10_1007_s00221_025_07003_0
crossref_primary_10_1016_j_clinph_2025_2110801
crossref_primary_10_3390_brainsci14040332
crossref_primary_10_1016_j_clinph_2019_12_410
crossref_primary_10_1186_s12888_020_02769_9
crossref_primary_10_1016_j_clinph_2019_12_413
crossref_primary_10_1111_ejn_16073
crossref_primary_10_1016_j_clinph_2025_04_012
crossref_primary_10_1016_j_jns_2021_120129
crossref_primary_10_1088_1741_2552_abe68a
crossref_primary_10_3390_cancers13020207
crossref_primary_10_3389_fneur_2022_698200
crossref_primary_10_1002_adma_202409942
crossref_primary_10_3390_brainsci12060701
crossref_primary_10_1017_cjn_2024_43
crossref_primary_10_1186_s12868_020_00600_5
crossref_primary_10_3389_fnhum_2021_617146
crossref_primary_10_1016_j_psychres_2022_114431
crossref_primary_10_17116_jnevro202512505156
crossref_primary_10_1162_jocn_a_01003
crossref_primary_10_3389_fnhum_2018_00118
crossref_primary_10_1186_s12868_018_0484_2
crossref_primary_10_1016_j_neuron_2022_10_017
crossref_primary_10_1139_apnm_2020_0456
crossref_primary_10_1523_JNEUROSCI_3129_16_2017
crossref_primary_10_3390_cells13100792
crossref_primary_10_1016_j_brs_2017_05_005
crossref_primary_10_1016_j_neulet_2019_01_050
crossref_primary_10_1111_ejn_13827
crossref_primary_10_3389_fphys_2017_00695
crossref_primary_10_1016_j_ijchp_2022_100330
crossref_primary_10_1016_j_jneumeth_2020_108893
crossref_primary_10_1007_s10548_016_0470_x
crossref_primary_10_1016_j_nicl_2025_103731
crossref_primary_10_1016_j_ebr_2021_100501
crossref_primary_10_1016_j_rvsc_2019_03_022
crossref_primary_10_1503_jpn_190060
crossref_primary_10_3389_fnagi_2017_00420
crossref_primary_10_3389_fpsyt_2022_876136
crossref_primary_10_1016_j_neures_2017_11_005
crossref_primary_10_1038_s41531_022_00420_w
crossref_primary_10_1007_s00221_022_06534_0
crossref_primary_10_1016_j_neuroimage_2018_03_044
crossref_primary_10_3390_s23010497
crossref_primary_10_1186_s12984_019_0589_6
crossref_primary_10_1007_s00221_023_06725_3
crossref_primary_10_1016_j_brs_2022_08_024
crossref_primary_10_1016_j_neulet_2023_137551
crossref_primary_10_1371_journal_pbio_3002452
crossref_primary_10_3389_fnhum_2021_684367
crossref_primary_10_1186_s13023_019_1181_7
crossref_primary_10_3389_fnagi_2022_971858
crossref_primary_10_1016_j_clinph_2024_08_005
crossref_primary_10_3389_fneur_2020_00566
crossref_primary_10_3389_fneur_2022_991099
crossref_primary_10_1007_s12264_024_01347_3
crossref_primary_10_3233_JAD_160505
crossref_primary_10_1515_tnsci_2022_0235
crossref_primary_10_3389_fnhum_2022_929917
crossref_primary_10_1016_j_jns_2023_120770
crossref_primary_10_1371_journal_pone_0185936
crossref_primary_10_3389_fneur_2024_1473254
crossref_primary_10_1093_cercor_bhaa309
crossref_primary_10_1016_j_brs_2025_04_014
crossref_primary_10_3390_brainsci11030405
crossref_primary_10_1016_j_neuroscience_2023_09_011
crossref_primary_10_3389_fmed_2022_679053
crossref_primary_10_1152_jn_00079_2017
crossref_primary_10_1097_MD_0000000000014307
crossref_primary_10_1038_s41598_025_20294_1
crossref_primary_10_1186_s13102_020_00212_w
crossref_primary_10_1016_j_jns_2018_08_014
crossref_primary_10_1186_s11689_022_09433_1
crossref_primary_10_3389_fnins_2024_1363860
crossref_primary_10_3390_life13122305
crossref_primary_10_3390_ijms21093135
crossref_primary_10_1016_j_neulet_2019_134653
crossref_primary_10_1111_joor_13655
crossref_primary_10_1016_j_clineuro_2015_12_022
crossref_primary_10_3389_fninf_2020_00028
crossref_primary_10_1371_journal_pcbi_1011572
crossref_primary_10_3390_brainsci12060761
crossref_primary_10_1113_JP278638
crossref_primary_10_3390_brainsci13070989
crossref_primary_10_1016_j_cub_2019_06_024
crossref_primary_10_4103_1673_5374_197134
crossref_primary_10_1007_s00429_019_01909_6
crossref_primary_10_3389_fpsyt_2020_00732
crossref_primary_10_1523_JNEUROSCI_1953_19_2019
crossref_primary_10_1113_JP279966
crossref_primary_10_1111_sms_12582
crossref_primary_10_3233_NRE_220074
crossref_primary_10_3389_fnsys_2023_1128205
crossref_primary_10_1186_s12883_021_02406_2
crossref_primary_10_1016_j_clinph_2023_03_012
crossref_primary_10_1016_j_nicl_2018_101620
crossref_primary_10_1113_JP280966
crossref_primary_10_3390_brainsci11111517
crossref_primary_10_1007_s00421_024_05626_9
crossref_primary_10_1016_j_clinph_2023_03_010
crossref_primary_10_1152_jn_00393_2016
crossref_primary_10_1186_s12984_024_01421_x
crossref_primary_10_1016_j_clinph_2019_08_020
crossref_primary_10_3390_app13095679
crossref_primary_10_1093_ptj_pzx008
crossref_primary_10_1016_j_neubiorev_2021_10_040
crossref_primary_10_1177_1545968319826052
crossref_primary_10_1002_jor_24062
crossref_primary_10_1038_s41598_020_72909_4
crossref_primary_10_1016_j_neuropsychologia_2025_109079
crossref_primary_10_1155_2022_7195699
crossref_primary_10_1155_2016_8154969
crossref_primary_10_1007_s00221_020_05788_w
crossref_primary_10_1007_s00429_022_02533_7
crossref_primary_10_1002_mds_30197
crossref_primary_10_1016_j_parkreldis_2022_10_006
crossref_primary_10_1152_japplphysiol_00010_2024
crossref_primary_10_1016_j_neuroscience_2019_10_051
crossref_primary_10_1186_s12987_020_0167_0
crossref_primary_10_1016_j_brs_2020_03_020
crossref_primary_10_1002_cpt_3521
crossref_primary_10_1007_s10548_019_00714_y
crossref_primary_10_1016_j_brainresbull_2019_02_002
crossref_primary_10_1016_j_cortex_2017_07_020
crossref_primary_10_3389_fnagi_2017_00016
crossref_primary_10_1016_j_brs_2017_07_011
crossref_primary_10_1007_s42399_019_00113_1
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105889
crossref_primary_10_1016_j_brs_2017_07_010
crossref_primary_10_1016_j_medengphy_2016_04_025
crossref_primary_10_1097_MD_0000000000038723
crossref_primary_10_1186_s12905_021_01275_8
crossref_primary_10_1155_2015_616242
crossref_primary_10_1519_JSC_0000000000003884
crossref_primary_10_1016_j_ynirp_2022_100132
crossref_primary_10_1016_j_sleep_2020_03_030
crossref_primary_10_3390_brainsci12010061
crossref_primary_10_1016_j_brs_2017_07_009
crossref_primary_10_1016_j_neuroscience_2017_07_028
crossref_primary_10_3389_fnhum_2019_00190
crossref_primary_10_1007_s10548_021_00867_9
crossref_primary_10_1152_jn_00069_2023
crossref_primary_10_2196_30163
crossref_primary_10_7717_peerj_17155
crossref_primary_10_1007_s00221_016_4639_z
crossref_primary_10_3233_JAD_200608
crossref_primary_10_1113_EP087347
crossref_primary_10_1111_sms_12538
crossref_primary_10_1093_cercor_bhad404
crossref_primary_10_1016_j_pneurobio_2023_102548
crossref_primary_10_3389_fnhum_2019_00185
crossref_primary_10_1016_j_neucli_2022_07_002
crossref_primary_10_1016_j_physbeh_2017_07_013
crossref_primary_10_1016_j_arcmed_2024_103031
crossref_primary_10_1016_j_cortex_2021_04_012
crossref_primary_10_1016_j_neuroimage_2023_120188
crossref_primary_10_1016_j_clinph_2017_03_003
crossref_primary_10_3390_jcm12216734
crossref_primary_10_3390_biomedicines13081920
crossref_primary_10_1177_1756286418759973
crossref_primary_10_3389_fnhum_2019_00195
crossref_primary_10_1016_j_neubiorev_2023_105300
crossref_primary_10_1016_j_brs_2025_02_021
crossref_primary_10_1155_2016_7043767
crossref_primary_10_1177_2055217319844796
crossref_primary_10_1016_j_arr_2016_05_006
crossref_primary_10_1016_j_jpain_2019_05_001
crossref_primary_10_1016_j_bjane_2025_844639
crossref_primary_10_1016_S0140_6736_18_30863_8
crossref_primary_10_3389_fncir_2022_986669
crossref_primary_10_1097_WNP_0000000000000707
crossref_primary_10_3390_brainsci14111092
crossref_primary_10_1093_cercor_bhw245
crossref_primary_10_1002_hbm_26086
crossref_primary_10_1113_JP283137
crossref_primary_10_1038_ijo_2017_150
crossref_primary_10_1088_1741_2552_acf1cc
crossref_primary_10_1016_j_clinph_2015_04_064
crossref_primary_10_1016_j_clinph_2021_08_006
crossref_primary_10_1088_1741_2552_ad0add
crossref_primary_10_1152_jn_00497_2019
crossref_primary_10_3390_sym13112219
crossref_primary_10_1016_j_neuroscience_2019_02_019
crossref_primary_10_1016_j_jpain_2019_05_010
crossref_primary_10_1016_j_bpsc_2021_07_005
crossref_primary_10_3389_fneur_2023_1212876
crossref_primary_10_1097_WNR_0000000000000886
crossref_primary_10_1016_j_brs_2021_02_005
crossref_primary_10_1016_j_eplepsyres_2020_106278
crossref_primary_10_1016_j_brs_2021_02_003
crossref_primary_10_1002_mco2_335
crossref_primary_10_1093_brain_awab257
crossref_primary_10_1016_j_brs_2025_02_008
crossref_primary_10_1002_acn3_670
crossref_primary_10_1097_HJH_0000000000001367
crossref_primary_10_3389_fnhum_2020_592013
crossref_primary_10_3389_fneur_2018_01020
crossref_primary_10_1111_epi_17466
crossref_primary_10_1016_j_clinph_2022_10_017
crossref_primary_10_1016_j_brs_2018_09_009
crossref_primary_10_1162_jocn_a_01943
crossref_primary_10_1080_14737175_2022_2170784
crossref_primary_10_3390_brainsci11020266
crossref_primary_10_1016_j_jpain_2020_08_004
crossref_primary_10_1152_jn_00064_2025
crossref_primary_10_1038_s41598_022_17055_9
crossref_primary_10_1038_s41598_022_23040_z
crossref_primary_10_1007_s10072_020_04691_0
crossref_primary_10_3233_RNN_150569
crossref_primary_10_1111_ner_12773
crossref_primary_10_1177_1759091417711512
crossref_primary_10_1016_j_brs_2018_11_015
crossref_primary_10_3390_brainsci15090969
crossref_primary_10_1007_s00221_018_5349_5
crossref_primary_10_1016_j_cub_2023_05_027
crossref_primary_10_1038_srep38396
crossref_primary_10_1111_psyp_14194
crossref_primary_10_1002_hbm_23816
crossref_primary_10_1097_YCT_0000000000000477
crossref_primary_10_1007_s00221_018_5314_3
crossref_primary_10_3390_brainsci11020252
crossref_primary_10_1002_bem_22235
crossref_primary_10_3389_fneur_2018_00179
crossref_primary_10_1177_09645284211057560
crossref_primary_10_1002_hbm_26045
crossref_primary_10_1016_j_clinph_2025_2111369
crossref_primary_10_1016_j_neuron_2021_02_024
crossref_primary_10_4085_1062_6050_0066_23
crossref_primary_10_1016_j_neuropsychologia_2017_11_004
crossref_primary_10_1017_sjp_2016_89
crossref_primary_10_4085_1062_6050_414_17
crossref_primary_10_1177_03331024231195780
crossref_primary_10_1016_j_tvjl_2016_08_006
crossref_primary_10_1080_09638288_2021_1925979
crossref_primary_10_1097_j_pain_0000000000001712
crossref_primary_10_1016_j_biopsycho_2017_02_008
crossref_primary_10_1155_2022_9419154
crossref_primary_10_3390_biom11030359
crossref_primary_10_1080_15376516_2022_2101038
crossref_primary_10_3390_brainsci15050457
crossref_primary_10_1007_s00429_016_1355_1
crossref_primary_10_1371_journal_pone_0195276
crossref_primary_10_1186_s12984_022_01049_9
crossref_primary_10_3389_fneur_2024_1345832
crossref_primary_10_1038_s41598_021_03281_0
crossref_primary_10_3389_fnagi_2022_995000
crossref_primary_10_1007_s12311_023_01622_5
crossref_primary_10_1177_19714009211067409
crossref_primary_10_1152_japplphysiol_01016_2017
crossref_primary_10_3389_fneur_2018_00189
crossref_primary_10_1093_brain_awac157
crossref_primary_10_1016_j_neulet_2022_136753
crossref_primary_10_3389_fpsyt_2020_559966
crossref_primary_10_1007_s00421_022_04982_8
crossref_primary_10_1016_j_neurom_2024_09_002
crossref_primary_10_1002_adma_202400346
crossref_primary_10_3389_fpain_2025_1593746
crossref_primary_10_1155_2018_7589601
crossref_primary_10_1186_s12984_020_00792_1
crossref_primary_10_1007_s10548_018_0655_6
crossref_primary_10_3390_brainsci11060715
crossref_primary_10_1016_j_jad_2022_09_153
crossref_primary_10_3389_fnins_2023_1100464
crossref_primary_10_1016_j_neulet_2020_134760
crossref_primary_10_1080_08990220_2017_1292238
crossref_primary_10_2147_NSS_S253281
crossref_primary_10_1016_j_neuroimage_2018_10_076
crossref_primary_10_1134_S0022093025040118
crossref_primary_10_1038_s41598_025_10830_4
crossref_primary_10_3390_biomedicines10102410
crossref_primary_10_1016_j_cortex_2019_10_016
crossref_primary_10_1016_j_cortex_2022_03_007
crossref_primary_10_1093_cercor_bhw294
crossref_primary_10_1093_cercor_bhw292
crossref_primary_10_1093_cercor_bhad370
crossref_primary_10_1038_s41467_024_49478_5
crossref_primary_10_1016_j_neuroimage_2023_119915
crossref_primary_10_1016_j_eplepsyres_2024_107426
crossref_primary_10_1016_j_brs_2020_09_010
crossref_primary_10_1016_j_pmrj_2016_02_004
crossref_primary_10_1038_s41526_020_00116_6
crossref_primary_10_1186_s13063_024_08451_9
crossref_primary_10_1007_s10548_017_0589_4
crossref_primary_10_1007_s00701_016_2970_6
crossref_primary_10_1177_1545968321989338
crossref_primary_10_1016_j_brs_2020_09_016
crossref_primary_10_1097_WNP_0000000000000784
crossref_primary_10_3389_fnins_2021_665258
crossref_primary_10_1038_s41598_018_33187_3
crossref_primary_10_1080_10749357_2018_1466971
crossref_primary_10_1016_j_neurot_2024_e00330
crossref_primary_10_3389_fnins_2019_00388
crossref_primary_10_5535_arm_2019_43_3_352
crossref_primary_10_3389_fnins_2019_01237
crossref_primary_10_1016_j_pmrj_2017_10_001
crossref_primary_10_1002_cpt_70038
crossref_primary_10_1152_jn_00832_2016
crossref_primary_10_1016_j_cub_2021_04_043
crossref_primary_10_1109_TBME_2015_2507572
crossref_primary_10_1038_s41598_023_37775_w
crossref_primary_10_1097_j_pain_0000000000001351
crossref_primary_10_1016_j_pjnns_2018_05_004
crossref_primary_10_1007_s00221_021_06183_9
crossref_primary_10_1016_j_jad_2024_08_120
crossref_primary_10_1016_j_brs_2019_06_015
crossref_primary_10_1016_j_nicl_2020_102536
crossref_primary_10_1016_j_brs_2019_06_012
crossref_primary_10_1111_ejn_15124
crossref_primary_10_1016_j_cortex_2018_02_004
crossref_primary_10_1063_5_0207131
crossref_primary_10_1371_journal_pone_0226452
crossref_primary_10_1109_TNSRE_2019_2926543
crossref_primary_10_3389_fneur_2022_813965
crossref_primary_10_1523_ENEURO_0111_25_2025
crossref_primary_10_1016_j_isci_2024_109140
crossref_primary_10_1016_j_clinph_2017_07_410
crossref_primary_10_3389_fnhum_2022_887246
crossref_primary_10_1002_hbm_26022
crossref_primary_10_1002_tee_23237
crossref_primary_10_1080_13554794_2022_2068374
crossref_primary_10_2147_NDT_S414782
crossref_primary_10_1016_j_brs_2016_08_004
crossref_primary_10_1016_j_brs_2025_08_021
crossref_primary_10_1016_j_rehab_2017_04_003
crossref_primary_10_1098_rstb_2016_0016
crossref_primary_10_1016_j_neurobiolaging_2019_04_008
crossref_primary_10_1111_ane_13289
crossref_primary_10_1136_bmjopen_2020_037332
crossref_primary_10_1016_j_clinph_2019_10_023
crossref_primary_10_1002_ana_27305
crossref_primary_10_1016_j_neuroimage_2025_121156
crossref_primary_10_3389_fnbeh_2022_831901
crossref_primary_10_1016_j_neuroscience_2019_08_043
crossref_primary_10_1152_jn_00663_2018
crossref_primary_10_1111_dmcn_14490
crossref_primary_10_3389_fbioe_2022_975037
crossref_primary_10_1007_s00701_017_3187_z
crossref_primary_10_1016_j_bandc_2018_11_003
crossref_primary_10_3389_fnins_2023_1135995
crossref_primary_10_1016_j_jneumeth_2021_109293
crossref_primary_10_1002_nbm_3618
crossref_primary_10_1111_psyp_14591
crossref_primary_10_1016_j_neuropharm_2023_109761
crossref_primary_10_1016_j_neucli_2018_10_002
crossref_primary_10_1016_j_neuropsychologia_2020_107541
crossref_primary_10_1038_s41598_020_64390_w
crossref_primary_10_1113_JP283560
crossref_primary_10_3389_fnins_2020_00264
crossref_primary_10_1002_hbm_26007
crossref_primary_10_7554_eLife_32740
crossref_primary_10_1002_mds_27479
crossref_primary_10_1007_s11065_018_9376_6
crossref_primary_10_1007_s00221_019_05683_z
crossref_primary_10_1016_j_nbd_2020_105159
crossref_primary_10_1016_j_neuron_2022_12_030
crossref_primary_10_4274_tjcamh_galenos_2022_04695
crossref_primary_10_1073_pnas_1911240117
crossref_primary_10_1007_s00429_017_1403_5
crossref_primary_10_1016_j_neuroimage_2020_117702
crossref_primary_10_1088_2516_1091_adfeaa
crossref_primary_10_3389_fnhum_2023_1152204
crossref_primary_10_1016_j_neuropsychologia_2019_01_003
crossref_primary_10_1007_s12311_021_01267_2
crossref_primary_10_1088_1741_2552_ac3207
crossref_primary_10_1038_s41539_025_00299_1
crossref_primary_10_1038_s41598_025_13558_3
crossref_primary_10_1152_jn_00774_2019
crossref_primary_10_3389_fnhum_2022_994138
crossref_primary_10_1007_s00701_018_3475_2
crossref_primary_10_1016_j_neuroscience_2025_06_014
crossref_primary_10_1093_scan_nsw129
crossref_primary_10_3389_fnhum_2022_845476
crossref_primary_10_3390_medicina60122061
crossref_primary_10_3389_fnins_2018_00361
crossref_primary_10_1016_j_transm_2025_100169
crossref_primary_10_1016_j_neurobiolaging_2025_04_010
crossref_primary_10_1152_jn_00711_2018
crossref_primary_10_1016_j_brs_2024_11_006
crossref_primary_10_1007_s11357_025_01545_5
crossref_primary_10_1088_1741_2552_abfc1e
crossref_primary_10_3389_fnins_2023_1198222
crossref_primary_10_1007_s11055_023_01433_5
crossref_primary_10_1016_j_jveb_2019_07_004
crossref_primary_10_3390_brainsci11020224
crossref_primary_10_1016_j_dscb_2025_100221
crossref_primary_10_1038_s41598_020_65944_8
crossref_primary_10_1016_j_jneumeth_2020_108959
crossref_primary_10_3389_fnins_2018_00393
crossref_primary_10_1016_j_jneumeth_2020_108957
crossref_primary_10_1093_cercor_bhaf157
crossref_primary_10_1109_TBCAS_2020_2981012
crossref_primary_10_3389_fnhum_2015_00556
crossref_primary_10_3389_fnins_2025_1579988
crossref_primary_10_1016_j_neuroimage_2023_119991
crossref_primary_10_1113_JP285706
crossref_primary_10_1007_s10548_019_00741_9
crossref_primary_10_1080_00222895_2020_1723480
crossref_primary_10_1088_1741_2552_acfa22
crossref_primary_10_1016_j_jneumeth_2020_108950
crossref_primary_10_1093_cercor_bhw212
crossref_primary_10_1016_j_msard_2018_12_029
crossref_primary_10_1016_j_plrev_2019_10_005
crossref_primary_10_1055_a_2483_5556
crossref_primary_10_1016_j_jneumeth_2017_09_012
crossref_primary_10_3389_fphys_2020_01042
crossref_primary_10_1016_j_brs_2019_06_029
crossref_primary_10_1016_j_brainres_2023_148534
crossref_primary_10_1111_cns_70486
crossref_primary_10_1016_j_neuroscience_2023_03_007
crossref_primary_10_1124_pr_119_017772
crossref_primary_10_1016_j_neuropsychologia_2018_08_002
crossref_primary_10_1016_j_brainres_2018_08_029
crossref_primary_10_1371_journal_pone_0242941
crossref_primary_10_3389_fneur_2021_627975
crossref_primary_10_1002_brb3_3211
crossref_primary_10_1016_j_sleep_2021_10_017
crossref_primary_10_1080_09638288_2023_2228690
crossref_primary_10_1088_1361_6560_ac8f0f
crossref_primary_10_3390_sci3030032
crossref_primary_10_1016_j_brainresbull_2023_110851
crossref_primary_10_1162_jocn_a_01165
crossref_primary_10_3389_fnins_2020_00559
crossref_primary_10_1080_00207454_2024_2401418
crossref_primary_10_1016_j_msard_2020_102039
crossref_primary_10_1186_s12984_024_01486_8
crossref_primary_10_3390_jcm11092291
crossref_primary_10_1016_j_neucli_2018_05_039
crossref_primary_10_1007_s00221_023_06585_x
crossref_primary_10_1177_15459683241268583
crossref_primary_10_1007_s10548_018_0660_9
crossref_primary_10_1007_s00784_023_05412_5
crossref_primary_10_1097_WNP_0000000000001003
crossref_primary_10_1152_jn_00163_2019
crossref_primary_10_1162_jocn_a_01171
crossref_primary_10_1002_mds_30011
crossref_primary_10_1016_j_clinph_2021_02_405
crossref_primary_10_1109_TBME_2024_3350693
crossref_primary_10_1111_cns_70583
crossref_primary_10_31083_j_jin2308161
crossref_primary_10_1016_j_neuroimage_2020_117698
crossref_primary_10_1016_j_nicl_2020_102383
crossref_primary_10_31083_j_jin2308160
crossref_primary_10_1016_j_neurot_2025_e00556
crossref_primary_10_1002_hbm_24329
crossref_primary_10_1016_j_brainresbull_2025_111484
crossref_primary_10_1111_sms_13394
crossref_primary_10_1002_acn3_70044
crossref_primary_10_1002_acn3_70041
crossref_primary_10_1371_journal_pone_0184910
crossref_primary_10_1016_j_neuroscience_2020_10_002
crossref_primary_10_1523_JNEUROSCI_1470_18_2018
crossref_primary_10_1016_j_parkreldis_2024_107217
crossref_primary_10_3389_fnhum_2016_00598
crossref_primary_10_3389_fnins_2019_00447
crossref_primary_10_1186_s12888_025_06719_1
crossref_primary_10_3389_fnhum_2023_1237712
crossref_primary_10_1007_s00221_020_05926_4
crossref_primary_10_1016_j_pnpbp_2022_110537
crossref_primary_10_1007_s00221_019_05599_8
crossref_primary_10_1113_EP087664
crossref_primary_10_1080_00222895_2024_2441860
crossref_primary_10_1111_ene_14515
crossref_primary_10_1080_08990220_2020_1828056
crossref_primary_10_1007_s13246_023_01263_2
crossref_primary_10_1111_ner_13062
crossref_primary_10_1016_j_clinph_2024_02_007
crossref_primary_10_1016_j_sleep_2018_02_008
crossref_primary_10_1002_ejp_864
crossref_primary_10_1093_sleep_zsz242
crossref_primary_10_1007_s00429_017_1550_8
crossref_primary_10_1007_s00221_016_4603_y
crossref_primary_10_1177_15459683211046272
crossref_primary_10_1007_s00221_021_06044_5
crossref_primary_10_1523_JNEUROSCI_0659_24_2024
crossref_primary_10_1016_j_brs_2021_05_013
crossref_primary_10_1093_cercor_bhac404
crossref_primary_10_1016_j_clinph_2023_07_010
crossref_primary_10_1111_ejn_13934
crossref_primary_10_1007_s00221_024_06930_8
crossref_primary_10_3389_fnhum_2023_1177594
crossref_primary_10_1159_000545553
crossref_primary_10_1152_jn_00655_2018
crossref_primary_10_1177_15459683231215331
crossref_primary_10_1038_s41380_024_02630_5
crossref_primary_10_1016_j_neuroimage_2023_120427
crossref_primary_10_1111_ner_13488
crossref_primary_10_1016_j_ibneur_2022_08_005
crossref_primary_10_1111_jcmm_13423
crossref_primary_10_1038_npp_2016_80
crossref_primary_10_1038_s41598_024_69345_z
crossref_primary_10_3892_etm_2021_9626
crossref_primary_10_3389_fpsyg_2023_1175217
crossref_primary_10_1016_j_jpain_2023_10_020
crossref_primary_10_1177_1545968320981960
crossref_primary_10_3390_brainsci10020083
crossref_primary_10_3390_brainsci13010137
crossref_primary_10_3390_toxins16010009
crossref_primary_10_3389_fnagi_2018_00177
crossref_primary_10_3390_ijms21082977
crossref_primary_10_1109_TMAG_2018_2850328
crossref_primary_10_3389_fneur_2025_1486591
crossref_primary_10_1177_1094428116658960
crossref_primary_10_1007_s11916_021_00960_5
crossref_primary_10_1038_s41531_024_00860_6
crossref_primary_10_3233_RNN_211172
crossref_primary_10_1016_j_neuroscience_2019_05_041
crossref_primary_10_1016_j_brs_2021_12_001
crossref_primary_10_1111_pcn_12936
crossref_primary_10_1016_j_arr_2022_101746
crossref_primary_10_1002_brb3_1015
crossref_primary_10_1523_JNEUROSCI_1609_22_2022
crossref_primary_10_3389_fneur_2019_00535
crossref_primary_10_1155_2018_3273246
crossref_primary_10_3389_fnins_2021_749042
crossref_primary_10_1016_j_pbb_2021_173240
crossref_primary_10_1016_j_clinph_2025_2110969
crossref_primary_10_3389_fnagi_2021_636184
crossref_primary_10_1007_s12311_025_01902_2
crossref_primary_10_1016_j_neuroimage_2017_02_075
crossref_primary_10_1016_j_wneu_2019_09_080
crossref_primary_10_1136_jnnp_2020_323487
crossref_primary_10_3389_fnins_2019_00895
crossref_primary_10_1007_s00221_019_05577_0
crossref_primary_10_1109_TNSRE_2022_3192761
crossref_primary_10_3389_fnins_2020_00106
crossref_primary_10_3389_fonc_2019_00446
crossref_primary_10_1016_j_jmpt_2019_10_007
crossref_primary_10_3390_brainsci10020063
crossref_primary_10_1111_ner_13496
crossref_primary_10_1016_j_heliyon_2024_e35563
crossref_primary_10_1186_s12987_022_00385_1
crossref_primary_10_17650_2222_8721_2020_10_1_64_74
crossref_primary_10_1016_j_clinthera_2020_05_017
crossref_primary_10_1007_s13311_022_01213_y
crossref_primary_10_3233_RNN_211195
crossref_primary_10_1093_scan_nsae057
crossref_primary_10_1093_cercor_bhaa270
crossref_primary_10_1016_j_neulet_2018_02_045
crossref_primary_10_1016_j_brs_2016_12_008
crossref_primary_10_1113_EP091782
crossref_primary_10_1038_s41598_017_13708_2
crossref_primary_10_3389_fnhum_2019_00008
crossref_primary_10_1016_j_neuroscience_2019_05_065
crossref_primary_10_1109_TNSRE_2019_2925904
crossref_primary_10_1109_TNSRE_2019_2923724
crossref_primary_10_1371_journal_pone_0266000
crossref_primary_10_3390_app13010636
crossref_primary_10_1016_j_neuropsychologia_2023_108561
crossref_primary_10_3389_fnins_2020_589107
crossref_primary_10_1038_s41393_022_00768_z
crossref_primary_10_1021_acs_chemrev_4c00468
crossref_primary_10_1088_1741_2560_13_3_031003
crossref_primary_10_1016_j_nicl_2025_103802
crossref_primary_10_3390_brainsci14080760
crossref_primary_10_1093_brain_awy155
crossref_primary_10_3233_JAD_210311
crossref_primary_10_3390_bioengineering9100562
crossref_primary_10_1088_1361_6560_ad0219
crossref_primary_10_1016_j_clinph_2024_04_010
crossref_primary_10_2147_NDT_S359855
crossref_primary_10_1016_j_brs_2021_03_002
crossref_primary_10_3389_fnins_2022_886909
crossref_primary_10_1038_s41598_017_19077_0
crossref_primary_10_3389_fninf_2019_00023
crossref_primary_10_1016_j_dscb_2022_100062
crossref_primary_10_4103_1673_5374_250581
crossref_primary_10_3389_fnagi_2021_737281
crossref_primary_10_3389_fnagi_2022_807151
crossref_primary_10_1016_j_brs_2024_01_003
crossref_primary_10_1017_cjn_2025_79
crossref_primary_10_1016_j_neucli_2015_12_003
crossref_primary_10_1097_PEP_0000000000000886
crossref_primary_10_3390_brainsci12121654
crossref_primary_10_1038_srep35719
crossref_primary_10_1111_ejn_13529
crossref_primary_10_1111_psyp_12732
crossref_primary_10_1155_2019_5190671
crossref_primary_10_1111_aor_14660
crossref_primary_10_1177_1545968321999049
crossref_primary_10_1016_j_brs_2024_01_004
crossref_primary_10_1371_journal_pone_0233999
crossref_primary_10_3389_fneur_2019_00967
crossref_primary_10_1371_journal_pone_0257554
crossref_primary_10_1016_j_neuroimage_2020_117279
crossref_primary_10_1113_JP276359
crossref_primary_10_1016_j_bandl_2025_105536
crossref_primary_10_1002_gps_5091
crossref_primary_10_3390_jcm8081208
crossref_primary_10_1113_JP278536
crossref_primary_10_1016_j_cveq_2022_04_002
crossref_primary_10_1016_j_bpsc_2024_12_005
crossref_primary_10_31083_j_jin2206164
crossref_primary_10_1016_j_brainres_2022_147850
crossref_primary_10_1016_j_brs_2023_08_001
crossref_primary_10_1111_epi_16634
crossref_primary_10_1162_IMAG_a_92
crossref_primary_10_1186_s13063_021_05042_w
crossref_primary_10_1080_14737175_2019_1567332
crossref_primary_10_1136_bmjopen_2023_082019
crossref_primary_10_3390_brainsci12121637
crossref_primary_10_1016_j_neurobiolaging_2020_08_021
crossref_primary_10_1136_bmjopen_2023_073532
crossref_primary_10_1016_j_neuroimage_2023_120027
crossref_primary_10_1016_j_nrleng_2020_05_004
crossref_primary_10_47924_neurotarget2024467
crossref_primary_10_3389_fnins_2021_709368
crossref_primary_10_1097_PHM_0000000000002543
crossref_primary_10_3390_nu13051530
crossref_primary_10_1371_journal_pone_0242056
crossref_primary_10_1001_jamanetworkopen_2019_5578
crossref_primary_10_1016_j_clinph_2024_11_004
crossref_primary_10_1371_journal_pone_0292733
crossref_primary_10_1016_j_brs_2023_08_010
crossref_primary_10_1088_1741_2552_add20d
crossref_primary_10_1002_ejp_841
crossref_primary_10_1007_s00421_016_3475_y
crossref_primary_10_1016_j_jns_2017_11_006
crossref_primary_10_1016_j_clinph_2020_09_025
crossref_primary_10_3390_brainsci15070754
crossref_primary_10_1016_j_clinph_2018_12_015
crossref_primary_10_1111_ene_16281
crossref_primary_10_1249_MSS_0000000000002055
crossref_primary_10_3389_fnhum_2022_943469
crossref_primary_10_1007_s10548_015_0442_6
crossref_primary_10_1016_j_brs_2018_08_003
crossref_primary_10_1002_ejp_811
crossref_primary_10_1016_j_neulet_2018_02_065
crossref_primary_10_1002_ejp_4786
crossref_primary_10_3389_fnins_2021_627445
crossref_primary_10_1002_mds_27727
crossref_primary_10_1016_j_jneumeth_2025_110374
crossref_primary_10_1016_j_neuroscience_2020_03_014
crossref_primary_10_1177_1073858418776891
crossref_primary_10_1038_s41598_023_38841_z
crossref_primary_10_1016_j_msard_2025_106693
crossref_primary_10_1002_mdc3_14349
crossref_primary_10_1016_j_jelekin_2015_07_006
crossref_primary_10_1016_j_neulet_2021_136039
crossref_primary_10_1016_j_xpro_2025_103622
crossref_primary_10_3389_fpsyt_2022_823158
crossref_primary_10_1016_j_brainres_2021_147523
crossref_primary_10_1016_j_brainres_2020_147227
crossref_primary_10_1109_TNSRE_2021_3095842
crossref_primary_10_1016_j_brainres_2024_149372
crossref_primary_10_1093_cercor_bhz283
crossref_primary_10_3233_RNN_160706
crossref_primary_10_1093_sleep_zsaf083
crossref_primary_10_1016_j_neuropsychologia_2024_108832
crossref_primary_10_1162_jocn_a_01510
crossref_primary_10_3389_fneur_2020_582262
crossref_primary_10_1016_j_cortex_2022_12_013
crossref_primary_10_3389_fnins_2017_00710
crossref_primary_10_1038_s41593_017_0054_4
crossref_primary_10_3389_fphys_2018_01822
crossref_primary_10_1007_s10548_017_0577_8
crossref_primary_10_1016_j_cortex_2025_07_006
crossref_primary_10_1038_s41598_023_49250_7
crossref_primary_10_1016_j_bbr_2019_112027
crossref_primary_10_1007_s00429_022_02453_6
crossref_primary_10_1007_s00415_025_13229_3
crossref_primary_10_1242_jeb_123158
crossref_primary_10_3389_fmedt_2024_1297552
crossref_primary_10_3233_NRE_220265
crossref_primary_10_1016_j_clinph_2024_06_004
crossref_primary_10_1016_j_clinph_2024_06_006
crossref_primary_10_2196_50030
crossref_primary_10_3389_fnins_2021_769848
crossref_primary_10_1016_j_brs_2022_04_018
crossref_primary_10_3389_fnins_2018_00683
crossref_primary_10_1002_acr_24118
crossref_primary_10_1016_j_clinph_2022_03_019
crossref_primary_10_4103_0366_6999_245267
crossref_primary_10_1007_s40501_020_00230_y
crossref_primary_10_1016_j_neubiorev_2024_105726
crossref_primary_10_1093_cercor_bhae130
crossref_primary_10_1007_s12264_021_00781_x
crossref_primary_10_3389_fnins_2023_1143072
crossref_primary_10_1016_j_neuroscience_2018_08_011
crossref_primary_10_3389_fneur_2018_01141
crossref_primary_10_3390_prosthesis5040083
crossref_primary_10_3389_fpsyt_2024_1279072
crossref_primary_10_1111_psyp_14069
crossref_primary_10_1111_ejn_14321
crossref_primary_10_3389_fnagi_2022_897837
crossref_primary_10_1016_j_visres_2025_108639
crossref_primary_10_12998_wjcc_v7_i13_1582
crossref_primary_10_3389_fneur_2020_584374
crossref_primary_10_1016_j_jneumeth_2018_08_023
crossref_primary_10_3389_fnagi_2019_00012
crossref_primary_10_1016_j_clinph_2022_03_009
crossref_primary_10_1038_s42003_022_03762_6
crossref_primary_10_3389_fnins_2020_580712
crossref_primary_10_1007_s00221_019_05614_y
crossref_primary_10_1016_j_nbd_2023_106137
crossref_primary_10_1016_j_bbr_2023_114704
crossref_primary_10_1007_s00221_022_06375_x
crossref_primary_10_3389_fnhum_2021_693207
crossref_primary_10_1016_j_jpsychires_2024_11_055
crossref_primary_10_1111_psyp_14078
crossref_primary_10_3390_jpm10040274
crossref_primary_10_1519_JSC_0000000000004954
crossref_primary_10_1016_j_neuroimage_2025_121428
crossref_primary_10_7717_peerj_12729
crossref_primary_10_1177_1545968321104131
crossref_primary_10_1016_j_brs_2020_01_016
crossref_primary_10_5765_jkacap_240039
crossref_primary_10_1016_j_jneumeth_2018_08_007
crossref_primary_10_3389_fnins_2022_935268
crossref_primary_10_1523_JNEUROSCI_0390_20_2021
crossref_primary_10_1152_jn_00027_2021
crossref_primary_10_1111_ejn_15675
crossref_primary_10_3389_fnhum_2025_1559631
crossref_primary_10_1016_j_bbr_2018_11_005
crossref_primary_10_14814_phy2_15941
crossref_primary_10_3390_biom14070760
crossref_primary_10_1111_ejn_16539
crossref_primary_10_1152_jn_00488_2018
crossref_primary_10_1016_j_neulet_2017_01_032
crossref_primary_10_1093_texcom_tgad005
crossref_primary_10_1007_s00221_018_05465_z
crossref_primary_10_1016_j_clinph_2018_02_124
crossref_primary_10_1093_brain_awae210
crossref_primary_10_3389_fnhum_2023_1228859
crossref_primary_10_1016_j_neuroimage_2025_121014
crossref_primary_10_1186_s42234_025_00169_6
crossref_primary_10_3390_brainsci14020165
crossref_primary_10_1016_j_neuropharm_2020_108268
crossref_primary_10_1152_japplphysiol_00206_2023
crossref_primary_10_1152_jn_00459_2024
crossref_primary_10_3390_brainsci11010121
crossref_primary_10_1111_ejn_15683
crossref_primary_10_59717_j_xinn_life_2024_100082
crossref_primary_10_1016_j_clinph_2025_01_002
crossref_primary_10_1007_s00429_019_01891_z
crossref_primary_10_1016_j_cortex_2015_11_003
crossref_primary_10_1109_TMTT_2021_3075726
crossref_primary_10_1007_s00221_019_05649_1
crossref_primary_10_1016_j_neuroscience_2021_07_023
crossref_primary_10_1186_s13063_023_07491_x
crossref_primary_10_1007_s12021_022_09585_4
crossref_primary_10_3233_RNN_160655
crossref_primary_10_1016_j_clinph_2025_01_010
crossref_primary_10_1016_j_brs_2017_09_008
crossref_primary_10_1088_1741_2552_ab8ccf
crossref_primary_10_1016_j_jneumeth_2021_109143
crossref_primary_10_1016_j_psyneuen_2021_105201
crossref_primary_10_1016_j_clinph_2018_04_604
crossref_primary_10_1016_j_cortex_2019_04_025
crossref_primary_10_1016_j_clinph_2016_04_001
crossref_primary_10_1002_acn3_587
crossref_primary_10_1016_j_parkreldis_2021_06_018
crossref_primary_10_17650_2222_8721_2021_11_2_35_47
crossref_primary_10_1016_j_neuroscience_2021_07_019
crossref_primary_10_1055_a_2071_7668
crossref_primary_10_3389_fneur_2019_00096
crossref_primary_10_1016_j_jelekin_2025_103048
crossref_primary_10_1016_j_clinph_2018_07_002
crossref_primary_10_11124_JBISRIR_2016_2002352
crossref_primary_10_3390_medicina61091685
crossref_primary_10_3389_fpsyt_2024_1400414
crossref_primary_10_1152_jn_00296_2025
crossref_primary_10_1136_jnnp_2017_317371
crossref_primary_10_3390_biomedicines11020409
crossref_primary_10_1097_j_pain_0000000000000510
crossref_primary_10_1093_cercor_bhad259
crossref_primary_10_1249_MSS_0000000000000733
crossref_primary_10_1177_1550059416630483
crossref_primary_10_1016_j_neucli_2020_12_006
crossref_primary_10_3389_fnhum_2023_1247104
crossref_primary_10_1016_j_brs_2019_10_002
crossref_primary_10_1016_j_jpain_2018_05_004
crossref_primary_10_1016_j_brs_2019_10_007
crossref_primary_10_1038_srep40715
crossref_primary_10_1016_j_jneumeth_2016_09_002
crossref_primary_10_1016_j_arr_2018_03_001
crossref_primary_10_3389_fnhum_2020_00153
crossref_primary_10_1007_s10548_020_00773_6
crossref_primary_10_3390_brainsci9080177
crossref_primary_10_3389_fneur_2021_678198
crossref_primary_10_1080_09638288_2024_2337107
crossref_primary_10_1371_journal_pone_0302762
crossref_primary_10_1088_1361_6560_abcde7
crossref_primary_10_3390_brainsci14020124
crossref_primary_10_1016_j_clinph_2025_03_048
crossref_primary_10_1176_appi_ajp_20240643
crossref_primary_10_1111_ejn_70089
crossref_primary_10_1016_j_clinph_2025_03_044
crossref_primary_10_1016_j_neuroimage_2025_121050
crossref_primary_10_3390_life13081697
crossref_primary_10_1088_2516_1091_ab7cc4
crossref_primary_10_1016_j_sleep_2020_06_019
crossref_primary_10_4103_0028_3886_373648
crossref_primary_10_1016_j_neuroscience_2020_12_023
crossref_primary_10_1016_j_neuroscience_2024_07_022
crossref_primary_10_3389_fneur_2022_868792
crossref_primary_10_1002_hbm_26107
crossref_primary_10_1136_bmjopen_2023_074037
crossref_primary_10_1007_s00221_021_06160_2
crossref_primary_10_1093_brain_awad395
crossref_primary_10_1097_NPT_0000000000000308
crossref_primary_10_1017_cjn_2021_158
crossref_primary_10_1177_15459683211041311
crossref_primary_10_3390_jcm10163633
crossref_primary_10_1093_scan_nsaa036
crossref_primary_10_1038_s41598_021_98920_x
crossref_primary_10_3390_cancers12113233
crossref_primary_10_14814_phy2_15527
crossref_primary_10_1016_j_neurom_2024_11_010
crossref_primary_10_1016_j_sleep_2016_08_003
crossref_primary_10_1007_s00421_020_04567_3
crossref_primary_10_1016_j_clinph_2025_02_269
crossref_primary_10_1152_jn_00030_2019
crossref_primary_10_1007_s00221_020_05801_2
crossref_primary_10_1016_j_neubiorev_2016_02_016
crossref_primary_10_1038_s41531_024_00793_0
crossref_primary_10_1113_JP287804
crossref_primary_10_3389_fpsyg_2022_813444
crossref_primary_10_1152_jn_00641_2018
crossref_primary_10_1002_jnr_24319
crossref_primary_10_1093_scan_nsw029
crossref_primary_10_3233_RNN_190934
crossref_primary_10_3390_brainsci13020349
crossref_primary_10_1249_MSS_0000000000001622
crossref_primary_10_1155_2023_3051175
crossref_primary_10_3389_fneur_2023_1064718
crossref_primary_10_1016_j_brainres_2016_11_004
crossref_primary_10_1016_j_neucli_2022_03_004
crossref_primary_10_1016_j_neucli_2022_03_005
crossref_primary_10_1016_j_jneumeth_2019_03_021
crossref_primary_10_1177_15333175251322351
crossref_primary_10_1186_s13063_024_08708_3
crossref_primary_10_1016_j_jneumeth_2022_109486
crossref_primary_10_1177_1545968320909796
crossref_primary_10_1111_ner_13525
crossref_primary_10_1016_j_baga_2016_01_006
crossref_primary_10_1007_s00421_025_05707_3
crossref_primary_10_1016_j_neuroimage_2024_120701
crossref_primary_10_3233_JAD_215531
crossref_primary_10_1089_brain_2021_0180
crossref_primary_10_1155_2019_1328453
crossref_primary_10_1186_s12888_023_04666_3
crossref_primary_10_1007_s00221_023_06563_3
crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_07_012
crossref_primary_10_1155_2020_8896423
crossref_primary_10_1016_j_clinph_2016_06_025
crossref_primary_10_3389_fneur_2020_00193
crossref_primary_10_3390_jcm8071037
crossref_primary_10_1088_1741_2552_ac572c
crossref_primary_10_3389_fpsyg_2018_01857
crossref_primary_10_1002_nau_25205
crossref_primary_10_1002_hbm_70267
crossref_primary_10_1016_j_clinph_2019_02_020
crossref_primary_10_3389_fnins_2018_00240
crossref_primary_10_1038_s41398_021_01451_2
crossref_primary_10_1016_j_clinph_2020_03_019
crossref_primary_10_1177_15459683241268537
crossref_primary_10_1109_TNSRE_2019_2914475
crossref_primary_10_1038_s41598_025_13185_y
crossref_primary_10_3390_brainsci11101357
crossref_primary_10_1016_j_clinph_2016_06_013
crossref_primary_10_1016_j_neulet_2017_03_021
crossref_primary_10_3233_RNN_190908
crossref_primary_10_3233_RNN_211207
crossref_primary_10_1002_jor_24666
crossref_primary_10_1080_17434440_2023_2299310
crossref_primary_10_1152_jn_00510_2018
crossref_primary_10_3389_fneur_2025_1503946
crossref_primary_10_1109_ACCESS_2024_3350734
crossref_primary_10_1186_s12998_019_0265_8
crossref_primary_10_1177_1545968318785044
crossref_primary_10_1186_s12984_025_01688_8
crossref_primary_10_1177_15459683241292615
crossref_primary_10_1371_journal_pone_0224175
crossref_primary_10_3389_fnins_2020_00186
crossref_primary_10_1136_bmjopen_2024_096126
crossref_primary_10_1016_j_neurot_2025_e00577
crossref_primary_10_3389_fnhum_2017_00413
crossref_primary_10_1080_13554794_2019_1636069
crossref_primary_10_1177_1545968318785043
crossref_primary_10_1097_MD_0000000000038152
crossref_primary_10_1111_apha_12807
crossref_primary_10_3389_fnins_2023_1234033
crossref_primary_10_1016_j_sleep_2019_12_009
crossref_primary_10_1007_s10548_019_00716_w
crossref_primary_10_1002_brb3_3575
crossref_primary_10_1310_sci2504_340
crossref_primary_10_3390_ijms242216456
crossref_primary_10_1038_s42003_020_0764_0
crossref_primary_10_3389_fnins_2023_1116273
crossref_primary_10_1016_j_neuroimage_2016_01_051
crossref_primary_10_1134_S0362119719080036
crossref_primary_10_1093_cercor_bhz195
crossref_primary_10_1007_s13311_016_0487_6
crossref_primary_10_1016_j_acra_2022_03_016
crossref_primary_10_3389_fncir_2023_1163346
crossref_primary_10_3233_RNN_211237
crossref_primary_10_1007_s12311_025_01871_6
crossref_primary_10_1016_j_brainres_2025_149715
crossref_primary_10_1371_journal_pone_0312183
crossref_primary_10_3389_fneur_2018_00825
crossref_primary_10_1111_phpp_12957
crossref_primary_10_3171_2019_9_FOCUS19640
crossref_primary_10_3389_fnbeh_2017_00169
crossref_primary_10_1016_j_cobeha_2024_101396
crossref_primary_10_1055_a_1272_9435
crossref_primary_10_1016_j_pnpbp_2021_110387
crossref_primary_10_1016_j_bspc_2023_104781
crossref_primary_10_1016_j_neulet_2020_135345
crossref_primary_10_1016_j_clinph_2020_03_022
crossref_primary_10_1038_s41598_024_64665_6
crossref_primary_10_1016_j_smrv_2025_102117
crossref_primary_10_1016_j_brs_2023_02_009
crossref_primary_10_1016_j_neuroimage_2018_04_011
crossref_primary_10_1016_j_clinph_2020_10_003
crossref_primary_10_3389_fneur_2019_01319
crossref_primary_10_1038_s41598_024_60984_w
crossref_primary_10_3389_fnhum_2018_00303
crossref_primary_10_1016_j_brs_2022_07_005
crossref_primary_10_3390_jcm10112449
crossref_primary_10_1007_s13760_025_02796_x
crossref_primary_10_1002_hbm_24448
crossref_primary_10_3389_fneur_2019_00461
crossref_primary_10_1155_2019_6430596
crossref_primary_10_3390_app15105236
crossref_primary_10_1016_j_brs_2020_12_009
crossref_primary_10_1113_JP282983
crossref_primary_10_1016_j_brs_2019_07_008
crossref_primary_10_1016_j_brs_2019_07_009
crossref_primary_10_1016_j_brainres_2021_147673
crossref_primary_10_1016_j_neuroimage_2017_09_023
crossref_primary_10_1016_j_bpsc_2024_08_009
crossref_primary_10_1177_25424823251377988
crossref_primary_10_1016_j_neubiorev_2022_104867
crossref_primary_10_1186_s10194_016_0712_z
crossref_primary_10_1155_2024_5532347
crossref_primary_10_1016_j_brs_2019_07_012
crossref_primary_10_1111_sms_14111
crossref_primary_10_3389_fncel_2016_00175
crossref_primary_10_1097_WNP_0000000000000499
crossref_primary_10_3390_brainsci13091291
crossref_primary_10_1016_j_heliyon_2024_e30192
crossref_primary_10_1186_s13063_017_2280_1
crossref_primary_10_1155_2018_1318093
crossref_primary_10_1523_JNEUROSCI_2511_16_2017
crossref_primary_10_3389_fnhum_2021_656975
crossref_primary_10_1016_j_brainres_2021_147687
crossref_primary_10_1016_j_cortex_2015_07_027
crossref_primary_10_1016_j_brat_2024_104548
crossref_primary_10_1152_jn_00449_2015
crossref_primary_10_3389_fnins_2021_647517
crossref_primary_10_1113_EP087557
crossref_primary_10_3390_brainsci12080970
crossref_primary_10_3389_fnhum_2025_1548478
crossref_primary_10_1016_j_jevs_2022_103912
crossref_primary_10_1016_j_brs_2019_07_024
crossref_primary_10_1016_j_cortex_2021_03_019
crossref_primary_10_1016_j_clinph_2017_02_011
crossref_primary_10_1186_s12883_022_03036_y
crossref_primary_10_3389_fneur_2021_699014
crossref_primary_10_1111_ejn_14904
crossref_primary_10_1038_s41598_024_59927_2
crossref_primary_10_7554_eLife_76411
crossref_primary_10_1016_j_cub_2020_06_091
crossref_primary_10_1088_1741_2552_ac1f2b
crossref_primary_10_1016_j_clinph_2024_09_023
crossref_primary_10_3390_bs8110105
crossref_primary_10_1371_journal_pone_0217826
crossref_primary_10_1007_s00701_016_2968_0
crossref_primary_10_3389_fneur_2022_1000940
crossref_primary_10_1016_j_neuroimage_2020_117541
crossref_primary_10_1016_j_cortex_2020_08_004
crossref_primary_10_1152_jn_00328_2021
crossref_primary_10_1016_j_brs_2017_11_016
crossref_primary_10_1109_TNSRE_2023_3343621
crossref_primary_10_1007_s00221_021_06163_z
crossref_primary_10_1038_s41598_023_29920_2
crossref_primary_10_1016_j_brs_2017_11_013
crossref_primary_10_1093_scan_nsad033
crossref_primary_10_1371_journal_pone_0184828
crossref_primary_10_3233_RNN_170801
crossref_primary_10_1152_japplphysiol_00367_2022
crossref_primary_10_1176_appi_ajp_2020_20060821
crossref_primary_10_1007_s10072_023_06877_8
crossref_primary_10_1007_s10072_023_06779_9
crossref_primary_10_1007_s00221_023_06616_7
crossref_primary_10_1016_j_sleep_2019_03_021
crossref_primary_10_1038_s41598_023_34801_9
crossref_primary_10_3390_s21020637
crossref_primary_10_1016_j_apmr_2024_05_025
crossref_primary_10_1016_j_bandc_2023_106105
crossref_primary_10_3390_brainsci11040432
crossref_primary_10_1016_j_schres_2023_10_005
crossref_primary_10_3389_fneur_2024_1520727
crossref_primary_10_1177_09226028251330850
crossref_primary_10_1007_s00115_018_0586_1
crossref_primary_10_3389_fnhum_2020_00292
crossref_primary_10_1186_s13024_023_00665_w
crossref_primary_10_1007_s00421_021_04839_6
crossref_primary_10_1155_2017_1421326
crossref_primary_10_1097_MD_0000000000035834
crossref_primary_10_3389_fresc_2023_1053577
crossref_primary_10_3389_fnhum_2024_1500502
crossref_primary_10_1016_j_neulet_2022_137026
crossref_primary_10_1093_arclin_acx092
crossref_primary_10_1016_j_brs_2017_04_001
crossref_primary_10_1016_j_nrl_2016_03_008
crossref_primary_10_1016_j_schres_2017_04_045
crossref_primary_10_3389_fnins_2021_771064
crossref_primary_10_1016_j_brs_2023_11_009
crossref_primary_10_1016_j_heliyon_2023_e19912
crossref_primary_10_1016_j_tins_2018_02_007
crossref_primary_10_1080_00207454_2023_2263817
crossref_primary_10_1016_j_neurol_2016_02_004
crossref_primary_10_3758_s13415_020_00793_6
crossref_primary_10_1016_j_neuroscience_2018_03_051
crossref_primary_10_4103_1673_5374_295345
crossref_primary_10_1371_journal_pcbi_1011350
crossref_primary_10_1016_j_neucli_2023_102845
crossref_primary_10_1016_j_brs_2020_10_014
crossref_primary_10_1016_j_brs_2020_10_015
crossref_primary_10_1038_s41598_021_01348_6
crossref_primary_10_1097_NRL_0000000000000345
crossref_primary_10_1016_j_clinph_2022_04_004
crossref_primary_10_1088_1361_6560_aae932
crossref_primary_10_1016_j_clinph_2019_05_022
crossref_primary_10_1016_j_ibneur_2023_07_002
crossref_primary_10_1016_j_clinph_2018_04_749
crossref_primary_10_1016_j_ijpsycho_2017_09_005
crossref_primary_10_1016_j_neurobiolaging_2018_06_035
crossref_primary_10_1080_09205071_2016_1216807
crossref_primary_10_1038_s42003_022_03190_6
crossref_primary_10_1177_15459683211054184
crossref_primary_10_1016_j_clinph_2019_09_030
crossref_primary_10_1111_ejn_14957
crossref_primary_10_17650_2222_8721_2025_15_2_58_64
crossref_primary_10_3389_fneur_2022_1010328
crossref_primary_10_1007_s10072_024_07365_3
crossref_primary_10_1007_s13760_024_02472_6
crossref_primary_10_1016_j_brs_2020_02_027
crossref_primary_10_1162_jocn_a_01698
crossref_primary_10_3390_diagnostics9040155
crossref_primary_10_1016_j_brs_2020_02_029
crossref_primary_10_1016_j_cortex_2017_08_035
crossref_primary_10_1038_s41598_023_45512_6
crossref_primary_10_1152_jn_00345_2018
crossref_primary_10_1016_j_brainres_2022_147999
crossref_primary_10_1038_s41467_025_58095_9
crossref_primary_10_1515_bmt_2016_0240
crossref_primary_10_3390_ijms19082243
crossref_primary_10_1186_s13063_021_05873_7
crossref_primary_10_1007_s00221_020_05777_z
crossref_primary_10_1080_17588928_2018_1484723
crossref_primary_10_7554_eLife_65099
crossref_primary_10_1002_hbm_23545
crossref_primary_10_1016_j_clinph_2017_04_006
crossref_primary_10_3389_fncir_2016_00090
crossref_primary_10_1016_j_brs_2025_03_017
crossref_primary_10_1016_j_neuron_2015_07_032
crossref_primary_10_3233_JAD_220012
crossref_primary_10_1016_j_yebeh_2020_107479
crossref_primary_10_17816_ACEN_2017_1_6171
crossref_primary_10_3389_fnhum_2023_1227194
crossref_primary_10_3390_brainsci11091196
crossref_primary_10_1007_s12264_025_01407_2
crossref_primary_10_1038_s41598_022_05397_3
crossref_primary_10_3389_fncir_2016_00098
crossref_primary_10_1016_j_neuroimage_2021_118781
crossref_primary_10_1016_j_neulet_2017_01_065
crossref_primary_10_1038_s41598_021_97876_2
crossref_primary_10_1093_cercor_bhz159
crossref_primary_10_1016_j_clinph_2017_04_021
crossref_primary_10_1186_s12938_025_01393_6
crossref_primary_10_1007_s10548_020_00800_6
crossref_primary_10_1097_WNP_0000000000000902
crossref_primary_10_3390_brainsci11091118
crossref_primary_10_1016_j_cortex_2021_11_015
crossref_primary_10_3389_fnagi_2017_00263
crossref_primary_10_3390_brainsci11091114
crossref_primary_10_1016_j_neucli_2023_102894
crossref_primary_10_1016_j_sleep_2016_05_010
crossref_primary_10_3390_brainsci11050648
crossref_primary_10_1016_j_brs_2018_12_972
crossref_primary_10_1016_j_neurobiolaging_2024_12_008
crossref_primary_10_1093_cercor_bhz145
crossref_primary_10_1523_JNEUROSCI_1669_23_2024
crossref_primary_10_1016_j_sleep_2019_01_007
crossref_primary_10_1038_s41386_018_0040_x
crossref_primary_10_1016_j_jns_2018_07_022
crossref_primary_10_1038_s41598_018_28487_7
crossref_primary_10_1016_j_clinph_2021_09_013
crossref_primary_10_1136_bmjopen_2021_053476
crossref_primary_10_1063_5_0259735
crossref_primary_10_1016_j_clinph_2017_10_008
crossref_primary_10_1007_s00221_021_06069_w
crossref_primary_10_1016_j_neures_2025_02_003
crossref_primary_10_1016_j_brainres_2022_147959
crossref_primary_10_1038_s41598_022_17463_x
crossref_primary_10_1080_00222895_2018_1446125
crossref_primary_10_1016_j_ijpsycho_2018_04_004
crossref_primary_10_1155_2018_4593095
crossref_primary_10_1038_s41598_024_59232_y
crossref_primary_10_1016_j_neurom_2021_12_007
crossref_primary_10_1016_j_ijpsycho_2021_08_008
crossref_primary_10_1016_j_neuropsychologia_2022_108348
crossref_primary_10_3389_fnins_2018_00954
crossref_primary_10_3390_biomimetics7030127
crossref_primary_10_1152_jn_00476_2021
crossref_primary_10_1152_jn_00554_2019
crossref_primary_10_1159_000480053
crossref_primary_10_1016_j_heliyon_2024_e35834
crossref_primary_10_1016_j_clinph_2023_10_017
crossref_primary_10_3233_JAD_210661
crossref_primary_10_1155_2018_5036184
crossref_primary_10_1155_2021_6695530
crossref_primary_10_1007_s00221_015_4527_y
crossref_primary_10_1016_j_neurobiolaging_2018_12_018
crossref_primary_10_1111_ejn_15867
crossref_primary_10_1016_j_clinph_2019_07_025
crossref_primary_10_1016_j_clinph_2021_01_032
crossref_primary_10_1016_j_clinph_2019_07_027
crossref_primary_10_3390_neurolint16030043
crossref_primary_10_1002_hbm_24829
crossref_primary_10_1016_j_clinph_2023_04_014
crossref_primary_10_1016_j_nicl_2019_101706
crossref_primary_10_3389_fneur_2022_880161
crossref_primary_10_1186_s12883_022_02977_8
crossref_primary_10_1155_2017_2038573
crossref_primary_10_1155_2018_9875326
crossref_primary_10_1016_j_clinph_2023_04_010
crossref_primary_10_1155_2020_3069639
crossref_primary_10_3389_fneur_2024_1376782
crossref_primary_10_1016_j_jns_2020_117271
crossref_primary_10_3390_brainsci14070695
crossref_primary_10_1016_j_clinph_2021_01_024
crossref_primary_10_1016_j_brainres_2019_146394
crossref_primary_10_3389_fnins_2021_644951
crossref_primary_10_1111_ejn_15753
crossref_primary_10_1007_s00221_015_4398_2
crossref_primary_10_1155_2016_5716179
crossref_primary_10_1016_j_clinph_2023_04_003
crossref_primary_10_1016_j_brs_2025_09_008
crossref_primary_10_3389_fnhum_2022_920538
crossref_primary_10_3390_toxins13060392
crossref_primary_10_1007_s10072_023_07268_9
crossref_primary_10_1016_j_clinph_2023_12_128
crossref_primary_10_1016_j_clinph_2023_12_129
crossref_primary_10_3389_fnins_2022_788538
crossref_primary_10_1007_s00421_025_05939_3
crossref_primary_10_1016_j_neulet_2017_10_059
crossref_primary_10_1016_j_neucli_2025_103091
crossref_primary_10_3389_fnagi_2020_00129
crossref_primary_10_3389_fnins_2016_00157
crossref_primary_10_1016_j_clinph_2021_01_011
crossref_primary_10_1002_brb3_1702
crossref_primary_10_1007_s00415_023_11669_3
crossref_primary_10_1097_WNP_0000000000000954
crossref_primary_10_3390_brainsci11091203
crossref_primary_10_1111_acps_12565
crossref_primary_10_3390_jcm10132875
crossref_primary_10_1016_j_brainres_2016_06_012
crossref_primary_10_1016_j_jneumeth_2021_109430
crossref_primary_10_1186_s40337_023_00852_6
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107562
crossref_primary_10_3389_fnagi_2017_00189
crossref_primary_10_1016_j_brs_2015_12_005
crossref_primary_10_1002_wcs_1469
crossref_primary_10_1016_j_clinph_2019_11_005
crossref_primary_10_1113_JP285562
crossref_primary_10_1016_j_medj_2021_12_001
crossref_primary_10_3233_NRE_201606
crossref_primary_10_3390_biomedicines11051464
crossref_primary_10_1016_j_clinph_2017_06_001
crossref_primary_10_3389_fnhum_2022_920526
crossref_primary_10_1007_s00221_021_06257_8
crossref_primary_10_1016_j_neuroimage_2019_116486
crossref_primary_10_1016_j_pnpbp_2017_07_005
crossref_primary_10_1016_j_neuroimage_2025_121301
crossref_primary_10_1523_JNEUROSCI_0181_25_2025
crossref_primary_10_1017_cjn_2018_379
crossref_primary_10_1016_j_jsps_2020_06_016
crossref_primary_10_1007_s10548_016_0486_2
crossref_primary_10_1152_jn_00068_2017
crossref_primary_10_3390_jpm11060536
crossref_primary_10_1016_j_clinph_2016_05_363
crossref_primary_10_1002_brb3_1734
crossref_primary_10_1007_s12274_022_4119_7
crossref_primary_10_1139_apnm_2018_0077
crossref_primary_10_1038_srep14122
crossref_primary_10_1016_j_sleep_2019_01_052
crossref_primary_10_1089_cap_2015_0166
crossref_primary_10_1152_jn_00237_2024
crossref_primary_10_1088_1741_2552_ac7894
crossref_primary_10_3389_fncom_2022_946514
crossref_primary_10_1016_j_clinph_2015_03_002
crossref_primary_10_1016_j_jenvp_2023_102111
crossref_primary_10_1016_j_neuroscience_2017_06_014
crossref_primary_10_3390_jcm12010092
crossref_primary_10_1016_j_neuroimage_2022_119419
crossref_primary_10_1038_s41598_022_14271_1
crossref_primary_10_1038_s41598_021_91040_6
crossref_primary_10_4103_1673_5374_221143
crossref_primary_10_1016_j_jchemneu_2018_02_006
crossref_primary_10_1176_appi_ajp_2020_20071050
crossref_primary_10_1186_s12984_025_01663_3
crossref_primary_10_1016_j_jneumeth_2017_06_020
crossref_primary_10_1007_s10072_024_07611_8
crossref_primary_10_1016_j_neubiorev_2024_105862
crossref_primary_10_1016_j_neuroimage_2025_121306
crossref_primary_10_1016_j_brs_2019_03_009
crossref_primary_10_1186_s12917_018_1620_z
crossref_primary_10_1016_j_clinph_2019_11_057
crossref_primary_10_1007_s00221_022_06496_3
crossref_primary_10_1007_s12311_022_01416_1
crossref_primary_10_1002_ana_27103
crossref_primary_10_1016_j_bbr_2023_114661
crossref_primary_10_1016_j_clinph_2017_06_037
crossref_primary_10_1111_ejn_70161
crossref_primary_10_1177_02692155211072189
crossref_primary_10_3389_fnagi_2021_595288
crossref_primary_10_1177_15459683221119761
crossref_primary_10_3389_fncir_2022_973561
crossref_primary_10_1016_j_clinph_2021_07_024
crossref_primary_10_1016_j_clinph_2021_07_019
crossref_primary_10_1002_adfm_202200691
crossref_primary_10_1080_24740527_2017_1422116
crossref_primary_10_3389_fnins_2021_800436
crossref_primary_10_1016_j_parkreldis_2019_07_022
crossref_primary_10_3390_bioengineering10101118
crossref_primary_10_1016_j_neucli_2020_05_001
crossref_primary_10_1016_j_neucli_2020_05_002
crossref_primary_10_1155_2019_9278270
crossref_primary_10_3389_fncir_2016_00073
crossref_primary_10_1093_cercor_bhae452
crossref_primary_10_1016_j_pnpbp_2018_11_004
crossref_primary_10_3390_biomedicines12050955
crossref_primary_10_1080_2050571X_2024_2378613
crossref_primary_10_1111_ejn_14488
crossref_primary_10_1113_JP284204
crossref_primary_10_3390_app12042125
crossref_primary_10_3390_brainsci10110806
crossref_primary_10_1371_journal_pone_0233843
crossref_primary_10_3389_fnhum_2019_00349
crossref_primary_10_1007_s11011_016_9848_4
crossref_primary_10_1152_jn_00705_2019
crossref_primary_10_1016_j_neuroimage_2020_117082
crossref_primary_10_1016_j_neubiorev_2023_105532
crossref_primary_10_3389_fnagi_2022_909733
crossref_primary_10_1016_j_neubiorev_2024_105811
crossref_primary_10_1016_j_bioactmat_2024_08_025
crossref_primary_10_3389_fnins_2024_1415257
crossref_primary_10_1111_acps_70014
crossref_primary_10_3727_036012921X16321477053863
crossref_primary_10_3389_fonc_2018_00572
crossref_primary_10_1038_s41598_017_03547_6
crossref_primary_10_3389_fnhum_2019_00359
crossref_primary_10_3390_brainsci9080200
crossref_primary_10_1109_TNSRE_2020_3038406
crossref_primary_10_1007_s00221_020_05857_0
crossref_primary_10_3389_fnagi_2021_693611
crossref_primary_10_7705_biomedica_7040
crossref_primary_10_1016_j_neulet_2016_02_047
crossref_primary_10_3390_bios13020220
crossref_primary_10_1371_journal_pone_0272114
crossref_primary_10_1177_15459683251351883
crossref_primary_10_1503_jpn_180064
crossref_primary_10_1016_j_cnp_2025_06_003
crossref_primary_10_3233_JAD_190986
crossref_primary_10_1111_ejn_13178
crossref_primary_10_1016_j_actbio_2021_08_010
crossref_primary_10_1016_j_clinph_2017_08_002
crossref_primary_10_1080_09593985_2020_1802797
crossref_primary_10_3389_fneur_2024_1427142
crossref_primary_10_3390_jcm14113633
crossref_primary_10_3389_fnhum_2021_640642
crossref_primary_10_1016_j_cortex_2023_10_013
crossref_primary_10_1152_jn_00718_2020
crossref_primary_10_1016_j_msksp_2024_103204
crossref_primary_10_3233_RNN_231371
crossref_primary_10_1002_hbm_25383
crossref_primary_10_3389_fpsyg_2022_814633
crossref_primary_10_3389_fnagi_2023_1119508
crossref_primary_10_1038_s41598_022_13091_7
crossref_primary_10_1016_j_brainres_2022_148057
crossref_primary_10_1007_s11065_020_09456_2
crossref_primary_10_1111_ner_12589
crossref_primary_10_1371_journal_pone_0299611
crossref_primary_10_1016_j_jad_2021_03_010
crossref_primary_10_1002_mus_26780
crossref_primary_10_1007_s00415_024_12398_x
crossref_primary_10_1016_j_jelekin_2023_102782
crossref_primary_10_1249_MSS_0000000000002839
crossref_primary_10_1093_cercor_bhae096
crossref_primary_10_1016_j_neuroscience_2024_12_018
crossref_primary_10_1007_s40675_024_00282_z
crossref_primary_10_1109_TNSRE_2017_2779135
crossref_primary_10_3389_fnhum_2020_00250
crossref_primary_10_1186_s40814_022_01223_9
crossref_primary_10_1097_WNP_0000000000000532
crossref_primary_10_3389_fneur_2022_903648
crossref_primary_10_1007_s10548_024_01071_1
crossref_primary_10_2169_internalmedicine_4667_24
crossref_primary_10_1111_ejn_15389
crossref_primary_10_1016_j_clinph_2018_01_066
crossref_primary_10_1016_j_brs_2022_09_013
crossref_primary_10_1016_j_smrv_2022_101735
crossref_primary_10_1097_j_pain_0000000000003301
crossref_primary_10_4103_nsn_nsn_199_21
crossref_primary_10_3390_brainsci14030253
crossref_primary_10_1155_2019_5618303
crossref_primary_10_1371_journal_pone_0271283
crossref_primary_10_1109_TNSRE_2023_3338226
crossref_primary_10_1111_cns_70280
crossref_primary_10_7554_eLife_92088_3
crossref_primary_10_1007_s00221_023_06575_z
crossref_primary_10_1002_da_23100
crossref_primary_10_1111_bcp_15232
crossref_primary_10_1016_j_brs_2019_05_017
crossref_primary_10_3390_biomedicines11030958
crossref_primary_10_1177_15500594211052815
crossref_primary_10_1152_jn_00143_2023
crossref_primary_10_3389_fneur_2017_00380
crossref_primary_10_2340_jrm_v56_41021
crossref_primary_10_1016_j_neulet_2023_137293
crossref_primary_10_1016_j_bpsc_2022_12_005
crossref_primary_10_1016_j_eplepsyres_2016_06_004
crossref_primary_10_1016_j_jad_2024_03_061
crossref_primary_10_1002_hbm_26679
crossref_primary_10_3389_fnhum_2017_00309
crossref_primary_10_1016_j_neuroscience_2019_07_038
crossref_primary_10_1016_j_heliyon_2024_e37121
crossref_primary_10_3389_fnins_2021_688569
crossref_primary_10_1002_acn3_51039
crossref_primary_10_1016_j_techsoc_2025_102890
crossref_primary_10_3390_s23084175
crossref_primary_10_7554_eLife_50371
crossref_primary_10_1161_STROKEAHA_123_042924
crossref_primary_10_1007_s00701_017_3417_4
crossref_primary_10_3389_fnhum_2021_787487
crossref_primary_10_1016_j_jneumeth_2019_108521
crossref_primary_10_3389_fnins_2022_1041932
crossref_primary_10_1016_j_neuroimage_2018_11_036
crossref_primary_10_1111_ejn_16257
crossref_primary_10_1111_ejn_14077
crossref_primary_10_3389_fpsyt_2024_1401008
crossref_primary_10_3389_fcell_2022_989471
crossref_primary_10_1155_2021_8966584
crossref_primary_10_1002_hbm_23158
crossref_primary_10_1016_j_brs_2019_05_015
crossref_primary_10_3389_fnhum_2021_753259
crossref_primary_10_1016_j_neuroimage_2017_03_001
crossref_primary_10_1186_s12984_024_01535_2
crossref_primary_10_1088_1361_6560_ad6f69
crossref_primary_10_3389_fpsyt_2022_768288
crossref_primary_10_1016_j_neurom_2023_11_006
crossref_primary_10_1016_j_wneu_2018_03_136
crossref_primary_10_1007_s40122_025_00770_2
crossref_primary_10_14814_phy2_70223
crossref_primary_10_1016_j_brs_2024_10_004
crossref_primary_10_1097_WNP_0000000000000568
crossref_primary_10_1371_journal_pone_0252965
crossref_primary_10_1016_j_clinph_2017_08_023
crossref_primary_10_1088_1741_2552_ad5404
crossref_primary_10_3389_fonc_2022_1084404
crossref_primary_10_1016_j_ejpn_2023_10_004
crossref_primary_10_3390_s23104661
crossref_primary_10_1016_j_psychsport_2018_08_006
crossref_primary_10_3390_ctn9020020
crossref_primary_10_1371_journal_pone_0302829
crossref_primary_10_1016_j_neucli_2017_03_002
crossref_primary_10_1080_21641846_2025_2513807
crossref_primary_10_1088_1741_2552_ad9ee0
crossref_primary_10_1111_ene_13105
crossref_primary_10_1111_psyp_14312
crossref_primary_10_1155_2019_2184398
crossref_primary_10_3389_fnhum_2022_800349
crossref_primary_10_1027_0269_8803_a000331
crossref_primary_10_1111_ejn_14097
crossref_primary_10_1177_21677026221103136
crossref_primary_10_1016_j_neuropsychologia_2024_109008
crossref_primary_10_1186_s40673_017_0064_8
crossref_primary_10_1007_s00429_022_02574_y
crossref_primary_10_1016_j_clinph_2021_05_009
crossref_primary_10_3389_fnhum_2020_00202
crossref_primary_10_1007_s00421_025_05904_0
crossref_primary_10_1007_s00787_022_02021_7
crossref_primary_10_3389_fneur_2019_00364
crossref_primary_10_3390_healthcare4030067
crossref_primary_10_1016_j_clinph_2020_10_028
crossref_primary_10_1016_j_brainres_2017_12_007
crossref_primary_10_3389_fnins_2022_851463
Cites_doi 10.1152/jn.00900.2002
10.1523/JNEUROSCI.4792-11.2012
10.1007/s002210050806
10.1016/S1388-2457(02)00026-3
10.1002/hbm.22306
10.1007/s00221-006-0402-1
10.1002/ana.410180514
10.1111/j.1469-7793.1998.249bz.x
10.1001/archpsyc.56.4.315
10.1093/brain/120.5.839
10.1097/WNR.0b013e328349433a
10.1016/j.jns.2009.10.014
10.1007/s00415-013-7072-2
10.1016/j.clinph.2009.04.023
10.1113/jphysiol.1996.sp021734
10.1111/j.1460-9568.2007.05603.x
10.1016/0168-5597(91)90053-Z
10.1136/jnnp.2003.022236
10.2169/internalmedicine.31.1084
10.1371/journal.pone.0092354
10.1126/science.1117256
10.1016/j.brainres.2012.04.045
10.1002/ana.410290413
10.1007/BF00230207
10.1523/JNEUROSCI.1636-08.2008
10.1002/ana.410370208
10.1111/j.1469-7793.1998.181bi.x
10.1016/j.brs.2008.06.006
10.1007/BF00833916
10.1002/ana.410340108
10.1093/brain/110.5.1191
10.1016/0168-5597(92)90076-N
10.1152/jn.00071.2012
10.1016/j.clinph.2011.05.023
10.1097/WNP.0b013e31829dda6b
10.1016/j.neuroimage.2013.05.018
10.1016/j.brs.2009.09.001
10.1016/j.brainres.2012.07.043
10.1002/da.21969
10.1016/S1388-2457(99)00060-7
10.1016/S0006-3223(01)01153-2
10.1152/jn.00383.2003
10.1007/BF02454139
10.1016/S0140-6736(85)92413-4
10.1016/j.clinph.2011.11.037
10.1007/s00221-004-2134-4
10.1016/S0987-7053(01)00260-X
10.1038/nn0901-948
10.1016/j.biopsych.2009.04.034
10.1016/j.neuroimage.2013.03.061
10.1007/s002210000543
10.1016/j.neuron.2004.12.033
10.1016/S0925-4927(01)00121-4
10.1007/978-3-211-35205-2_11
10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M
10.1038/285227a0
10.1111/j.1460-9568.2011.07674.x
10.1113/jphysiol.1997.sp021905
10.1002/hbm.20360
10.1152/jn.00781.2010
10.1016/0168-5597(91)90072-6
10.1016/0168-5597(92)90053-E
10.1016/0924-980X(96)95664-7
10.1016/j.clinph.2003.10.032
10.1007/s10072-012-0950-z
10.1093/cercor/bhs304
10.1016/j.cub.2011.05.049
10.1136/jnnp.2004.055806
10.1016/j.brs.2011.01.002
10.1113/jphysiol.1990.sp018104
10.1111/j.1460-9568.2011.07924.x
10.1016/j.neuroimage.2005.05.013
10.1016/j.jns.2009.04.003
10.1016/S1567-424X(09)70205-3
10.1371/journal.pone.0086794
10.1227/NEU.0b013e3182889e01
10.1016/0013-4694(88)90191-5
10.1016/S1567-424X(09)70395-2
10.1007/978-3-7091-9160-6_37
10.1111/j.1600-0404.1988.tb03660.x
10.1016/j.neucli.2010.01.001
10.1016/j.clinph.2010.09.022
10.1016/j.neuroimage.2014.04.065
10.1016/0013-4694(95)00213-8
10.1016/0006-8993(87)90203-4
10.1111/j.1600-0404.1995.tb00151.x
10.1113/jphysiol.2011.216978
10.1016/j.clinph.2008.12.003
10.1016/j.clinph.2009.11.078
10.1113/jphysiol.1995.sp020898
10.3171/2013.11.JNS13952
10.1016/j.pain.2013.03.016
10.1016/j.brs.2012.09.008
10.1016/0168-5597(92)90081-L
10.1002/mus.23430
10.1016/j.brs.2008.11.002
10.1136/jnnp.52.2.213
10.1016/j.clinph.2012.09.018
10.1016/j.neuroimage.2010.07.061
10.1523/JNEUROSCI.0598-07.2007
10.1016/j.nec.2011.01.002
10.1016/0168-5597(91)90011-L
10.1113/jphysiol.1967.sp008273
10.1016/0304-3940(90)90321-Y
10.1038/npp.2008.22
10.1016/j.biopsych.2008.10.029
10.1038/npp.2008.233
10.1016/j.clinph.2004.03.006
10.1016/j.clinph.2014.05.021
10.1113/jphysiol.1986.sp016190
10.1017/S0317167100040476
10.1523/JNEUROSCI.0445-09.2009
10.1113/jphysiol.2009.179101
10.1016/j.neuroimage.2004.09.048
10.1002/hbm.10159
10.1212/WNL.52.3.529
10.1097/00004691-200208000-00006
10.1016/S0006-3223(00)00785-X
10.1016/j.clinph.2013.07.004
10.1016/j.brs.2012.02.003
10.1097/00004691-200007000-00005
10.1016/j.jneumeth.2013.07.016
10.1098/rspb.1998.0328
10.1371/journal.pone.0003069
10.1038/npp.2008.211
10.36076/ppj.2014/17/53
10.1161/01.STR.28.1.110
10.1016/0013-4694(85)91094-6
10.1111/ejn.12069
10.1016/j.neulet.2010.04.059
10.1016/j.clinph.2008.05.031
10.1016/S0028-3932(98)00096-7
10.1016/S1474-4422(10)70054-5
10.1002/hbm.22300
10.1007/PL00005641
10.1212/01.WNL.0000147296.97980.CA
10.1111/j.1469-8986.2011.01218.x
10.1097/00006123-198701000-00033
10.1152/jn.2000.83.3.1426
10.1113/jphysiol.2005.092155
10.1002/ana.20521
10.1093/cercor/bhs147
10.1007/s002210050878
10.1016/j.ejpain.2010.08.002
10.1523/JNEUROSCI.17-09-03178.1997
10.1111/j.1460-9568.2006.04605.x
10.1016/0168-5597(91)90019-T
10.1016/S1388-2457(02)00144-X
10.1016/S1388-2457(01)00471-0
10.1038/nn.3422
10.1016/0006-8993(75)90364-9
10.1016/S1474-4422(03)00321-1
10.1176/appi.ajp.2008.07111733
10.4088/JCP.v66n1205
10.1002/(SICI)1097-4598(199705)20:5<570::AID-MUS5>3.0.CO;2-6
10.1006/nimg.2001.0918
10.1212/WNL.44.4.735
10.1113/jphysiol.1989.sp017626
10.1002/hbm.20006
10.1007/s10548-009-0123-4
10.1007/s002210050919
10.1007/s10548-009-0083-8
10.1016/j.clinph.2009.02.003
10.1016/S1385-299X(99)00055-0
10.1016/0168-5597(92)90115-R
10.1016/j.clinph.2012.05.001
10.1523/JNEUROSCI.4714-13.2014
10.1016/j.clinph.2006.05.006
10.1097/00124509-200409000-00007
10.1136/jnnp.2007.135327
10.1016/S0304-3940(00)01616-5
10.1007/s002210050938
10.1007/s12311-011-0329-3
10.1016/j.nicl.2014.03.004
10.3109/10253890.2014.905533
10.1097/00001756-199510020-00008
10.1016/j.clinph.2009.08.016
10.1097/00001756-200109170-00041
10.1016/0168-5597(91)90105-7
10.1002/hbm.20608
10.1016/j.jneumeth.2007.06.030
10.1016/S1567-424X(09)70453-2
10.1097/WNR.0b013e328011b89a
10.1007/BF00228638
10.1093/brain/115.6.1947
10.1002/ana.410370603
10.1016/j.clinph.2013.06.187
10.1177/1545968311423110
10.1113/jphysiol.1993.sp019467
10.1523/JNEUROSCI.5089-13.2014
10.1097/WCO.0000000000000071
10.1152/jn.01230.2004
10.1097/00006324-200305000-00010
10.1136/jnnp.54.7.618
10.1006/nimg.2001.0849
10.1016/j.clinph.2013.08.015
10.1371/journal.pone.0060358
10.1016/j.neuroscience.2008.01.043
10.1007/s00221-006-0551-2
10.1016/j.brainresrev.2006.01.008
10.1152/jn.00640.2010
10.1152/jn.00172.2010
10.1523/JNEUROSCI.2320-07.2007
10.1111/j.1460-9568.2004.03277.x
10.1113/jphysiol.1992.sp019243
10.1152/jn.2001.86.4.1983
10.1113/jphysiol.2008.152793
10.1016/S1388-2457(01)00633-2
10.1007/BF00229634
10.1016/0013-4694(86)90145-8
10.1152/jn.00387.2013
10.1016/j.neuroimage.2013.04.067
10.1212/01.wnl.0000325481.61471.f0
10.1016/j.pain.2012.04.009
10.1002/da.20027
10.1007/s00415-004-0545-6
10.1093/neuonc/nou007
10.1007/s00221-002-1234-2
10.1016/j.tics.2008.09.004
10.1007/s00221-006-0548-x
10.1016/j.clinph.2006.05.030
10.1016/j.clinph.2005.10.029
10.1016/s1388-2457(02)00331-0
10.1159/000116617
10.1093/brain/121.3.437
10.1016/j.brs.2012.07.003
10.1016/0168-5597(94)90077-9
10.1016/S1388-2457(98)00027-3
10.1016/j.clinph.2007.07.006
10.1097/00004691-199807000-00002
10.1113/jphysiol.2002.030122
10.1212/01.wnl.0000247138.85330.88
10.1016/0013-4694(94)90029-9
10.1016/j.neuron.2007.06.026
10.1093/brain/122.2.265
10.1016/j.pain.2011.01.034
10.1007/s002210100722
10.1016/j.clinph.2010.12.034
10.1007/s00221-012-3117-5
10.1007/s00221-010-2293-4
10.1016/S1388-2457(01)00721-0
10.1016/j.brs.2014.02.004
10.1016/j.neucli.2010.01.006
10.1016/j.brainres.2004.06.009
10.1016/S0304-3940(99)00574-1
10.1093/brain/awg273
10.1016/S0028-3932(00)00130-5
10.1113/jphysiol.2002.023317
10.1016/0168-5597(89)90030-0
10.1016/j.brainresbull.2005.11.003
10.1016/j.pain.2005.12.001
10.1016/j.clinph.2004.11.008
10.1111/j.1469-8749.2000.tb00076.x
10.1016/B978-0-444-53497-2.00035-8
10.1016/0140-6736(92)91679-3
10.1016/j.eplepsyres.2013.04.001
10.1113/jphysiol.2003.044313
10.1113/jphysiol.2007.142059
10.1016/0168-5597(89)90036-1
10.1016/j.brs.2008.07.002
10.1371/journal.pone.0026113
10.1113/jphysiol.1993.sp019864
10.1111/j.1749-6632.1992.tb49632.x
10.1007/s002219900224
10.1016/j.clinph.2012.07.005
10.1016/j.brs.2014.01.004
10.1152/jn.91046.2008
10.1016/j.clinph.2012.07.004
10.1093/cercor/bhn201
10.1016/j.clinph.2009.07.035
10.1113/jphysiol.2005.084954
10.1007/s002210100862
10.1152/jn.00360.2006
10.1007/BF00229631
10.3389/fnhum.2012.00352
10.1152/jn.00782.2009
10.1212/WNL.48.5.1406
10.1016/0168-5597(93)90086-5
10.1212/WNL.41.5.697
10.1016/j.clinph.2004.02.005
10.1016/S0140-6736(96)01219-6
10.1111/j.1469-7793.1999.0591t.x
10.1016/S0893-133X(02)00355-X
10.1097/00006123-198701000-00022
10.1016/j.brs.2008.09.006
10.3389/fnhum.2013.00687
10.1007/s002210100863
10.1179/1743132812Y.0000000045
10.1093/brain/awl002
10.1016/S0140-6736(82)90670-5
10.1113/jphysiol.1995.sp020704
10.1007/s00221-003-1502-9
10.1016/j.tins.2014.08.003
10.1111/j.1600-0404.1994.tb02650.x
10.1113/jphysiol.1990.sp018103
10.1016/S1361-8415(98)80008-X
10.1016/0168-5597(91)90002-F
10.1242/jeb.115.1.105
10.1016/j.clinph.2010.04.014
10.1093/brain/110.5.1173
10.1113/jphysiol.1991.sp018738
10.1016/S1388-2457(01)00523-5
10.1016/0013-4694(71)90188-X
10.1002/mus.880131207
10.1016/S1388-2457(00)00513-7
10.1371/journal.pone.0010281
10.1016/j.clinph.2009.01.004
10.1177/1550059413513723
10.1016/j.clinph.2007.07.005
10.1016/j.jpain.2010.02.006
10.1136/jnnp.57.1.108
10.1016/0006-8993(94)91026-X
10.1007/s10548-013-0277-y
10.1007/s004150050215
10.1007/BF02513307
10.1113/jphysiol.1939.sp003798
10.1016/j.brs.2010.09.004
10.1111/j.1469-7793.1998.625bq.x
10.1016/0168-5597(91)90077-B
10.1016/0006-8993(88)90491-X
10.1007/s00221-006-0365-2
10.1016/j.jpain.2011.05.004
10.1016/j.biopsych.2012.08.020
10.1016/j.pain.2011.05.033
10.1016/S0149-7634(98)00048-7
10.1016/0924-980X(96)95150-4
10.1002/j.1532-2149.2012.00150.x
10.1016/j.clinph.2012.12.049
10.1016/j.brs.2014.02.009
10.1016/j.jns.2004.08.008
10.1113/jphysiol.2006.114025
10.3171/JNS-07/09/0555
10.1016/j.neubiorev.2010.06.005
10.1152/jn.01140.2005
10.1016/j.clinph.2009.03.001
10.1113/jphysiol.2008.156596
10.1038/nn.3751
10.1016/S0028-3932(98)00093-1
10.1093/brain/75.4.510
10.1176/jnp.12.3.376
10.1136/jnnp.49.3.251
10.1002/mus.880131102
10.1016/0304-3940(93)90401-6
10.1016/j.brs.2010.06.002
10.1159/000116396
10.1177/1073858410390225
10.1016/j.clinph.2006.03.025
10.1113/jphysiol.2014.274316
10.1093/cercor/bhm239
10.3109/02699052.2014.920524
10.1016/0168-5597(93)90095-7
10.1016/0168-5597(89)90039-7
10.1016/j.clinph.2012.01.010
10.1016/S0079-6123(08)61603-9
10.1016/j.neuroimage.2010.07.056
10.1016/0168-5597(92)90094-R
10.1007/s00221-001-0988-2
10.1515/revneuro-2013-0019
10.1007/s00221-009-1723-7
10.1016/0924-980X(95)00264-L
10.1016/j.jneumeth.2012.05.014
10.1007/BF00227284
10.1016/j.clinph.2003.12.025
10.1038/35036239
10.1016/S0924-980X(97)96017-3
10.1152/jn.1998.80.6.2870
10.1523/JNEUROSCI.0703-04.2004
10.1016/0168-5597(92)90048-G
10.1093/brain/117.4.847
10.1016/0022-510X(93)90102-5
10.1046/j.1460-9568.2003.02858.x
10.1016/S1388-2457(99)00103-0
10.1111/j.1469-7793.2001.0307l.x
10.1016/j.clinph.2013.09.011
10.1152/jn.00796.2011
10.1016/j.pain.2008.10.009
10.1113/jphysiol.2003.045674
10.1088/0031-9155/59/1/203
10.1152/jn.1965.28.3.560
10.1088/1741-2560/11/5/056013
10.1002/ana.410400306
10.1016/j.clinph.2013.11.038
10.1111/j.1469-7793.1999.0895p.x
10.1016/S0006-3223(00)01039-8
10.1111/j.1469-7793.2001.01047.x
10.1093/brain/122.9.1731
10.1016/j.brs.2010.01.001
10.4103/0028-3886.72183
10.1016/j.brs.2010.09.008
10.1002/ana.20651
10.1080/09602011.2011.562689
10.3928/00485713-20140609-05
10.1016/j.jad.2006.06.027
10.1016/j.clinph.2007.12.022
10.1212/WNL.45.2.303
10.1113/jphysiol.2001.013094
10.1179/1743132811Y.0000000045
10.1016/j.clinph.2007.09.124
10.1097/WNP.0000000000000057
10.1016/S0006-8993(98)00505-8
10.1016/j.clinph.2006.06.712
10.1016/j.clinph.2013.08.001
10.1016/j.clinph.2009.11.016
10.1136/jnnp.51.8.1069
10.1152/jn.1954.17.4.345
10.3109/15622970903170835
10.1212/WNL.48.5.1398
10.1016/j.clinph.2005.10.011
10.1016/0006-8993(92)91256-E
10.1152/jn.00390.2013
10.1113/jphysiol.1993.sp019912
10.1016/j.neulet.2003.11.037
10.1016/S1388-2457(03)00320-1
10.1016/j.neubiorev.2013.06.014
10.1097/00006123-198701000-00035
10.1152/jn.00950.2002
10.1016/j.clinph.2012.04.014
10.1136/jnnp.2006.105056
10.1016/0168-5597(93)90116-7
10.1097/00006123-198701000-00024
10.1002/(SICI)1097-4598(199705)20:5<535::AID-MUS1>3.0.CO;2-A
10.1016/j.clinph.2006.09.023
10.1016/0013-4694(76)90151-6
10.1016/j.jns.2013.06.005
10.1111/j.1600-0404.1991.tb05003.x
10.1136/jnnp.52.9.1025
10.1016/j.clinph.2007.05.062
10.1016/j.clinph.2003.10.009
10.1097/00001756-199711100-00024
10.1016/j.neucli.2009.10.004
10.1006/nimg.2000.0701
10.1111/j.1460-9568.2009.06864.x
10.1113/jphysiol.1993.sp019732
10.1097/00004691-199104000-00007
10.1016/0006-8993(95)00113-5
10.1212/01.wnl.0000242731.10074.3c
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1007/s00221-003-1455-z
10.1016/j.neucli.2004.02.001
10.1212/WNL.0b013e3182919029
10.1162/089892903770007344
10.1111/ejn.12505
10.1016/j.clinph.2013.01.011
10.1152/jn.1974.37.6.1338
10.1097/00001756-200003200-00010
10.1146/annurev.bioeng.9.061206.133100
10.1113/jphysiol.2002.029454
10.1371/journal.pone.0057069
10.1016/S0006-8993(00)01975-2
10.1016/S0140-6736(84)92683-7
10.1111/j.1469-7793.1998.607bn.x
10.1016/j.clinph.2011.03.025
10.1136/jnnp-2012-304019
10.1016/0168-5597(93)90073-X
10.1016/j.clineuro.2009.11.005
10.1097/AJP.0b013e31820d2733
10.1093/brain/123.5.992
10.1093/brain/123.3.572
10.1111/j.1469-7793.2000.t01-1-00503.x
10.1177/0333102413515340
10.1212/WNL.43.1_Part_1.186
10.1016/S1388-2457(02)00018-4
10.1136/adc.63.11.1347
10.1113/jphysiol.1987.sp016621
10.1016/S1388-2457(99)00141-8
10.1113/jphysiol.2006.104901
10.1002/ana.410360410
ContentType Journal Article
Copyright 2015 International Federation of Clinical Neurophysiology.
International Federation of Clinical Neurophysiology.
Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2015 International Federation of Clinical Neurophysiology.
– notice: International Federation of Clinical Neurophysiology.
– notice: Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.clinph.2015.02.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage 1107
ExternalDocumentID PMC6350257
25797650
10_1016_j_clinph_2015_02_001
1_s2_0_S1388245715000711
S1388245715000711
Genre Journal Article
Review
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 NS999999
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
VQA
9DU
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c586t-4b861713a1bf17b6baf311a18a4618e09161d2958fe48eda93d9c560a0e813353
ISICitedReferencesCount 2110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353785000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1388-2457
1872-8952
IngestDate Tue Sep 30 16:51:42 EDT 2025
Sun Sep 28 02:49:33 EDT 2025
Mon Jul 21 05:57:10 EDT 2025
Sat Nov 29 07:02:23 EST 2025
Tue Nov 18 22:13:32 EST 2025
Sun Feb 23 10:20:06 EST 2025
Tue Oct 14 19:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Transcranial magnetic stimulation
TMS measures
Excitability threshold
Non-invasive stimulation
Human cortex
Clinical neurophysiology
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c586t-4b861713a1bf17b6baf311a18a4618e09161d2958fe48eda93d9c560a0e813353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6350257
PMID 25797650
PQID 1694705308
PQPubID 23479
PageCount 37
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6350257
proquest_miscellaneous_1694705308
pubmed_primary_25797650
crossref_citationtrail_10_1016_j_clinph_2015_02_001
crossref_primary_10_1016_j_clinph_2015_02_001
elsevier_clinicalkeyesjournals_1_s2_0_S1388245715000711
elsevier_clinicalkey_doi_10_1016_j_clinph_2015_02_001
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Clinical neurophysiology
PublicationTitleAlternate Clin Neurophysiol
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Patton, Amassian (b1585) 1954; 17
Bikmullina, Bäumer, Zittel, Munchau (b0160) 2009; 120
Dayan, Censor, Buch, Sandrini, Cohen (b0385) 2013; 16
Cash, Ziemann, Murray, Thickbroom (b0245) 2010; 103
Najib, Bashir, Edwards, Rotenberg, Pascual-Leone (b1445) 2011; 22
Bikmullina, Kičić, Carlson, Nikulin (b0165) 2009; 194
Wahl, Lauterbach-Soon, Hattingen, Jung, Singer, Volz (b2315) 2007; 27
Veniero, Bortoletto, Miniussi (b2275) 2013; 6
Chen, Corwell, Hallett (b0275) 1999; 129
Watanabe, Hanajima, Shirota, Ohminami, Tsutsumi, Terao (b2370) 2014; 35
André-Obadia, Peyron, Mertens, Mauguiere, Laurent, Garcia-Larrea (b0055) 2006; 117
Plassman, Gandevia (b1680) 1989; 52
Caspers, Speckmann, Lehmenkuhler (b0250) 1980; 54
Fitzgerald, Hoy, McQueen, Maller, Herring, Segrave (b0605) 2009; 34
Lopez-Alonso, Cheeran, Rio-Rodriguez, Fernandez-Del-Olmo (b1160) 2014; 7
Fuhr, Agostino, Hallett (b0640) 1991; 81
Siebner, Rothwell (b1960) 2003; 148
Ugawa (b2225) 1999; 51
Di Lazzaro, Restuccia, Molinari, Leggio, Nardone, Fogli (b0410) 1994; 57
Mazevet, Pierrot-Deseilligny, Rothwell (b1300) 1996; 109
Wolters, Sandbrink, Schlottmann, Kunesch, Stefan, Cohen (b2405) 2003; 89
Rösler, Niraula, Strack, Zdunczyk, Schilt, Savolainen (b1795) 2014; 125
Deng, Lisanby, Peterchev (b0395) 2014; 125
Lipton, Dodick, Silberstein, Saper, Aurora, Pearlman (b1150) 2010; 9
Mills, Murray (b1345) 1985; 18
Van Der Werf, Paus (b2250) 2006; 175
Nitsche, Paulus (b1510) 2011; 29
Di Lazzaro, Oliviero, Saturno, Pilato, Insola, Mazzone (b0445) 2001; 138
Iezzi, Suppa, Conte (b0850) 2011; 33
Picht, Krieg, Sollmann, Rösler, Niraula, Neuvonen (b1650) 2013; 72
Rothwell, Thompson, Day, Dick, Kachi, Cowan (b1870) 1987; 110
Schlaepfer, George, Mayberg (b1925) 2010; 11
Melgari, Pasqualetti, Pauri, Rossini (b1320) 2008; 3
Rossi, Hallett, Rossini, Pascual-Leone (b1810) 2009; 120
Saitoh, Hirayama, Kishima, Oshino, Hirata, Kato (b1885) 2006; 99
Hess, Mills, Murray (b0810) 1987; 388
Ziemann, Tergau, Wassermann, Wischer, Hildebrandt, Paulus (b2435) 1998; 511
Ugawa, Rothwell, Day, Thompson, Marsden (b2175) 1989; 52
André-Obadia, Mertens, Gueguen, Peyron, Garcia-Larrea (b0060) 2008; 71
Tomberg, Caramia (b2130) 1991; 81
Inghilleri, Berardelli, Marchetti, Manfredi (b0880) 1996; 109
Ravnborg, Blinkenberg, Dahl (b1730) 1991; 81
Kernell, Chien-Ping (b0945) 1967; 191
Hirayama, Saitoh, Kishima, Shimokawa, Oshino, Hirata (b0820) 2006; 122
Quartarone, Bagnato, Rizzo, Siebner, Dattola, Scalfari (b1710) 2003; 126
Miniussi, Cappa, Cohen, Floel, Fregni, Nitsche (b1365) 2008; 4
Matsumoto, Octaviana, Terao, Hanajima, Yugeta, Hamada (b1245) 2009; 284
Terao, Ugawa, Sakai, Uesaka, Kohara, Kanazawa (b2070) 1994; 89
Nikulin, Kičić, Kähkönen, Ilmoniemi (b1495) 2003; 18
Lioumis, Kičić, Savolainen, Makela, Kähkönen (b1155) 2009; 30
Komssi, Kähkönen (b1005) 2006; 52
Day, Rothwell, Thompson, Dick, Cowan, Berardelli (b0375) 1987; 110
Rotem, Neef, Neef, Agudelo-Toro, Rakhmilevitch, Paulus (b1860) 2014; 9
Kammer, Beck, Thielscher, Laubis-Herrmann, Topka (b0935) 2001; 112
Pötter-Nerger, Fischer, Mastroeni, Groppa, Deuschl, Volkmann (b1690) 2009; 102
Rossi, Cappa, Babiloni, Pasqualetti, Miniussi, Carducci (b1800) 2001; 4
Pierrot-Deseilligny, Burke (b1665) 2012
Veniero, Maioli, Miniussi (b2265) 2010; 3
Khedr, Kotb, Kamel, Ahmed, Sadek, Rothwell (b0950) 2005; 76
Esser, Hill, Tononi (b0525) 2005; 94
Garcia Dominguez, Radhu, Farzan, Daskalakis (b0665) 2014; 9
Bäumer, Bock, Koch, Lange, Rothwell, Siebner (b0125) 2006; 572
Cicinelli, Traversa, Bassi, Scivoletto, Rossini (b0300) 1997; 20
Kähkönen, Wilenius (b0925) 2007; 166
Ugawa, Kohara, Shimpo, Mannen (b2180) 1990; 30
Lefaucheur, Ménard-Lefaucheur, Goujon, Keravel, Nguyen (b1110) 2011; 12
Incesu, Secil, Tokucoglu, Gurgor, Özdemirkiran, Akhan (b0870) 2013; 124
Misra, Kalita, Bhoi (b1395) 2013; 260
Boyd, Rothwell, Cowan, Webb, Morley, Asselman (b0195) 1986; 49
Nakatani-Enomoto, Hanajima, Hamada, Terao, Matusmoto, Shirota (b1455) 2012; 123
Orth, Rothwell (b1545) 2004; 115
Maccabee, Lipitz, Desudchit, Golub, Nitti, Bania (b1175) 1996; 101
Ranck (b1725) 1975; 98
Di Lazzaro, Dileone, Pilato, Capone, Musumeci, Ranieri (b0480) 2011; 105
Pascual-Leone, Rubio, Pallardo, Catala (b1580) 1996; 348
Ragazzoni, Pirulli, Veniero, Feurra, Cincotta, Giovannelli (b1720) 2013; 8
Merabet, Theoret, Pascual-Leone (b1325) 2003; 80
George, Wassermann, Williams, Callahan, Ketter, Basser (b0680) 1995; 6
Matsumoto, Hanajima, Shirota, Hamada, Terao, Ohminami (b1250) 2010; 121
Stewart, Walsh, Rothwell (b2030) 2001; 39
Massimini, Ferrarelli, Sarasso, Tononi (b1230) 2012; 150
Roshan, Paradiso, Chen (b1790) 2003; 151
Ugawa, Uesaka, Terao, Hanajima, Kanazawa (b2215) 1995; 37
Nitsche, Paulus (b1505) 2000; 527
Civardi, Cantello, Asselman, Rothwell (b0315) 2001; 14
Awiszus (b0085) 2011; 4
Claus (b0325) 1990; 13
Mills, Murray (b1350) 1986; 63
Lemon, Baker, Davis, Kirkwood, Maier, Yang (b1130) 1998; 218
Van Der Werf, Sadikot, Strafella, Paus (b2255) 2006; 175
Nielsen, Petersen, Ballegaard (b1490) 1995; 484
Pascual-Leone, Gates, Dhuna (b1565) 1991; 41
Stefan, Kunesch, Cohen, Benecke, Classen (b2005) 2000; 123
Burke, Hicks, Stephen (b0210) 1990; 425
Rossini, Marciani, Caramia, Hassan, Cracco (b1820) 1986
Limoge, Robert, Stanley (b1145) 1999; 23
Goto, Saitoh, Hashimoto, Hirata, Kishima, Oshino (b0705) 2008; 140
Di Lazzaro, Pilato, Oliviero, Dileone, Saturno, Mazzone (b0470) 2006; 96
Fietzek, Heinen, Berweck, Maute, Hufschmidt, Schulte-Monting (b0580) 2000; 42
Peinemann, Reimer, Loer, Quartarone, Munchau, Conrad (b1615) 2004; 115
Zangen, Roth, Voller, Hallett (b2420) 2005; 116
Padberg, Zwanzger, Keck, Kathmann, Mikhaiel, Ella (b1560) 2002; 27
Ni, Charab, Gunraj, Nelson, Udupa, Yeh (b1470) 2011; 105
Chu (b0295) 1989; 74
Di Lazzaro, Oliviero, Profice, Ferrara, Saturno, Pilato (b0420) 1999; 110
Julkunen, Säisänen, Könönen, Vanninen, Kälviäinen, Mervaala (b0905) 2013; 106
Gamboa, Antal, Moliadze, Paulus (b0650) 2010; 204
Ferreri, Ponzo, Vollero, Guerra, Di Pino, Petrichella (b0570) 2014; 32
Oliveri, Rossini, Cicinelli, Traversa, Pasqualetti, Filippi (b1525) 2000; 5
Boroojerdi, Foltys, Krings, Spetzger, Thron, Topper (b0185) 1999; 110
Li, Nahas, Anderson, Kozel, George (b1135) 2004; 20
Filmer, Dux, Mattingley (b0585) 2014; 37
Tarapore, Findlay, Honma, Mizuiri, Houde, Berger (b2060) 2013; 82
Tsubokawa, Katayama, Yamamoto, Hirayama, Koyama (b2150) 1991; 52
Wolters, Schmidt, Schramm, Zeller, Naumann, Kunesch (b2410) 2005; 565
Silbert, Patterson, Pevcic, Windnagel, Thickbroom (b1970) 2013; 124
Amassian, Cracco, Maccabee, Cracco, Rudell, Eberle (b0035) 1989; 74
Duron, Khater-Boidin (b0505) 1988; 306
Traversa, Cicinelli, Pasqualetti, Filippi, Rossini (b2140) 1998; 803
Hanajima, Ugawa, Terao, Enomoto, Shiio, Mochizuki (b0765) 2002; 538
Gilio, Rizzo, Siebner, Rothwell (b0690) 2003; 551
Kundu, Johnson, Postle (b1045) 2014; 112
Fisher (b0595) 2002; 113
Bashir, Perez, Horvath, Pascual-Leone (b0120) 2013; 30
Abbruzzese, Schenone, Scramuzza (b0005) 1993; 89
Rossini, Caramia, Zarola (b1830) 1987; 20
Di Lazzaro, Rothwell, Oliviero, Profice, Insola, Mazzone (b0425) 1999; 129
Rusu, Murakami, Ziemann, Triesch (b1880) 2014; 7
Haug, Schönle, Knobloch, Köhne (b0835) 1992; 85
Reutens, Puce, Berkovic (b1745) 1993; 43
Walsh, Cowey (b2325) 2000; 1
Edgley, Eyre, Lemon, Miller (b0515) 1997; 120
Pierrot-Deseilligny, Bussel, Held, Katz (b1660) 1976; 40
Barr, Farzan, Rajji, Voineskos, Blumberger, Arenovich (b0115) 2013; 73
Johnson, Baig, Ramsey, Lisanby, Avery, McDonald (b0895) 2013; 6
Pinto, Chen (b1670) 2001; 140
Maccabee, Amassian, Eberle, Cracco (b1170) 1993; 460
Ridding, Inzelberg, Rothwell (b1755) 1995; 37
Davey, Smith, Savic, Maskill, Ellaway, Frankel (b0370) 1999; 127
Doeltgen, Ridding (b0495) 2011; 122
Cincotta, Giovannelli, Borgheresi, Balestrieri, Toscani, Zaccara (b0310) 2010; 3
Matsumoto, Tokushige, Hashida, Hanajima, Terao, Ugawa (b1295) 2013; 6
Barker, Jalinous, Freeston (b0105) 1985; 1
Rossini, Barker, Berardelli, Caramia, Caruso, Cracco (b1850) 1994; 91
Tobimatsu, Sun, Fukui, Kato (b2105) 1998; 245
Paus, Sipila, Strafella (b1605) 2001; 86
Salvador, Silva, Basser, Miranda (b1900) 2011; 122
Frantseva, Cui, Farzan, Chinta, Perez Velazquez, Daskalakis (b0615) 2014; 24
Vernet, Bashir, Yoo, Perez, Najib, Pascual-Leone (b2280) 2013; 37
Lang, Harms, Weyh, Lemon, Paulus, Rothwell (b1060) 2006; 117
Di Lazzaro, Restuccia, Oliviero, Profice, Ferrara, Insola (b0415) 1998; 508
Fisher, Nakamura, Bestmann, Rothwell, Bostock (b0590) 2002; 143
Han, Kim, Lim (b0755) 2001; 112
Thut, Veniero, Romei, Miniussi, Schyns, Gross (b2100) 2011; 21
Maertens de Noordhout, Pepin, Schoenen, Delwaide (b1190) 1992; 85
Ziemann (b2460) 2011; 17
Peurala, Muller-Dahlhaus, Arai, Ziemann (b1635) 2008; 119
Amassian, Cracco, Maccabee, Cracco (b0040) 1992; 85
Stefan, Kunesch, Benecke, Cohen, Classen (b2010) 2002; 543
Ugawa, Kanazawa (b2230) 1999; 110
Arai, Lu, Ugawa, Ziemann (b0075) 2012; 220
Brasil-Neto, Cammarota, Valls-Solé, Pascual-Leone, Hallett, Cohen (b0200) 1995; 92
Ferreri, Vecchio, Ponzo, Pasqualetti, Rossini (b0575) 2014; 35
Pleger, Janssen, Schwenkreis, Volker, Maier, Tegenthoff (b1685) 2004; 356
Westin, Bassi, Lisanby, Luber (b2390) 2014; 125
Komssi, Kähkönen, Ilmoniemi (b1000) 2004; 21
Casula, Tarantino, Basso, Arcara, Marino, Toffolo (b0255) 2014; 98
Herbsman, Avery, Ramsey, Holtzheimer, Wadjik, Hardaway (b0790) 2009; 66
Ferbert, Priori, Rothwell, Day, Colebatch, Marsden (b0545) 1992; 453
Casarotto, Romero Lauro, Bellina, Casali, Rosanova, Pigorini (b0235) 2010; 5
Triggs, Calvanio, Macdonell, Cros, Chiappa (b2145) 1994; 636
Boroojerdi, Battaglia, Muellbacher, Cohen (b0190) 2001; 112
Casarotto, Määttä, Herukka, Pigorini, Napolitani, Gosseries (b0240) 2011; 22
Ferreri, Pasqualetti, Määttä, Ponzo, Ferrarelli, Tononi (b0555) 2011; 54
Classen, Wolters, Stefan, Wycislo, Sandbrink, Schmidt (b0320) 2004; 57
Desmedt (b0400) 1983; 39
Matsumoto, Hanajima, Terao, Yugeta, Hamada, Shirota (b1260) 2010; 290
Stewart, Walsh, Frith, Rothwell (b2025) 2001; 13
Kähkönen, Wilenius, Komssi, Ilmoniemi (b0915) 2004; 115
Ahdab, Ayache, Brugières, Goujon, Lefaucheur (b0015) 2010; 40
Hamada, Terao, Hanajima, Shirota, Nakatani-Enomoto, Furubayashi (b0740) 2008; 586
Henn
Di Lazzaro (10.1016/j.clinph.2015.02.001_b0420) 1999; 110
Hamada (10.1016/j.clinph.2015.02.001_b0745) 2009; 587
Matsumoto (10.1016/j.clinph.2015.02.001_b1285) 2013; 124
Lefaucheur (10.1016/j.clinph.2015.02.001_b1120) 2013; 116
Virtanen (10.1016/j.clinph.2015.02.001_b2290) 1999; 37
Rossini (10.1016/j.clinph.2015.02.001_b1845) 1992; 5
Kähkönen (10.1016/j.clinph.2015.02.001_b0910) 2001; 14
Mhalla (10.1016/j.clinph.2015.02.001_b1340) 2011; 152
Kundu (10.1016/j.clinph.2015.02.001_b1045) 2014; 112
Ugawa (10.1016/j.clinph.2015.02.001_b2175) 1989; 52
George (10.1016/j.clinph.2015.02.001_b0680) 1995; 6
Huber (10.1016/j.clinph.2015.02.001_b0845) 2008; 28
Traversa (10.1016/j.clinph.2015.02.001_b2135) 1997; 28
Kujirai (10.1016/j.clinph.2015.02.001_b1035) 1993; 471
Chen (10.1016/j.clinph.2015.02.001_b0275) 1999; 129
Fisher (10.1016/j.clinph.2015.02.001_b0590) 2002; 143
Seyal (10.1016/j.clinph.2015.02.001_b1930) 1992; 85
Cracco (10.1016/j.clinph.2015.02.001_b0355) 1989; 74
Plassman (10.1016/j.clinph.2015.02.001_b1680) 1989; 52
Rossini (10.1016/j.clinph.2015.02.001_b1855) 1995; 676
Stagg (10.1016/j.clinph.2015.02.001_b1995) 2011; 1
Merton (10.1016/j.clinph.2015.02.001_b1330) 1980; 285
Fisher (10.1016/j.clinph.2015.02.001_b0595) 2002; 113
Amassian (10.1016/j.clinph.2015.02.001_b0035) 1989; 74
Furby (10.1016/j.clinph.2015.02.001_b0645) 1992; 239
Person (10.1016/j.clinph.2015.02.001_b1620) 1978; 18
McAllister (10.1016/j.clinph.2015.02.001_b1305) 2009; 120
Caspers (10.1016/j.clinph.2015.02.001_b0250) 1980; 54
Melgari (10.1016/j.clinph.2015.02.001_b1320) 2008; 3
Ugawa (10.1016/j.clinph.2015.02.001_b2180) 1990; 30
Ugawa (10.1016/j.clinph.2015.02.001_b2200) 1993; 160
Herbsman (10.1016/j.clinph.2015.02.001_b0790) 2009; 66
Iezzi (10.1016/j.clinph.2015.02.001_b0850) 2011; 33
Pfurtscheller (10.1016/j.clinph.2015.02.001_b1640) 1999; 110
Claus (10.1016/j.clinph.2015.02.001_b0325) 1990; 13
Peurala (10.1016/j.clinph.2015.02.001_b1635) 2008; 119
Ziemann (10.1016/j.clinph.2015.02.001_b2435) 1998; 511
Ziemann (10.1016/j.clinph.2015.02.001_b2455) 2008; 1
Kimiskidis (10.1016/j.clinph.2015.02.001_b0965) 2006; 173
Reato (10.1016/j.clinph.2015.02.001_b1735) 2013; 7
Ghezzi (10.1016/j.clinph.2015.02.001_b0685) 1991; 84
Groppa (10.1016/j.clinph.2015.02.001_b0715) 2012; 123
Matsumoto (10.1016/j.clinph.2015.02.001_b1270) 2010; 3
de Jesus (10.1016/j.clinph.2015.02.001_b0390) 2014; 125
Di Lazzaro (10.1016/j.clinph.2015.02.001_b0490) 2014; 592
Ziemann (10.1016/j.clinph.2015.02.001_b2465) 2014
Fuggetta (10.1016/j.clinph.2015.02.001_b0635) 2005; 27
Stefan (10.1016/j.clinph.2015.02.001_b2005) 2000; 123
Di Lazzaro (10.1016/j.clinph.2015.02.001_b0470) 2006; 96
Massimini (10.1016/j.clinph.2015.02.001_b1230) 2012; 150
Pascual-Leone (10.1016/j.clinph.2015.02.001_b1575) 1994; 117
Chen (10.1016/j.clinph.2015.02.001_b0265) 1997; 48
Short (10.1016/j.clinph.2015.02.001_b1945) 2011; 152
Terao (10.1016/j.clinph.2015.02.001_b2080) 2002; 19
Rossi (10.1016/j.clinph.2015.02.001_b1800) 2001; 4
Cicinelli (10.1016/j.clinph.2015.02.001_b0305) 2000; 11
O’Reardon (10.1016/j.clinph.2015.02.001_b1540) 2005; 66
Nakamura (10.1016/j.clinph.2015.02.001_b1450) 1997; 498
Rosenkranz (10.1016/j.clinph.2015.02.001_b1785) 2006; 23
Peinemann (10.1016/j.clinph.2015.02.001_b1610) 2000; 296
Fuhr (10.1016/j.clinph.2015.02.001_b0640) 1991; 81
Bergmann (10.1016/j.clinph.2015.02.001_b0150) 2012; 32
Fregni (10.1016/j.clinph.2015.02.001_b0630) 2011; 15
Komssi (10.1016/j.clinph.2015.02.001_b1000) 2004; 21
Wolters (10.1016/j.clinph.2015.02.001_b2410) 2005; 565
Di Lazzaro (10.1016/j.clinph.2015.02.001_b0415) 1998; 508
Mills (10.1016/j.clinph.2015.02.001_b1360) 1997; 20
Suzuki (10.1016/j.clinph.2015.02.001_b2040) 2012; 1473
Shafi (10.1016/j.clinph.2015.02.001_b1935) 2014; 27
Di Lazzaro (10.1016/j.clinph.2015.02.001_b0480) 2011; 105
Lefaucheur (10.1016/j.clinph.2015.02.001_b1070) 2001; 12
Ettinger (10.1016/j.clinph.2015.02.001_b0535) 1998; 2
Hallett (10.1016/j.clinph.2015.02.001_b0735) 2007; 55
Peinemann (10.1016/j.clinph.2015.02.001_b1615) 2004; 115
Chen (10.1016/j.clinph.2015.02.001_b0270) 1998; 80
Matsumoto (10.1016/j.clinph.2015.02.001_b1260) 2010; 290
Dayan (10.1016/j.clinph.2015.02.001_b0385) 2013; 16
Komssi (10.1016/j.clinph.2015.02.001_b1005) 2006; 52
Amassian (10.1016/j.clinph.2015.02.001_b0045) 1998; 15
Richter (10.1016/j.clinph.2015.02.001_b1750) 2013; 8
Herwig (10.1016/j.clinph.2015.02.001_b0805) 2002; 113
Maegaki (10.1016/j.clinph.2015.02.001_b1185) 1997; 105
Werhahn (10.1016/j.clinph.2015.02.001_b2375) 1994; 93
Garassus (10.1016/j.clinph.2015.02.001_b0660) 1993; 33
Freeman (10.1016/j.clinph.2015.02.001_b0620) 1971; 31
Lefaucheur (10.1016/j.clinph.2015.02.001_b1125) 2014; 125
Adrian (10.1016/j.clinph.2015.02.001_b0010) 1939; 97
Terao (10.1016/j.clinph.2015.02.001_b2075) 2000; 859
Casula (10.1016/j.clinph.2015.02.001_b0255) 2014; 98
Filmer (10.1016/j.clinph.2015.02.001_b0585) 2014; 37
Qi (10.1016/j.clinph.2015.02.001_b1705) 2011; 4
Borckardt (10.1016/j.clinph.2015.02.001_b0180) 2011; 27
Chen (10.1016/j.clinph.2015.02.001_b0280) 1999; 128
Amassian (10.1016/j.clinph.2015.02.001_b0040) 1992; 85
Kimiskidis (10.1016/j.clinph.2015.02.001_b0960) 2005; 163
Talelli (10.1016/j.clinph.2015.02.001_b2055) 2007; 118
Reutens (10.1016/j.clinph.2015.02.001_b1745) 1993; 43
Barker (10.1016/j.clinph.2015.02.001_b0110) 1987; 20
Pitcher (10.1016/j.clinph.2015.02.001_b1675) 2003; 546
Davey (10.1016/j.clinph.2015.02.001_b0370) 1999; 127
Han (10.1016/j.clinph.2015.02.001_b0755) 2001; 112
Matsumoto (10.1016/j.clinph.2015.02.001_b1245) 2009; 284
Stetkarova (10.1016/j.clinph.2015.02.001_b2020) 2013; 124
Kimiskidis (10.1016/j.clinph.2015.02.001_b0970) 2014; 27
Ni (10.1016/j.clinph.2015.02.001_b1485) 2014; 34
Ziemann (10.1016/j.clinph.2015.02.001_b2430) 1996; 496
Talairach (10.1016/j.clinph.2015.02.001_b2050) 1988
Mylius (10.1016/j.clinph.2015.02.001_b1435) 2013; 78
Li (10.1016/j.clinph.2015.02.001_b1135) 2004; 20
Herwig (10.1016/j.clinph.2015.02.001_b0800) 2001; 50
Stewart (10.1016/j.clinph.2015.02.001_b2025) 2001; 13
Sparing (10.1016/j.clinph.2015.02.001_b1990) 2008; 29
André-Obadia (10.1016/j.clinph.2015.02.001_b0055) 2006; 117
Doeltgen (10.1016/j.clinph.2015.02.001_b0495) 2011; 122
Ugawa (10.1016/j.clinph.2015.02.001_b2230) 1999; 110
Wu (10.1016/j.clinph.2015.02.001_b2415) 2012; 208
Ruohonen (10.1016/j.clinph.2015.02.001_b1875) 2010; 40
Barker (10.1016/j.clinph.2015.02.001_b0105) 1985; 1
Komssi (10.1016/j.clinph.2015.02.001_b1010) 2007; 18
Matsumoto (10.1016/j.clinph.2015.02.001_b1255) 2010; 112
Shirota (10.1016/j.clinph.2015.02.001_b1940) 2011; 122
Ziemann (10.1016/j.clinph.2015.02.001_b2460) 2011; 17
Mills (10.1016/j.clinph.2015.02.001_b1345) 1985; 18
Sanger (10.1016/j.clinph.2015.02.001_b1910) 2001; 530
Ugawa (10.1016/j.clinph.2015.02.001_b2165) 1988; 78
Ugawa (10.1016/j.clinph.2015.02.001_b2220) 1996; 101
Keil (10.1016/j.clinph.2015.02.001_b0940) 2014; 111
Henneman (10.1016/j.clinph.2015.02.001_b0775) 1965; 28
Tabaraud (10.1016/j.clinph.2015.02.001_b2045) 1989; 145
Di Lazzaro (10.1016/j.clinph.2015.02.001_b0485) 2013; 7
Bikmullina (10.1016/j.clinph.2015.02.001_b0165) 2009; 194
Van Der Werf (10.1016/j.clinph.2015.02.001_b2255) 2006; 175
Valls-Solé (10.1016/j.clinph.2015.02.001_b2245) 1994; 44
Opitz (10.1016/j.clinph.2015.02.001_b1530) 2013; 81
Wassermann (10.1016/j.clinph.2015.02.001_b2360) 2002; 113
Goldsworthy (10.1016/j.clinph.2015.02.001_b0695) 2012; 123
Ugawa (10.1016/j.clinph.2015.02.001_b2190) 1991; 29
Lefaucheur (10.1016/j.clinph.2015.02.001_b1095) 2006; 67
Rossini (10.1016/j.clinph.2015.02.001_b1820) 1986
Ahmed (10.1016/j.clinph.2015.02.001_b0020) 2011; 33
Vucic (10.1016/j.clinph.2015.02.001_b2295) 2006; 117
Lemon (10.1016/j.clinph.2015.02.001_b1130) 1998; 218
Mueller (10.1016/j.clinph.2015.02.001_b1415) 2014; 17
Bonato (10.1016/j.clinph.2015.02.001_b0170) 2006; 117
Pleger (10.1016/j.clinph.2015.02.001_b1685) 2004; 356
Vernet (10.1016/j.clinph.2015.02.001_b2285) 2014; 125
Ni (10.1016/j.clinph.2015.02.001_b1465) 2009; 19
Civardi (10.1016/j.clinph.2015.02.001_b0315) 2001; 14
Daskalakis (10.1016/j.clinph.2015.02.001_b0365) 2012; 1463
Müller (10.1016/j.clinph.2015.02.001_b1420) 1991; 81
Hosomi (10.1016/j.clinph.2015.02.001_b0825) 2008; 119
Tokimura (10.1016/j.clinph.2015.02.001_b2115) 1996; 103
Henneman (10.1016/j.clinph.2015.02.001_b0780) 1974; 37
Ugawa (10.1016/j.clinph.2015.02.001_b2195) 1992; 115
McDonnell (10.1016/j.clinph.2015.02.001_b1315) 2006; 173
Grossheinrich (10.1016/j.clinph.2015.02.001_b0720) 2009; 65
Tokimura (10.1016/j.clinph.2015.02.001_b2120) 2000; 523
Matsumoto (10.1016/j.clinph.2015.02.001_b1250) 2010; 121
Paus (10.1016/j.clinph.2015.02.001_b1605) 2001; 86
Fitzgerald (10.1016/j.clinph.2015.02.001_b0600) 2006; 117
Edgley (10.1016/j.clinph.2015.02.001_b0515) 1997; 120
Lefaucheur (10.1016/j.clinph.2015.02.001_b1080) 2004; 34
Müller-Dahlhaus (10.1016/j.clinph.2015.02.001_b1425) 2008; 586
Peters (10.1016/j.clinph.2015.02.001_b1630) 2013; 109
Matsumoto (10.1016/j.clinph.2015.02.001_b1240) 2009; 120
Herwig (10.1016/j.clinph.2015.02.001_b0795) 2001; 108
Ridding (10.1016/j.clinph.2015.02.001_b1755) 1995; 37
Arai (10.1016/j.clinph.2015.02.001_b0070) 2007; 118
Haug (10.1016/j.clinph.2015.02.001_b0835) 1992; 85
Devanne (10.1016/j.clinph.2015.02.001_b0405) 1997; 114
Ferrarelli (10.1016/j.clinph.2015.02.001_b0550) 2008; 165
Ziemann (10.1016/j.clinph.2015.02.001_b2445) 2000; 17
Thielscher (10.1016/j.clinph.2015.02.001_b2090) 2011; 54
Bashir (10.1016/j.clinph.2015.02.001_b0120) 2013; 30
Rossini (10.1016/j.clinph.2015.02.001_b1825) 1987; 415
Wahl (10.1016/j.clinph.2015.02.001_b2315) 2007; 27
Amassian (10.1016/j.clinph.2015.02.001_b0030) 1987; 20
Hanajima (10.1016/j.clinph.2015.02.001_b0760) 1998; 509
Duron (10.1016/j.clinph.2015.02.001_b0505) 1988; 306
Julkunen (10.1016/j.clinph.2015.02.001_b0905) 2013; 106
Hess (10.1016/j.clinph.2015.02.001_b0810) 1987; 388
Van Der Werf (10.1016/j.clinph.2015.02.001_b2250) 2006; 175
Kähkönen (10.1016/j.clinph.2015.02.001_b0915) 2004; 115
Rossini (10.1016/j.clinph.2015.02.001_b1835) 1988; 458
Ziemann (10.1016/j.clinph.2015.02.001_b2425) 1996; 40
Baker (10.1016/j.clinph.2015.02.001_b0100) 2003; 550
Taylor (10.1016/j.clinph.2015.02.001_b2065) 2007; 97
Jahansha
References_xml – volume: 34
  start-page: 464
  year: 2014
  end-page: 472
  ident: b0340
  article-title: Randomized, proof-of-principle clinical trial of active transcranial magnetic stimulation in chronic migraine
  publication-title: Cephalalgia
– volume: 592
  start-page: 4115
  year: 2014
  end-page: 4128
  ident: b0490
  article-title: Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex
  publication-title: J Physiol
– volume: 30
  start-page: 390
  year: 2013
  end-page: 395
  ident: b0120
  article-title: Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects
  publication-title: J Clin Neurophysiol
– start-page: 1364
  year: 2004
  end-page: 1369
  ident: b1550
  article-title: Optimising the detection of upper motor neuron fuction dysfunction in amyotrophic lateral sclerosis: a transcranial magnetic stimulation study
  publication-title: J Neurol
– volume: 27
  start-page: 896
  year: 2005
  end-page: 908
  ident: b0635
  article-title: Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study
  publication-title: Neuroimage
– volume: 124
  start-page: 1055
  year: 2013
  end-page: 1067
  ident: b1285
  article-title: Magnetic-motor-root stimulation: review
  publication-title: Clin Neurophysiol
– volume: 25
  start-page: 3461
  year: 2007
  end-page: 3468
  ident: b1410
  article-title: Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation
  publication-title: Eur J Neurosci
– volume: 7
  start-page: 687
  year: 2013
  ident: b1735
  article-title: Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies
  publication-title: Front Hum Neurosci
– volume: 12
  start-page: 376
  year: 2000
  end-page: 384
  ident: b1015
  article-title: How the distance from coil to cortex relates to age, motor threshold and possibly the antidepressant response to repetitive transcranial magnetic stimulation
  publication-title: J Neuropsychiatry Clin Neurosci
– volume: 115
  start-page: 583
  year: 2004
  end-page: 588
  ident: b0915
  article-title: Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 37
  start-page: 742
  year: 2014
  end-page: 753
  ident: b0585
  article-title: Applications of transcranial direct current stimulation for understanding brain function
  publication-title: Trends Neurosci
– volume: 4
  start-page: 145
  year: 2011
  end-page: 151
  ident: b0655
  article-title: Impact of repetitive theta burst stimulation on motor cortex excitability
  publication-title: Brain Stimul
– volume: 34
  start-page: 91
  year: 2004
  end-page: 95
  ident: b1080
  article-title: Neuropathic pain controlled for more than a year by monthly sessions of repetitive transcranial magnetic stimulation of the motor cortex
  publication-title: Neurophysiol Clin
– volume: 143
  start-page: 240
  year: 2002
  end-page: 248
  ident: b0590
  article-title: Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking
  publication-title: Exp Brain Res
– volume: 124
  start-page: 1364
  year: 2013
  end-page: 1372
  ident: b1625
  article-title: Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 85
  start-page: 355
  year: 1992
  end-page: 364
  ident: b2240
  article-title: Human motor evoked responses to paired transcranial magnetic stimuli
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 6
  start-page: 363
  year: 2013
  end-page: 370
  ident: b1985
  article-title: Opposite optimal current flow directions for induction of neuroplasticity and excitation threshold in the human motor cortex
  publication-title: Brain Stimul
– volume: 115
  start-page: 112
  year: 2004
  end-page: 115
  ident: b0455
  article-title: Direct recording of the output of the motor cortex produced by transcranial magnetic stimulation in a patient with cerebral cortex atrophy
  publication-title: Clin Neurophysiol
– volume: 517
  start-page: 591
  year: 1999
  end-page: 597
  ident: b2385
  article-title: Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans
  publication-title: J Physiol (Lond)
– volume: 13
  start-page: 472
  year: 2001
  end-page: 478
  ident: b2025
  article-title: TMS produces two dissociable types of speech disruption
  publication-title: Neuroimage
– volume: 34
  start-page: 121
  year: 2013
  end-page: 122
  ident: b1280
  article-title: Neurophysiological analysis of the cauda equina in POEMS syndrome
  publication-title: Neurol Sci
– volume: 105
  start-page: 2150
  year: 2011
  end-page: 2156
  ident: b0480
  article-title: Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation
  publication-title: J Neurophysiol
– volume: 412
  start-page: 449
  year: 1989
  end-page: 473
  ident: b0380
  article-title: Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses
  publication-title: J Physiol (Lond)
– volume: 81
  start-page: 257
  year: 1991
  end-page: 262
  ident: b0640
  article-title: Spinal motor neuron excitability during the silent period after cortical stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 339
  start-page: 362
  year: 1992
  end-page: 363
  ident: b1740
  article-title: Increased cortical excitability in generalised epilepsy demonstrated with transcranial magnetic stimulation
  publication-title: Lancet
– volume: 35
  start-page: 516
  year: 2011
  end-page: 536
  ident: b1905
  article-title: The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues
  publication-title: Neurosci Biobehav Rev
– volume: 103
  start-page: 263
  year: 1996
  end-page: 272
  ident: b2115
  article-title: Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 21
  start-page: 154
  year: 2004
  end-page: 164
  ident: b1000
  article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation
  publication-title: Hum Brain Mapp
– volume: 112
  start-page: 131
  year: 2010
  end-page: 136
  ident: b1255
  article-title: Efferent and afferent evoked potentials in patients with adrenomyeloneuropathy
  publication-title: Clin Neurol Neurosurg
– volume: 112
  start-page: 54
  year: 1990
  end-page: 58
  ident: b0145
  article-title: Descending volley after electrical and magnetic transcranial stimulation in man
  publication-title: Neurosci Lett
– volume: 117
  start-page: 847
  year: 1994
  end-page: 858
  ident: b1575
  article-title: Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex
  publication-title: Brain
– volume: 218
  start-page: 202
  year: 1998
  end-page: 215
  ident: b1130
  article-title: The importance of the cortico-motoneuronal system for control of grasp
  publication-title: Novartis Found Symp
– volume: 118
  start-page: 1815
  year: 2007
  end-page: 1823
  ident: b2055
  article-title: Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation
  publication-title: Clin Neurophysiol
– volume: 81
  start-page: 319
  year: 1991
  end-page: 322
  ident: b2130
  article-title: Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 33
  start-page: 953
  year: 2011
  end-page: 958
  ident: b0020
  article-title: Long-term antalgic effects of repetitive transcranial magnetic stimulation of motor cortex and serum beta endorphin in patients with phantom pain
  publication-title: Neurol Res
– volume: 56
  start-page: 315
  year: 1999
  end-page: 320
  ident: b0975
  article-title: Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study
  publication-title: Arch Gen Psychiatry
– volume: 122
  start-page: 1908
  year: 2011
  end-page: 1923
  ident: b1555
  article-title: Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex
  publication-title: Clin Neurophysiol
– volume: 123
  start-page: 2256
  year: 2012
  end-page: 2263
  ident: b0695
  article-title: A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex
  publication-title: Clin Neurophysiol
– volume: 40
  start-page: 367
  year: 1996
  end-page: 378
  ident: b2425
  article-title: Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study
  publication-title: Ann Neurol
– volume: 114
  start-page: 329
  year: 1997
  end-page: 338
  ident: b0405
  article-title: Input–output properties and gain changes in the human corticospinal pathway
  publication-title: Exp brain res
– volume: 89
  start-page: 131
  year: 1993
  end-page: 137
  ident: b1700
  article-title: Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 89
  start-page: 2339
  year: 2003
  end-page: 2345
  ident: b2405
  article-title: A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex
  publication-title: J Neurophysiol
– volume: 59
  start-page: 560
  year: 2002
  end-page: 561
  ident: b1405
  article-title: Antidepressant effects of repetitive transcranial magnetic stimulation in the elderly: correlation between effect size and coil-cortex distance
  publication-title: Arch Gen Psychiatry
– volume: 51
  start-page: 65
  year: 1999
  end-page: 75
  ident: b2225
  article-title: Stimulation at the foramen magnum level
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 75
  start-page: 612
  year: 2004
  end-page: 616
  ident: b1085
  article-title: Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 1473
  start-page: 114
  year: 2012
  end-page: 123
  ident: b2040
  article-title: Reciprocal changes in input–output curves of motor evoked potentials while learning motor skills
  publication-title: Brain Res
– volume: 97
  start-page: 271
  year: 2007
  end-page: 276
  ident: b2065
  article-title: Stimulus waveform influences the efficacy of repetitive transcranial magnetic stimulation
  publication-title: J Affect Disord
– volume: 105
  start-page: 102
  year: 1997
  end-page: 108
  ident: b1185
  article-title: Magnetic stimulation of the lumbosacral vertebral column in children: normal values and possible sites of stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 13
  start-page: 1125
  year: 1990
  end-page: 1132
  ident: b0325
  article-title: Central motor conduction: method and normal results
  publication-title: Muscle Nerve
– volume: 17
  start-page: 397
  year: 2000
  end-page: 405
  ident: b2445
  article-title: I-waves in motor cortex
  publication-title: J Clin Neurophysiol
– volume: 165
  start-page: 996
  year: 2008
  end-page: 1005
  ident: b0550
  article-title: Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study
  publication-title: Am J Psychiatry
– volume: 28
  start-page: 7911
  year: 2008
  end-page: 7918
  ident: b0845
  article-title: Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep
  publication-title: J Neurosci
– volume: 54
  start-page: 90
  year: 2011
  end-page: 102
  ident: b0555
  article-title: Human brain connectivity during single and paired pulse transcranial magnetic stimulation
  publication-title: Neuroimage
– volume: 75
  start-page: 510
  year: 1952
  end-page: 525
  ident: b1140
  article-title: The cortical representation of motor units
  publication-title: Brain
– volume: 36
  start-page: 618
  year: 1994
  end-page: 624
  ident: b2205
  article-title: Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans
  publication-title: Ann Neurol
– volume: 42
  start-page: 220
  year: 2000
  end-page: 227
  ident: b0580
  article-title: Development of the corticospinal system and hand motor function: central conduction times and motor performance tests
  publication-title: Dev Med Child Neurol
– volume: 348
  start-page: 233
  year: 1996
  end-page: 237
  ident: b1580
  article-title: Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression
  publication-title: Lancet
– volume: 40
  start-page: 279
  year: 1976
  end-page: 287
  ident: b1660
  article-title: Excitability of human motoneurones after discharge in a conditioning reflex
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 441
  start-page: 57
  year: 1991
  end-page: 72
  ident: b2185
  article-title: Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man
  publication-title: J Physiol (Lond)
– volume: 538
  start-page: 253
  year: 2002
  end-page: 261
  ident: b0765
  article-title: Mechanisms of intracortical I-wave facilitation elicited by paired-pulse magnetic stimulation in humans
  publication-title: J Physiol
– volume: 3
  start-page: e3069
  year: 2008
  ident: b1320
  article-title: Muscles in “concert”: study of primary motor cortex upper limb functional topography
  publication-title: PLoS One
– volume: 306
  start-page: 495
  year: 1988
  end-page: 500
  ident: b0505
  article-title: Activation of motor pathways in neonates at term by percutaneous stimulation of the motor cortex and spinal cord
  publication-title: C R Acad Sci III
– volume: 219
  start-page: 297
  year: 2013
  end-page: 311
  ident: b0730
  article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations
  publication-title: J Neurosci Methods
– volume: 40
  start-page: 27
  year: 2010
  end-page: 36
  ident: b0015
  article-title: Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression
  publication-title: Neurophysiol Clin
– volume: 47
  start-page: 156
  year: 2000
  end-page: 157
  ident: b1440
  article-title: Feasibility and efficacy of left prefrontal rTMS as a maintenance antidepressant
  publication-title: Biol Psychiatry
– volume: 27
  start-page: 12132
  year: 2007
  end-page: 12138
  ident: b2315
  article-title: Human motor corpus callosum: topography, somatotopy, and link between microstructure and function
  publication-title: J Neurosci
– volume: 45
  start-page: 201
  year: 2005
  end-page: 206
  ident: b0840
  article-title: Theta burst stimulation of the human motor cortex
  publication-title: Neuron
– volume: 124
  start-page: 708
  year: 2013
  end-page: 712
  ident: b1970
  article-title: A comparison of relative-frequency and threshold hunting methods to determine stimulus intensity in transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 9
  start-page: e86794
  year: 2014
  ident: b1860
  article-title: Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields
  publication-title: PLoS One
– volume: 114
  start-page: 239
  year: 2003
  end-page: 247
  ident: b0025
  article-title: Proximal nerve conduction by high-voltage electrical stimulation in S1 radiculopathies and acquired demyelinating neuropathies
  publication-title: Clin Neurophysiol
– volume: 285
  start-page: 227
  year: 1980
  ident: b1330
  article-title: Stimulation of the cerebral cortex in the intact human subject
  publication-title: Nature
– volume: 415
  start-page: 211
  year: 1987
  end-page: 225
  ident: b1825
  article-title: Central motor tract propagation in man: studies with non-invasive, unifocal, scalp stimulation
  publication-title: Brain Res
– volume: 118
  start-page: 2227
  year: 2007
  end-page: 2233
  ident: b0070
  article-title: Differences in after-effect between monophasic and biphasic high-frequency rTMS of the human motor cortex
  publication-title: Clin Neurophysiol
– volume: 496
  start-page: 873
  year: 1996
  end-page: 881
  ident: b2430
  article-title: Interaction between intracortical inhibition and facilitation in human motor cortex
  publication-title: J Physiol (Lond)
– volume: 110
  start-page: 1191
  year: 1987
  end-page: 1209
  ident: b0375
  article-title: Motor cortex stimulation in intact man. [2] Multiple descending volleys
  publication-title: Brain
– volume: 112
  start-page: 593
  year: 2001
  end-page: 599
  ident: b0755
  article-title: Optimization of facilitation related to threshold in transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 101
  start-page: 153
  year: 1996
  end-page: 166
  ident: b1175
  article-title: A new method using neuromagnetic stimulation to measure conduction time within the cauda equina
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 6
  start-page: 538
  year: 2013
  end-page: 540
  ident: b1295
  article-title: Focal lesion in upper part of brachial plexus can be detected by magnetic cervical motor root stimulation
  publication-title: Brain Stimul
– volume: 458
  start-page: 20
  year: 1988
  end-page: 30
  ident: b1835
  article-title: Pre-movement facilitation of motor-evoked potentials in man during transcranial stimulation of the central motor pathways
  publication-title: Brain Res
– volume: 12
  start-page: 1102
  year: 2011
  end-page: 1111
  ident: b1110
  article-title: Predictive value of rTMS in the identification of responders to epidural motor cortex stimulation therapy for pain
  publication-title: J Pain
– volume: 120
  start-page: 1003
  year: 2009
  end-page: 1008
  ident: b1400
  article-title: Hysteresis effects on the input–output curve of motor evoked potentials
  publication-title: Clin Neurophysiol
– volume: 120
  start-page: 1033
  year: 2014
  end-page: 1041
  ident: b1770
  article-title: Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol
  publication-title: J Neurosurg
– volume: 28
  start-page: 110
  year: 1997
  end-page: 117
  ident: b2135
  article-title: Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses
  publication-title: Stroke
– volume: 23
  start-page: 1593
  year: 2013
  end-page: 1605
  ident: b0750
  article-title: The role of interneuron networks in driving human motor cortical plasticity
  publication-title: Cereb Cortex
– volume: 37
  start-page: 155
  year: 1997
  end-page: 167
  ident: b2400
  article-title: Segmental conduction times in the motor nervous system
  publication-title: Electromyogr Clin Neurophysiol
– volume: 31
  start-page: 246
  year: 2014
  end-page: 252
  ident: b1040
  article-title: Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation
  publication-title: J Clin Neurophysiol.
– volume: 3
  start-page: 119
  year: 2010
  end-page: 123
  ident: b0310
  article-title: Optically tracked neuronavigation increases the stability of hand-held focal coil positioning: evidence from “transcranial” magnetic stimulation-induced electrical field measurements
  publication-title: Brain Stimul
– volume: 82
  start-page: 260
  year: 2013
  end-page: 272
  ident: b2060
  article-title: Language mapping with navigated repetitive TMS: proof of technique and validation
  publication-title: Neuroimage
– volume: 466
  start-page: 521
  year: 1993
  end-page: 534
  ident: b0875
  article-title: Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction
  publication-title: J Physiol
– volume: 123
  start-page: 1415
  year: 2012
  end-page: 1421
  ident: b1455
  article-title: Bidirectional modulation of sensory cortical excitability by quadripulse magnetic stimulation (QPS) in humans
  publication-title: Clin Neurophysiol
– volume: 23
  start-page: 822
  year: 2006
  end-page: 829
  ident: b1785
  article-title: Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex
  publication-title: Eur J Neurosci
– volume: 15
  start-page: 288
  year: 1998
  end-page: 304
  ident: b0045
  article-title: Transcranial magnetic stimulation in study of the visual pathway
  publication-title: J Clin Neurophysiol
– volume: 537
  start-page: 1047
  year: 2001
  end-page: 1058
  ident: b0440
  article-title: Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans
  publication-title: J Physiol
– volume: 79
  start-page: 1044
  year: 2008
  end-page: 1049
  ident: b1100
  article-title: Motor cortex rTMS in chronic neuropathic pain: pain relief is associated with thermal sensory perception improvement
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 245
  start-page: 256
  year: 1998
  end-page: 261
  ident: b2105
  article-title: Effects of sex, height and age on motor evoked potentials with magnetic stimulation
  publication-title: J Neurol
– volume: 85
  start-page: 397
  year: 1992
  end-page: 401
  ident: b1930
  article-title: Suppression of cutaneous perception by magnetic pulse stimulation of the human brain
  publication-title: Electroencephol Clin Neurophysiol
– volume: 116
  start-page: 329
  year: 2013
  end-page: 342
  ident: b1590
  article-title: Transcranial
  publication-title: Handb Clin Neurol
– volume: 129
  start-page: 494
  year: 1999
  end-page: 499
  ident: b0425
  article-title: Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex
  publication-title: Exp Brain Res
– volume: 377
  start-page: 333
  year: 1986
  end-page: 347
  ident: b0350
  article-title: The effect of percutaneous motor cortex stimulation on H reflexes in muscles of the arm and leg in intact man
  publication-title: J Physiol (Lond)
– volume: 191
  start-page: 653
  year: 1967
  end-page: 672
  ident: b0945
  article-title: Responses of the pyramidal tract to stimulation of the baboon’s motor cortex
  publication-title: J Physiol
– volume: 113
  start-page: 24
  year: 1997
  end-page: 32
  ident: b1895
  article-title: Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil
  publication-title: Exp Brain Res
– volume: 1
  start-page: 5845
  year: 2011
  end-page: 5855
  ident: b1995
  article-title: Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex
  publication-title: J Physiol
– volume: 45
  start-page: 303
  year: 1995
  end-page: 306
  ident: b1180
  article-title: Magnetic cortical stimulation in acute spinal cord injury
  publication-title: Neurology
– volume: 425
  start-page: 301
  year: 1990
  end-page: 320
  ident: b0510
  article-title: Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey
  publication-title: J Physiol
– volume: 120
  start-page: 770
  year: 2009
  end-page: 775
  ident: b1240
  article-title: Magnetic lumbosacral motor root stimulation with a flat, large round coil
  publication-title: Clin Neurophysiol
– volume: 3
  start-page: 1578
  year: 2010
  end-page: 1588
  ident: b2265
  article-title: Potentiation of short-latency cortical responses by high-frequency repetitive transcranial magnetic stimulation
  publication-title: J Neurophysiol
– volume: 37
  start-page: 1702
  year: 2013
  end-page: 1712
  ident: b1380
  article-title: Modelling non-invasive brain stimulation in cognitive neuroscience
  publication-title: Neurosci Biobehav Rev
– volume: 89
  start-page: 616
  year: 1993
  ident: b0225
  article-title: Latency jump of “relaxed” versus “contracted” motor evoked potentials as a marker of cortico-spinal maturation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 543
  start-page: 699
  year: 2002
  end-page: 708
  ident: b2010
  article-title: Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation
  publication-title: J Physiol
– volume: 141
  start-page: 121
  year: 2001
  end-page: 127
  ident: b0435
  article-title: Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans
  publication-title: Exp Brain Res
– volume: 6
  start-page: e26113
  year: 2011
  ident: b1500
  article-title: New insights into Alzheimer’s disease progression: a combined TMS and structural MRI study
  publication-title: PLoS One
– volume: 425
  start-page: 283
  year: 1990
  end-page: 299
  ident: b0210
  article-title: Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex
  publication-title: J Physiol
– volume: 551
  start-page: 563
  year: 2003
  end-page: 573
  ident: b0690
  article-title: Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex
  publication-title: J Physiol
– volume: 84
  start-page: 503
  year: 1991
  end-page: 506
  ident: b0685
  article-title: Study of central and peripheral motor conduction in normal subjects
  publication-title: Acta Neurol Scand
– volume: 265
  start-page: 537
  year: 1998
  end-page: 543
  ident: b2320
  article-title: Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5
  publication-title: Proc Biol Sci
– volume: 26
  start-page: 344
  year: 2012
  end-page: 352
  ident: b1515
  article-title: Neural correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on central pain after stroke
  publication-title: Neurorehabil Neural Repair
– volume: 123
  start-page: 858
  year: 2012
  end-page: 882
  ident: b0715
  article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee
  publication-title: Clin Neurophysiol
– volume: 128
  start-page: 539
  year: 1999
  end-page: 542
  ident: b0280
  article-title: Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings
  publication-title: Exp Brain Res
– volume: 4
  start-page: 500
  year: 2014
  end-page: 507
  ident: b1535
  article-title: Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions
  publication-title: Neuroimage Clin
– volume: 7
  start-page: 365
  year: 2014
  end-page: 371
  ident: b0815
  article-title: Inter- and intra-individual variability following intermittent theta burst stimulation: implications for rehabilitation and recovery
  publication-title: Brain Stimul
– volume: 39
  start-page: 1485
  year: 2014
  end-page: 1490
  ident: b0260
  article-title: Task-dependent changes in late inhibitory and disinhibitory actions within the primary motor cortex in humans
  publication-title: Eur J Neurosci
– volume: 117
  start-page: 2584
  year: 2006
  end-page: 2596
  ident: b0600
  article-title: A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition
  publication-title: Clin Neurophysiol
– volume: 2
  start-page: 58
  year: 2009
  end-page: 80
  ident: b1965
  article-title: Consensus paper: combining transcranial stimulation with neuroimaging
  publication-title: Brain Stimul
– volume: 586
  start-page: 4489
  year: 2008
  end-page: 4500
  ident: b2035
  article-title: Theta burst stimulation induces after-effects on contralateral primary motor cortex excitability in humans
  publication-title: J Physiol
– volume: 32
  start-page: 243
  year: 2012
  end-page: 253
  ident: b0150
  article-title: EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation
  publication-title: J Neurosci
– volume: 175
  start-page: 246
  year: 2006
  end-page: 255
  ident: b2255
  article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. II. Thalamocortical contributions
  publication-title: Exp Brain Res
– volume: 109
  start-page: 158
  year: 1996
  end-page: 163
  ident: b2355
  article-title: Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscle
  publication-title: Exp Brain Res
– volume: 523
  start-page: 03
  year: 2000
  end-page: 513
  ident: b2120
  article-title: Short latency inhibition of human hand motor cortex by somatosensory input from the hand
  publication-title: J Physiol (Lond)
– volume: 27
  start-page: 6815
  year: 2007
  end-page: 6822
  ident: b0985
  article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex
  publication-title: J Neurosci
– volume: 4
  start-page: 326
  year: 2008
  end-page: 336
  ident: b1365
  article-title: Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation
  publication-title: Brain Stimul
– volume: 120
  start-page: 1724
  year: 2009
  end-page: 1731
  ident: b0130
  article-title: Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest–a bifocal TMS study
  publication-title: Clin Neurophysiol
– volume: 119
  start-page: 2291
  year: 2008
  end-page: 2297
  ident: b1635
  article-title: Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF)
  publication-title: Clin Neurophysiol
– volume: 1
  start-page: 164
  year: 2008
  end-page: 182
  ident: b2455
  article-title: Consensus: motor cortex plasticity protocols
  publication-title: Brain Stimul
– volume: 8
  start-page: e60358
  year: 2013
  ident: b1750
  article-title: Optimal coil orientation for transcranial magnetic stimulation
  publication-title: PLoS One
– volume: 498
  start-page: 817
  year: 1997
  end-page: 823
  ident: b1450
  article-title: Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans
  publication-title: J Physiol (Lond)
– volume: 119
  start-page: 71
  year: 2008
  end-page: 79
  ident: b0900
  article-title: Changes in motor cortical excitability induced by high-frequency repetitive transcranial magnetic stimulation of different stimulation durations
  publication-title: Clin Neurophysiol
– volume: 57
  start-page: 108
  year: 1994
  end-page: 110
  ident: b0410
  article-title: Excitability of the motor cortex to magnetic stimulation in patients with cerebellar lesions
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 9
  start-page: 373
  year: 2010
  end-page: 380
  ident: b1150
  article-title: Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham controlled trial
  publication-title: Lancet Neurol
– year: 2008
  ident: b2365
  article-title: The oxford handbook of transcranial stimulation
– volume: 80
  start-page: 1746
  year: 2013
  end-page: 1753
  ident: b1480
  article-title: Increased motor cortical facilitation and decreased inhibition in Parkinson’s Disease
  publication-title: Neurology
– volume: 29
  start-page: 135
  year: 1989
  end-page: 140
  ident: b2170
  article-title: Physiologic analysis of central motor pathways–simultaneous recording from multiple relaxed muscles
  publication-title: Eur Neurol
– volume: 110
  start-page: 1173
  year: 1987
  end-page: 1190
  ident: b1870
  article-title: Motor cortex stimulation in intact man. General characteristics of EMG responses in different muscles
  publication-title: Brain
– volume: 309
  start-page: 2228
  year: 2005
  end-page: 2232
  ident: b1225
  article-title: Breakdown of cortical effective connectivity during sleep
  publication-title: Science
– volume: 45
  start-page: 40
  year: 2014
  end-page: 49
  ident: b1915
  article-title: Quantifying cortical EEG responses to TMS in (un)consciousness
  publication-title: Clin EEG Neurosci
– volume: 572
  start-page: 857
  year: 2006
  end-page: 868
  ident: b0125
  article-title: Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways
  publication-title: J Physiol
– volume: 116
  start-page: 775
  year: 2005
  end-page: 779
  ident: b2420
  article-title: Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil
  publication-title: Clin Neurophysiol
– volume: 94
  start-page: 622
  year: 2005
  end-page: 639
  ident: b0525
  article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits
  publication-title: J Neurophysiol
– volume: 115
  start-page: 1076
  year: 2004
  end-page: 1082
  ident: b1545
  article-title: The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse
  publication-title: Clin Neurophysiol
– volume: 160
  start-page: 153
  year: 1993
  end-page: 155
  ident: b2200
  article-title: Interhemispheric facilitation of the hand area of the human motor cortex
  publication-title: Neurosci Letts
– volume: 15
  start-page: 948
  year: 2003
  end-page: 960
  ident: b1765
  article-title: Studies in cognition: the problems solved and created by transcranial magnetic stimulation
  publication-title: J Cogn Neurosci
– volume: 18
  start-page: 437
  year: 1978
  end-page: 456
  ident: b1620
  article-title: Study of orthodromic and antidromic effects of nerve stimulation on single motoneurones of human hand muscles
  publication-title: Electromyogr Clin Neurophysiol
– volume: 530
  start-page: 307
  year: 2001
  end-page: 317
  ident: b1910
  article-title: Interactions between two different inhibitory systems in the human motor cortex
  publication-title: J Physiol (Lond)
– volume: 23
  start-page: 529
  year: 1999
  end-page: 538
  ident: b1145
  article-title: Transcutaneous cranial electrical stimulation (TCES): a review 1998
  publication-title: Neurosci Biobehav Rev
– volume: 27
  start-page: 638
  year: 2002
  end-page: 645
  ident: b1560
  article-title: Repetitive Transcranial Magnetic Stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity
  publication-title: Neuropsychopharmacology
– volume: 284
  start-page: 46
  year: 2009
  end-page: 51
  ident: b1245
  article-title: Magnetic stimulation of the cauda equina in the spinal canal with a flat, large round coil
  publication-title: J Neurol Sci
– volume: 44
  start-page: 735
  year: 1994
  end-page: 741
  ident: b2245
  article-title: Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease
  publication-title: Neurology
– volume: 52
  start-page: 529
  year: 1999
  end-page: 537
  ident: b1955
  article-title: Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp
  publication-title: Neurology
– volume: 20
  start-page: 570
  year: 1997
  end-page: 576
  ident: b1360
  article-title: Corticomotor threshold to magnetic stimulation: normal values and repeatability
  publication-title: Muscle Nerve
– volume: 125
  start-page: 142
  year: 2014
  end-page: 147
  ident: b2390
  article-title: Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications
  publication-title: Clin Neurophysiol
– volume: 109
  start-page: 467
  year: 1996
  end-page: 472
  ident: b0880
  article-title: Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans
  publication-title: Exp Brain Res
– volume: 60
  start-page: 1409
  year: 2008
  end-page: 1414
  ident: b1235
  article-title: Clinical signs, neurophysiological evaluation, and medication of spasticity–review
  publication-title: Brain Nerve
– volume: 101
  start-page: 247
  year: 1996
  end-page: 254
  ident: b2220
  article-title: Clinical utility of magnetic corticospinal tract stimulation at the foramen magnum level
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 151
  start-page: 330
  year: 2003
  end-page: 337
  ident: b1790
  article-title: Two phases of short-interval intracortical inhibition
  publication-title: Exp Brain Res
– volume: 98
  start-page: 417
  year: 1975
  end-page: 440
  ident: b1725
  article-title: Which elements are excited in electrical stimulation of mammalian central nervous system: a review
  publication-title: Brain Res
– volume: 57
  start-page: 563
  year: 2004
  end-page: 569
  ident: b0320
  article-title: Paired associative stimulation
  publication-title: Suppl Clin Neurophysiol
– volume: 37
  start-page: 191
  year: 1999
  end-page: 198
  ident: b0930
  article-title: Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship
  publication-title: Neuropsychologia
– volume: 21
  start-page: 579
  year: 2011
  end-page: 601
  ident: b1375
  article-title: Transcranial magnetic stimulation in cognitive rehabilitation
  publication-title: Neuropsychol Rehabil
– volume: 29
  start-page: 418
  year: 1991
  end-page: 427
  ident: b2190
  article-title: Percutaneous electrical stimulation of corticospinal pathways at the level of the pyramidal decussation in humans
  publication-title: Ann Neurol
– volume: 22
  start-page: 233
  year: 2011
  end-page: 251
  ident: b1445
  article-title: Transcranial brain stimulation: clinical applications and future directions
  publication-title: Neurosurg Clin N Am
– volume: 113
  start-page: 462
  year: 2002
  end-page: 468
  ident: b0805
  article-title: Spatial congruence of neuronavigated transcranial magnetic stimulation and functional neuroimaging
  publication-title: Clin Neurophysiol
– volume: 81
  start-page: 238
  year: 1991
  end-page: 239
  ident: b2110
  article-title: The measurement of electric field, and the influence of surface charge, in magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 97
  start-page: 153
  year: 1939
  end-page: 199
  ident: b0010
  article-title: Impulses in the pyramidal tract
  publication-title: J Physiol
– volume: 92
  start-page: 66
  year: 2004
  end-page: 72
  ident: b2015
  article-title: Modulation of associative human motor cortical plasticity by attention
  publication-title: J Neurophysiol
– volume: 65
  start-page: 778
  year: 2009
  end-page: 784
  ident: b0720
  article-title: Theta burst stimulation of the prefrontal cortex: safety and impact on cognition, mood, and resting electroencephalogram
  publication-title: Biol Psychiatry
– volume: 107
  start-page: 555
  year: 2007
  end-page: 559
  ident: b1890
  article-title: Reduction of intractable deafferentation pain due to spinal cord or peripheral lesion by high-frequency repetitive transcranial magnetic stimulation of the primary motor cortex
  publication-title: J Neurosurg
– volume: 14
  start-page: 1444
  year: 2001
  end-page: 1453
  ident: b0315
  article-title: Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans
  publication-title: Neuroimage
– volume: 24
  start-page: 7939
  year: 2004
  end-page: 7944
  ident: b1805
  article-title: Age-related functional changes of prefrontal cortex in long-term memory: a repetitive transcranial magnetic stimulation study
  publication-title: J Neurosci
– volume: 125
  start-page: 755
  year: 2014
  end-page: 762
  ident: b0390
  article-title: Determining optimal rTMS parameters through changes in cortical inhibition
  publication-title: Clin Neurophysiol
– volume: 102
  start-page: 3180
  year: 2009
  end-page: 3190
  ident: b1690
  article-title: Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs
  publication-title: J Neurophysiol
– volume: 110
  start-page: 1641
  year: 1999
  end-page: 1645
  ident: b2230
  article-title: Motor-evoked potentials: unusual findings
  publication-title: Clin Neurophysiol
– volume: 85
  start-page: 158
  year: 1992
  end-page: 160
  ident: b0835
  article-title: Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 49
  start-page: 251
  year: 1986
  end-page: 257
  ident: b0195
  article-title: A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 331
  start-page: 174
  year: 2013
  end-page: 176
  ident: b1290
  article-title: A conduction block in sciatic nerves can be detected by magnetic motor root stimulation
  publication-title: J Neurol Sci
– volume: 37
  start-page: 703
  year: 1995
  end-page: 713
  ident: b2215
  article-title: Magnetic stimulation over the cerebellum in humans
  publication-title: Ann Neurol
– volume: 84
  start-page: 1161
  year: 2013
  end-page: 1170
  ident: b2305
  article-title: Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 29
  start-page: 463
  year: 2011
  end-page: 492
  ident: b1510
  article-title: Transcranial direct current stimulation–update 2011
  publication-title: Restor Neurol Neurosci
– volume: 31
  start-page: 1084
  year: 1992
  end-page: 1087
  ident: b1205
  article-title: Central motor conductivity in aged people
  publication-title: Intern Med
– volume: 20
  start-page: 183
  year: 1987
  end-page: 191
  ident: b1830
  article-title: Mechanisms of nervous propagation along central motor pathways: non invasive evaluation in healthy subjects and in patients with neurological disease
  publication-title: Neurosurgery
– volume: 9
  start-page: e92354
  year: 2014
  ident: b0665
  article-title: Characterizing long interval cortical inhibition over the time-frequency domain
  publication-title: PLoS One
– volume: 18
  start-page: 601
  year: 1985
  end-page: 605
  ident: b1345
  article-title: Corticospinal tract conduction time in multiple sclerosis
  publication-title: Ann Neurol
– volume: 173
  start-page: 603
  year: 2006
  end-page: 611
  ident: b0965
  article-title: Lorazepam-induced effects on silent period and corticomotor excitability
  publication-title: Exp Brain Res
– volume: 81
  start-page: 443
  year: 1991
  end-page: 449
  ident: b2125
  article-title: Optimal transcranial magnetic stimulation sites for the assessment of motor function
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 8
  start-page: 200
  year: 1991
  end-page: 202
  ident: b0050
  article-title: American Electroencephalographic Society guidelines for standard electrode position nomenclature
  publication-title: J Clin Neurophysiol
– volume: 22
  start-page: 592
  year: 2011
  end-page: 597
  ident: b0240
  article-title: Transcranial magnetic stimulation-evoked EEG/cortical potentials in physiological and pathological aging
  publication-title: Neuroreport
– volume: 356
  start-page: 87
  year: 2004
  end-page: 90
  ident: b1685
  article-title: Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception in complex regional pain syndrome type I
  publication-title: Neurosci Lett
– volume: 115
  start-page: 1519
  year: 2004
  end-page: 1526
  ident: b1615
  article-title: Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex
  publication-title: Clin Neurophysiol
– volume: 117
  start-page: 1699
  year: 2006
  end-page: 1707
  ident: b0170
  article-title: Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study
  publication-title: Clin Neurophysiol
– volume: 54
  start-page: 3
  year: 1980
  end-page: 15
  ident: b0250
  article-title: Electrogenesis of cortical DC potentials
  publication-title: Prog Brain Res
– volume: 125
  start-page: 526
  year: 2014
  end-page: 536
  ident: b1795
  article-title: Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity
  publication-title: Clin Neurophysiol
– volume: 86
  start-page: 1983
  year: 2001
  end-page: 1990
  ident: b1605
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study
  publication-title: J Neurophysiol
– volume: 122
  start-page: 1411
  year: 2011
  end-page: 1416
  ident: b0495
  article-title: Low-intensity, short-interval theta burst stimulation modulates excitatory but not inhibitory motor networks
  publication-title: Clin Neurophysiol
– volume: 575
  start-page: 657
  year: 2006
  end-page: 670
  ident: b1715
  article-title: Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans
  publication-title: J Physiol
– volume: 453
  start-page: 525
  year: 1992
  end-page: 546
  ident: b0545
  article-title: Interhemispheric inhibition of the human motor cortex
  publication-title: J Physiol (Lond)
– volume: 5
  start-page: 25
  year: 2000
  end-page: 29
  ident: b1525
  article-title: Neurophysiological evaluation of tactile space perception deficits through transcranial magnetic stimulation
  publication-title: Brain Res Protoc
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: b1640
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin Neurophysiol
– volume: 30
  start-page: 1387
  year: 2009
  end-page: 1396
  ident: b1155
  article-title: Reproducibility of TMS-evoked EEG responses
  publication-title: Hum Brain Mapp
– volume: 32
  start-page: 281
  year: 2014
  end-page: 292
  ident: b0570
  article-title: Does an intraneural interface short-term implant for robotic hand control modulate sensorimotor cortical integration? An EEG–TMS co-registration study on a human amputee
  publication-title: Restor Neurol Neurosci
– volume: 676
  start-page: 314
  year: 1995
  end-page: 324
  ident: b1855
  article-title: Magnetic transcranial stimulation in healthy humans: influence on the behavior of upper limb motor units
  publication-title: Brain Res
– volume: 34
  start-page: 1255
  year: 2009
  end-page: 1262
  ident: b0605
  article-title: A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression
  publication-title: Neuropsychopharmacology
– volume: 8
  start-page: 3537
  year: 1997
  end-page: 3540
  ident: b0860
  article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity
  publication-title: Neuroreport
– volume: 110
  start-page: 699
  year: 1999
  end-page: 704
  ident: b0185
  article-title: Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging
  publication-title: Clin Neurophysiol
– volume: 152
  start-page: 2477
  year: 2011
  end-page: 2484
  ident: b1945
  article-title: Ten sessions of adjunctive left prefrontal rTMS significantly reduces fibromyalgia pain: a randomized, controlled pilot study
  publication-title: Pain
– volume: 2
  start-page: 133
  year: 1998
  end-page: 142
  ident: b0535
  article-title: Experimentation with a transcranial magnetic stimulation system for functional brain mapping
  publication-title: Med Image Anal
– volume: 154
  start-page: 1065
  year: 2013
  end-page: 1072
  ident: b0830
  article-title: Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: a randomized, multicenter, double-blind, crossover, sham-controlled trial
  publication-title: Pain
– volume: 527
  start-page: 633
  year: 2000
  end-page: 639
  ident: b1505
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J Physiol
– volume: 78
  start-page: 849
  year: 2007
  end-page: 852
  ident: b2300
  article-title: Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 121
  start-page: 1930
  year: 2010
  end-page: 1933
  ident: b1250
  article-title: Cortico-conus motor conduction time (CCCT) for leg muscles
  publication-title: Clin Neurophysiol
– volume: 113
  start-page: 317
  year: 2002
  end-page: 335
  ident: b0595
  article-title: Electrophysiology of radiculopathies
  publication-title: Clin Neurophysiol
– volume: 27
  start-page: 172
  year: 2014
  end-page: 191
  ident: b1935
  article-title: Modulation of EEG functional connectivity networks in subjects undergoing repetitive transcranial magnetic stimulation
  publication-title: Brain Topogr
– volume: 91
  start-page: 79
  year: 1994
  end-page: 92
  ident: b1850
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 4
  start-page: 58
  year: 2011
  end-page: 59
  ident: b0085
  article-title: Fast estimation of transcranial magnetic stimulation motor threshold: is it safe?
  publication-title: Brain Stimul
– volume: 569
  start-page: 315
  year: 2005
  end-page: 323
  ident: b0465
  article-title: Dissociated effects of diazepam and lorazepam on short latency afferent ì inhibition
  publication-title: J Physiol
– volume: 546
  start-page: 605
  year: 2003
  end-page: 613
  ident: b1675
  article-title: Age and sex differences in human motor cortex input–output characteristics
  publication-title: J Physiol
– volume: 121
  start-page: 426
  year: 2010
  end-page: 430
  ident: b1865
  article-title: Breaks during 5Hz rTMS are essential for facilitatory after effects
  publication-title: Clin Neurophysiol
– year: 1986
  ident: b1820
  article-title: Transcutaneous stimulation of motor cerebral cortex and spine: non invasive evaluation of central afferent transmission
– volume: 124
  start-page: 197
  year: 2013
  end-page: 203
  ident: b0870
  article-title: Diagnostic value of lumbar root stimulation at the early stage of Guillain-Barré syndrome
  publication-title: Clin Neurophysiol
– volume: 113
  start-page: 175
  year: 2002
  end-page: 184
  ident: b0995
  article-title: Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 16
  start-page: 838
  year: 2013
  end-page: 844
  ident: b0385
  article-title: Noninvasive brain stimulation: from physiology to network dynamics and back
  publication-title: Nat Neurosci
– volume: 37
  start-page: 219
  year: 1999
  end-page: 224
  ident: b1600
  article-title: Imaging the brain before, during, and after transcranial magnetic stimulation
  publication-title: Neuropsychologia
– volume: 19
  start-page: 1950
  year: 2004
  end-page: 1962
  ident: b0155
  article-title: Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits
  publication-title: Eur J Neurosci
– volume: 239
  start-page: 152
  year: 1992
  end-page: 156
  ident: b0645
  article-title: Motor evoked potentials to magnetic stimulation: technical considerations and normative data from 50 subjects
  publication-title: J Neurol
– volume: 85
  start-page: 265
  year: 1992
  end-page: 272
  ident: b0040
  article-title: Cerebello-frontal cortical projections in humans studied with the magnetic coil
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 110
  start-page: 1297
  year: 1999
  end-page: 1307
  ident: b0420
  article-title: The diagnostic value of motor evoked potentials
  publication-title: Clin Neurophysiol
– volume: 22
  start-page: 36
  year: 1995
  end-page: 42
  ident: b2210
  article-title: Electrical stimulation of the human descending motor tracts at several levels
  publication-title: Can J Neurol Sci
– volume: 108
  start-page: 123
  year: 2001
  end-page: 131
  ident: b0795
  article-title: The navigation of transcranial magnetic stimulation
  publication-title: Psychiatry Res
– volume: 52
  start-page: 213
  year: 1989
  end-page: 217
  ident: b1680
  article-title: High-voltage stimulation over the human spinal cord: sources of latency variation
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 34
  start-page: 7314
  year: 2014
  end-page: 7321
  ident: b1485
  article-title: Heterosynaptic modulation of motor cortical plasticity in human
  publication-title: J Neurosci
– volume: 44
  start-page: 279
  year: 2014
  end-page: 283
  ident: b1920
  article-title: The science of transcranial magnetic stimulation
  publication-title: Psychiat Ann
– volume: 34
  start-page: 1543
  year: 2009
  end-page: 1551
  ident: b0540
  article-title: Suppression of gamma-oscillations in the dorsolateral prefrontal cortex following long interval cortical inhibition: a TMS–EEG study
  publication-title: Neuropsychopharmacology
– volume: 20
  start-page: 535
  year: 1997
  end-page: 542
  ident: b0300
  article-title: Interhemispheric differences of hand muscle representation in human motor cortex
  publication-title: Muscle Nerve
– volume: 166
  start-page: 104
  year: 2007
  end-page: 108
  ident: b0925
  article-title: Effects of alcohol on TMS-evoked N100 responses
  publication-title: J Neurosci Methods
– year: 2012
  ident: b1665
  article-title: The circuitry of the human spinal cord. Spinal and supraspinal control of movement
– volume: 593
  start-page: 14
  year: 1992
  end-page: 19
  ident: b1840
  article-title: Age-related changes of motor evoked potentials in healthy humans: noninvasive evaluation of central and peripheral motor tracts excitability and conductivity
  publication-title: Brain Res
– volume: 16
  start-page: 1403
  year: 2012
  end-page: 1413
  ident: b1115
  article-title: Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: influence of theta burst stimulation priming
  publication-title: Eur J Pain
– volume: 46
  start-page: 932
  year: 2012
  end-page: 936
  ident: b1275
  article-title: Aging influences central motor conduction less than peripheral motor conduction: a transcranial magnetic stimulation study
  publication-title: Muscle Nerve
– volume: 260
  start-page: 2793
  year: 2013
  end-page: 2801
  ident: b1395
  article-title: High-rate repetitive transcranial magnetic stimulation in migraine prophylaxis: a randomized, placebo-controlled study
  publication-title: J Neurol
– volume: 120
  start-page: 2008
  year: 2009
  end-page: 2039
  ident: b1810
  article-title: Safety of TMS consensus group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research
  publication-title: Clin Neurophysiol
– volume: 17
  start-page: 53
  year: 2014
  end-page: 62
  ident: b0065
  article-title: Is Life better after motor cortex stimulation for pain control? Results at long-term and their prediction by preoperative rTMS
  publication-title: Pain Physician
– volume: 70
  start-page: 26
  year: 1988
  end-page: 32
  ident: b2000
  article-title: Enhancement of motor cortical excitability in humans by non-invasive⧹electrical stimulation appears prior to voluntary movement
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 152
  start-page: 1119
  year: 2008
  end-page: 1129
  ident: b0955
  article-title: Bilateral changes in excitability of sensorimotor cortices during unilateral movement: combined electroencephalographic and transcranial magnetic stimulation study
  publication-title: Neuroscience
– volume: 69
  start-page: 86
  year: 2006
  end-page: 94
  ident: b0530
  article-title: A direct demonstration of cortical LTP in humans: a combined TMS/EEG study
  publication-title: Brain Res Bull
– volume: 131
  start-page: 1
  year: 2000
  end-page: 9
  ident: b0890
  article-title: Transcranial magnetic stimulation studies of cognition: an emerging field
  publication-title: Exp Brain Res
– volume: 20
  start-page: 164
  year: 1987
  end-page: 168
  ident: b1355
  article-title: Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications
  publication-title: Neurosurgery
– volume: 12
  start-page: 447
  year: 2008
  end-page: 454
  ident: b1975
  article-title: State-dependency in brain stimulation studies of perception and cognition
  publication-title: Trends Cogn Sci
– volume: 59
  start-page: 203
  year: 2014
  end-page: 218
  ident: b1050
  article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area
  publication-title: Phys Med Biol
– volume: 66
  start-page: 1524
  year: 2005
  end-page: 1528
  ident: b1540
  article-title: Long-term maintenance therapy for major depressive disorder with rTMS
  publication-title: J Clin Psychiatry
– volume: 121
  start-page: 437
  year: 1998
  end-page: 450
  ident: b1195
  article-title: Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials
  publication-title: Brain
– volume: 117
  start-page: 838
  year: 2006
  end-page: 844
  ident: b1980
  article-title: Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex
  publication-title: Clin Neurophysiol
– volume: 31
  start-page: 366
  year: 1992
  end-page: 368
  ident: b2155
  article-title: Magnetic stimulation of the human brain
  publication-title: Ann NY Acad Sci
– volume: 29
  start-page: 7679
  year: 2009
  end-page: 7685
  ident: b1780
  article-title: Natural frequencies of human corticothalamic circuits
  publication-title: J Neurosci
– volume: 487
  start-page: 541
  year: 1995
  end-page: 548
  ident: b1760
  article-title: The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex
  publication-title: J Physiol (Lond)
– volume: 7
  start-page: 372
  year: 2014
  end-page: 380
  ident: b1160
  article-title: Inter-individual variability in response to non-invasive brain stimulation paradigms
  publication-title: Brain Stimul
– volume: 80
  start-page: 356
  year: 2003
  end-page: 368
  ident: b1325
  article-title: Transcranial magnetic stimulation as an investigative tool in the study of visual function
  publication-title: Optom Vis Sci
– volume: 11
  start-page: 701
  year: 2000
  end-page: 707
  ident: b0305
  article-title: Transcranial magnetic stimulation reveals an interhemispheric asymmetry of cortical inhibition in focal epilepsy
  publication-title: Neuroreport
– volume: 40
  start-page: 1
  year: 2010
  end-page: 5
  ident: b1105
  article-title: Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation
  publication-title: Neurophysiol Clin
– volume: 51
  start-page: 1069
  year: 1988
  end-page: 1074
  ident: b2160
  article-title: Central motor and sensory conduction in adrenoleukomyeloneuropathy, cerebrotendinous xanthomatosis, HTLV-1-associated myelopathy and tabes dorsalis
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 127
  start-page: 382
  year: 1999
  end-page: 390
  ident: b0370
  article-title: Comparison of input–output patterns in the corticospinal system of normal subjects and incomplete spinal cord injured patients
  publication-title: Exp Brain Res
– volume: 11
  start-page: 2
  year: 2010
  end-page: 18
  ident: b1925
  article-title: WFSBP guidelines on brain stimulation treatments in psychiatry
  publication-title: World J Biol Psychiatry
– volume: 150
  start-page: 44
  year: 2012
  end-page: 55
  ident: b1230
  article-title: Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies.Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies
  publication-title: Arch Ital Biol
– volume: 24
  start-page: 431
  year: 2013
  end-page: 442
  ident: b0565
  article-title: TMS and TMS–EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex
  publication-title: Rev Neurosci
– volume: 106
  start-page: 103
  year: 2013
  end-page: 112
  ident: b0905
  article-title: TMS–EEG reveals impaired intracortical interactions and coherence in Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1)
  publication-title: Epilepsy Res
– volume: 227
  start-page: 67
  year: 2004
  end-page: 71
  ident: b0205
  article-title: RTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study
  publication-title: J Neurol Sci
– volume: 208
  start-page: 161
  year: 2012
  end-page: 164
  ident: b2415
  article-title: Effects of 30Hz theta burst transcranial magnetic stimulation on the primary motor cortex
  publication-title: J Neurosci Methods
– volume: 122
  start-page: 22
  year: 2006
  end-page: 27
  ident: b0820
  article-title: Reduction of intractable deafferentation pain by navigation-guided repetitive transcranial magnetic stimulation of the primary motor cortex
  publication-title: Pain
– volume: 24
  start-page: 211
  year: 2014
  end-page: 221
  ident: b0615
  article-title: Disrupted cortical conductivity in schizophrenia: TMS–EEG study
  publication-title: Cereb Cortex
– volume: 140
  start-page: 509
  year: 2008
  end-page: 518
  ident: b0705
  article-title: Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation
  publication-title: Pain
– volume: 116
  start-page: 423
  year: 2013
  end-page: 440
  ident: b1120
  article-title: Pain
  publication-title: Handb Clin Neurol
– volume: 92
  start-page: 383
  year: 1995
  end-page: 386
  ident: b0200
  article-title: Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex
  publication-title: Acta Neurol Scand
– volume: 54
  start-page: 618
  year: 1991
  end-page: 623
  ident: b2095
  article-title: Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation of the motor cortex
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 272
  start-page: 33
  year: 1999
  end-page: 36
  ident: b1065
  article-title: Plasticity of cortical hand muscle representation in patients with hemifacial spasm
  publication-title: Neurosci Lett
– volume: 17
  start-page: 368
  year: 2011
  end-page: 381
  ident: b2460
  article-title: Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex
  publication-title: Neuroscientist
– volume: 78
  start-page: 224
  year: 2013
  end-page: 232
  ident: b1435
  article-title: Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age
  publication-title: Neuroimage
– volume: 63
  start-page: 2266
  year: 2004
  end-page: 2271
  ident: b0460
  article-title: Role of motor evoked potentials in diagnosis of cauda equine and lumbosacral cord lesions
  publication-title: Neurology
– volume: 118
  start-page: 308
  year: 2007
  end-page: 316
  ident: b0885
  article-title: Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man
  publication-title: Clin Neurophysiol
– volume: 13
  start-page: 995
  year: 1990
  end-page: 1011
  ident: b0520
  article-title: Clinical experience with transcranial magnetic stimulation
  publication-title: Muscle Nerve
– volume: 99
  start-page: 57
  year: 2006
  end-page: 59
  ident: b1885
  article-title: Stimulation of primary motor cortex for intractable deafferentation pain
  publication-title: Acta Neurochir Suppl
– volume: 80
  start-page: 2870
  year: 1998
  end-page: 2881
  ident: b0270
  article-title: Intracortical inhibition and facilitation in different representations of the human motor cortex
  publication-title: J Neurophysiol
– volume: 117
  start-page: 1536
  year: 2006
  end-page: 1544
  ident: b0055
  article-title: Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy
  publication-title: Clin Neurophysiol
– volume: 89
  start-page: 335
  year: 1993
  end-page: 340
  ident: b0005
  article-title: Impairment of central motor conduction in diabetic patients
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 31
  start-page: 170
  year: 1971
  end-page: 172
  ident: b0620
  article-title: An electronic stimulus artifact suppressor
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 123
  start-page: 572
  year: 2000
  end-page: 584
  ident: b2005
  article-title: Induction of plasticity in the human motor cortex by paired associative stimulation
  publication-title: Brain
– volume: 73
  start-page: 510
  year: 2013
  end-page: 517
  ident: b0115
  article-title: Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial
  publication-title: Biol Psychiatry
– volume: 153
  start-page: 1350
  year: 2012
  end-page: 1363
  ident: b1430
  article-title: Noninvasive cortical modulation of experimental pain
  publication-title: Pain
– volume: 125
  start-page: 396
  year: 2014
  end-page: 405
  ident: b0095
  article-title: Assessement of quadriceps strength, endurance and fatigue in FSHD and CMT: benefits and limits of femoral nerve magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 89
  start-page: 1256
  year: 2003
  end-page: 1264
  ident: b0290
  article-title: Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex
  publication-title: J Neurophysiol
– volume: 16
  start-page: 1274
  year: 2014
  end-page: 1282
  ident: b1020
  article-title: Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions
  publication-title: Neuro Oncol
– volume: 96
  start-page: 1337
  year: 2006
  end-page: 1346
  ident: b1030
  article-title: Associative plasticity in human motor cortex during voluntary muscle contraction
  publication-title: J Neurophysiol
– volume: 19
  start-page: 1654
  year: 2009
  end-page: 1665
  ident: b1465
  article-title: Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human
  publication-title: Cereb Cortex
– volume: 30
  start-page: 14
  year: 1990
  end-page: 18
  ident: b2180
  article-title: Magneto-electrical stimulation of central motor pathways compared with percutaneous electrical stimulation
  publication-title: Eur Neurol
– volume: 112
  start-page: 1781
  year: 2001
  end-page: 1792
  ident: b0725
  article-title: Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials
  publication-title: Clin Neurophysiol
– volume: 48
  start-page: 1381
  year: 2011
  end-page: 1389
  ident: b2270
  article-title: Alpha-generation as basic response-signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: a TMS/EEG co-registration study
  publication-title: Psychophysiology
– volume: 50
  start-page: 58
  year: 2001
  end-page: 61
  ident: b0800
  article-title: Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation
  publication-title: Biol Psychiatry
– volume: 509
  start-page: 607
  year: 1998
  end-page: 618
  ident: b0760
  article-title: Paired-pulse magnetic stimulation of the motor cortex: differences among I waves
  publication-title: J Physiol
– volume: 112
  start-page: 1885
  year: 2014
  end-page: 1893
  ident: b1045
  article-title: Pre-stimulation phase predicts the TMS-evoked response
  publication-title: J Neurophysiol
– volume: 39
  start-page: 227
  year: 1983
  end-page: 251
  ident: b0400
  article-title: Size principle of motoneuron recruitment and the calibration of muscle force and speed in man
  publication-title: Adv Neurol
– volume: 74
  start-page: 417
  year: 1989
  end-page: 424
  ident: b0355
  article-title: Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 6
  start-page: 1853
  year: 1995
  end-page: 1856
  ident: b0680
  article-title: Daily repetitive Transcranial Magnetic Stimulation (rTMS) improves mood in depression
  publication-title: NeuroReport
– volume: 35
  start-page: 1896
  year: 2014
  end-page: 1905
  ident: b2370
  article-title: Bidirectional effects on inter-hemispheric resting state functional connectivity induced by excitatory and inhibitory repetitive transcranial magnetic stimulation
  publication-title: Hum Brain Mapp
– volume: 175
  start-page: 231
  year: 2006
  end-page: 245
  ident: b2250
  article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions
  publication-title: Exp Brain Res
– volume: 125
  start-page: 320
  year: 2014
  end-page: 326
  ident: b2285
  article-title: Reproducibility of the effects of theta burst stimulation on motor cortical plasticity in healthy participants
  publication-title: Clin Neurophysiol
– volume: 115
  start-page: 1717
  year: 2004
  end-page: 1729
  ident: b2450
  article-title: TMS and drugs
  publication-title: Clin Neurophysiol
– volume: 111
  start-page: 513
  year: 2014
  end-page: 519
  ident: b0940
  article-title: Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials
  publication-title: J Neurophysiol
– volume: 115
  start-page: 255
  year: 2004
  end-page: 266
  ident: b0450
  article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans
  publication-title: Clin Neurophysiol
– volume: 28
  start-page: 1180
  year: 2014
  end-page: 1189
  ident: b1460
  article-title: Transcranial magnetic stimulation combined with high-density EEG in altered states of consciousness
  publication-title: Brain Inj
– volume: 122
  start-page: 1731
  year: 1999
  end-page: 1739
  ident: b1520
  article-title: Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage
  publication-title: Brain
– volume: 6
  start-page: 108
  year: 2013
  end-page: 117
  ident: b0895
  article-title: Prefrontal rTMS for treating depression: location and intensity results from the OPT TMS multi-site clinical trial
  publication-title: Brain Stimul
– volume: 40
  start-page: 7
  year: 2010
  end-page: 17
  ident: b1875
  article-title: Navigated transcranial magnetic stimulation
  publication-title: Neurophysiol Clin
– volume: 152
  start-page: 1478
  year: 2011
  end-page: 1485
  ident: b1340
  article-title: Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia
  publication-title: Pain
– volume: 101
  start-page: 58
  year: 1996
  end-page: 66
  ident: b2380
  article-title: Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 20
  start-page: 100
  year: 1987
  end-page: 109
  ident: b0110
  article-title: Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation
  publication-title: Neurosurgery
– volume: 58
  start-page: 971
  year: 2005
  end-page: 972
  ident: b0625
  article-title: Treatment of chronic visceral pain with brain stimulation
  publication-title: Ann Neurol
– volume: 31
  start-page: 247
  year: 2001
  end-page: 252
  ident: b1075
  article-title: Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex
  publication-title: Neurophysiol Clin
– volume: 471
  start-page: 501
  year: 1993
  end-page: 519
  ident: b1035
  article-title: Corticocortical inhibition in human motor cortex
  publication-title: J Physiol (Lond)
– volume: 8
  start-page: e57069
  year: 2013
  ident: b1720
  article-title: Vegetative versus minimally conscious states: a study using TMS–EEG, sensory and event-related potentials
  publication-title: PLoS One
– volume: 81
  start-page: 63
  year: 1991
  end-page: 70
  ident: b1420
  article-title: Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico motoneuronal projections
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 37
  start-page: 322
  year: 1999
  end-page: 326
  ident: b2290
  article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation
  publication-title: Med Biol Eng Comput
– volume: 81
  start-page: 90
  year: 1991
  end-page: 101
  ident: b1220
  article-title: Non-invasive evaluation of central motor tract excitability changes following peripheral nerve stimulation in healthy humans
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 56
  start-page: 13
  year: 2003
  end-page: 23
  ident: b0080
  article-title: TMS and threshold hunting
  publication-title: Suppl Clin Neurophysiol
– volume: 123
  start-page: 992
  year: 2000
  end-page: 1000
  ident: b0220
  article-title: The effects of a volatile anaesthetic on the excitability of human corticospinal axons
  publication-title: Brain
– volume: 565
  start-page: 1039
  year: 2005
  end-page: 1052
  ident: b2410
  article-title: Timing dependent plasticity in human primary somatosensory cortex
  publication-title: J Physiol
– volume: 85
  start-page: 1
  year: 1992
  end-page: 8
  ident: b2340
  article-title: Noninvasive mapping of muscle representations in human motor cortex
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 11
  start-page: 382
  year: 1994
  end-page: 396
  ident: b0500
  article-title: Motor areas of the cerebral cortex
  publication-title: J Clin Neurophysiol
– volume: 18
  start-page: 2046
  year: 2008
  end-page: 2053
  ident: b0670
  article-title: Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity
  publication-title: Cereb Cortex
– volume: 121
  start-page: 492
  year: 2010
  end-page: 501
  ident: b1215
  article-title: EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations
  publication-title: Clin Neurophysiol
– volume: 120
  start-page: 839
  year: 1997
  end-page: 853
  ident: b0515
  article-title: Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey
  publication-title: Brain
– volume: 125
  start-page: 1202
  year: 2014
  end-page: 1212
  ident: b0395
  article-title: Coil design considerations for deep transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 194
  start-page: 517
  year: 2009
  end-page: 526
  ident: b0165
  article-title: Electrophysiological correlates of short-latency afferent inhibition: a combined EEG and TMS study
  publication-title: Exp Brain Res
– volume: 11
  start-page: 440
  year: 2012
  end-page: 442
  ident: b0710
  article-title: Cerebellar stimulation in ataxia
  publication-title: Cerebellum
– volume: 52
  start-page: 137
  year: 1991
  end-page: 139
  ident: b2150
  article-title: Chronic motor cortex stimulation for the treatment of central pain
  publication-title: Acta Neurochir Suppl (Wien)
– volume: 17
  start-page: 345
  year: 1954
  end-page: 363
  ident: b1585
  article-title: Single- and multiple-unit analysis of cortical stage of pyramidal tract activation
  publication-title: J Neurophysiol
– volume: 117
  start-page: 2292
  year: 2006
  end-page: 2301
  ident: b1060
  article-title: Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability
  publication-title: Clin Neurophysiol
– volume: 290
  start-page: 112
  year: 2010
  end-page: 114
  ident: b1260
  article-title: Prominent cauda equina involvement in patients with chronic inflammatory demyelinating polyradiculoneuropathy
  publication-title: J Neurol Sci
– volume: 22
  start-page: 249
  year: 2010
  end-page: 256
  ident: b1370
  article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience
  publication-title: Brain Topogr
– volume: 118
  start-page: 2207
  year: 2007
  end-page: 2214
  ident: b0475
  article-title: Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study
  publication-title: Clin Neurophysiol
– volume: 1
  start-page: 73
  year: 2000
  end-page: 79
  ident: b2325
  article-title: Transcranial magnetic stimulation and cognitive neuroscience
  publication-title: Nat Rev Neurosci
– volume: 11
  start-page: 056013
  year: 2014
  ident: b1055
  article-title: Multi-scale simulations predict responses to non invasive nerve root stimulation
  publication-title: J Neural Eng
– volume: 140
  start-page: 505
  year: 2001
  end-page: 510
  ident: b1670
  article-title: Suppression of the motor cortex by magnetic stimulation of the cerebellum
  publication-title: Exp Brain Res
– volume: 115
  start-page: 105
  year: 1985
  end-page: 112
  ident: b0785
  article-title: The size-principle: a deterministic output emerges from a set of probabilistic connections
  publication-title: J Exp Biol
– volume: 93
  start-page: 138
  year: 1994
  end-page: 146
  ident: b2375
  article-title: The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 18
  start-page: 1206
  year: 2003
  end-page: 1212
  ident: b1495
  article-title: Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement
  publication-title: Eur J Neurosci
– volume: 1028
  start-page: 1
  year: 2004
  end-page: 8
  ident: b1655
  article-title: Effect of Vigabatrin on motor responses to transcranial magnetic stimulation: an effective tool to investigate in vivo GABAergic cortical inhibition in humans
  publication-title: Brain Res
– volume: 22
  start-page: 233
  year: 2010
  end-page: 248
  ident: b0865
  article-title: Methodology for combined TMS and EEG
  publication-title: Brain Topogr
– volume: 83
  start-page: 1426
  year: 2000
  end-page: 1434
  ident: b0285
  article-title: Facilitatory I wave interaction in proximal arm and lower limb muscle representations of the human motor cortex
  publication-title: J Neurophysiol
– volume: 138
  start-page: 268
  year: 2001
  end-page: 273
  ident: b0445
  article-title: The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation
  publication-title: Exp Brain Res
– volume: 117
  start-page: 392
  year: 2006
  end-page: 397
  ident: b2295
  article-title: Cervical nerve root stimulation. Part I: technical aspects and normal data
  publication-title: Clin Neurophysiol
– volume: 135
  start-page: 455
  year: 2000
  end-page: 461
  ident: b0430
  article-title: Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex
  publication-title: Exp Brain Res
– volume: 508
  start-page: 625
  year: 1998
  end-page: 633
  ident: b0415
  article-title: Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans
  publication-title: J Physiol
– volume: 550
  start-page: 529
  year: 2003
  end-page: 534
  ident: b0100
  article-title: EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts
  publication-title: J Physiol
– volume: 586
  start-page: 495
  year: 2008
  end-page: 514
  ident: b1425
  article-title: Inhibitory circuits and the nature of their interactions in the human motor cortex a pharmacological TMS study
  publication-title: J Physiol
– volume: 4
  start-page: 281
  year: 2011
  end-page: 293
  ident: b1475
  article-title: Triple-pulse TMS to study interactions between neural circuits in human cortex
  publication-title: Brain Stimul
– volume: 74
  start-page: 481
  year: 1989
  end-page: 485
  ident: b0295
  article-title: Motor evoked potentials with magnetic stimulation: correlations with height
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 460
  start-page: 201
  year: 1993
  end-page: 219
  ident: b1170
  article-title: Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation
  publication-title: J Physiol
– volume: 296
  start-page: 21
  year: 2000
  end-page: 24
  ident: b1610
  article-title: Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition
  publication-title: Neurosci Lett
– volume: 17
  start-page: 3178
  year: 1997
  end-page: 3184
  ident: b1595
  article-title: Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex
  publication-title: J Neurosci
– volume: 6
  start-page: 352
  year: 2013
  ident: b2275
  article-title: Cortical modulation of short-latency TMS-evoked potentials
  publication-title: Front Hum Neurosci
– volume: 20
  start-page: 153
  year: 1989
  ident: b1165
  article-title: Electromagnetic stimulation of the nervous system. I. Normal values in the central nervous system and a comparison with electric stimulation
  publication-title: EEG–EMG
– volume: 39
  start-page: 415
  year: 2001
  end-page: 419
  ident: b2030
  article-title: Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study
  publication-title: Neuropsychologia
– volume: 29
  start-page: 82
  year: 2008
  end-page: 96
  ident: b1990
  article-title: Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies
  publication-title: Human Brain Map
– volume: 151
  start-page: 427
  year: 2003
  end-page: 434
  ident: b0770
  article-title: Furhter evidence to support different mechanisms underlying intracortical inhibition of the motor cortex
  publication-title: Exp Brain Res
– volume: 52
  start-page: 1025
  year: 1989
  end-page: 1032
  ident: b2175
  article-title: Magnetic stimulation over the spinal enlargements
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 37
  start-page: 598
  year: 2013
  end-page: 606
  ident: b2280
  article-title: Insights on the neural basis of motor plasticity induced by theta burst stimulation from TMS–EEG
  publication-title: Eur J Neurosci
– volume: 545
  start-page: 153
  year: 2002
  end-page: 167
  ident: b0855
  article-title: Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity
  publication-title: J Physiol (Lond)
– volume: 41
  start-page: 697
  year: 1991
  end-page: 702
  ident: b1565
  article-title: Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation
  publication-title: Neurology
– volume: 17
  start-page: 219
  year: 2014
  end-page: 223
  ident: b0330
  article-title: Day differences in the cortisol awakening response predict day differences in synaptic plasticity in the brain
  publication-title: Stress
– volume: 20
  start-page: 74
  year: 1987
  end-page: 93
  ident: b0030
  article-title: Physiological basis of motor effects of a transient stimulus to cerebral cortex
  publication-title: Neurosurgery
– volume: 35
  start-page: 1969
  year: 2014
  end-page: 1980
  ident: b0575
  article-title: Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG–TMS study
  publication-title: Hum Brain Mapp
– volume: 122
  start-page: 265
  year: 1999
  end-page: 279
  ident: b1200
  article-title: A clinical study of motor evoked potentials using a triple stimulation technique
  publication-title: Brain
– volume: 112
  start-page: 931
  year: 2001
  end-page: 937
  ident: b0190
  article-title: Mechanisms influencing stimulus-response properties of the human corticospinal system
  publication-title: Clin Neurophysiol
– volume: 2
  start-page: 50
  year: 2009
  end-page: 54
  ident: b0135
  article-title: An efficient and accurate new method for locating the F3 position for prefrontal TMS applications
  publication-title: Brain Stimul
– volume: 48
  start-page: 1398
  year: 1997
  end-page: 1403
  ident: b0265
  article-title: Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation
  publication-title: Neurology
– volume: 2
  start-page: 145
  year: 2003
  end-page: 156
  ident: b0980
  article-title: Transcranial magnetic stimulation in neurology
  publication-title: Lancet Neurol
– volume: 54
  start-page: 234
  year: 2011
  end-page: 243
  ident: b2090
  article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation
  publication-title: NeuroImage
– volume: 48
  start-page: 1406
  year: 1997
  end-page: 1416
  ident: b1025
  article-title: Functional magnetic resonance imaging and transcranial stimulation: complementary approaches in the evaluation of cortical motor function
  publication-title: Neurology
– volume: 4
  start-page: 948
  year: 2001
  end-page: 952
  ident: b1800
  article-title: Prefrontal cortex in long-term memory: an “interference” approach using magnetic stimulation
  publication-title: Nat Neurosci
– volume: 55
  start-page: 187
  year: 2007
  end-page: 199
  ident: b0735
  article-title: Transcranial magnetic stimulation: a primer
  publication-title: Neuron
– volume: 122
  start-page: 2044
  year: 2011
  end-page: 2048
  ident: b1940
  article-title: Inter individual variation in the efficient stimulation site for magnetic brainstem stimulation
  publication-title: Clin Neurophysiol
– volume: 37
  start-page: 1338
  year: 1974
  end-page: 1349
  ident: b0780
  article-title: Rank order of motoneurons within a pool: law of combination
  publication-title: J Neurophysiol
– volume: 66
  start-page: 509
  year: 2009
  end-page: 515
  ident: b0790
  article-title: More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response
  publication-title: Biol Psychiatry
– volume: 119
  start-page: 993
  year: 2008
  end-page: 1001
  ident: b0825
  article-title: Electrical stimulation of primary motor cortex within the central sulcus for intractable neuropathic pain
  publication-title: Clin Neurophysiol
– volume: 5
  start-page: e10281
  year: 2010
  ident: b0235
  article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time
  publication-title: PLoS One
– volume: 518
  start-page: 895
  year: 1999
  end-page: 906
  ident: b2440
  article-title: Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles
  publication-title: J Physiol
– volume: 220
  start-page: 79
  year: 2012
  end-page: 87
  ident: b0075
  article-title: Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study
  publication-title: Exp Brain Res
– volume: 67
  start-page: 1568
  year: 2006
  end-page: 1574
  ident: b1090
  article-title: Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain
  publication-title: Neurology
– volume: 21
  start-page: 1209
  year: 1998
  end-page: 1212
  ident: b1950
  article-title: Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia
  publication-title: Muscle Nerve
– volume: 148
  start-page: 1
  year: 2003
  end-page: 16
  ident: b1960
  article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity
  publication-title: Exp Brain Res
– volume: 129
  start-page: 77
  year: 1999
  end-page: 86
  ident: b0275
  article-title: Modulation of motor cortex excitability by median nerve and digit stimulation
  publication-title: Exp Brain Res
– volume: 94
  start-page: 489
  year: 1993
  end-page: 498
  ident: b1775
  article-title: On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects
  publication-title: Exp Brain Res
– volume: 115
  start-page: 1947
  year: 1992
  end-page: 1961
  ident: b2195
  article-title: Stimulation of corticospinal pathways at the level of the pyramidal decussation in neurological disorders
  publication-title: Brain
– year: 2003
  ident: b2330
  article-title: Transcranial magnetic stimulation: a neurochronometrics of mind
– volume: 122
  start-page: 748
  year: 2011
  end-page: 758
  ident: b1900
  article-title: Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry
  publication-title: Clin Neurophysiol
– volume: 129
  start-page: 809
  year: 2006
  end-page: 819
  ident: b2335
  article-title: Motor system activation after subcortical stroke depends on corticospinal system integrity
  publication-title: Brain
– volume: 30
  start-page: 913
  year: 2009
  end-page: 923
  ident: b0175
  article-title: Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS–EEG
  publication-title: Eur J Neurosci
– volume: 145
  start-page: 690
  year: 1989
  ident: b2045
  article-title: Study of central motor pathways using cortical magnetic stimulation and spinal electrical stimulation: results in 20 normal subjects
  publication-title: Rev Neurol (Paris)
– volume: 126
  start-page: 2586
  year: 2003
  end-page: 2596
  ident: b1710
  article-title: Abnormal associative plasticity of the human motor cortex in writer’s cramp
  publication-title: Brain
– volume: 4
  start-page: 50
  year: 2011
  end-page: 57
  ident: b1705
  article-title: Fast estimation of transcranial magnetic stimulation motor threshold
  publication-title: Brain Stimul
– volume: 22
  start-page: 1
  year: 2004
  end-page: 14
  ident: b0610
  article-title: Column-based model of electric field excitation of cerebral cortex
  publication-title: Hum Brain Mapp
– volume: 27
  start-page: 236
  year: 2014
  end-page: 241
  ident: b0970
  article-title: Transcranial magnetic stimulation for the diagnosis and treatment of epilepsy
  publication-title: Curr Opin Neurol
– volume: 34
  start-page: 547
  year: 2012
  end-page: 551
  ident: b1390
  article-title: High frequency repetitive transcranial magnetic stimulation (rTMS) is effective in migraine prophylaxis: an open labeled study
  publication-title: Neurol Res
– volume: 20
  start-page: 98
  year: 2004
  end-page: 100
  ident: b1135
  article-title: Can left prefrontal rTMS be used as a maintenance treatment for bipolar depression?
  publication-title: Depress Anxiety
– volume: 11
  start-page: 1203
  year: 2010
  end-page: 1210
  ident: b1645
  article-title: Repetitive transcranial magnetic stimulation is efficacious as an add-on to pharmacological therapy in complex regional pain syndrome (CRPS) type I
  publication-title: J Pain
– volume: 109
  start-page: 1214
  year: 2013
  end-page: 1227
  ident: b1630
  article-title: On the feasibility of concurrent human TMS–EEG–fMRI measurements
  publication-title: J Neurophysiol
– volume: 51
  start-page: 48
  year: 1999
  end-page: 54
  ident: b2085
  article-title: Methodology and application of TMS mapping
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 7
  start-page: 401
  year: 2014
  end-page: 414
  ident: b1880
  article-title: A model of TMS-induced I-waves in motor cortex
  publication-title: Brain Stimul
– volume: 28
  start-page: 560
  year: 1965
  end-page: 580
  ident: b0775
  article-title: Functional significance of cell size in spinal motoneurons
  publication-title: J Neurophysiol
– volume: 98
  start-page: 225
  year: 2014
  end-page: 232
  ident: b0255
  article-title: Low-frequency rTMS inhibitory effects in the primary motor cortex: insights from TMS-evoked potentials
  publication-title: Neuroimage
– volume: 61
  start-page: 272
  year: 1985
  end-page: 286
  ident: b1815
  article-title: Nervous propagation along ‘central’ motor pathways in intact man: characteristics of motor responses to ‘bifocal’ and ‘unifocal’ spine and scalp non-invasive stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 510
  start-page: 249
  year: 1998
  end-page: 259
  ident: b0675
  article-title: Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract
  publication-title: J Physiol (Lond)
– volume: 109
  start-page: 495
  year: 1996
  end-page: 499
  ident: b1300
  article-title: A propriospinal-like contribution to electromyographic responses evoked in wrist extensor muscles by transcranial stimulation of the motor cortex in man
  publication-title: Exp Brain Res
– volume: 484
  start-page: 791
  year: 1995
  end-page: 802
  ident: b1490
  article-title: Latency of effects evoked by electrical and magnetic brain stimulation in lower limb motoneurones in man
  publication-title: J Physiol Lond
– volume: 7
  start-page: 18
  year: 2013
  ident: b0485
  article-title: The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex
  publication-title: Front Neural Circ
– volume: 3
  start-page: 153
  year: 2010
  end-page: 160
  ident: b1270
  article-title: Supramaximal responses can be elicited in hand muscles by magnetic stimulation of the cervical motor roots
  publication-title: Brain Stimul
– volume: 120
  start-page: 610
  year: 2009
  end-page: 618
  ident: b0160
  article-title: Sensory afferent inhibition within and between limbs in humans
  publication-title: Clin Neurophysiol
– volume: 27
  start-page: 486
  year: 2011
  end-page: 494
  ident: b0180
  article-title: A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters
  publication-title: Clin J Pain
– volume: 204
  start-page: 181
  year: 2010
  end-page: 187
  ident: b0650
  article-title: Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation
  publication-title: Exp Brain Res
– volume: 33
  start-page: 1908
  year: 2011
  end-page: 1915
  ident: b0850
  article-title: Li Voti P, Bologna M, Berardelli A. Short-term and long-term plasticity interaction in human primary motor cortex
  publication-title: Eur J Neurosci
– volume: 78
  start-page: 297
  year: 1988
  end-page: 306
  ident: b2165
  article-title: Central motor conduction in cerebrovascular disease and motor neuron disease
  publication-title: Acta Neurol Scand
– volume: 388
  start-page: 397
  year: 1987
  end-page: 419
  ident: b0810
  article-title: Responses in small hand muscles from magnetic stimulation of the human brain
  publication-title: J Physiol
– volume: 103
  start-page: 511
  year: 2010
  end-page: 518
  ident: b0245
  article-title: Late cortical disinhibition in human motor cortex: a triple-pulse transcranial magnetic stimulation study
  publication-title: J Neurophysiol
– volume: 37
  start-page: 181
  year: 1995
  end-page: 188
  ident: b1755
  article-title: Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease
  publication-title: Ann Neurol
– volume: 43
  start-page: 186
  year: 1993
  end-page: 192
  ident: b1745
  article-title: Cortical hyperexcitability in progressive myoclonus epilepsy: a study with transcranial magnetic stimulation
  publication-title: Neurology
– volume: 35
  start-page: 125
  year: 2012
  end-page: 134
  ident: b0700
  article-title: The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex
  publication-title: Eur J Neurosci
– volume: 85
  start-page: 110
  year: 1992
  end-page: 115
  ident: b1190
  article-title: Percutaneous magnetic stimulation of the motor cortex in migraine
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 34
  start-page: 5603
  year: 2014
  end-page: 5612
  ident: b1695
  article-title: TMS–EEG signatures of GABAergic neurotransmission in the human cortex
  publication-title: J Neurosci
– volume: 63
  start-page: 1347
  year: 1988
  end-page: 1352
  ident: b0990
  article-title: Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex
  publication-title: Arch Dis Child
– volume: 71
  start-page: 833
  year: 2008
  end-page: 840
  ident: b0060
  article-title: Pain relief by rTMS: differential effect of current flow but no specific action on pain subtypes
  publication-title: Neurology
– volume: 29
  start-page: 587
  year: 2012
  end-page: 596
  ident: b0230
  article-title: Transcranial Magnetic Stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice
  publication-title: Depress Anxiety
– volume: 34
  start-page: 33
  year: 1993
  end-page: 37
  ident: b1570
  article-title: Modulation of motor cortical outputs to the reading hand of braille readers
  publication-title: Ann Neurol
– volume: 113
  start-page: 1165
  year: 2002
  end-page: 1171
  ident: b2360
  article-title: Variation in the response to transcranial magnetic brain stimulation in the general population
  publication-title: Clin Neurophysiol
– volume: 17
  start-page: 1130
  year: 2014
  end-page: 1136
  ident: b1415
  article-title: Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non human primates
  publication-title: Nat Neurosci
– volume: 803
  start-page: 1
  year: 1998
  end-page: 8
  ident: b2140
  article-title: Follow-up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke
  publication-title: Brain Res
– volume: 120
  start-page: 1392
  year: 2009
  end-page: 1399
  ident: b2260
  article-title: TMS–EEG co-registration: on TMS-induced artifact
  publication-title: Clin Neurophysiol
– volume: 15
  start-page: 53
  year: 2011
  end-page: 60
  ident: b0630
  article-title: Clinical effects and brain metabolic correlates in non-invasive cortical neuromodulation for visceral pain
  publication-title: Eur J Pain
– volume: 76
  start-page: 833
  year: 2005
  end-page: 838
  ident: b0950
  article-title: Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 96
  start-page: 1765
  year: 2006
  end-page: 1771
  ident: b0470
  article-title: Origin of facilitation of motor evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans
  publication-title: J Neurophysiol
– volume: 859
  start-page: 137
  year: 2000
  end-page: 146
  ident: b2075
  article-title: Predominant activation of I1-waves from the leg motor area by transcranial magnetic stimulation
  publication-title: Brain Res
– volume: 105
  start-page: 749
  year: 2011
  end-page: 756
  ident: b1470
  article-title: Transcranial magnetic stimulation in different current directions activates separate cortical circuits
  publication-title: J Neurophysiol
– volume: 173
  start-page: 86
  year: 2006
  end-page: 93
  ident: b1315
  article-title: The role of GABA(B) receptors in intracortical inhibition in the human motor cortex
  publication-title: Exp Brain Res
– volume: 58
  start-page: 58
  year: 2005
  end-page: 67
  ident: b0140
  article-title: Electroencephalographic response to transcranial magnetic stimulation in children: Evidence for giant inhibitory potentials
  publication-title: Ann Neurol
– volume: 511
  start-page: 181
  year: 1998
  end-page: 190
  ident: b2435
  article-title: Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation
  publication-title: J Physiol (Lond)
– volume: 587
  start-page: 4845
  year: 2009
  end-page: 4862
  ident: b0745
  article-title: Primary motor cortical metaplasticity induced by priming over the supplementary motor area
  publication-title: J Physiol
– volume: 33
  start-page: 3
  year: 1993
  end-page: 10
  ident: b0660
  article-title: Assessment of motor conduction times using magnetic stimulation of brain, spinal cord and peripheral nerve
  publication-title: Electromyogr Clin Neurophysiol
– volume: 586
  start-page: 3927
  year: 2008
  end-page: 3947
  ident: b0740
  article-title: Bidirectional long term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation
  publication-title: J Physiol
– volume: 123
  start-page: 2319
  year: 2012
  end-page: 2320
  ident: b0090
  article-title: On relative frequency estimation of transcranial magnetic stimulation motor threshold
  publication-title: Clin Neurophysiol
– volume: 58
  start-page: 796
  year: 2010
  end-page: 797
  ident: b1265
  article-title: Magnetic augmented translumbosacral stimulation coil stimulation method for accurate evaluation of corticospinal tract function in peripheral neuropathy
  publication-title: Neurol India
– volume: 33
  start-page: 2860
  year: 2008
  end-page: 2869
  ident: b0360
  article-title: Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS–EEG study
  publication-title: Neuropsychopharmacology
– volume: 63
  start-page: 582
  year: 1986
  end-page: 589
  ident: b1350
  article-title: Electrical stimulation over the human vertebral column: which neural elements are excited?
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 2
  start-page: 304
  year: 1984
  end-page: 307
  ident: b0345
  article-title: Abnormalities in central motor pathway conduction in multiple sclerosis
  publication-title: Lancet
– volume: 470
  start-page: 383
  year: 1993
  end-page: 393
  ident: b0215
  article-title: Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation
  publication-title: J Physiol (Lond)
– volume: 12
  start-page: 2963
  year: 2001
  end-page: 2965
  ident: b1070
  article-title: Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex
  publication-title: Neuroreport
– volume: 120
  start-page: 820
  year: 2009
  end-page: 826
  ident: b1305
  article-title: Selective modulation of intracortical inhibition by low-intensity theta burst stimulation
  publication-title: Clin Neurophysiol
– volume: 21
  start-page: 1176
  year: 2011
  end-page: 1185
  ident: b2100
  article-title: Rhythmic TMS causes local entrainment of natural oscillatory signatures
  publication-title: Curr Biol
– volume: 1463
  start-page: 93
  year: 2012
  end-page: 107
  ident: b0365
  article-title: Combined transcranial magnetic stimulation and electroencephalography: its past, present and future
  publication-title: Brain Res
– volume: 20
  start-page: 160
  year: 2004
  end-page: 165
  ident: b1385
  article-title: The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision
  publication-title: J ECT
– volume: 1
  start-page: 1106
  year: 1985
  end-page: 1107
  ident: b0105
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
– volume: 52
  start-page: 183
  year: 2006
  end-page: 192
  ident: b1005
  article-title: The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research
  publication-title: Brain Res Rev
– volume: 125
  start-page: 2150
  year: 2014
  end-page: 2206
  ident: b1125
  article-title: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)
  publication-title: Clin Neurophysiol
– volume: 118
  start-page: 134
  year: 1993
  end-page: 144
  ident: b2395
  article-title: Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles
  publication-title: J Neurol Sci
– volume: 14
  start-page: 322
  year: 2001
  end-page: 328
  ident: b0910
  article-title: Ethanol modulates cortical activity: direct evidence with combined TMS and EEG
  publication-title: Neuroimage
– volume: 163
  start-page: 21
  year: 2005
  end-page: 31
  ident: b0960
  article-title: Silent period to transcranial magnetic stimulation: construction and properties of stimulus-response curves in healthy volunteers
  publication-title: Exp Brain Res
– volume: 19
  start-page: 322
  year: 2002
  end-page: 343
  ident: b2080
  article-title: Basic mechanisms of TMS
  publication-title: J Clin Neurophysiol
– volume: 54
  start-page: 216
  year: 2002
  end-page: 222
  ident: b2235
  article-title: Stimulation at the foramen magnum level as a tool to separate cortical from spinal cord excitability changes
  publication-title: Adv Clin Neurophysiol Suppl
– volume: 18
  start-page: 13
  year: 2007
  end-page: 16
  ident: b1010
  article-title: Excitation threshold of the motor cortex estimated with transcranial magnetic stimulation electroencephalography
  publication-title: Neuroreport
– volume: 89
  start-page: 424
  year: 1993
  end-page: 433
  ident: b2345
  article-title: Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 24
  start-page: 955
  year: 2005
  end-page: 960
  ident: b0920
  article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans
  publication-title: Neuroimage
– year: 1988
  ident: b2050
  article-title: Co-planar stereotaxic atlas of the human brain
– volume: 81
  start-page: 253
  year: 2013
  end-page: 264
  ident: b1530
  article-title: Physiological observations validate finite element models for estimating subject specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex
  publication-title: Neuroimage
– volume: 81
  start-page: 195
  year: 1991
  end-page: 201
  ident: b1730
  article-title: Standardization of facilitation of compound muscle action potentials evoked by magnetic stimulation of the cortex. Results in healthy volunteers and in patients with multiple sclerosis
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 100
  start-page: 121
  year: 1994
  end-page: 132
  ident: b2350
  article-title: Cortical motor representation of the ipsilateral hand and arm
  publication-title: Exp Brain Res
– volume: 2
  start-page: 597
  year: 1982
  end-page: 600
  ident: b1335
  article-title: Scope of a technique for electrical stimulation of human brain, spinal cord and muscle
  publication-title: Lancet
– volume: 5
  start-page: 697
  year: 1992
  end-page: 703
  ident: b1845
  article-title: Central conduction studies and magnetic stimulation
  publication-title: Curr Opin Neurol Neurosurg
– volume: 89
  start-page: 378
  year: 1994
  end-page: 383
  ident: b2070
  article-title: Transcranial stimulation of the leg area of the motor cortex in humans
  publication-title: Acta Neurol Scand
– volume: 67
  start-page: 1998
  year: 2006
  end-page: 2004
  ident: b1095
  article-title: Somatotopic organization of the analgesic effects of motor cortex rTMS in neuropathic pain
  publication-title: Neurology
– volume: 108
  start-page: 314
  year: 2012
  end-page: 323
  ident: b0560
  article-title: Human brain cortical correlates of short-latency afferent inhibition: a combined EEG–TMS study
  publication-title: J Neurophysiol
– volume: 72
  start-page: 808
  year: 2013
  end-page: 819
  ident: b1650
  article-title: A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery
  publication-title: Neurosurgery
– volume: 478
  start-page: 24
  year: 2010
  end-page: 28
  ident: b1210
  article-title: The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation
  publication-title: Neurosci Lett
– volume: 49
  start-page: 454
  year: 2001
  end-page: 459
  ident: b1310
  article-title: The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex
  publication-title: Biol Psychiatry
– year: 2014
  ident: b2465
  article-title: TMS & drugs revisited
  publication-title: Clin Neurophysiol
– volume: 74
  start-page: 458
  year: 1989
  end-page: 462
  ident: b0035
  article-title: Suppression of visual perception by magnetic coil stimulation of human occipital cortex
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 636
  start-page: 270
  year: 1994
  end-page: 276
  ident: b2145
  article-title: Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation
  publication-title: Brain Res
– volume: 9
  start-page: 527
  year: 2007
  end-page: 565
  ident: b2310
  article-title: Noninvasive human brain stimulation
  publication-title: Annu Rev Biomed Eng
– volume: 124
  start-page: 339
  year: 2013
  end-page: 345
  ident: b2020
  article-title: Differential effect of baclofen on cortical and spinal inhibitory circuits
  publication-title: Clin Neurophysiol
– volume: 112
  start-page: 250
  year: 2001
  end-page: 258
  ident: b0935
  article-title: Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types
  publication-title: Clin Neurophysiol
– volume: 89
  start-page: 2339
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b2405
  article-title: A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00900.2002
– volume: 32
  start-page: 243
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0150
  article-title: EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4792-11.2012
– volume: 51
  start-page: 48
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b2085
  article-title: Methodology and application of TMS mapping
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 127
  start-page: 382
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b0370
  article-title: Comparison of input–output patterns in the corticospinal system of normal subjects and incomplete spinal cord injured patients
  publication-title: Exp Brain Res
  doi: 10.1007/s002210050806
– volume: 113
  start-page: 462
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b0805
  article-title: Spatial congruence of neuronavigated transcranial magnetic stimulation and functional neuroimaging
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00026-3
– volume: 35
  start-page: 1969
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0575
  article-title: Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG–TMS study
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22306
– volume: 173
  start-page: 603
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b0965
  article-title: Lorazepam-induced effects on silent period and corticomotor excitability
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-006-0402-1
– volume: 18
  start-page: 601
  year: 1985
  ident: 10.1016/j.clinph.2015.02.001_b1345
  article-title: Corticospinal tract conduction time in multiple sclerosis
  publication-title: Ann Neurol
  doi: 10.1002/ana.410180514
– volume: 510
  start-page: 249
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b0675
  article-title: Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract
  publication-title: J Physiol (Lond)
  doi: 10.1111/j.1469-7793.1998.249bz.x
– volume: 56
  start-page: 315
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b0975
  article-title: Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.56.4.315
– volume: 120
  start-page: 839
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b0515
  article-title: Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey
  publication-title: Brain
  doi: 10.1093/brain/120.5.839
– volume: 22
  start-page: 592
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0240
  article-title: Transcranial magnetic stimulation-evoked EEG/cortical potentials in physiological and pathological aging
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e328349433a
– volume: 290
  start-page: 112
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1260
  article-title: Prominent cauda equina involvement in patients with chronic inflammatory demyelinating polyradiculoneuropathy
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2009.10.014
– volume: 260
  start-page: 2793
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1395
  article-title: High-rate repetitive transcranial magnetic stimulation in migraine prophylaxis: a randomized, placebo-controlled study
  publication-title: J Neurol
  doi: 10.1007/s00415-013-7072-2
– volume: 120
  start-page: 1392
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b2260
  article-title: TMS–EEG co-registration: on TMS-induced artifact
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.04.023
– volume: 496
  start-page: 873
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b2430
  article-title: Interaction between intracortical inhibition and facilitation in human motor cortex
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1996.sp021734
– volume: 25
  start-page: 3461
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b1410
  article-title: Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2007.05603.x
– volume: 81
  start-page: 443
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b2125
  article-title: Optimal transcranial magnetic stimulation sites for the assessment of motor function
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(91)90053-Z
– volume: 75
  start-page: 612
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1085
  article-title: Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2003.022236
– volume: 31
  start-page: 1084
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b1205
  article-title: Central motor conductivity in aged people
  publication-title: Intern Med
  doi: 10.2169/internalmedicine.31.1084
– volume: 9
  start-page: e92354
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0665
  article-title: Characterizing long interval cortical inhibition over the time-frequency domain
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092354
– volume: 309
  start-page: 2228
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b1225
  article-title: Breakdown of cortical effective connectivity during sleep
  publication-title: Science
  doi: 10.1126/science.1117256
– volume: 1463
  start-page: 93
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0365
  article-title: Combined transcranial magnetic stimulation and electroencephalography: its past, present and future
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2012.04.045
– volume: 29
  start-page: 418
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b2190
  article-title: Percutaneous electrical stimulation of corticospinal pathways at the level of the pyramidal decussation in humans
  publication-title: Ann Neurol
  doi: 10.1002/ana.410290413
– volume: 94
  start-page: 489
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b1775
  article-title: On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects
  publication-title: Exp Brain Res
  doi: 10.1007/BF00230207
– volume: 28
  start-page: 7911
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0845
  article-title: Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1636-08.2008
– volume: 37
  start-page: 181
  year: 1995
  ident: 10.1016/j.clinph.2015.02.001_b1755
  article-title: Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.410370208
– volume: 511
  start-page: 181
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b2435
  article-title: Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation
  publication-title: J Physiol (Lond)
  doi: 10.1111/j.1469-7793.1998.181bi.x
– volume: 1
  start-page: 164
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b2455
  article-title: Consensus: motor cortex plasticity protocols
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2008.06.006
– volume: 239
  start-page: 152
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b0645
  article-title: Motor evoked potentials to magnetic stimulation: technical considerations and normative data from 50 subjects
  publication-title: J Neurol
  doi: 10.1007/BF00833916
– volume: 34
  start-page: 33
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b1570
  article-title: Modulation of motor cortical outputs to the reading hand of braille readers
  publication-title: Ann Neurol
  doi: 10.1002/ana.410340108
– volume: 110
  start-page: 1191
  year: 1987
  ident: 10.1016/j.clinph.2015.02.001_b0375
  article-title: Motor cortex stimulation in intact man. [2] Multiple descending volleys
  publication-title: Brain
  doi: 10.1093/brain/110.5.1191
– volume: 85
  start-page: 110
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b1190
  article-title: Percutaneous magnetic stimulation of the motor cortex in migraine
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(92)90076-N
– volume: 109
  start-page: 1214
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1630
  article-title: On the feasibility of concurrent human TMS–EEG–fMRI measurements
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00071.2012
– volume: 122
  start-page: 1908
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1555
  article-title: Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.05.023
– volume: 30
  start-page: 390
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0120
  article-title: Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0b013e31829dda6b
– volume: 82
  start-page: 260
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b2060
  article-title: Language mapping with navigated repetitive TMS: proof of technique and validation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.018
– volume: 3
  start-page: 153
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1270
  article-title: Supramaximal responses can be elicited in hand muscles by magnetic stimulation of the cervical motor roots
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.09.001
– volume: 1473
  start-page: 114
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b2040
  article-title: Reciprocal changes in input–output curves of motor evoked potentials while learning motor skills
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2012.07.043
– volume: 29
  start-page: 587
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0230
  article-title: Transcranial Magnetic Stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice
  publication-title: Depress Anxiety
  doi: 10.1002/da.21969
– volume: 110
  start-page: 1297
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b0420
  article-title: The diagnostic value of motor evoked potentials
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00060-7
– volume: 50
  start-page: 58
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0800
  article-title: Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(01)01153-2
– volume: 92
  start-page: 66
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b2015
  article-title: Modulation of associative human motor cortical plasticity by attention
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00383.2003
– volume: 113
  start-page: 24
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b1895
  article-title: Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil
  publication-title: Exp Brain Res
  doi: 10.1007/BF02454139
– volume: 1
  start-page: 1106
  year: 1985
  ident: 10.1016/j.clinph.2015.02.001_b0105
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
  doi: 10.1016/S0140-6736(85)92413-4
– volume: 123
  start-page: 1415
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b1455
  article-title: Bidirectional modulation of sensory cortical excitability by quadripulse magnetic stimulation (QPS) in humans
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.11.037
– volume: 163
  start-page: 21
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b0960
  article-title: Silent period to transcranial magnetic stimulation: construction and properties of stimulus-response curves in healthy volunteers
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-004-2134-4
– volume: 31
  start-page: 247
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b1075
  article-title: Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex
  publication-title: Neurophysiol Clin
  doi: 10.1016/S0987-7053(01)00260-X
– volume: 4
  start-page: 948
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b1800
  article-title: Prefrontal cortex in long-term memory: an “interference” approach using magnetic stimulation
  publication-title: Nat Neurosci
  doi: 10.1038/nn0901-948
– volume: 66
  start-page: 509
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0790
  article-title: More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2009.04.034
– volume: 78
  start-page: 224
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1435
  article-title: Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.061
– volume: 135
  start-page: 455
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b0430
  article-title: Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex
  publication-title: Exp Brain Res
  doi: 10.1007/s002210000543
– volume: 45
  start-page: 201
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b0840
  article-title: Theta burst stimulation of the human motor cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.12.033
– volume: 108
  start-page: 123
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0795
  article-title: The navigation of transcranial magnetic stimulation
  publication-title: Psychiatry Res
  doi: 10.1016/S0925-4927(01)00121-4
– volume: 99
  start-page: 57
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1885
  article-title: Stimulation of primary motor cortex for intractable deafferentation pain
  publication-title: Acta Neurochir Suppl
  doi: 10.1007/978-3-211-35205-2_11
– volume: 11
  start-page: 382
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b0500
  article-title: Motor areas of the cerebral cortex
  publication-title: J Clin Neurophysiol
– volume: 21
  start-page: 1209
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b1950
  article-title: Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia
  publication-title: Muscle Nerve
  doi: 10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M
– volume: 285
  start-page: 227
  year: 1980
  ident: 10.1016/j.clinph.2015.02.001_b1330
  article-title: Stimulation of the cerebral cortex in the intact human subject
  publication-title: Nature
  doi: 10.1038/285227a0
– volume: 29
  start-page: 463
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1510
  article-title: Transcranial direct current stimulation–update 2011
  publication-title: Restor Neurol Neurosci
– volume: 33
  start-page: 1908
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0850
  article-title: Li Voti P, Bologna M, Berardelli A. Short-term and long-term plasticity interaction in human primary motor cortex
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2011.07674.x
– volume: 20
  start-page: 153
  year: 1989
  ident: 10.1016/j.clinph.2015.02.001_b1165
  article-title: Electromagnetic stimulation of the nervous system. I. Normal values in the central nervous system and a comparison with electric stimulation
  publication-title: EEG–EMG
– volume: 498
  start-page: 817
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b1450
  article-title: Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1997.sp021905
– volume: 29
  start-page: 82
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b1990
  article-title: Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies
  publication-title: Human Brain Map
  doi: 10.1002/hbm.20360
– volume: 105
  start-page: 2150
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0480
  article-title: Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00781.2010
– volume: 81
  start-page: 195
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b1730
  article-title: Standardization of facilitation of compound muscle action potentials evoked by magnetic stimulation of the cortex. Results in healthy volunteers and in patients with multiple sclerosis
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(91)90072-6
– volume: 85
  start-page: 397
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b1930
  article-title: Suppression of cutaneous perception by magnetic pulse stimulation of the human brain
  publication-title: Electroencephol Clin Neurophysiol
  doi: 10.1016/0168-5597(92)90053-E
– volume: 103
  start-page: 263
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b2115
  article-title: Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0924-980X(96)95664-7
– volume: 115
  start-page: 583
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b0915
  article-title: Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2003.10.032
– volume: 34
  start-page: 121
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1280
  article-title: Neurophysiological analysis of the cauda equina in POEMS syndrome
  publication-title: Neurol Sci
  doi: 10.1007/s10072-012-0950-z
– volume: 24
  start-page: 211
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0615
  article-title: Disrupted cortical conductivity in schizophrenia: TMS–EEG study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs304
– volume: 21
  start-page: 1176
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b2100
  article-title: Rhythmic TMS causes local entrainment of natural oscillatory signatures
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.05.049
– volume: 76
  start-page: 833
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b0950
  article-title: Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2004.055806
– volume: 4
  start-page: 281
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1475
  article-title: Triple-pulse TMS to study interactions between neural circuits in human cortex
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.01.002
– volume: 425
  start-page: 301
  year: 1990
  ident: 10.1016/j.clinph.2015.02.001_b0510
  article-title: Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1990.sp018104
– volume: 35
  start-page: 125
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0700
  article-title: The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2011.07924.x
– volume: 27
  start-page: 896
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b0635
  article-title: Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.013
– volume: 284
  start-page: 46
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1245
  article-title: Magnetic stimulation of the cauda equina in the spinal canal with a flat, large round coil
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2009.04.003
– volume: 56
  start-page: 13
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b0080
  article-title: TMS and threshold hunting
  publication-title: Suppl Clin Neurophysiol
  doi: 10.1016/S1567-424X(09)70205-3
– volume: 9
  start-page: e86794
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1860
  article-title: Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086794
– volume: 72
  start-page: 808
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1650
  article-title: A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e3182889e01
– volume: 70
  start-page: 26
  year: 1988
  ident: 10.1016/j.clinph.2015.02.001_b2000
  article-title: Enhancement of motor cortical excitability in humans by non-invasive⧹electrical stimulation appears prior to voluntary movement
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(88)90191-5
– volume: 57
  start-page: 563
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b0320
  article-title: Paired associative stimulation
  publication-title: Suppl Clin Neurophysiol
  doi: 10.1016/S1567-424X(09)70395-2
– volume: 52
  start-page: 137
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b2150
  article-title: Chronic motor cortex stimulation for the treatment of central pain
  publication-title: Acta Neurochir Suppl (Wien)
  doi: 10.1007/978-3-7091-9160-6_37
– volume: 78
  start-page: 297
  year: 1988
  ident: 10.1016/j.clinph.2015.02.001_b2165
  article-title: Central motor conduction in cerebrovascular disease and motor neuron disease
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.1988.tb03660.x
– volume: 40
  start-page: 27
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b0015
  article-title: Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression
  publication-title: Neurophysiol Clin
  doi: 10.1016/j.neucli.2010.01.001
– volume: 122
  start-page: 748
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1900
  article-title: Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.09.022
– volume: 60
  start-page: 1409
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b1235
  article-title: Clinical signs, neurophysiological evaluation, and medication of spasticity–review
  publication-title: Brain Nerve
– volume: 98
  start-page: 225
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0255
  article-title: Low-frequency rTMS inhibitory effects in the primary motor cortex: insights from TMS-evoked potentials
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.04.065
– volume: 101
  start-page: 58
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b2380
  article-title: Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(95)00213-8
– volume: 415
  start-page: 211
  year: 1987
  ident: 10.1016/j.clinph.2015.02.001_b1825
  article-title: Central motor tract propagation in man: studies with non-invasive, unifocal, scalp stimulation
  publication-title: Brain Res
  doi: 10.1016/0006-8993(87)90203-4
– volume: 92
  start-page: 383
  year: 1995
  ident: 10.1016/j.clinph.2015.02.001_b0200
  article-title: Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.1995.tb00151.x
– volume: 1
  start-page: 5845
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1995
  article-title: Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2011.216978
– volume: 120
  start-page: 610
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0160
  article-title: Sensory afferent inhibition within and between limbs in humans
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.12.003
– volume: 121
  start-page: 492
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1215
  article-title: EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.11.078
– volume: 150
  start-page: 44
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b1230
  article-title: Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies.Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies
  publication-title: Arch Ital Biol
– volume: 487
  start-page: 541
  year: 1995
  ident: 10.1016/j.clinph.2015.02.001_b1760
  article-title: The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1995.sp020898
– volume: 120
  start-page: 1033
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1770
  article-title: Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol
  publication-title: J Neurosurg
  doi: 10.3171/2013.11.JNS13952
– volume: 154
  start-page: 1065
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0830
  article-title: Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: a randomized, multicenter, double-blind, crossover, sham-controlled trial
  publication-title: Pain
  doi: 10.1016/j.pain.2013.03.016
– volume: 6
  start-page: 538
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1295
  article-title: Focal lesion in upper part of brachial plexus can be detected by magnetic cervical motor root stimulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2012.09.008
– volume: 85
  start-page: 158
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b0835
  article-title: Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(92)90081-L
– volume: 46
  start-page: 932
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b1275
  article-title: Aging influences central motor conduction less than peripheral motor conduction: a transcranial magnetic stimulation study
  publication-title: Muscle Nerve
  doi: 10.1002/mus.23430
– volume: 2
  start-page: 58
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1965
  article-title: Consensus paper: combining transcranial stimulation with neuroimaging
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2008.11.002
– volume: 52
  start-page: 213
  year: 1989
  ident: 10.1016/j.clinph.2015.02.001_b1680
  article-title: High-voltage stimulation over the human spinal cord: sources of latency variation
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.52.2.213
– volume: 124
  start-page: 708
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1970
  article-title: A comparison of relative-frequency and threshold hunting methods to determine stimulus intensity in transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.09.018
– volume: 54
  start-page: 234
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b2090
  article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.061
– volume: 27
  start-page: 6815
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b0985
  article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0598-07.2007
– volume: 22
  start-page: 233
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1445
  article-title: Transcranial brain stimulation: clinical applications and future directions
  publication-title: Neurosurg Clin N Am
  doi: 10.1016/j.nec.2011.01.002
– volume: 81
  start-page: 257
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b0640
  article-title: Spinal motor neuron excitability during the silent period after cortical stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(91)90011-L
– volume: 191
  start-page: 653
  year: 1967
  ident: 10.1016/j.clinph.2015.02.001_b0945
  article-title: Responses of the pyramidal tract to stimulation of the baboon’s motor cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1967.sp008273
– volume: 112
  start-page: 54
  year: 1990
  ident: 10.1016/j.clinph.2015.02.001_b0145
  article-title: Descending volley after electrical and magnetic transcranial stimulation in man
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(90)90321-Y
– volume: 33
  start-page: 2860
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0360
  article-title: Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS–EEG study
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2008.22
– volume: 65
  start-page: 778
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0720
  article-title: Theta burst stimulation of the prefrontal cortex: safety and impact on cognition, mood, and resting electroencephalogram
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2008.10.029
– volume: 34
  start-page: 1255
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0605
  article-title: A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2008.233
– volume: 115
  start-page: 1717
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b2450
  article-title: TMS and drugs
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.03.006
– volume: 125
  start-page: 2150
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1125
  article-title: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.05.021
– volume: 377
  start-page: 333
  year: 1986
  ident: 10.1016/j.clinph.2015.02.001_b0350
  article-title: The effect of percutaneous motor cortex stimulation on H reflexes in muscles of the arm and leg in intact man
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1986.sp016190
– volume: 22
  start-page: 36
  year: 1995
  ident: 10.1016/j.clinph.2015.02.001_b2210
  article-title: Electrical stimulation of the human descending motor tracts at several levels
  publication-title: Can J Neurol Sci
  doi: 10.1017/S0317167100040476
– volume: 29
  start-page: 7679
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1780
  article-title: Natural frequencies of human corticothalamic circuits
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0445-09.2009
– volume: 587
  start-page: 4845
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0745
  article-title: Primary motor cortical metaplasticity induced by priming over the supplementary motor area
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2009.179101
– volume: 24
  start-page: 955
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b0920
  article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.09.048
– volume: 21
  start-page: 154
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1000
  article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10159
– volume: 52
  start-page: 529
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b1955
  article-title: Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp
  publication-title: Neurology
  doi: 10.1212/WNL.52.3.529
– volume: 19
  start-page: 322
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b2080
  article-title: Basic mechanisms of TMS
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-200208000-00006
– volume: 47
  start-page: 156
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b1440
  article-title: Feasibility and efficacy of left prefrontal rTMS as a maintenance antidepressant
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(00)00785-X
– volume: 125
  start-page: 320
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b2285
  article-title: Reproducibility of the effects of theta burst stimulation on motor cortical plasticity in healthy participants
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.07.004
– volume: 6
  start-page: 108
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0895
  article-title: Prefrontal rTMS for treating depression: location and intensity results from the OPT TMS multi-site clinical trial
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2012.02.003
– volume: 17
  start-page: 397
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b2445
  article-title: I-waves in motor cortex
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-200007000-00005
– volume: 219
  start-page: 297
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0730
  article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2013.07.016
– volume: 265
  start-page: 537
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b2320
  article-title: Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.1998.0328
– volume: 3
  start-page: e3069
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b1320
  article-title: Muscles in “concert”: study of primary motor cortex upper limb functional topography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003069
– volume: 34
  start-page: 1543
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0540
  article-title: Suppression of gamma-oscillations in the dorsolateral prefrontal cortex following long interval cortical inhibition: a TMS–EEG study
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2008.211
– volume: 17
  start-page: 53
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0065
  article-title: Is Life better after motor cortex stimulation for pain control? Results at long-term and their prediction by preoperative rTMS
  publication-title: Pain Physician
  doi: 10.36076/ppj.2014/17/53
– volume: 28
  start-page: 110
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b2135
  article-title: Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses
  publication-title: Stroke
  doi: 10.1161/01.STR.28.1.110
– volume: 61
  start-page: 272
  year: 1985
  ident: 10.1016/j.clinph.2015.02.001_b1815
  article-title: Nervous propagation along ‘central’ motor pathways in intact man: characteristics of motor responses to ‘bifocal’ and ‘unifocal’ spine and scalp non-invasive stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(85)91094-6
– volume: 37
  start-page: 598
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b2280
  article-title: Insights on the neural basis of motor plasticity induced by theta burst stimulation from TMS–EEG
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.12069
– volume: 478
  start-page: 24
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1210
  article-title: The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2010.04.059
– volume: 119
  start-page: 2291
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b1635
  article-title: Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF)
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.05.031
– volume: 37
  start-page: 219
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b1600
  article-title: Imaging the brain before, during, and after transcranial magnetic stimulation
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(98)00096-7
– volume: 9
  start-page: 373
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1150
  article-title: Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham controlled trial
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(10)70054-5
– volume: 35
  start-page: 1896
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b2370
  article-title: Bidirectional effects on inter-hemispheric resting state functional connectivity induced by excitatory and inhibitory repetitive transcranial magnetic stimulation
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22300
– volume: 114
  start-page: 329
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b0405
  article-title: Input–output properties and gain changes in the human corticospinal pathway
  publication-title: Exp brain res
  doi: 10.1007/PL00005641
– volume: 63
  start-page: 2266
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b0460
  article-title: Role of motor evoked potentials in diagnosis of cauda equine and lumbosacral cord lesions
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000147296.97980.CA
– volume: 48
  start-page: 1381
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b2270
  article-title: Alpha-generation as basic response-signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: a TMS/EEG co-registration study
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2011.01218.x
– volume: 20
  start-page: 164
  year: 1987
  ident: 10.1016/j.clinph.2015.02.001_b1355
  article-title: Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications
  publication-title: Neurosurgery
  doi: 10.1097/00006123-198701000-00033
– volume: 83
  start-page: 1426
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b0285
  article-title: Facilitatory I wave interaction in proximal arm and lower limb muscle representations of the human motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2000.83.3.1426
– volume: 569
  start-page: 315
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b0465
  article-title: Dissociated effects of diazepam and lorazepam on short latency afferent ì inhibition
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2005.092155
– volume: 58
  start-page: 58
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b0140
  article-title: Electroencephalographic response to transcranial magnetic stimulation in children: Evidence for giant inhibitory potentials
  publication-title: Ann Neurol
  doi: 10.1002/ana.20521
– volume: 23
  start-page: 1593
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0750
  article-title: The role of interneuron networks in driving human motor cortical plasticity
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs147
– volume: 128
  start-page: 539
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b0280
  article-title: Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings
  publication-title: Exp Brain Res
  doi: 10.1007/s002210050878
– volume: 15
  start-page: 53
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0630
  article-title: Clinical effects and brain metabolic correlates in non-invasive cortical neuromodulation for visceral pain
  publication-title: Eur J Pain
  doi: 10.1016/j.ejpain.2010.08.002
– volume: 17
  start-page: 3178
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b1595
  article-title: Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-09-03178.1997
– volume: 23
  start-page: 822
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1785
  article-title: Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2006.04605.x
– volume: 81
  start-page: 319
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b2130
  article-title: Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(91)90019-T
– volume: 113
  start-page: 1165
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b2360
  article-title: Variation in the response to transcranial magnetic brain stimulation in the general population
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00144-X
– volume: 112
  start-page: 593
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0755
  article-title: Optimization of facilitation related to threshold in transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(01)00471-0
– volume: 16
  start-page: 838
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0385
  article-title: Noninvasive brain stimulation: from physiology to network dynamics and back
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3422
– volume: 98
  start-page: 417
  year: 1975
  ident: 10.1016/j.clinph.2015.02.001_b1725
  article-title: Which elements are excited in electrical stimulation of mammalian central nervous system: a review
  publication-title: Brain Res
  doi: 10.1016/0006-8993(75)90364-9
– volume: 2
  start-page: 145
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b0980
  article-title: Transcranial magnetic stimulation in neurology
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(03)00321-1
– volume: 165
  start-page: 996
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0550
  article-title: Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2008.07111733
– volume: 66
  start-page: 1524
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b1540
  article-title: Long-term maintenance therapy for major depressive disorder with rTMS
  publication-title: J Clin Psychiatry
  doi: 10.4088/JCP.v66n1205
– volume: 20
  start-page: 570
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b1360
  article-title: Corticomotor threshold to magnetic stimulation: normal values and repeatability
  publication-title: Muscle Nerve
  doi: 10.1002/(SICI)1097-4598(199705)20:5<570::AID-MUS5>3.0.CO;2-6
– volume: 14
  start-page: 1444
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0315
  article-title: Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0918
– volume: 44
  start-page: 735
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b2245
  article-title: Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.44.4.735
– volume: 412
  start-page: 449
  year: 1989
  ident: 10.1016/j.clinph.2015.02.001_b0380
  article-title: Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1989.sp017626
– volume: 22
  start-page: 1
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b0610
  article-title: Column-based model of electric field excitation of cerebral cortex
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20006
– volume: 22
  start-page: 233
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b0865
  article-title: Methodology for combined TMS and EEG
  publication-title: Brain Topogr
  doi: 10.1007/s10548-009-0123-4
– volume: 129
  start-page: 494
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b0425
  article-title: Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex
  publication-title: Exp Brain Res
  doi: 10.1007/s002210050919
– volume: 22
  start-page: 249
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1370
  article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience
  publication-title: Brain Topogr
  doi: 10.1007/s10548-009-0083-8
– volume: 120
  start-page: 820
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1305
  article-title: Selective modulation of intracortical inhibition by low-intensity theta burst stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.02.003
– volume: 5
  start-page: 25
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b1525
  article-title: Neurophysiological evaluation of tactile space perception deficits through transcranial magnetic stimulation
  publication-title: Brain Res Protoc
  doi: 10.1016/S1385-299X(99)00055-0
– volume: 85
  start-page: 265
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b0040
  article-title: Cerebello-frontal cortical projections in humans studied with the magnetic coil
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(92)90115-R
– volume: 123
  start-page: 2256
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0695
  article-title: A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.05.001
– volume: 34
  start-page: 7314
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1485
  article-title: Heterosynaptic modulation of motor cortical plasticity in human
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4714-13.2014
– volume: 117
  start-page: 1699
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b0170
  article-title: Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.05.006
– volume: 20
  start-page: 160
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1385
  article-title: The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision
  publication-title: J ECT
  doi: 10.1097/00124509-200409000-00007
– volume: 79
  start-page: 1044
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b1100
  article-title: Motor cortex rTMS in chronic neuropathic pain: pain relief is associated with thermal sensory perception improvement
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2007.135327
– volume: 59
  start-page: 560
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b1405
  article-title: Antidepressant effects of repetitive transcranial magnetic stimulation in the elderly: correlation between effect size and coil-cortex distance
  publication-title: Arch Gen Psychiatry
– volume: 296
  start-page: 21
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b1610
  article-title: Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(00)01616-5
– volume: 129
  start-page: 77
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b0275
  article-title: Modulation of motor cortex excitability by median nerve and digit stimulation
  publication-title: Exp Brain Res
  doi: 10.1007/s002210050938
– volume: 11
  start-page: 440
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0710
  article-title: Cerebellar stimulation in ataxia
  publication-title: Cerebellum
  doi: 10.1007/s12311-011-0329-3
– volume: 4
  start-page: 500
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1535
  article-title: Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.03.004
– volume: 17
  start-page: 219
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0330
  article-title: Day differences in the cortisol awakening response predict day differences in synaptic plasticity in the brain
  publication-title: Stress
  doi: 10.3109/10253890.2014.905533
– volume: 6
  start-page: 1853
  year: 1995
  ident: 10.1016/j.clinph.2015.02.001_b0680
  article-title: Daily repetitive Transcranial Magnetic Stimulation (rTMS) improves mood in depression
  publication-title: NeuroReport
  doi: 10.1097/00001756-199510020-00008
– volume: 120
  start-page: 2008
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1810
  article-title: Safety of TMS consensus group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.08.016
– volume: 12
  start-page: 2963
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b1070
  article-title: Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex
  publication-title: Neuroreport
  doi: 10.1097/00001756-200109170-00041
– volume: 81
  start-page: 63
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b1420
  article-title: Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico motoneuronal projections
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(91)90105-7
– volume: 30
  start-page: 1387
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1155
  article-title: Reproducibility of TMS-evoked EEG responses
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20608
– volume: 166
  start-page: 104
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b0925
  article-title: Effects of alcohol on TMS-evoked N100 responses
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2007.06.030
– volume: 54
  start-page: 216
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b2235
  article-title: Stimulation at the foramen magnum level as a tool to separate cortical from spinal cord excitability changes
  publication-title: Adv Clin Neurophysiol Suppl
  doi: 10.1016/S1567-424X(09)70453-2
– volume: 18
  start-page: 13
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b1010
  article-title: Excitation threshold of the motor cortex estimated with transcranial magnetic stimulation electroencephalography
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e328011b89a
– volume: 109
  start-page: 158
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b2355
  article-title: Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscle
  publication-title: Exp Brain Res
  doi: 10.1007/BF00228638
– volume: 115
  start-page: 1947
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b2195
  article-title: Stimulation of corticospinal pathways at the level of the pyramidal decussation in neurological disorders
  publication-title: Brain
  doi: 10.1093/brain/115.6.1947
– volume: 37
  start-page: 703
  year: 1995
  ident: 10.1016/j.clinph.2015.02.001_b2215
  article-title: Magnetic stimulation over the cerebellum in humans
  publication-title: Ann Neurol
  doi: 10.1002/ana.410370603
– volume: 125
  start-page: 142
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b2390
  article-title: Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.06.187
– volume: 26
  start-page: 344
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b1515
  article-title: Neural correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on central pain after stroke
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968311423110
– volume: 460
  start-page: 201
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b1170
  article-title: Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1993.sp019467
– volume: 34
  start-page: 5603
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1695
  article-title: TMS–EEG signatures of GABAergic neurotransmission in the human cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5089-13.2014
– volume: 27
  start-page: 236
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0970
  article-title: Transcranial magnetic stimulation for the diagnosis and treatment of epilepsy
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000071
– volume: 94
  start-page: 622
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b0525
  article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01230.2004
– volume: 80
  start-page: 356
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b1325
  article-title: Transcranial magnetic stimulation as an investigative tool in the study of visual function
  publication-title: Optom Vis Sci
  doi: 10.1097/00006324-200305000-00010
– volume: 54
  start-page: 618
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b2095
  article-title: Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation of the motor cortex
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.54.7.618
– volume: 14
  start-page: 322
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0910
  article-title: Ethanol modulates cortical activity: direct evidence with combined TMS and EEG
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0849
– volume: 125
  start-page: 526
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1795
  article-title: Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.08.015
– volume: 8
  start-page: e60358
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1750
  article-title: Optimal coil orientation for transcranial magnetic stimulation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060358
– volume: 152
  start-page: 1119
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0955
  article-title: Bilateral changes in excitability of sensorimotor cortices during unilateral movement: combined electroencephalographic and transcranial magnetic stimulation study
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2008.01.043
– volume: 175
  start-page: 231
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b2250
  article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-006-0551-2
– volume: 52
  start-page: 183
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1005
  article-title: The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research
  publication-title: Brain Res Rev
  doi: 10.1016/j.brainresrev.2006.01.008
– volume: 105
  start-page: 749
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1470
  article-title: Transcranial magnetic stimulation in different current directions activates separate cortical circuits
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00640.2010
– volume: 3
  start-page: 1578
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b2265
  article-title: Potentiation of short-latency cortical responses by high-frequency repetitive transcranial magnetic stimulation
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00172.2010
– volume: 27
  start-page: 12132
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b2315
  article-title: Human motor corpus callosum: topography, somatotopy, and link between microstructure and function
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2320-07.2007
– volume: 19
  start-page: 1950
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b0155
  article-title: Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2004.03277.x
– volume: 453
  start-page: 525
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b0545
  article-title: Interhemispheric inhibition of the human motor cortex
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1992.sp019243
– volume: 86
  start-page: 1983
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b1605
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.86.4.1983
– volume: 586
  start-page: 3927
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0740
  article-title: Bidirectional long term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2008.152793
– volume: 112
  start-page: 1781
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0725
  article-title: Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(01)00633-2
– year: 1986
  ident: 10.1016/j.clinph.2015.02.001_b1820
– volume: 109
  start-page: 495
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b1300
  article-title: A propriospinal-like contribution to electromyographic responses evoked in wrist extensor muscles by transcranial stimulation of the motor cortex in man
  publication-title: Exp Brain Res
  doi: 10.1007/BF00229634
– volume: 63
  start-page: 582
  year: 1986
  ident: 10.1016/j.clinph.2015.02.001_b1350
  article-title: Electrical stimulation over the human vertebral column: which neural elements are excited?
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(86)90145-8
– volume: 111
  start-page: 513
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0940
  article-title: Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00387.2013
– volume: 81
  start-page: 253
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1530
  article-title: Physiological observations validate finite element models for estimating subject specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.067
– volume: 71
  start-page: 833
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0060
  article-title: Pain relief by rTMS: differential effect of current flow but no specific action on pain subtypes
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000325481.61471.f0
– volume: 153
  start-page: 1350
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b1430
  article-title: Noninvasive cortical modulation of experimental pain
  publication-title: Pain
  doi: 10.1016/j.pain.2012.04.009
– volume: 20
  start-page: 98
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1135
  article-title: Can left prefrontal rTMS be used as a maintenance treatment for bipolar depression?
  publication-title: Depress Anxiety
  doi: 10.1002/da.20027
– start-page: 1364
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1550
  article-title: Optimising the detection of upper motor neuron fuction dysfunction in amyotrophic lateral sclerosis: a transcranial magnetic stimulation study
  publication-title: J Neurol
  doi: 10.1007/s00415-004-0545-6
– volume: 16
  start-page: 1274
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1020
  article-title: Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nou007
– volume: 148
  start-page: 1
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b1960
  article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1234-2
– volume: 12
  start-page: 447
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b1975
  article-title: State-dependency in brain stimulation studies of perception and cognition
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2008.09.004
– volume: 175
  start-page: 246
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b2255
  article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. II. Thalamocortical contributions
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-006-0548-x
– volume: 117
  start-page: 2292
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1060
  article-title: Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.05.030
– volume: 117
  start-page: 838
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1980
  article-title: Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.10.029
– volume: 114
  start-page: 239
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b0025
  article-title: Proximal nerve conduction by high-voltage electrical stimulation in S1 radiculopathies and acquired demyelinating neuropathies
  publication-title: Clin Neurophysiol
  doi: 10.1016/s1388-2457(02)00331-0
– volume: 30
  start-page: 14
  year: 1990
  ident: 10.1016/j.clinph.2015.02.001_b2180
  article-title: Magneto-electrical stimulation of central motor pathways compared with percutaneous electrical stimulation
  publication-title: Eur Neurol
  doi: 10.1159/000116617
– volume: 121
  start-page: 437
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b1195
  article-title: Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials
  publication-title: Brain
  doi: 10.1093/brain/121.3.437
– volume: 6
  start-page: 363
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1985
  article-title: Opposite optimal current flow directions for induction of neuroplasticity and excitation threshold in the human motor cortex
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2012.07.003
– volume: 93
  start-page: 138
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b2375
  article-title: The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(94)90077-9
– volume: 110
  start-page: 699
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b0185
  article-title: Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(98)00027-3
– volume: 118
  start-page: 2227
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b0070
  article-title: Differences in after-effect between monophasic and biphasic high-frequency rTMS of the human motor cortex
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.07.006
– volume: 15
  start-page: 288
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b0045
  article-title: Transcranial magnetic stimulation in study of the visual pathway
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-199807000-00002
– volume: 545
  start-page: 153
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b0855
  article-title: Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.2002.030122
– volume: 67
  start-page: 1998
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1095
  article-title: Somatotopic organization of the analgesic effects of motor cortex rTMS in neuropathic pain
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000247138.85330.88
– volume: 91
  start-page: 79
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b1850
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(94)90029-9
– volume: 55
  start-page: 187
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b0735
  article-title: Transcranial magnetic stimulation: a primer
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.06.026
– volume: 122
  start-page: 265
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b1200
  article-title: A clinical study of motor evoked potentials using a triple stimulation technique
  publication-title: Brain
  doi: 10.1093/brain/122.2.265
– volume: 152
  start-page: 1478
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1340
  article-title: Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia
  publication-title: Pain
  doi: 10.1016/j.pain.2011.01.034
– volume: 138
  start-page: 268
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0445
  article-title: The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100722
– volume: 122
  start-page: 1411
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0495
  article-title: Low-intensity, short-interval theta burst stimulation modulates excitatory but not inhibitory motor networks
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.12.034
– volume: 220
  start-page: 79
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0075
  article-title: Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-012-3117-5
– volume: 18
  start-page: 437
  year: 1978
  ident: 10.1016/j.clinph.2015.02.001_b1620
  article-title: Study of orthodromic and antidromic effects of nerve stimulation on single motoneurones of human hand muscles
  publication-title: Electromyogr Clin Neurophysiol
– volume: 204
  start-page: 181
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b0650
  article-title: Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-010-2293-4
– volume: 113
  start-page: 175
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b0995
  article-title: Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(01)00721-0
– volume: 7
  start-page: 372
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1160
  article-title: Inter-individual variability in response to non-invasive brain stimulation paradigms
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.02.004
– volume: 40
  start-page: 7
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1875
  article-title: Navigated transcranial magnetic stimulation
  publication-title: Neurophysiol Clin
  doi: 10.1016/j.neucli.2010.01.006
– volume: 1028
  start-page: 1
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1655
  article-title: Effect of Vigabatrin on motor responses to transcranial magnetic stimulation: an effective tool to investigate in vivo GABAergic cortical inhibition in humans
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2004.06.009
– volume: 272
  start-page: 33
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b1065
  article-title: Plasticity of cortical hand muscle representation in patients with hemifacial spasm
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(99)00574-1
– volume: 126
  start-page: 2586
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b1710
  article-title: Abnormal associative plasticity of the human motor cortex in writer’s cramp
  publication-title: Brain
  doi: 10.1093/brain/awg273
– volume: 39
  start-page: 415
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b2030
  article-title: Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(00)00130-5
– volume: 543
  start-page: 699
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b2010
  article-title: Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2002.023317
– volume: 74
  start-page: 417
  year: 1989
  ident: 10.1016/j.clinph.2015.02.001_b0355
  article-title: Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(89)90030-0
– volume: 69
  start-page: 86
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b0530
  article-title: A direct demonstration of cortical LTP in humans: a combined TMS/EEG study
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2005.11.003
– volume: 122
  start-page: 22
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b0820
  article-title: Reduction of intractable deafferentation pain by navigation-guided repetitive transcranial magnetic stimulation of the primary motor cortex
  publication-title: Pain
  doi: 10.1016/j.pain.2005.12.001
– volume: 116
  start-page: 775
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b2420
  article-title: Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.11.008
– volume: 42
  start-page: 220
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b0580
  article-title: Development of the corticospinal system and hand motor function: central conduction times and motor performance tests
  publication-title: Dev Med Child Neurol
  doi: 10.1111/j.1469-8749.2000.tb00076.x
– volume: 116
  start-page: 423
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1120
  article-title: Pain
  publication-title: Handb Clin Neurol
  doi: 10.1016/B978-0-444-53497-2.00035-8
– volume: 339
  start-page: 362
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b1740
  article-title: Increased cortical excitability in generalised epilepsy demonstrated with transcranial magnetic stimulation
  publication-title: Lancet
  doi: 10.1016/0140-6736(92)91679-3
– volume: 106
  start-page: 103
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0905
  article-title: TMS–EEG reveals impaired intracortical interactions and coherence in Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1)
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2013.04.001
– volume: 551
  start-page: 563
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b0690
  article-title: Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.044313
– volume: 586
  start-page: 495
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b1425
  article-title: Inhibitory circuits and the nature of their interactions in the human motor cortex a pharmacological TMS study
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2007.142059
– volume: 74
  start-page: 458
  year: 1989
  ident: 10.1016/j.clinph.2015.02.001_b0035
  article-title: Suppression of visual perception by magnetic coil stimulation of human occipital cortex
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(89)90036-1
– volume: 4
  start-page: 326
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b1365
  article-title: Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2008.07.002
– volume: 6
  start-page: e26113
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1500
  article-title: New insights into Alzheimer’s disease progression: a combined TMS and structural MRI study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026113
– volume: 470
  start-page: 383
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b0215
  article-title: Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1993.sp019864
– volume: 31
  start-page: 366
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b2155
  article-title: Magnetic stimulation of the human brain
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.1992.tb49632.x
– volume: 131
  start-page: 1
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b0890
  article-title: Transcranial magnetic stimulation studies of cognition: an emerging field
  publication-title: Exp Brain Res
  doi: 10.1007/s002219900224
– volume: 124
  start-page: 339
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b2020
  article-title: Differential effect of baclofen on cortical and spinal inhibitory circuits
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.07.005
– volume: 7
  start-page: 365
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0815
  article-title: Inter- and intra-individual variability following intermittent theta burst stimulation: implications for rehabilitation and recovery
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.01.004
– volume: 102
  start-page: 3180
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1690
  article-title: Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs
  publication-title: J Neurophysiol
  doi: 10.1152/jn.91046.2008
– volume: 124
  start-page: 197
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0870
  article-title: Diagnostic value of lumbar root stimulation at the early stage of Guillain-Barré syndrome
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.07.004
– volume: 19
  start-page: 1654
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1465
  article-title: Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn201
– volume: 120
  start-page: 1724
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0130
  article-title: Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest–a bifocal TMS study
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.07.035
– volume: 565
  start-page: 1039
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b2410
  article-title: Timing dependent plasticity in human primary somatosensory cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2005.084954
– volume: 140
  start-page: 505
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b1670
  article-title: Suppression of the motor cortex by magnetic stimulation of the cerebellum
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100862
– volume: 96
  start-page: 1765
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b0470
  article-title: Origin of facilitation of motor evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00360.2006
– volume: 109
  start-page: 467
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b0880
  article-title: Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans
  publication-title: Exp Brain Res
  doi: 10.1007/BF00229631
– volume: 6
  start-page: 352
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b2275
  article-title: Cortical modulation of short-latency TMS-evoked potentials
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2012.00352
– volume: 103
  start-page: 511
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b0245
  article-title: Late cortical disinhibition in human motor cortex: a triple-pulse transcranial magnetic stimulation study
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00782.2009
– volume: 48
  start-page: 1406
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b1025
  article-title: Functional magnetic resonance imaging and transcranial stimulation: complementary approaches in the evaluation of cortical motor function
  publication-title: Neurology
  doi: 10.1212/WNL.48.5.1406
– volume: 89
  start-page: 616
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b0225
  article-title: Latency jump of “relaxed” versus “contracted” motor evoked potentials as a marker of cortico-spinal maturation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(93)90086-5
– volume: 41
  start-page: 697
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b1565
  article-title: Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation
  publication-title: Neurology
  doi: 10.1212/WNL.41.5.697
– volume: 115
  start-page: 1519
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1615
  article-title: Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.02.005
– volume: 348
  start-page: 233
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b1580
  article-title: Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression
  publication-title: Lancet
  doi: 10.1016/S0140-6736(96)01219-6
– volume: 517
  start-page: 591
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b2385
  article-title: Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans
  publication-title: J Physiol (Lond)
  doi: 10.1111/j.1469-7793.1999.0591t.x
– volume: 27
  start-page: 638
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b1560
  article-title: Repetitive Transcranial Magnetic Stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity
  publication-title: Neuropsychopharmacology
  doi: 10.1016/S0893-133X(02)00355-X
– volume: 20
  start-page: 74
  year: 1987
  ident: 10.1016/j.clinph.2015.02.001_b0030
  article-title: Physiological basis of motor effects of a transient stimulus to cerebral cortex
  publication-title: Neurosurgery
  doi: 10.1097/00006123-198701000-00022
– volume: 2
  start-page: 50
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0135
  article-title: An efficient and accurate new method for locating the F3 position for prefrontal TMS applications
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2008.09.006
– volume: 33
  start-page: 3
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b0660
  article-title: Assessment of motor conduction times using magnetic stimulation of brain, spinal cord and peripheral nerve
  publication-title: Electromyogr Clin Neurophysiol
– volume: 7
  start-page: 687
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1735
  article-title: Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00687
– volume: 141
  start-page: 121
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0435
  article-title: Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100863
– volume: 34
  start-page: 547
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b1390
  article-title: High frequency repetitive transcranial magnetic stimulation (rTMS) is effective in migraine prophylaxis: an open labeled study
  publication-title: Neurol Res
  doi: 10.1179/1743132812Y.0000000045
– volume: 129
  start-page: 809
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b2335
  article-title: Motor system activation after subcortical stroke depends on corticospinal system integrity
  publication-title: Brain
  doi: 10.1093/brain/awl002
– volume: 2
  start-page: 597
  year: 1982
  ident: 10.1016/j.clinph.2015.02.001_b1335
  article-title: Scope of a technique for electrical stimulation of human brain, spinal cord and muscle
  publication-title: Lancet
  doi: 10.1016/S0140-6736(82)90670-5
– volume: 32
  start-page: 281
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0570
  article-title: Does an intraneural interface short-term implant for robotic hand control modulate sensorimotor cortical integration? An EEG–TMS co-registration study on a human amputee
  publication-title: Restor Neurol Neurosci
– volume: 484
  start-page: 791
  issue: Pt 3
  year: 1995
  ident: 10.1016/j.clinph.2015.02.001_b1490
  article-title: Latency of effects evoked by electrical and magnetic brain stimulation in lower limb motoneurones in man
  publication-title: J Physiol Lond
  doi: 10.1113/jphysiol.1995.sp020704
– volume: 151
  start-page: 330
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b1790
  article-title: Two phases of short-interval intracortical inhibition
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1502-9
– volume: 37
  start-page: 742
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0585
  article-title: Applications of transcranial direct current stimulation for understanding brain function
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2014.08.003
– volume: 89
  start-page: 378
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b2070
  article-title: Transcranial stimulation of the leg area of the motor cortex in humans
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.1994.tb02650.x
– volume: 425
  start-page: 283
  year: 1990
  ident: 10.1016/j.clinph.2015.02.001_b0210
  article-title: Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1990.sp018103
– volume: 2
  start-page: 133
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b0535
  article-title: Experimentation with a transcranial magnetic stimulation system for functional brain mapping
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(98)80008-X
– volume: 81
  start-page: 90
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b1220
  article-title: Non-invasive evaluation of central motor tract excitability changes following peripheral nerve stimulation in healthy humans
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(91)90002-F
– volume: 115
  start-page: 105
  year: 1985
  ident: 10.1016/j.clinph.2015.02.001_b0785
  article-title: The size-principle: a deterministic output emerges from a set of probabilistic connections
  publication-title: J Exp Biol
  doi: 10.1242/jeb.115.1.105
– volume: 121
  start-page: 1930
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1250
  article-title: Cortico-conus motor conduction time (CCCT) for leg muscles
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.04.014
– volume: 110
  start-page: 1173
  year: 1987
  ident: 10.1016/j.clinph.2015.02.001_b1870
  article-title: Motor cortex stimulation in intact man. General characteristics of EMG responses in different muscles
  publication-title: Brain
  doi: 10.1093/brain/110.5.1173
– volume: 306
  start-page: 495
  year: 1988
  ident: 10.1016/j.clinph.2015.02.001_b0505
  article-title: Activation of motor pathways in neonates at term by percutaneous stimulation of the motor cortex and spinal cord
  publication-title: C R Acad Sci III
– volume: 441
  start-page: 57
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b2185
  article-title: Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1991.sp018738
– volume: 112
  start-page: 931
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0190
  article-title: Mechanisms influencing stimulus-response properties of the human corticospinal system
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(01)00523-5
– volume: 31
  start-page: 170
  year: 1971
  ident: 10.1016/j.clinph.2015.02.001_b0620
  article-title: An electronic stimulus artifact suppressor
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(71)90188-X
– volume: 13
  start-page: 1125
  year: 1990
  ident: 10.1016/j.clinph.2015.02.001_b0325
  article-title: Central motor conduction: method and normal results
  publication-title: Muscle Nerve
  doi: 10.1002/mus.880131207
– volume: 112
  start-page: 250
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0935
  article-title: Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00513-7
– volume: 5
  start-page: e10281
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b0235
  article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010281
– volume: 120
  start-page: 770
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1240
  article-title: Magnetic lumbosacral motor root stimulation with a flat, large round coil
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.01.004
– volume: 45
  start-page: 40
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1915
  article-title: Quantifying cortical EEG responses to TMS in (un)consciousness
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059413513723
– volume: 118
  start-page: 2207
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b0475
  article-title: Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.07.005
– volume: 11
  start-page: 1203
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1645
  article-title: Repetitive transcranial magnetic stimulation is efficacious as an add-on to pharmacological therapy in complex regional pain syndrome (CRPS) type I
  publication-title: J Pain
  doi: 10.1016/j.jpain.2010.02.006
– volume: 57
  start-page: 108
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b0410
  article-title: Excitability of the motor cortex to magnetic stimulation in patients with cerebellar lesions
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.57.1.108
– volume: 636
  start-page: 270
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b2145
  article-title: Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation
  publication-title: Brain Res
  doi: 10.1016/0006-8993(94)91026-X
– volume: 27
  start-page: 172
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1935
  article-title: Modulation of EEG functional connectivity networks in subjects undergoing repetitive transcranial magnetic stimulation
  publication-title: Brain Topogr
  doi: 10.1007/s10548-013-0277-y
– volume: 245
  start-page: 256
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b2105
  article-title: Effects of sex, height and age on motor evoked potentials with magnetic stimulation
  publication-title: J Neurol
  doi: 10.1007/s004150050215
– volume: 37
  start-page: 322
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b2290
  article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02513307
– volume: 97
  start-page: 153
  year: 1939
  ident: 10.1016/j.clinph.2015.02.001_b0010
  article-title: Impulses in the pyramidal tract
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1939.sp003798
– volume: 4
  start-page: 58
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0085
  article-title: Fast estimation of transcranial magnetic stimulation motor threshold: is it safe?
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2010.09.004
– volume: 508
  start-page: 625
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b0415
  article-title: Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1998.625bq.x
– volume: 81
  start-page: 238
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b2110
  article-title: The measurement of electric field, and the influence of surface charge, in magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(91)90077-B
– volume: 458
  start-page: 20
  year: 1988
  ident: 10.1016/j.clinph.2015.02.001_b1835
  article-title: Pre-movement facilitation of motor-evoked potentials in man during transcranial stimulation of the central motor pathways
  publication-title: Brain Res
  doi: 10.1016/0006-8993(88)90491-X
– volume: 7
  start-page: 18
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0485
  article-title: The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex
  publication-title: Front Neural Circ
– volume: 173
  start-page: 86
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1315
  article-title: The role of GABA(B) receptors in intracortical inhibition in the human motor cortex
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-006-0365-2
– volume: 12
  start-page: 1102
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1110
  article-title: Predictive value of rTMS in the identification of responders to epidural motor cortex stimulation therapy for pain
  publication-title: J Pain
  doi: 10.1016/j.jpain.2011.05.004
– volume: 73
  start-page: 510
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0115
  article-title: Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2012.08.020
– volume: 152
  start-page: 2477
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1945
  article-title: Ten sessions of adjunctive left prefrontal rTMS significantly reduces fibromyalgia pain: a randomized, controlled pilot study
  publication-title: Pain
  doi: 10.1016/j.pain.2011.05.033
– volume: 23
  start-page: 529
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b1145
  article-title: Transcutaneous cranial electrical stimulation (TCES): a review 1998
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/S0149-7634(98)00048-7
– volume: 101
  start-page: 247
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b2220
  article-title: Clinical utility of magnetic corticospinal tract stimulation at the foramen magnum level
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0924-980X(96)95150-4
– volume: 16
  start-page: 1403
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b1115
  article-title: Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: influence of theta burst stimulation priming
  publication-title: Eur J Pain
  doi: 10.1002/j.1532-2149.2012.00150.x
– volume: 124
  start-page: 1055
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1285
  article-title: Magnetic-motor-root stimulation: review
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.12.049
– volume: 7
  start-page: 401
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1880
  article-title: A model of TMS-induced I-waves in motor cortex
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.02.009
– volume: 227
  start-page: 67
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b0205
  article-title: RTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2004.08.008
– year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b1665
– volume: 575
  start-page: 657
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1715
  article-title: Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2006.114025
– volume: 107
  start-page: 555
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b1890
  article-title: Reduction of intractable deafferentation pain due to spinal cord or peripheral lesion by high-frequency repetitive transcranial magnetic stimulation of the primary motor cortex
  publication-title: J Neurosurg
  doi: 10.3171/JNS-07/09/0555
– volume: 35
  start-page: 516
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1905
  article-title: The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2010.06.005
– volume: 96
  start-page: 1337
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1030
  article-title: Associative plasticity in human motor cortex during voluntary muscle contraction
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01140.2005
– volume: 120
  start-page: 1003
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b1400
  article-title: Hysteresis effects on the input–output curve of motor evoked potentials
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.03.001
– volume: 586
  start-page: 4489
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b2035
  article-title: Theta burst stimulation induces after-effects on contralateral primary motor cortex excitability in humans
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2008.156596
– volume: 17
  start-page: 1130
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1415
  article-title: Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non human primates
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3751
– volume: 51
  start-page: 65
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b2225
  article-title: Stimulation at the foramen magnum level
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 37
  start-page: 191
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b0930
  article-title: Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(98)00093-1
– volume: 75
  start-page: 510
  year: 1952
  ident: 10.1016/j.clinph.2015.02.001_b1140
  article-title: The cortical representation of motor units
  publication-title: Brain
  doi: 10.1093/brain/75.4.510
– volume: 12
  start-page: 376
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b1015
  article-title: How the distance from coil to cortex relates to age, motor threshold and possibly the antidepressant response to repetitive transcranial magnetic stimulation
  publication-title: J Neuropsychiatry Clin Neurosci
  doi: 10.1176/jnp.12.3.376
– year: 1988
  ident: 10.1016/j.clinph.2015.02.001_b2050
– volume: 49
  start-page: 251
  year: 1986
  ident: 10.1016/j.clinph.2015.02.001_b0195
  article-title: A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.49.3.251
– volume: 13
  start-page: 995
  year: 1990
  ident: 10.1016/j.clinph.2015.02.001_b0520
  article-title: Clinical experience with transcranial magnetic stimulation
  publication-title: Muscle Nerve
  doi: 10.1002/mus.880131102
– volume: 39
  start-page: 227
  year: 1983
  ident: 10.1016/j.clinph.2015.02.001_b0400
  article-title: Size principle of motoneuron recruitment and the calibration of muscle force and speed in man
  publication-title: Adv Neurol
– volume: 160
  start-page: 153
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b2200
  article-title: Interhemispheric facilitation of the hand area of the human motor cortex
  publication-title: Neurosci Letts
  doi: 10.1016/0304-3940(93)90401-6
– volume: 4
  start-page: 50
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1705
  article-title: Fast estimation of transcranial magnetic stimulation motor threshold
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2010.06.002
– volume: 116
  start-page: 329
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1590
  article-title: Transcranialelectricand magneticstimulation: technique and paradigms
  publication-title: Handb Clin Neurol
– volume: 29
  start-page: 135
  year: 1989
  ident: 10.1016/j.clinph.2015.02.001_b2170
  article-title: Physiologic analysis of central motor pathways–simultaneous recording from multiple relaxed muscles
  publication-title: Eur Neurol
  doi: 10.1159/000116396
– year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b2365
– volume: 17
  start-page: 368
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b2460
  article-title: Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex
  publication-title: Neuroscientist
  doi: 10.1177/1073858410390225
– volume: 117
  start-page: 1536
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b0055
  article-title: Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.03.025
– volume: 592
  start-page: 4115
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0490
  article-title: Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2014.274316
– volume: 18
  start-page: 2046
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0670
  article-title: Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhm239
– volume: 28
  start-page: 1180
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1460
  article-title: Transcranial magnetic stimulation combined with high-density EEG in altered states of consciousness
  publication-title: Brain Inj
  doi: 10.3109/02699052.2014.920524
– volume: 89
  start-page: 131
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b1700
  article-title: Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(93)90095-7
– volume: 74
  start-page: 481
  year: 1989
  ident: 10.1016/j.clinph.2015.02.001_b0295
  article-title: Motor evoked potentials with magnetic stimulation: correlations with height
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(89)90039-7
– volume: 123
  start-page: 858
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0715
  article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.01.010
– volume: 54
  start-page: 3
  year: 1980
  ident: 10.1016/j.clinph.2015.02.001_b0250
  article-title: Electrogenesis of cortical DC potentials
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(08)61603-9
– volume: 54
  start-page: 90
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0555
  article-title: Human brain connectivity during single and paired pulse transcranial magnetic stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.056
– volume: 85
  start-page: 1
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b2340
  article-title: Noninvasive mapping of muscle representations in human motor cortex
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(92)90094-R
– volume: 143
  start-page: 240
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b0590
  article-title: Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-001-0988-2
– volume: 24
  start-page: 431
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b0565
  article-title: TMS and TMS–EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex
  publication-title: Rev Neurosci
  doi: 10.1515/revneuro-2013-0019
– volume: 194
  start-page: 517
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0165
  article-title: Electrophysiological correlates of short-latency afferent inhibition: a combined EEG and TMS study
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-009-1723-7
– year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b2465
  article-title: TMS & drugs revisited
  publication-title: Clin Neurophysiol
– volume: 101
  start-page: 153
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b1175
  article-title: A new method using neuromagnetic stimulation to measure conduction time within the cauda equina
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0924-980X(95)00264-L
– volume: 208
  start-page: 161
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b2415
  article-title: Effects of 30Hz theta burst transcranial magnetic stimulation on the primary motor cortex
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2012.05.014
– volume: 100
  start-page: 121
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b2350
  article-title: Cortical motor representation of the ipsilateral hand and arm
  publication-title: Exp Brain Res
  doi: 10.1007/BF00227284
– volume: 115
  start-page: 1076
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1545
  article-title: The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2003.12.025
– volume: 37
  start-page: 155
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b2400
  article-title: Segmental conduction times in the motor nervous system
  publication-title: Electromyogr Clin Neurophysiol
– volume: 1
  start-page: 73
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b2325
  article-title: Transcranial magnetic stimulation and cognitive neuroscience
  publication-title: Nat Rev Neurosci
  doi: 10.1038/35036239
– volume: 105
  start-page: 102
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b1185
  article-title: Magnetic stimulation of the lumbosacral vertebral column in children: normal values and possible sites of stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0924-980X(97)96017-3
– volume: 80
  start-page: 2870
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b0270
  article-title: Intracortical inhibition and facilitation in different representations of the human motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1998.80.6.2870
– volume: 24
  start-page: 7939
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1805
  article-title: Age-related functional changes of prefrontal cortex in long-term memory: a repetitive transcranial magnetic stimulation study
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0703-04.2004
– volume: 85
  start-page: 355
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b2240
  article-title: Human motor evoked responses to paired transcranial magnetic stimuli
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(92)90048-G
– volume: 117
  start-page: 847
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b1575
  article-title: Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex
  publication-title: Brain
  doi: 10.1093/brain/117.4.847
– volume: 118
  start-page: 134
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b2395
  article-title: Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles
  publication-title: J Neurol Sci
  doi: 10.1016/0022-510X(93)90102-5
– volume: 18
  start-page: 1206
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b1495
  article-title: Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement
  publication-title: Eur J Neurosci
  doi: 10.1046/j.1460-9568.2003.02858.x
– volume: 110
  start-page: 1641
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b2230
  article-title: Motor-evoked potentials: unusual findings
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00103-0
– volume: 530
  start-page: 307
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b1910
  article-title: Interactions between two different inhibitory systems in the human motor cortex
  publication-title: J Physiol (Lond)
  doi: 10.1111/j.1469-7793.2001.0307l.x
– volume: 125
  start-page: 755
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0390
  article-title: Determining optimal rTMS parameters through changes in cortical inhibition
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.09.011
– volume: 108
  start-page: 314
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0560
  article-title: Human brain cortical correlates of short-latency afferent inhibition: a combined EEG–TMS study
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00796.2011
– volume: 140
  start-page: 509
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0705
  article-title: Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation
  publication-title: Pain
  doi: 10.1016/j.pain.2008.10.009
– volume: 550
  start-page: 529
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b0100
  article-title: EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.045674
– volume: 59
  start-page: 203
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1050
  article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/59/1/203
– volume: 28
  start-page: 560
  year: 1965
  ident: 10.1016/j.clinph.2015.02.001_b0775
  article-title: Functional significance of cell size in spinal motoneurons
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1965.28.3.560
– volume: 11
  start-page: 056013
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1055
  article-title: Multi-scale simulations predict responses to non invasive nerve root stimulation
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/11/5/056013
– volume: 40
  start-page: 367
  year: 1996
  ident: 10.1016/j.clinph.2015.02.001_b2425
  article-title: Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study
  publication-title: Ann Neurol
  doi: 10.1002/ana.410400306
– volume: 125
  start-page: 1202
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0395
  article-title: Coil design considerations for deep transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.11.038
– volume: 518
  start-page: 895
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b2440
  article-title: Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1999.0895p.x
– volume: 49
  start-page: 454
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b1310
  article-title: The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(00)01039-8
– volume: 537
  start-page: 1047
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b0440
  article-title: Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2001.01047.x
– volume: 122
  start-page: 1731
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b1520
  article-title: Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage
  publication-title: Brain
  doi: 10.1093/brain/122.9.1731
– volume: 3
  start-page: 119
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b0310
  article-title: Optically tracked neuronavigation increases the stability of hand-held focal coil positioning: evidence from “transcranial” magnetic stimulation-induced electrical field measurements
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2010.01.001
– volume: 58
  start-page: 796
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1265
  article-title: Magnetic augmented translumbosacral stimulation coil stimulation method for accurate evaluation of corticospinal tract function in peripheral neuropathy
  publication-title: Neurol India
  doi: 10.4103/0028-3886.72183
– volume: 4
  start-page: 145
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0655
  article-title: Impact of repetitive theta burst stimulation on motor cortex excitability
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2010.09.008
– volume: 218
  start-page: 202
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b1130
  article-title: The importance of the cortico-motoneuronal system for control of grasp
  publication-title: Novartis Found Symp
– volume: 58
  start-page: 971
  year: 2005
  ident: 10.1016/j.clinph.2015.02.001_b0625
  article-title: Treatment of chronic visceral pain with brain stimulation
  publication-title: Ann Neurol
  doi: 10.1002/ana.20651
– volume: 21
  start-page: 579
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1375
  article-title: Transcranial magnetic stimulation in cognitive rehabilitation
  publication-title: Neuropsychol Rehabil
  doi: 10.1080/09602011.2011.562689
– volume: 44
  start-page: 279
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1920
  article-title: The science of transcranial magnetic stimulation
  publication-title: Psychiat Ann
  doi: 10.3928/00485713-20140609-05
– volume: 97
  start-page: 271
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b2065
  article-title: Stimulus waveform influences the efficacy of repetitive transcranial magnetic stimulation
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2006.06.027
– volume: 119
  start-page: 993
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0825
  article-title: Electrical stimulation of primary motor cortex within the central sulcus for intractable neuropathic pain
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.12.022
– volume: 45
  start-page: 303
  year: 1995
  ident: 10.1016/j.clinph.2015.02.001_b1180
  article-title: Magnetic cortical stimulation in acute spinal cord injury
  publication-title: Neurology
  doi: 10.1212/WNL.45.2.303
– volume: 538
  start-page: 253
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b0765
  article-title: Mechanisms of intracortical I-wave facilitation elicited by paired-pulse magnetic stimulation in humans
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2001.013094
– volume: 33
  start-page: 953
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0020
  article-title: Long-term antalgic effects of repetitive transcranial magnetic stimulation of motor cortex and serum beta endorphin in patients with phantom pain
  publication-title: Neurol Res
  doi: 10.1179/1743132811Y.0000000045
– volume: 119
  start-page: 71
  year: 2008
  ident: 10.1016/j.clinph.2015.02.001_b0900
  article-title: Changes in motor cortical excitability induced by high-frequency repetitive transcranial magnetic stimulation of different stimulation durations
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.09.124
– volume: 31
  start-page: 246
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1040
  article-title: Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation
  publication-title: J Clin Neurophysiol.
  doi: 10.1097/WNP.0000000000000057
– volume: 803
  start-page: 1
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b2140
  article-title: Follow-up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(98)00505-8
– volume: 117
  start-page: 2584
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b0600
  article-title: A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.06.712
– volume: 125
  start-page: 396
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0095
  article-title: Assessement of quadriceps strength, endurance and fatigue in FSHD and CMT: benefits and limits of femoral nerve magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.08.001
– volume: 121
  start-page: 426
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1865
  article-title: Breaks during 5Hz rTMS are essential for facilitatory after effects
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.11.016
– volume: 51
  start-page: 1069
  year: 1988
  ident: 10.1016/j.clinph.2015.02.001_b2160
  article-title: Central motor and sensory conduction in adrenoleukomyeloneuropathy, cerebrotendinous xanthomatosis, HTLV-1-associated myelopathy and tabes dorsalis
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.51.8.1069
– volume: 17
  start-page: 345
  year: 1954
  ident: 10.1016/j.clinph.2015.02.001_b1585
  article-title: Single- and multiple-unit analysis of cortical stage of pyramidal tract activation
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1954.17.4.345
– volume: 11
  start-page: 2
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1925
  article-title: WFSBP guidelines on brain stimulation treatments in psychiatry
  publication-title: World J Biol Psychiatry
  doi: 10.3109/15622970903170835
– volume: 48
  start-page: 1398
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b0265
  article-title: Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation
  publication-title: Neurology
  doi: 10.1212/WNL.48.5.1398
– year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b2330
– volume: 117
  start-page: 392
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b2295
  article-title: Cervical nerve root stimulation. Part I: technical aspects and normal data
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.10.011
– volume: 593
  start-page: 14
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b1840
  article-title: Age-related changes of motor evoked potentials in healthy humans: noninvasive evaluation of central and peripheral motor tracts excitability and conductivity
  publication-title: Brain Res
  doi: 10.1016/0006-8993(92)91256-E
– volume: 112
  start-page: 1885
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b1045
  article-title: Pre-stimulation phase predicts the TMS-evoked response
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00390.2013
– volume: 471
  start-page: 501
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b1035
  article-title: Corticocortical inhibition in human motor cortex
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1993.sp019912
– volume: 5
  start-page: 697
  year: 1992
  ident: 10.1016/j.clinph.2015.02.001_b1845
  article-title: Central conduction studies and magnetic stimulation
  publication-title: Curr Opin Neurol Neurosurg
– volume: 356
  start-page: 87
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1685
  article-title: Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception in complex regional pain syndrome type I
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2003.11.037
– volume: 145
  start-page: 690
  year: 1989
  ident: 10.1016/j.clinph.2015.02.001_b2045
  article-title: Study of central motor pathways using cortical magnetic stimulation and spinal electrical stimulation: results in 20 normal subjects
  publication-title: Rev Neurol (Paris)
– volume: 115
  start-page: 112
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b0455
  article-title: Direct recording of the output of the motor cortex produced by transcranial magnetic stimulation in a patient with cerebral cortex atrophy
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00320-1
– volume: 37
  start-page: 1702
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1380
  article-title: Modelling non-invasive brain stimulation in cognitive neuroscience
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2013.06.014
– volume: 20
  start-page: 183
  year: 1987
  ident: 10.1016/j.clinph.2015.02.001_b1830
  article-title: Mechanisms of nervous propagation along central motor pathways: non invasive evaluation in healthy subjects and in patients with neurological disease
  publication-title: Neurosurgery
  doi: 10.1097/00006123-198701000-00035
– volume: 89
  start-page: 1256
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b0290
  article-title: Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00950.2002
– volume: 123
  start-page: 2319
  year: 2012
  ident: 10.1016/j.clinph.2015.02.001_b0090
  article-title: On relative frequency estimation of transcranial magnetic stimulation motor threshold
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.04.014
– volume: 78
  start-page: 849
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b2300
  article-title: Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2006.105056
– volume: 89
  start-page: 424
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b2345
  article-title: Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(93)90116-7
– volume: 20
  start-page: 100
  year: 1987
  ident: 10.1016/j.clinph.2015.02.001_b0110
  article-title: Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation
  publication-title: Neurosurgery
  doi: 10.1097/00006123-198701000-00024
– volume: 20
  start-page: 535
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b0300
  article-title: Interhemispheric differences of hand muscle representation in human motor cortex
  publication-title: Muscle Nerve
  doi: 10.1002/(SICI)1097-4598(199705)20:5<535::AID-MUS1>3.0.CO;2-A
– volume: 118
  start-page: 308
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b0885
  article-title: Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.09.023
– volume: 40
  start-page: 279
  year: 1976
  ident: 10.1016/j.clinph.2015.02.001_b1660
  article-title: Excitability of human motoneurones after discharge in a conditioning reflex
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(76)90151-6
– volume: 331
  start-page: 174
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1290
  article-title: A conduction block in sciatic nerves can be detected by magnetic motor root stimulation
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2013.06.005
– volume: 84
  start-page: 503
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b0685
  article-title: Study of central and peripheral motor conduction in normal subjects
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.1991.tb05003.x
– volume: 52
  start-page: 1025
  year: 1989
  ident: 10.1016/j.clinph.2015.02.001_b2175
  article-title: Magnetic stimulation over the spinal enlargements
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.52.9.1025
– volume: 118
  start-page: 1815
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b2055
  article-title: Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.05.062
– volume: 115
  start-page: 255
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b0450
  article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2003.10.009
– volume: 8
  start-page: 3537
  year: 1997
  ident: 10.1016/j.clinph.2015.02.001_b0860
  article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity
  publication-title: Neuroreport
  doi: 10.1097/00001756-199711100-00024
– volume: 40
  start-page: 1
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1105
  article-title: Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation
  publication-title: Neurophysiol Clin
  doi: 10.1016/j.neucli.2009.10.004
– volume: 13
  start-page: 472
  year: 2001
  ident: 10.1016/j.clinph.2015.02.001_b2025
  article-title: TMS produces two dissociable types of speech disruption
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0701
– volume: 30
  start-page: 913
  year: 2009
  ident: 10.1016/j.clinph.2015.02.001_b0175
  article-title: Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS–EEG
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2009.06864.x
– volume: 466
  start-page: 521
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b0875
  article-title: Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1993.sp019732
– volume: 8
  start-page: 200
  year: 1991
  ident: 10.1016/j.clinph.2015.02.001_b0050
  article-title: American Electroencephalographic Society guidelines for standard electrode position nomenclature
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-199104000-00007
– volume: 676
  start-page: 314
  year: 1995
  ident: 10.1016/j.clinph.2015.02.001_b1855
  article-title: Magnetic transcranial stimulation in healthy humans: influence on the behavior of upper limb motor units
  publication-title: Brain Res
  doi: 10.1016/0006-8993(95)00113-5
– volume: 67
  start-page: 1568
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b1090
  article-title: Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000242731.10074.3c
– volume: 527
  start-page: 633
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b1505
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: 151
  start-page: 427
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b0770
  article-title: Furhter evidence to support different mechanisms underlying intracortical inhibition of the motor cortex
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1455-z
– volume: 34
  start-page: 91
  year: 2004
  ident: 10.1016/j.clinph.2015.02.001_b1080
  article-title: Neuropathic pain controlled for more than a year by monthly sessions of repetitive transcranial magnetic stimulation of the motor cortex
  publication-title: Neurophysiol Clin
  doi: 10.1016/j.neucli.2004.02.001
– volume: 80
  start-page: 1746
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1480
  article-title: Increased motor cortical facilitation and decreased inhibition in Parkinson’s Disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182919029
– volume: 15
  start-page: 948
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b1765
  article-title: Studies in cognition: the problems solved and created by transcranial magnetic stimulation
  publication-title: J Cogn Neurosci
  doi: 10.1162/089892903770007344
– volume: 39
  start-page: 1485
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0260
  article-title: Task-dependent changes in late inhibitory and disinhibitory actions within the primary motor cortex in humans
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.12505
– volume: 124
  start-page: 1364
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1625
  article-title: Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.01.011
– volume: 37
  start-page: 1338
  year: 1974
  ident: 10.1016/j.clinph.2015.02.001_b0780
  article-title: Rank order of motoneurons within a pool: law of combination
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1974.37.6.1338
– volume: 11
  start-page: 701
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b0305
  article-title: Transcranial magnetic stimulation reveals an interhemispheric asymmetry of cortical inhibition in focal epilepsy
  publication-title: Neuroreport
  doi: 10.1097/00001756-200003200-00010
– volume: 9
  start-page: 527
  year: 2007
  ident: 10.1016/j.clinph.2015.02.001_b2310
  article-title: Noninvasive human brain stimulation
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.9.061206.133100
– volume: 546
  start-page: 605
  year: 2003
  ident: 10.1016/j.clinph.2015.02.001_b1675
  article-title: Age and sex differences in human motor cortex input–output characteristics
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2002.029454
– volume: 8
  start-page: e57069
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b1720
  article-title: Vegetative versus minimally conscious states: a study using TMS–EEG, sensory and event-related potentials
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057069
– volume: 859
  start-page: 137
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b2075
  article-title: Predominant activation of I1-waves from the leg motor area by transcranial magnetic stimulation
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(00)01975-2
– volume: 2
  start-page: 304
  year: 1984
  ident: 10.1016/j.clinph.2015.02.001_b0345
  article-title: Abnormalities in central motor pathway conduction in multiple sclerosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(84)92683-7
– volume: 509
  start-page: 607
  year: 1998
  ident: 10.1016/j.clinph.2015.02.001_b0760
  article-title: Paired-pulse magnetic stimulation of the motor cortex: differences among I waves
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1998.607bn.x
– volume: 122
  start-page: 2044
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b1940
  article-title: Inter individual variation in the efficient stimulation site for magnetic brainstem stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.03.025
– volume: 84
  start-page: 1161
  year: 2013
  ident: 10.1016/j.clinph.2015.02.001_b2305
  article-title: Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp-2012-304019
– volume: 89
  start-page: 335
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b0005
  article-title: Impairment of central motor conduction in diabetic patients
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(93)90073-X
– volume: 112
  start-page: 131
  year: 2010
  ident: 10.1016/j.clinph.2015.02.001_b1255
  article-title: Efferent and afferent evoked potentials in patients with adrenomyeloneuropathy
  publication-title: Clin Neurol Neurosurg
  doi: 10.1016/j.clineuro.2009.11.005
– volume: 27
  start-page: 486
  year: 2011
  ident: 10.1016/j.clinph.2015.02.001_b0180
  article-title: A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters
  publication-title: Clin J Pain
  doi: 10.1097/AJP.0b013e31820d2733
– volume: 123
  start-page: 992
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b0220
  article-title: The effects of a volatile anaesthetic on the excitability of human corticospinal axons
  publication-title: Brain
  doi: 10.1093/brain/123.5.992
– volume: 123
  start-page: 572
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b2005
  article-title: Induction of plasticity in the human motor cortex by paired associative stimulation
  publication-title: Brain
  doi: 10.1093/brain/123.3.572
– volume: 523
  start-page: 03
  year: 2000
  ident: 10.1016/j.clinph.2015.02.001_b2120
  article-title: Short latency inhibition of human hand motor cortex by somatosensory input from the hand
  publication-title: J Physiol (Lond)
  doi: 10.1111/j.1469-7793.2000.t01-1-00503.x
– volume: 34
  start-page: 464
  year: 2014
  ident: 10.1016/j.clinph.2015.02.001_b0340
  article-title: Randomized, proof-of-principle clinical trial of active transcranial magnetic stimulation in chronic migraine
  publication-title: Cephalalgia
  doi: 10.1177/0333102413515340
– volume: 43
  start-page: 186
  year: 1993
  ident: 10.1016/j.clinph.2015.02.001_b1745
  article-title: Cortical hyperexcitability in progressive myoclonus epilepsy: a study with transcranial magnetic stimulation
  publication-title: Neurology
  doi: 10.1212/WNL.43.1_Part_1.186
– volume: 113
  start-page: 317
  year: 2002
  ident: 10.1016/j.clinph.2015.02.001_b0595
  article-title: Electrophysiology of radiculopathies
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00018-4
– volume: 63
  start-page: 1347
  year: 1988
  ident: 10.1016/j.clinph.2015.02.001_b0990
  article-title: Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex
  publication-title: Arch Dis Child
  doi: 10.1136/adc.63.11.1347
– volume: 388
  start-page: 397
  year: 1987
  ident: 10.1016/j.clinph.2015.02.001_b0810
  article-title: Responses in small hand muscles from magnetic stimulation of the human brain
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1987.sp016621
– volume: 110
  start-page: 1842
  year: 1999
  ident: 10.1016/j.clinph.2015.02.001_b1640
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 572
  start-page: 857
  year: 2006
  ident: 10.1016/j.clinph.2015.02.001_b0125
  article-title: Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2006.104901
– volume: 36
  start-page: 618
  year: 1994
  ident: 10.1016/j.clinph.2015.02.001_b2205
  article-title: Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans
  publication-title: Ann Neurol
  doi: 10.1002/ana.410360410
SSID ssj0007042
Score 2.6718602
SecondaryResourceType review_article
Snippet •This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots.•The main physiological, theoretical and...
Highlights • This review is an up-date document on basic aspects of non-invasive stimulation of brain, spinal cord and nerve roots. • The main physiological,...
These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic...
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1071
SubjectTerms Advisory Committees
Animals
Brain - physiology
Clinical neurophysiology
Cognition Disorders - diagnosis
Cognition Disorders - physiopathology
Cognition Disorders - therapy
Deep Brain Stimulation - methods
Excitability threshold
Human cortex
Humans
Mental Disorders - diagnosis
Mental Disorders - physiopathology
Mental Disorders - therapy
Neurology
Non-invasive stimulation
Peripheral Nerves - physiology
Research Report
Spinal Cord - physiology
TMS measures
Transcranial magnetic stimulation
Transcranial Magnetic Stimulation - methods
Title Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245715000711
https://www.clinicalkey.es/playcontent/1-s2.0-S1388245715000711
https://www.ncbi.nlm.nih.gov/pubmed/25797650
https://www.proquest.com/docview/1694705308
https://pubmed.ncbi.nlm.nih.gov/PMC6350257
Volume 126
WOSCitedRecordID wos000353785000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: AIEXJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Zb9MwGMCtHQjBA-IalGMyEm9dorg57PBWygZDrJrGkPoWuYkDndq06qX9wfwhfD6TUtAAiZeocu1c_sX-Pvs7EHpdltCpMQ08EO0TL4pS5g07ndwjlJOyAHWs7BQq2QTt99lgkJ7v7N61vjDrMa0qdn2dzv5rV0MZdLZ0nf2L7nYnhQL4DZ0OR-h2OP5Rx_enlTeq1lzZpessNy4iwIR_raTXYhs-7IlJ3GWtBIZzruMJLGYqU1ZurN5BtF7qQM4yKLKKQjBuV9JQUlnTvYUL5e2ZXbM3NeW0WKxAlVdmjPMpPC9Is84NUxm1G5u_dmMP3ZeLlKuZXIUozHaGdoCBUejUP_F7ft-XQ9hktFyKzSgL9tQqQKdar9nYMLgAYWCk0le1z_0z361CrIx10jtX1DP-Khd1iXVh-eS_95vLJCSuzbn02t2W_44a7kMJT6RDZLv5QLvwG_CbozuoyqQhKRCTsHdrFtILIle-fKszueNFYh0YltSzrrOF_CxvQt4DiZXAB6r8fofGKQzR-93T48FHJ1jQQOWCcjdtPUGVueL2tX4naW1rUj8bBDckrMv76J5RjXBXI_0A7YjqIbp9Zow_HqHvTbJxTTYGmrAlGzfIxtMSA9lYkX2ENddYcn2EFdWqZU011lS_wYppXDOt6zmmMTCNDdPYMq3qWKZxk2ncrbBhGmumsWQaGmDLNHZMP0ZfTo4vex88k6TEy2OWLL1oyEAJICEnw5LQYTLkZUgIJ4xHCWECxPGEFJ00ZqWImCh4GhZpDmoGDwQjYRiHB2ivmlbiKcI0pSlIzyCyBzwq8oKXURQLzrhgSRwVooVC26FZbiL4y0Qy48yaal5lGoNMYpAFHWmx2kKeazXTEWxuqB9bVjL7CkGeyADuG9rRX7UTCzM2LjKSLaBmtgV8C72ySGYwuckdS16J6QpaJGlEQUwIWAs90Yi6ZwBZA1SpOIDrbsDrKsjA-Zv_VKNvKoA-KFmg6tFn__ikz9GdeoR5gfaW85V4iW7l6-VoMT9Eu3TADs23-wPVwkUV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+electrical+and+magnetic+stimulation+of+the+brain%2C+spinal+cord%2C+roots+and+peripheral+nerves%3A+Basic+principles+and+procedures+for+routine+clinical+and+research+application.+An+updated+report+from+an+I.F.C.N.+Committee&rft.jtitle=Clinical+neurophysiology&rft.au=Rossini%2C+P.M.&rft.au=Burke%2C+D.&rft.au=Chen%2C+R.&rft.au=Cohen%2C+L.G.&rft.date=2015-06-01&rft.pub=Elsevier+B.V&rft.issn=1388-2457&rft.volume=126&rft.issue=6&rft.spage=1071&rft.epage=1107&rft_id=info:doi/10.1016%2Fj.clinph.2015.02.001&rft.externalDocID=S1388245715000711
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245715X00058%2Fcov150h.gif