TECPR1 conjugates LC3 to damaged endomembranes upon detection of sphingomyelin exposure

Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The EMBO journal Ročník 42; číslo 17; s. e113012 - n/a
Hlavní autori: Boyle, Keith B, Ellison, Cara J, Elliott, Paul R, Schuschnig, Martina, Grimes, Krista, Dionne, Marc S, Sasakawa, Chihiro, Munro, Sean, Martens, Sascha, Randow, Felix
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 04.09.2023
Springer Nature B.V
John Wiley and Sons Inc
Predmet:
ISSN:0261-4189, 1460-2075, 1460-2075
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases. Synopsis Upon damage to bacteria‐containing vacuoles sphingomyelin transits from the luminal to the cytosolic face of the membrane. Here we show that TECPR1 detects cytosolically exposed sphingomyelin and directs conjugation of the autophagy effector protein LC3 to those membranes. TECPR1 is a novel danger receptor that detects sphingomyelin exposed on the cytosolic face of damaged membranes. The N‐terminal DysF domain of TECPR1 binds sphingomyelin and recruits TECPR1 to damaged membranes. TECPR1 recruits ATG5 to sphingomyelin‐positive membranes. The TECPR1‐ATG5‐ATG12 complex is a sphingomyelin‐activated E3 ligase catalyzing the lipid conjugation of LC3. Graphical Abstract TECPR1 detects cytosolically‐exposed sphingomyelin and recruits ATG5/ATG12‐E3 ligase to damaged membranes to mediate lipid conjugation of LC3 independently of ATG16L.
AbstractList Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases.Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases.
Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases. Synopsis Upon damage to bacteria‐containing vacuoles sphingomyelin transits from the luminal to the cytosolic face of the membrane. Here we show that TECPR1 detects cytosolically exposed sphingomyelin and directs conjugation of the autophagy effector protein LC3 to those membranes. TECPR1 is a novel danger receptor that detects sphingomyelin exposed on the cytosolic face of damaged membranes. The N‐terminal DysF domain of TECPR1 binds sphingomyelin and recruits TECPR1 to damaged membranes. TECPR1 recruits ATG5 to sphingomyelin‐positive membranes. The TECPR1‐ATG5‐ATG12 complex is a sphingomyelin‐activated E3 ligase catalyzing the lipid conjugation of LC3. TECPR1 detects cytosolically‐exposed sphingomyelin and recruits ATG5/ATG12‐E3 ligase to damaged membranes to mediate lipid conjugation of LC3 independently of ATG16L.
Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases.
Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases. image Upon damage to bacteria‐containing vacuoles sphingomyelin transits from the luminal to the cytosolic face of the membrane. Here we show that TECPR1 detects cytosolically exposed sphingomyelin and directs conjugation of the autophagy effector protein LC3 to those membranes. TECPR1 is a novel danger receptor that detects sphingomyelin exposed on the cytosolic face of damaged membranes. The N‐terminal DysF domain of TECPR1 binds sphingomyelin and recruits TECPR1 to damaged membranes. TECPR1 recruits ATG5 to sphingomyelin‐positive membranes. The TECPR1‐ATG5‐ATG12 complex is a sphingomyelin‐activated E3 ligase catalyzing the lipid conjugation of LC3.
Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases. Synopsis Upon damage to bacteria‐containing vacuoles sphingomyelin transits from the luminal to the cytosolic face of the membrane. Here we show that TECPR1 detects cytosolically exposed sphingomyelin and directs conjugation of the autophagy effector protein LC3 to those membranes. TECPR1 is a novel danger receptor that detects sphingomyelin exposed on the cytosolic face of damaged membranes. The N‐terminal DysF domain of TECPR1 binds sphingomyelin and recruits TECPR1 to damaged membranes. TECPR1 recruits ATG5 to sphingomyelin‐positive membranes. The TECPR1‐ATG5‐ATG12 complex is a sphingomyelin‐activated E3 ligase catalyzing the lipid conjugation of LC3. Graphical Abstract TECPR1 detects cytosolically‐exposed sphingomyelin and recruits ATG5/ATG12‐E3 ligase to damaged membranes to mediate lipid conjugation of LC3 independently of ATG16L.
Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases. TECPR1 detects cytosolically‐exposed sphingomyelin and recruits ATG5/ATG12‐E3 ligase to damaged membranes to mediate lipid conjugation of LC3 independently of ATG16L.
Author Randow, Felix
Boyle, Keith B
Grimes, Krista
Sasakawa, Chihiro
Ellison, Cara J
Dionne, Marc S
Munro, Sean
Elliott, Paul R
Schuschnig, Martina
Martens, Sascha
AuthorAffiliation 6 Center for Molecular Biology, Department of Biochemistry and Cell Biology University of Vienna Vienna Austria
8 Present address: Department of Biochemistry University of Oxford Oxford UK
2 Max Perutz Labs, Vienna BioCenter (VBC) University of Vienna Vienna Austria
7 Department of Medicine, Addenbrooke's Hospital University of Cambridge Cambridge UK
5 Nippon Institute for Biological Science Ome Japan
4 Medical Mycology Research Center Chiba University Chiba Japan
1 Division of Protein and Nucleic Acid Chemistry MRC Laboratory of Molecular Biology Cambridge UK
3 MRC Centre for Molecular Bacteriology and Infection Imperial College London London UK
AuthorAffiliation_xml – name: 8 Present address: Department of Biochemistry University of Oxford Oxford UK
– name: 4 Medical Mycology Research Center Chiba University Chiba Japan
– name: 6 Center for Molecular Biology, Department of Biochemistry and Cell Biology University of Vienna Vienna Austria
– name: 3 MRC Centre for Molecular Bacteriology and Infection Imperial College London London UK
– name: 7 Department of Medicine, Addenbrooke's Hospital University of Cambridge Cambridge UK
– name: 1 Division of Protein and Nucleic Acid Chemistry MRC Laboratory of Molecular Biology Cambridge UK
– name: 2 Max Perutz Labs, Vienna BioCenter (VBC) University of Vienna Vienna Austria
– name: 5 Nippon Institute for Biological Science Ome Japan
Author_xml – sequence: 1
  givenname: Keith B
  orcidid: 0000-0002-0745-3964
  surname: Boyle
  fullname: Boyle, Keith B
  email: kboyle@mrc-lmb.cam.ac.uk
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology
– sequence: 2
  givenname: Cara J
  surname: Ellison
  fullname: Ellison, Cara J
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Department of Biochemistry, University of Oxford
– sequence: 3
  givenname: Paul R
  surname: Elliott
  fullname: Elliott, Paul R
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Department of Biochemistry, University of Oxford
– sequence: 4
  givenname: Martina
  surname: Schuschnig
  fullname: Schuschnig, Martina
  organization: Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna
– sequence: 5
  givenname: Krista
  surname: Grimes
  fullname: Grimes, Krista
  organization: MRC Centre for Molecular Bacteriology and Infection, Imperial College London
– sequence: 6
  givenname: Marc S
  orcidid: 0000-0002-8283-1750
  surname: Dionne
  fullname: Dionne, Marc S
  organization: MRC Centre for Molecular Bacteriology and Infection, Imperial College London
– sequence: 7
  givenname: Chihiro
  surname: Sasakawa
  fullname: Sasakawa, Chihiro
  organization: Medical Mycology Research Center, Chiba University, Nippon Institute for Biological Science
– sequence: 8
  givenname: Sean
  orcidid: 0000-0001-6160-5773
  surname: Munro
  fullname: Munro, Sean
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology
– sequence: 9
  givenname: Sascha
  orcidid: 0000-0003-3786-8199
  surname: Martens
  fullname: Martens, Sascha
  organization: Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna
– sequence: 10
  givenname: Felix
  orcidid: 0000-0003-0694-5315
  surname: Randow
  fullname: Randow, Felix
  email: randow@mrc-lmb.cam.ac.uk
  organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37409490$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVAR3RbunFAkLly2jB3HTiQkBKvlS4tAqIij5TiT1KvEDnYC7L_Hy5aWVgJOtjTvY968E3LkvENCHlI4owUr2FMc6u0ZA8YozYGyO2RBuYAlA1kckQUwQZecltUxOYlxCwBFKek9cpxLDhWvYEG-nK9XHz_RzHi3nTs9Ycw2qzybfNboQXfYZOgaPySfoF0azqN3WYMTmsmmn2-zOF5Y1_lhh711Gf4YfZwD3id3W91HfHD5npLPr9bnqzfLzYfXb1cvNktTlIItdZWLWjAJpTZG1kALWdGWVYZhk7cpmGSmrBAKKZgGKhtdi4bnuua64Fjq_JQ8P-iOcz1gY9BNQfdqDHbQYae8turmxNkL1flvigKXgkqWFJ5cKgT_dcY4qcFGg32f8vo5KlbmPF2OM5Ggj29Bt34OLuVLKAGsAsr3go_-XOlql99HTwA4AEzwMQZsryAU1K9e1b5Xdd1roohbFGMnva8ghbL9v4jPDsTvtsfdf43U-v3Ldzfo9ECPiek6DNeJ_2r5Exszx_E
CitedBy_id crossref_primary_10_1016_j_jmb_2024_168532
crossref_primary_10_1038_s41556_023_01329_z
crossref_primary_10_1146_annurev_biochem_030222_102505
crossref_primary_10_1016_j_tcb_2025_02_007
crossref_primary_10_1097_HEP_0000000000001000
crossref_primary_10_1038_s41594_025_01530_8
crossref_primary_10_15252_embr_202356841
crossref_primary_10_15252_embj_2022113105
crossref_primary_10_1016_j_bbrc_2025_151384
crossref_primary_10_1007_s00109_023_02411_7
crossref_primary_10_3389_fcell_2025_1559125
crossref_primary_10_1038_s41594_025_01581_x
crossref_primary_10_1080_27694127_2025_2542904
crossref_primary_10_1242_jcs_260891
crossref_primary_10_1038_s41580_025_00873_w
crossref_primary_10_1083_jcb_202503166
crossref_primary_10_1016_j_chembiol_2025_02_003
crossref_primary_10_1038_s44318_025_00543_9
crossref_primary_10_1080_15548627_2025_2469206
crossref_primary_10_15252_embr_202357300
crossref_primary_10_3389_fcell_2025_1518991
crossref_primary_10_1083_jcb_202409039
crossref_primary_10_7554_eLife_100928
crossref_primary_10_1242_jcs_261031
crossref_primary_10_15252_embj_2023115210
crossref_primary_10_1073_pnas_2317680121
crossref_primary_10_1002_jcp_70044
crossref_primary_10_1126_sciadv_adt3311
crossref_primary_10_3389_fcell_2025_1532050
crossref_primary_10_1080_27694127_2025_2476218
crossref_primary_10_1038_s44318_024_00292_1
crossref_primary_10_1083_jcb_202310150
crossref_primary_10_7554_eLife_100928_3
Cites_doi 10.15252/embj.2022113105
10.1107/S0907444909047374
10.1091/mbc.e07-12-1257
10.1186/s12915-021-00972-y
10.1038/ni.1800
10.1038/s41467-020-16689-5
10.1007/978-1-4939-8873-0_45
10.1126/science.1233028
10.1038/s41590-020-00824-x
10.1016/j.tim.2014.01.003
10.1073/pnas.1520699113
10.1002/humu.24036
10.1107/S0907444910007493
10.1186/1472-6807-14-3
10.1038/ncb3192
10.1016/j.molcel.2014.05.021
10.1074/jbc.M117.809293
10.4161/15548627.2014.984277
10.1016/j.mam.2021.100987
10.1016/j.molcel.2015.09.010
10.15252/embj.2020106922
10.1083/jcb.201912098
10.1107/S0907444909052925
10.1038/emboj.2013.8
10.1371/journal.ppat.1007959
10.1016/j.celrep.2021.109899
10.1091/mbc.e10-11-0893
10.1038/s41577-019-0215-7
10.1083/jcb.202105112
10.1371/journal.pone.0270188
10.1111/cge.14216
10.3390/cells9030534
10.1016/j.cell.2019.05.056
10.1038/nature21032
10.1016/j.tibs.2021.01.004
10.1016/j.cub.2017.12.034
10.1016/j.cub.2020.05.083
10.1016/j.jmb.2008.04.046
10.1016/j.jmii.2019.09.005
10.1083/jcb.202009128
10.1038/nature10744
10.1016/j.ejpn.2015.10.003
10.1016/j.cell.2019.06.007
10.1111/cmi.12558
10.1107/S0907444913000061
10.1038/317262a0
10.1111/j.1462-5822.2009.01415.x
10.1016/j.chom.2011.04.010
10.4161/15548627.2014.984276
10.1016/j.molcel.2019.01.041
10.1016/0092-8674(87)90335-7
10.1016/j.chom.2009.07.005
10.1107/S0021889807021206
10.1146/annurev-cellbio-092910-154005
10.1038/s41467-022-29481-4
10.1038/nri.2016.100
10.1016/j.molcel.2011.12.036
ContentType Journal Article
Copyright MRC Laboratory of Molecular Biology and The Author(s) 2023
2023 MRC Laboratory of Molecular Biology and The Authors. Published under the terms of the CC BY 4.0 license.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: MRC Laboratory of Molecular Biology and The Author(s) 2023
– notice: 2023 MRC Laboratory of Molecular Biology and The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.2022113012
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Keith B. Boyle et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC10476172
37409490
10_15252_embj_2022113012
EMBJ2022113012
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust (WT)
  grantid: 222503/Z/21/Z
  funderid: 10.13039/100010269
– fundername: UKRI | Medical Research Council (MRC)
  grantid: U105170648
– fundername: UKRI | Medical Research Council (MRC)
  funderid: U105170648
– fundername: Wellcome Trust (WT)
  funderid: 222503/Z/21/Z
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MC_U105170648
– fundername: Austrian Science Fund FWF
  grantid: W 1261
– fundername: Medical Research Council
  grantid: MC_U105178783
– fundername: ;
  grantid: 222503/Z/21/Z
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
AAMMB
AASML
AAYXX
ABZEH
AEFGJ
AGXDD
AIDQK
AIDYY
AJAOE
CITATION
NAO
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
ESTFP
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5862-a936b62708acc7b015791f29c2ed3f20272c89e05762a017dab6d43ab4a54e8a3
IEDL.DBID 24P
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022705600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0261-4189
1460-2075
IngestDate Tue Sep 30 17:12:41 EDT 2025
Sun Nov 23 09:46:09 EST 2025
Mon Oct 06 18:13:03 EDT 2025
Mon Jul 21 06:07:09 EDT 2025
Tue Nov 18 22:28:36 EST 2025
Sat Nov 29 03:03:11 EST 2025
Wed Jan 22 16:16:48 EST 2025
Fri Feb 21 02:36:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords DysF
sphingomyelin
autophagy
membrane damage
ATG5‐ATG12 E3 ligase
ATG5-ATG12 E3 ligase
Language English
License Attribution
2023 MRC Laboratory of Molecular Biology and The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5862-a936b62708acc7b015791f29c2ed3f20272c89e05762a017dab6d43ab4a54e8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0745-3964
0000-0001-6160-5773
0000-0003-0694-5315
0000-0003-3786-8199
0000-0002-8283-1750
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022113012
PMID 37409490
PQID 2860290142
PQPubID 35985
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10476172
proquest_miscellaneous_2834000426
proquest_journals_2860290142
pubmed_primary_37409490
crossref_primary_10_15252_embj_2022113012
crossref_citationtrail_10_15252_embj_2022113012
wiley_primary_10_15252_embj_2022113012_EMBJ2022113012
springer_journals_10_15252_embj_2022113012
PublicationCentury 2000
PublicationDate 4 September 2023
PublicationDateYYYYMMDD 2023-09-04
PublicationDate_xml – month: 09
  year: 2023
  text: 4 September 2023
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Chen, Fan, Lu, Ding, Chen, Zhong (CR10) 2012; 45
Cadwell (CR8) 2016; 16
Dupont, Lacas‐Gervais, Bertout, Paz, Freche, Nhieu, van der Goot, Sansonetti, Lafont (CR15) 2009; 6
Wetzel, Blanchard, Rama, Beier, Kaufmann, Wollert (CR58) 2020; 11
Schaible, Haas (CR49) 2019
Martinez, Malireddi, Lu, Cunha, Pelletier, Gingras, Orchard, Guan, Tan, Peng (CR38) 2015; 17
Gong, Liu, Jiang, Zhou (CR25) 2020; 20
Ivanova, Smirnikhina, Lavrov (CR31) 2022; 102
Ogawa, Yoshikawa, Kobayashi, Mimuro, Fukumatsu, Kiga, Piao, Ashida, Yoshida, Kakuta (CR44) 2011; 9
Ravenhill, Boyle, von Muhlinen, Ellison, Masson, Otten, Foeglein, Williams, Randow (CR48) 2019; 74
Florey, Gammoh, Kim, Jiang, Overholtzer (CR21) 2014; 11
Nieto‐Torres, Leidal, Debnath, Hansen (CR43) 2021; 46
Kabsch (CR33) 2010; 66
Münz (CR41) 2021; 82
Isberg, Voorhis, Falkow (CR30) 1987; 50
Fujita, Itoh, Omori, Fukuda, Noda, Yoshimori (CR24) 2008; 19
Falcon, Noad, McMahon, Randow, Goedert (CR19) 2018; 293
Heckmann, Teubner, Tummers, Boada‐Romero, Harris, Yang, Guy, Zakharenko, Green (CR26) 2019; 178
Heimer, Oz‐Levi, Eyal, Edvardson, Nissenkorn, Ruzzo, Szeinberg, Maayan, Mai‐Zahav, Efrati (CR27) 2016; 20
Isberg, Falkow (CR29) 1985; 317
Domingues, Ismail, Charro, Rodríguez-Escudero, Holden, Molina, Cid, Mota (CR11) 2016; 18
Hooper, Jacquin, Li, Goodwin, Brumell, Durgan, Florey (CR28) 2022; 221
Wang, Lin, Chang, Urbina, Assavalapsakul, Thitithanyanont, Chen, Liu, Wang (CR57) 2020; 53
Lau, Haeberle, O'Keeffe, Latomanski, Celli, Newton, Knodler (CR37) 2019; 15
Izumi, Takahashi, Suzuki, Niihori, Ono, Nakamura, Katada, Kato, Warita, Tateyama (CR32) 2020; 41
Bulankina, Thoms (CR7) 2020; 9
Fredlund, Enninga (CR23) 2014; 22
Canton, Blees, Henry, Buck, Schulz, Rogers, Childs, Zelenay, Rhys, Domart (CR9) 2021; 22
Xu, Zhou, Cheng, Lu, Nowak, Hopp, Li, Shi, Zhou, Gao (CR59) 2019; 178
Zhen, Radulovic, Vietri, Stenmark (CR60) 2021; 40
Ellison, Kukulski, Boyle, Munro, Randow (CR16) 2020; 30
Niekamp, Scharte, Sokoya, Vittadello, Kim, Deng, Südhoff, Hilderink, Imlau, Clarke (CR42) 2022; 13
Fischer, Wang, Padman, Lazarou, Youle (CR20) 2020; 219
Kim, Hong, Lee, Han, Roh, Lee, Kim, Choi, Song (CR36) 2014; 11
Randow, MacMicking, James (CR47) 2013; 340
Kaur, de la Ballina, Haukaas, Torgersen, Radulovic, Munson, Sabirsh, Stenmark, Simonsen, Carlsson (CR35) 2023
Thurston, Wandel, von Muhlinen, Foeglein, Randow (CR55) 2012; 482
Fracchiolla, Chang, Hurley, Martens (CR22) 2020; 219
Emsley, Lohkamp, Scott, Cowtan (CR17) 2010; 66
CR53
Andrews, Corrotte (CR3) 2018; 28
Kageyama, Omori, Saitoh, Sone, Guan, Akira, Imamoto, Noda, Yoshimori (CR34) 2011; 22
Dominguez, McCord, Sutton (CR12) 2022; 17
Staring, von Castelmur, Blomen, van den Hengel, Brockmann, Baggen, Thibaut, Nieuwenhuis, Janssen, van Kuppeveld (CR51) 2017; 541
Du, Reeves, Klein, Twedt, Knodler, Lesser (CR14) 2016; 113
Stadel, Millarte, Tillmann, Huber, Tamin‐Yecheskel, Akutsu, Demishtein, Ben‐Zeev, Anikster, Perez (CR50) 2015; 60
Ammendolia, Bement, Brumell (CR2) 2021; 19
Boyle, Randow (CR6) 2019; 1880
Paz, Sachse, Dupont, Mounier, Cederfur, Enninga, Leffler, Poirier, Prevost, Lafont (CR46) 2010; 12
Sula, Cole, Yeats, Orengo, Keep (CR52) 2014; 14
Ulferts, Marcassa, Timimi, Lee, Daley, Montaner, Turner, Florey, Baillie, Beale (CR56) 2021; 37
Mizushima, Yoshimori, Ohsumi (CR40) 2011; 27
Evans, Murshudov (CR18) 2013; 69
Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse‐Kunstleve (CR1) 2010; 66
Thurston, Ryzhakov, Bloor, von Muhlinen, Randow (CR54) 2009; 10
Dooley, Razi, Polson, Girardin, Wilson, Tooze (CR13) 2018; 55
Bento, Renna, Ghislat, Puri, Ashkenazi, Vicinanza, Menzies, Rubinsztein (CR4) 2015; 85
Boada‐Romero, Letek, Fleischer, Pallauf, Ramón‐Barros, Pimentel‐Muiños (CR5) 2013; 32
McCoy, Grosse‐Kunstleve, Adams, Winn, Storoni, Read (CR39) 2007; 40
Patel, Harris, Geddes, Strehle, Watson, Bashir, Bushby, Driscoll, Keep (CR45) 2008; 379
2010; 12
2012; 482
2013; 69
2021; 22
2020; 20
2019; 15
2020; 11
2019; 1880
2014; 22
2014a; 14
2010; 66
2021; 37
2009; 10
2018; 293
2020; 53
2015; 85
2020; 9
2016; 113
2011; 22
2011; 27
2021; 82
2021; 40
2020; 219
2014; 11
2021; 46
2018; 28
2015; 17
1987; 50
2020; 41
2019; 74
2008; 19
2013; 340
2016; 18
2016; 16
2011; 9
2022; 221
2023
2015; 60
2013; 32
2020; 30
2021; 19
2016; 20
2022; 13
2019
2009; 6
2008; 379
2007; 40
2014b
1985; 317
2018; 55
2017; 541
2012; 45
2022; 17
2019; 178
2022; 102
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Bento CF (e_1_2_9_5_1) 2015; 85
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Schaible UE (e_1_2_9_50_1) 2019
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
37638605 - EMBO J. 2023 Oct 4;42(19):e115210. doi: 10.15252/embj.2023115210.
References_xml – volume: 50
  start-page: 769
  year: 1987
  end-page: 778
  ident: CR30
  article-title: Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells
  publication-title: Cell
– volume: 113
  start-page: 4794
  year: 2016
  end-page: 4799
  ident: CR14
  article-title: The type III secretion system apparatus determines the intracellular niche of bacterial pathogens
  publication-title: Proc Natl Acad Sci USA
– volume: 46
  start-page: 673
  year: 2021
  end-page: 686
  ident: CR43
  article-title: Beyond autophagy: the expanding roles of ATG8 proteins
  publication-title: Trends Biochem Sci
– volume: 85
  start-page: 1
  year: 2015
  end-page: 29
  ident: CR4
  article-title: Mammalian autophagy: how does it work?
  publication-title: Annu Rev Biochem
– volume: 379
  start-page: 981
  year: 2008
  end-page: 990
  ident: CR45
  article-title: Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2B
  publication-title: J Mol Biol
– volume: 27
  start-page: 107
  year: 2011
  end-page: 132
  ident: CR40
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Cell Dev Biol
– year: 2023
  ident: CR35
  article-title: TECPR1 is activated by damage-induced sphingomyelin exposure to mediate noncanonical autophagy
  publication-title: EMBOJ
  doi: 10.15252/embj.2022113105
– volume: 11
  start-page: 88
  year: 2014
  end-page: 99
  ident: CR21
  article-title: V‐ATPase and osmotic imbalances activate endolysosomal LC3 lipidation
  publication-title: Autophagy
– volume: 11
  start-page: 2993
  year: 2020
  ident: CR58
  article-title: TECPR1 promotes aggrephagy by direct recruitment of LC3C autophagosomes to lysosomes
  publication-title: Nat Commun
– volume: 28
  start-page: R392
  year: 2018
  end-page: R397
  ident: CR3
  article-title: Plasma membrane repair
  publication-title: Curr Biol
– volume: 41
  start-page: 1540
  year: 2020
  end-page: 1554
  ident: CR32
  article-title: The genetic profile of dysferlinopathy in a cohort of 209 cases: genotype–phenotype relationship and a hotspot on the inner DysF domain
  publication-title: Hum Mutat
– volume: 12
  start-page: 530
  year: 2010
  end-page: 544
  ident: CR46
  article-title: Galectin‐3, a marker for vacuole lysis by invasive pathogens
  publication-title: Cell Microbiol
– volume: 102
  start-page: 465
  year: 2022
  end-page: 473
  ident: CR31
  article-title: Dysferlinopathies: clinical and genetic variability
  publication-title: Clin Genet
– volume: 219
  year: 2020
  ident: CR20
  article-title: STING induces LC3B lipidation onto single‐membrane vesicles via the V‐ATPase and ATG16L1‐WD40 domain
  publication-title: J Cell Biol
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: CR1
  article-title: PHENIX: a comprehensive python‐based system for macromolecular structure solution
  publication-title: Acta Crystallogr Sect D Biological Crystallogr
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: CR39
  article-title: Phaser crystallographic software
  publication-title: J Appl Cryst
– volume: 22
  start-page: 140
  year: 2021
  end-page: 153
  ident: CR9
  article-title: The receptor DNGR‐1 signals for phagosomal rupture to promote cross‐presentation of dead‐cell‐associated antigens
  publication-title: Nat Immunol
– volume: 22
  start-page: 128
  year: 2014
  end-page: 137
  ident: CR23
  article-title: Cytoplasmic access by intracellular bacterial pathogens
  publication-title: Trends Microbiol
– volume: 9
  start-page: 376
  year: 2011
  end-page: 389
  ident: CR44
  article-title: A Tecpr1‐dependent selective autophagy pathway targets bacterial pathogens
  publication-title: Cell Host Microbe
– volume: 13
  start-page: 1875
  year: 2022
  ident: CR42
  article-title: Ca2 −activated sphingomyelin scrambling and turnover mediate ESCRT‐independent lysosomal repair
  publication-title: Nat Commun
– volume: 10
  start-page: 1215
  year: 2009
  end-page: 1221
  ident: CR54
  article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin‐coated bacteria
  publication-title: Nat Immunol
– volume: 482
  start-page: 414
  year: 2012
  end-page: 418
  ident: CR55
  article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
  publication-title: Nature
– volume: 11
  start-page: 75
  year: 2014
  end-page: 87
  ident: CR36
  article-title: Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners
  publication-title: Autophagy
– volume: 45
  start-page: 629
  year: 2012
  end-page: 641
  ident: CR10
  article-title: A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12‐Atg5 conjugate
  publication-title: Mol Cell
– volume: 40
  year: 2021
  ident: CR60
  article-title: Sealing holes in cellular membranes
  publication-title: EMBO J
– volume: 1880
  start-page: 679
  year: 2019
  end-page: 690
  ident: CR6
  article-title: Autophagy, methods and protocols
  publication-title: Methods Mol Biology
– volume: 20
  start-page: 95
  year: 2020
  end-page: 112
  ident: CR25
  article-title: DAMP‐sensing receptors in sterile inflammation and inflammatory diseases
  publication-title: Nat Rev Immunol
– volume: 178
  start-page: 552
  year: 2019
  end-page: 566.e20
  ident: CR59
  article-title: A bacterial effector reveals the V‐ATPase‐ATG16L1 axis that initiates xenophagy
  publication-title: Cell
– volume: 17
  year: 2022
  ident: CR12
  article-title: Redefining the architecture of ferlin proteins: insights into multi‐domain protein structure and function
  publication-title: PLoS One
– volume: 55
  start-page: 238
  year: 2018
  end-page: 252
  ident: CR13
  article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12‐5‐16L1
  publication-title: Mol Cell
– volume: 541
  start-page: 412
  year: 2017
  end-page: 416
  ident: CR51
  article-title: PLA2G16 represents a switch between entry and clearance of Picornaviridae
  publication-title: Nature
– volume: 340
  start-page: 701
  year: 2013
  end-page: 706
  ident: CR47
  article-title: Cellular self‐defense: how cell‐autonomous immunity protects against pathogens
  publication-title: Science
– volume: 14
  year: 2014
  ident: CR52
  article-title: Crystal structures of the human Dysferlin inner DysF domain
  publication-title: BMC Struct Biol
– volume: 22
  start-page: 2290
  year: 2011
  end-page: 2300
  ident: CR34
  article-title: The LC3 recruitment mechanism is separate from Atg9L1‐dependent membrane formation in the autophagic response against salmonella
  publication-title: Mol Biol Cell
– volume: 19
  start-page: 71
  year: 2021
  ident: CR2
  article-title: Plasma membrane integrity: implications for health and disease
  publication-title: BMC Biol
– ident: CR53
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: CR17
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 74
  start-page: 320
  year: 2019
  end-page: 329
  ident: CR48
  article-title: The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol‐invading bacteria
  publication-title: Mol Cell
– volume: 9
  start-page: 534
  year: 2020
  ident: CR7
  article-title: Functions of vertebrate Ferlins
  publication-title: Cells
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  ident: CR18
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 317
  start-page: 262
  year: 1985
  end-page: 264
  ident: CR29
  article-title: A single genetic locus encoded by permits invasion of cultured animal cells by K‐12
  publication-title: Nature
– volume: 219
  year: 2020
  ident: CR22
  article-title: A PI3K‐WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy
  publication-title: J Cell Biol
– volume: 37
  year: 2021
  ident: CR56
  article-title: Subtractive CRISPR screen identifies the ATG16L1/vacuolar ATPase axis as required for non‐canonical LC3 lipidation
  publication-title: Cell Rep
– volume: 293
  start-page: 2438
  year: 2018
  end-page: 2451
  ident: CR19
  article-title: Galectin‐8–mediated selective autophagy protects against seeded tau aggregation
  publication-title: J Biol Chem
– volume: 82
  year: 2021
  ident: CR41
  article-title: Non‐canonical functions of autophagy proteins in immunity and infection
  publication-title: Mol Aspects Med
– volume: 60
  start-page: 89
  year: 2015
  end-page: 104
  ident: CR50
  article-title: TECPR2 cooperates with LC3C to regulate COPII‐dependent ER export
  publication-title: Mol Cell
– volume: 18
  start-page: 949
  year: 2016
  end-page: 969
  ident: CR11
  article-title: The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells
  publication-title: Cell Microbiol
– volume: 19
  start-page: 2092
  year: 2008
  end-page: 2100
  ident: CR24
  article-title: The Atg16L complex specifies the site of LC3 Lipidation for membrane biogenesis in autophagy
  publication-title: Mol Biol Cell
– volume: 17
  start-page: 893
  year: 2015
  end-page: 906
  ident: CR38
  article-title: Molecular characterization of LC3‐associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
  publication-title: Nat Cell Biol
– volume: 16
  start-page: 661
  year: 2016
  end-page: 675
  ident: CR8
  article-title: Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis
  publication-title: Nat Rev Immunol
– volume: 53
  start-page: 925
  year: 2020
  end-page: 935
  ident: CR57
  article-title: The role of galectins in virus infection – a systemic literature review
  publication-title: J Microbiol Immunol Infect
– volume: 20
  start-page: 69
  year: 2016
  end-page: 79
  ident: CR27
  article-title: TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability
  publication-title: Eur J Paediatr Neurol
– volume: 6
  start-page: 137
  year: 2009
  end-page: 149
  ident: CR15
  article-title: Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
  publication-title: Cell Host Microbe
– volume: 178
  start-page: 536
  year: 2019
  end-page: 551
  ident: CR26
  article-title: LC3‐associated endocytosis facilitates β‐amyloid clearance and mitigates neurodegeneration in murine Alzheimer's disease
  publication-title: Cell
– volume: 221
  year: 2022
  ident: CR28
  article-title: V‐ATPase is a universal regulator of LC3‐associated phagocytosis and non‐canonical autophagy
  publication-title: J Cell Biol
– volume: 32
  start-page: 566
  year: 2013
  end-page: 582
  ident: CR5
  article-title: TMEM59 defines a novel ATG16L1‐binding motif that promotes local activation of LC3
  publication-title: EMBO J
– year: 2019
  ident: CR49
  publication-title: Intracellular niches of microbes
– volume: 30
  start-page: 2974
  year: 2020
  end-page: 2983
  ident: CR16
  article-title: Transbilayer movement of sphingomyelin precedes catastrophic breakage of Enterobacteria‐containing vacuoles
  publication-title: Curr Biol
– volume: 66
  start-page: 133
  year: 2010
  end-page: 144
  ident: CR33
  article-title: Integration, scaling, space‐group assignment and post‐refinement
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 15
  year: 2019
  ident: CR37
  article-title: SopF, a phosphoinositide binding effector, promotes the stability of the nascent salmonella‐containing vacuole
  publication-title: PLoS Pathog
– volume: 221
  year: 2022
  article-title: V‐ATPase is a universal regulator of LC3‐associated phagocytosis and non‐canonical autophagy
  publication-title: J Cell Biol
– volume: 102
  start-page: 465
  year: 2022
  end-page: 473
  article-title: Dysferlinopathies: clinical and genetic variability
  publication-title: Clin Genet
– volume: 46
  start-page: 673
  year: 2021
  end-page: 686
  article-title: Beyond autophagy: the expanding roles of ATG8 proteins
  publication-title: Trends Biochem Sci
– volume: 66
  start-page: 133
  year: 2010
  end-page: 144
  article-title: Integration, scaling, space‐group assignment and post‐refinement
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 379
  start-page: 981
  year: 2008
  end-page: 990
  article-title: Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2B
  publication-title: J Mol Biol
– volume: 60
  start-page: 89
  year: 2015
  end-page: 104
  article-title: TECPR2 cooperates with LC3C to regulate COPII‐dependent ER export
  publication-title: Mol Cell
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  article-title: Phaser crystallographic software
  publication-title: J Appl Cryst
– volume: 27
  start-page: 107
  year: 2011
  end-page: 132
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Cell Dev Biol
– volume: 22
  start-page: 128
  year: 2014
  end-page: 137
  article-title: Cytoplasmic access by intracellular bacterial pathogens
  publication-title: Trends Microbiol
– volume: 113
  start-page: 4794
  year: 2016
  end-page: 4799
  article-title: The type III secretion system apparatus determines the intracellular niche of bacterial pathogens
  publication-title: Proc Natl Acad Sci USA
– volume: 178
  start-page: 536
  year: 2019
  end-page: 551
  article-title: LC3‐associated endocytosis facilitates β‐amyloid clearance and mitigates neurodegeneration in murine Alzheimer's disease
  publication-title: Cell
– volume: 22
  start-page: 2290
  year: 2011
  end-page: 2300
  article-title: The LC3 recruitment mechanism is separate from Atg9L1‐dependent membrane formation in the autophagic response against salmonella
  publication-title: Mol Biol Cell
– volume: 74
  start-page: 320
  year: 2019
  end-page: 329
  article-title: The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol‐invading bacteria
  publication-title: Mol Cell
– volume: 9
  start-page: 376
  year: 2011
  end-page: 389
  article-title: A Tecpr1‐dependent selective autophagy pathway targets bacterial pathogens
  publication-title: Cell Host Microbe
– volume: 340
  start-page: 701
  year: 2013
  end-page: 706
  article-title: Cellular self‐defense: how cell‐autonomous immunity protects against pathogens
  publication-title: Science
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  article-title: PHENIX: a comprehensive python‐based system for macromolecular structure solution
  publication-title: Acta Crystallogr Sect D Biological Crystallogr
– volume: 11
  start-page: 2993
  year: 2020
  article-title: TECPR1 promotes aggrephagy by direct recruitment of LC3C autophagosomes to lysosomes
  publication-title: Nat Commun
– volume: 28
  start-page: R392
  year: 2018
  end-page: R397
  article-title: Plasma membrane repair
  publication-title: Curr Biol
– volume: 30
  start-page: 2974
  year: 2020
  end-page: 2983
  article-title: Transbilayer movement of sphingomyelin precedes catastrophic breakage of Enterobacteria‐containing vacuoles
  publication-title: Curr Biol
– volume: 19
  start-page: 2092
  year: 2008
  end-page: 2100
  article-title: The Atg16L complex specifies the site of LC3 Lipidation for membrane biogenesis in autophagy
  publication-title: Mol Biol Cell
– volume: 40
  year: 2021
  article-title: Sealing holes in cellular membranes
  publication-title: EMBO J
– volume: 219
  year: 2020
  article-title: A PI3K‐WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy
  publication-title: J Cell Biol
– volume: 219
  year: 2020
  article-title: STING induces LC3B lipidation onto single‐membrane vesicles via the V‐ATPase and ATG16L1‐WD40 domain
  publication-title: J Cell Biol
– volume: 178
  start-page: 552
  year: 2019
  end-page: 566.e20
  article-title: A bacterial effector reveals the V‐ATPase‐ATG16L1 axis that initiates xenophagy
  publication-title: Cell
– volume: 41
  start-page: 1540
  year: 2020
  end-page: 1554
  article-title: The genetic profile of dysferlinopathy in a cohort of 209 cases: genotype–phenotype relationship and a hotspot on the inner DysF domain
  publication-title: Hum Mutat
– volume: 20
  start-page: 95
  year: 2020
  end-page: 112
  article-title: DAMP‐sensing receptors in sterile inflammation and inflammatory diseases
  publication-title: Nat Rev Immunol
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 82
  year: 2021
  article-title: Non‐canonical functions of autophagy proteins in immunity and infection
  publication-title: Mol Aspects Med
– volume: 37
  year: 2021
  article-title: Subtractive CRISPR screen identifies the ATG16L1/vacuolar ATPase axis as required for non‐canonical LC3 lipidation
  publication-title: Cell Rep
– volume: 1880
  start-page: 679
  year: 2019
  end-page: 690
  article-title: Autophagy, methods and protocols
  publication-title: Methods Mol Biology
– volume: 9
  start-page: 534
  year: 2020
  article-title: Functions of vertebrate Ferlins
  publication-title: Cells
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 14
  year: 2014a
  article-title: Crystal structures of the human Dysferlin inner DysF domain
  publication-title: BMC Struct Biol
– volume: 482
  start-page: 414
  year: 2012
  end-page: 418
  article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
  publication-title: Nature
– volume: 22
  start-page: 140
  year: 2021
  end-page: 153
  article-title: The receptor DNGR‐1 signals for phagosomal rupture to promote cross‐presentation of dead‐cell‐associated antigens
  publication-title: Nat Immunol
– volume: 293
  start-page: 2438
  year: 2018
  end-page: 2451
  article-title: Galectin‐8–mediated selective autophagy protects against seeded tau aggregation
  publication-title: J Biol Chem
– year: 2019
– volume: 15
  year: 2019
  article-title: SopF, a phosphoinositide binding effector, promotes the stability of the nascent salmonella‐containing vacuole
  publication-title: PLoS Pathog
– volume: 6
  start-page: 137
  year: 2009
  end-page: 149
  article-title: Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
  publication-title: Cell Host Microbe
– volume: 45
  start-page: 629
  year: 2012
  end-page: 641
  article-title: A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12‐Atg5 conjugate
  publication-title: Mol Cell
– volume: 55
  start-page: 238
  year: 2018
  end-page: 252
  article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12‐5‐16L1
  publication-title: Mol Cell
– volume: 50
  start-page: 769
  year: 1987
  end-page: 778
  article-title: Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells
  publication-title: Cell
– volume: 12
  start-page: 530
  year: 2010
  end-page: 544
  article-title: Galectin‐3, a marker for vacuole lysis by invasive pathogens
  publication-title: Cell Microbiol
– volume: 541
  start-page: 412
  year: 2017
  end-page: 416
  article-title: PLA2G16 represents a switch between entry and clearance of Picornaviridae
  publication-title: Nature
– volume: 13
  start-page: 1875
  year: 2022
  article-title: Ca2 −activated sphingomyelin scrambling and turnover mediate ESCRT‐independent lysosomal repair
  publication-title: Nat Commun
– volume: 17
  start-page: 893
  year: 2015
  end-page: 906
  article-title: Molecular characterization of LC3‐associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
  publication-title: Nat Cell Biol
– volume: 11
  start-page: 88
  year: 2014
  end-page: 99
  article-title: V‐ATPase and osmotic imbalances activate endolysosomal LC3 lipidation
  publication-title: Autophagy
– year: 2023
  article-title: TECPR1 is activated by damage-induced sphingomyelin exposure to mediate noncanonical autophagy
  publication-title: EMBOJ
– volume: 19
  start-page: 71
  year: 2021
  article-title: Plasma membrane integrity: implications for health and disease
  publication-title: BMC Biol
– volume: 10
  start-page: 1215
  year: 2009
  end-page: 1221
  article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin‐coated bacteria
  publication-title: Nat Immunol
– year: 2014b
– volume: 20
  start-page: 69
  year: 2016
  end-page: 79
  article-title: TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability
  publication-title: Eur J Paediatr Neurol
– volume: 317
  start-page: 262
  year: 1985
  end-page: 264
  article-title: A single genetic locus encoded by permits invasion of cultured animal cells by K‐12
  publication-title: Nature
– volume: 32
  start-page: 566
  year: 2013
  end-page: 582
  article-title: TMEM59 defines a novel ATG16L1‐binding motif that promotes local activation of LC3
  publication-title: EMBO J
– volume: 17
  year: 2022
  article-title: Redefining the architecture of ferlin proteins: insights into multi‐domain protein structure and function
  publication-title: PLoS One
– volume: 53
  start-page: 925
  year: 2020
  end-page: 935
  article-title: The role of galectins in virus infection – a systemic literature review
  publication-title: J Microbiol Immunol Infect
– volume: 16
  start-page: 661
  year: 2016
  end-page: 675
  article-title: Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis
  publication-title: Nat Rev Immunol
– volume: 18
  start-page: 949
  year: 2016
  end-page: 969
  article-title: The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells
  publication-title: Cell Microbiol
– volume: 11
  start-page: 75
  year: 2014
  end-page: 87
  article-title: Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners
  publication-title: Autophagy
– volume: 85
  start-page: 1
  year: 2015
  end-page: 29
  article-title: Mammalian autophagy: how does it work?
  publication-title: Annu Rev Biochem
– ident: e_1_2_9_34_1
  doi: 10.1107/S0907444909047374
– ident: e_1_2_9_25_1
  doi: 10.1091/mbc.e07-12-1257
– ident: e_1_2_9_3_1
  doi: 10.1186/s12915-021-00972-y
– ident: e_1_2_9_55_1
  doi: 10.1038/ni.1800
– ident: e_1_2_9_59_1
  doi: 10.1038/s41467-020-16689-5
– ident: e_1_2_9_7_1
  doi: 10.1007/978-1-4939-8873-0_45
– ident: e_1_2_9_48_1
  doi: 10.1126/science.1233028
– ident: e_1_2_9_10_1
  doi: 10.1038/s41590-020-00824-x
– ident: e_1_2_9_24_1
  doi: 10.1016/j.tim.2014.01.003
– ident: e_1_2_9_15_1
  doi: 10.1073/pnas.1520699113
– ident: e_1_2_9_33_1
  doi: 10.1002/humu.24036
– ident: e_1_2_9_18_1
  doi: 10.1107/S0907444910007493
– ident: e_1_2_9_53_1
  doi: 10.1186/1472-6807-14-3
– ident: e_1_2_9_39_1
  doi: 10.1038/ncb3192
– ident: e_1_2_9_14_1
  doi: 10.1016/j.molcel.2014.05.021
– ident: e_1_2_9_20_1
  doi: 10.1074/jbc.M117.809293
– ident: e_1_2_9_22_1
  doi: 10.4161/15548627.2014.984277
– ident: e_1_2_9_42_1
  doi: 10.1016/j.mam.2021.100987
– ident: e_1_2_9_51_1
  doi: 10.1016/j.molcel.2015.09.010
– ident: e_1_2_9_61_1
  doi: 10.15252/embj.2020106922
– ident: e_1_2_9_23_1
  doi: 10.1083/jcb.201912098
– ident: e_1_2_9_2_1
  doi: 10.1107/S0907444909052925
– ident: e_1_2_9_6_1
  doi: 10.1038/emboj.2013.8
– ident: e_1_2_9_38_1
  doi: 10.1371/journal.ppat.1007959
– ident: e_1_2_9_57_1
  doi: 10.1016/j.celrep.2021.109899
– ident: e_1_2_9_35_1
  doi: 10.1091/mbc.e10-11-0893
– ident: e_1_2_9_26_1
  doi: 10.1038/s41577-019-0215-7
– volume-title: Intracellular niches of microbes
  year: 2019
  ident: e_1_2_9_50_1
– ident: e_1_2_9_29_1
  doi: 10.1083/jcb.202105112
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pone.0270188
– ident: e_1_2_9_32_1
  doi: 10.1111/cge.14216
– ident: e_1_2_9_8_1
  doi: 10.3390/cells9030534
– ident: e_1_2_9_27_1
  doi: 10.1016/j.cell.2019.05.056
– ident: e_1_2_9_36_1
  doi: 10.15252/embj.2022113105
– ident: e_1_2_9_52_1
  doi: 10.1038/nature21032
– ident: e_1_2_9_44_1
  doi: 10.1016/j.tibs.2021.01.004
– ident: e_1_2_9_4_1
  doi: 10.1016/j.cub.2017.12.034
– ident: e_1_2_9_17_1
  doi: 10.1016/j.cub.2020.05.083
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jmb.2008.04.046
– ident: e_1_2_9_58_1
  doi: 10.1016/j.jmii.2019.09.005
– volume: 85
  start-page: 1
  year: 2015
  ident: e_1_2_9_5_1
  article-title: Mammalian autophagy: how does it work?
  publication-title: Annu Rev Biochem
– ident: e_1_2_9_21_1
  doi: 10.1083/jcb.202009128
– ident: e_1_2_9_54_1
– ident: e_1_2_9_56_1
  doi: 10.1038/nature10744
– ident: e_1_2_9_28_1
  doi: 10.1016/j.ejpn.2015.10.003
– ident: e_1_2_9_60_1
  doi: 10.1016/j.cell.2019.06.007
– ident: e_1_2_9_12_1
  doi: 10.1111/cmi.12558
– ident: e_1_2_9_19_1
  doi: 10.1107/S0907444913000061
– ident: e_1_2_9_30_1
  doi: 10.1038/317262a0
– ident: e_1_2_9_47_1
  doi: 10.1111/j.1462-5822.2009.01415.x
– ident: e_1_2_9_45_1
  doi: 10.1016/j.chom.2011.04.010
– ident: e_1_2_9_37_1
  doi: 10.4161/15548627.2014.984276
– ident: e_1_2_9_49_1
  doi: 10.1016/j.molcel.2019.01.041
– ident: e_1_2_9_31_1
  doi: 10.1016/0092-8674(87)90335-7
– ident: e_1_2_9_16_1
  doi: 10.1016/j.chom.2009.07.005
– ident: e_1_2_9_40_1
  doi: 10.1107/S0021889807021206
– ident: e_1_2_9_41_1
  doi: 10.1146/annurev-cellbio-092910-154005
– ident: e_1_2_9_43_1
  doi: 10.1038/s41467-022-29481-4
– ident: e_1_2_9_9_1
  doi: 10.1038/nri.2016.100
– ident: e_1_2_9_11_1
  doi: 10.1016/j.molcel.2011.12.036
– reference: 37638605 - EMBO J. 2023 Oct 4;42(19):e115210. doi: 10.15252/embj.2023115210.
SSID ssj0005871
Score 2.5807633
Snippet Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane,...
Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e113012
SubjectTerms Animals
ATG5‐ATG12 E3 ligase
Autophagy
Autophagy-Related Protein 5 - metabolism
Autophagy-Related Proteins - metabolism
Bacteria
Carrier Proteins - metabolism
Cellular stress response
Conjugation
Crystal structure
Crystallography
Cytosol
Damage detection
DysF
EMBO07
EMBO20
Exposure
Life Sciences
Lipids
Mammals
membrane damage
Membranes
Microtubule-Associated Proteins - metabolism
Polysaccharides
Receptors
Sphingomyelin
Sphingomyelins
Tryptophan
Ubiquitin
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - metabolism
Vacuoles
Title TECPR1 conjugates LC3 to damaged endomembranes upon detection of sphingomyelin exposure
URI https://link.springer.com/article/10.15252/embj.2022113012
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022113012
https://www.ncbi.nlm.nih.gov/pubmed/37409490
https://www.proquest.com/docview/2860290142
https://www.proquest.com/docview/2834000426
https://pubmed.ncbi.nlm.nih.gov/PMC10476172
Volume 42
WOSCitedRecordID wos001022705600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQBmIvfIyPBcZkJF5AitbYruM8QmkFaFTTtGl9i_wVsYkm1dIi9t9z53yUMgES4iWKZTuOz3f2_c72HSGvpEnkUGc6TpzksWA6jTUAkVhZY6UThZDKhWAT6XSqZrPs57swjX-I3uCGkhHmaxRwbeouYg96DfVzcwkAjwGEAS6FaXgbXlLkbCaO18c8VABdwc4iEpW1W5X4jcNfvrC5NN3QN28em-z3Tjc127A0Te7_j049IPdaxZS-bTjpIbnly11ypwlVeb1L7o66yHCPyPnpeHR8klCA0pcrNMPV9GjE6bKiTs9hfnLUl66aQyOwEELmalGV1PllOPVV0qqg9QINX9X8Gm_DU_99UaGh8jE5m4xPRx_iNkBDbIeAhGKdcWkkSwdKW5sa0CzSLClYZpl3vECzCrMq86ASSqZB9J02MP5cG6GHwivNn5Ctsir9HqEWYJhh3jjQB0UhtXJKWsY84GRfwCIbkcNubHLbei_HIBpfc0QxSLwcSZevSReR132NReO54w9l97vhzlsZrnOG4blwlxmyX_bZQGrcUgHyVSssw8Ug4NCIPG24o2-Mp4ids0FE1Abf9AXQs_dmTnnxJXj4Rv8ZqFpG5E3HYuv_-n0nhoG1_trbfPz53ad18tk_1ntOdiDBw4E7sU-2llcr_4Lctt-WF_XVQZBCeKYzdUC2359Mzo4gdf5x-gO3GjIU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9NAzRe-BgMAgOMxAtI0RrHdZxHiDoN6KoKFbG3yLEdsYkm1doi9t9z53xUZQIkxGN0dhJf7nz3O1_uAF7JIpJDneowsjIOBddJqBGIhMoURlpRCqmsbzaRTCbq7Cyd7kDW_QvT1IfoA26kGX6_JgWngHTXsofKhrp5cYEIjyOGQTHFffiGQONEeX1cTDd5HsqjLh9oEZFK27NKusfRL3fYtk3XHM7reZP94em2a-tt0_Hd_7Kqe3CndU3Z20aW7sOOq_bhVtOs8mof9rKuN9wD-DIbZdNPEUMwfbGmQNySjbOYrWpm9Rx3KMtcZes5PgRNIRLXi7pi1q183lfF6pItFxT6qudX9D88cz8WNYUqH8Ln49EsOwnbFg2hGSIWCnUay0LyZKC0MUmBvkWSRiVPDXc2Limwwo1KHTqFkmtUfqsLlIBYF0IPhVM6PoDdqq7cY2AGgVjBXWHRIxSl1MoqaTh3iJRdiWY2gKPu4-SmrV9ObTS-5YRjiHk5sS7fsC6A1_2MRVO74w9jD7vvnbdavMw5Neiic2Ykv-zJyGo6VEH21WsaE4uBR6IBPGrEo39YnBB6TgcBqC3B6QdQbe9tSnX-1df4pgoa5FwG8KaTsc17_X4RQy9bf11tPjp992Fz-eQf572AvZPZ6Tgfv598fAq3kRD79DtxCLury7V7BjfN99X58vK5V8mf6kMyYQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9N4_OFjwEjMMBIvIAUrXFcx3mE0orBqCo0tL1Fju2ITWsSrS1i_z13zkdVJkBCPCb-SHy-s-93Pt8BvJJ5JIc61WFkZRwKrpNQIxAJlcmNtKIQUlmfbCKZTtXJSTrbglF3F6aJD9Eb3Egy_HpNAu5qW3QpeyhsqJvnZ4jwOGIYZFNch68JVMfJr-v4YLr281AedXlDi4hU2p5VUh_7v_SwuTddUTiv-k32h6ebqq3fmyZ3_8uo7sGdVjVlbxteug9brtyBG02yyssduDXqcsM9gOOj8Wj2JWIIps9WZIhbsMNRzJYVs3qOK5RlrrTVHD-CWyEWruqqZNYtvd9XyaqCLWoyfVXzS7oPz9yPuiJT5UP4OhkfjT6EbYqG0AwRC4U6jWUueTJQ2pgkR90iSaOCp4Y7GxdkWOFGpQ6VQsk1Cr_VOXJArHOhh8IpHT-C7bIq3WNgBoFYzl1uUSMUhdTKKmk4d4iUXYHbbAD73eRkpo1fTmk0zjPCMUS8jEiXrUkXwOu-Rd3E7vhD3b1uvrNWihcZpwRddM6MxS_7YiQ1Haog-aoV1YnFwCPRAHYb9ug_FieEntNBAGqDcfoKFNt7s6Q8_eZjfFMEDVIuA3jT8dj6v34_iKHnrb-ONht_fvdx_fjkH9u9gJuz95Ps8GD66Sncxvex974Te7C9vFi5Z3DdfF-eLi6ee4n8CQjdMlI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TECPR1+conjugates+LC3+to+damaged+endomembranes+upon+detection+of+sphingomyelin+exposure&rft.jtitle=The+EMBO+journal&rft.au=Boyle%2C+Keith+B&rft.au=Ellison%2C+Cara+J&rft.au=Elliott%2C+Paul+R&rft.au=Schuschnig%2C+Martina&rft.date=2023-09-04&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=42&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.2022113012&rft.externalDBID=10.15252%252Fembj.2022113012&rft.externalDocID=EMBJ2022113012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon