TECPR1 conjugates LC3 to damaged endomembranes upon detection of sphingomyelin exposure
Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by...
Uložené v:
| Vydané v: | The EMBO journal Ročník 42; číslo 17; s. e113012 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
04.09.2023
Springer Nature B.V John Wiley and Sons Inc |
| Predmet: | |
| ISSN: | 0261-4189, 1460-2075, 1460-2075 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases.
Synopsis
Upon damage to bacteria‐containing vacuoles sphingomyelin transits from the luminal to the cytosolic face of the membrane. Here we show that TECPR1 detects cytosolically exposed sphingomyelin and directs conjugation of the autophagy effector protein LC3 to those membranes.
TECPR1 is a novel danger receptor that detects sphingomyelin exposed on the cytosolic face of damaged membranes.
The N‐terminal DysF domain of TECPR1 binds sphingomyelin and recruits TECPR1 to damaged membranes.
TECPR1 recruits ATG5 to sphingomyelin‐positive membranes.
The TECPR1‐ATG5‐ATG12 complex is a sphingomyelin‐activated E3 ligase catalyzing the lipid conjugation of LC3.
Graphical Abstract
TECPR1 detects cytosolically‐exposed sphingomyelin and recruits ATG5/ATG12‐E3 ligase to damaged membranes to mediate lipid conjugation of LC3 independently of ATG16L. |
|---|---|
| AbstractList | Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases.Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases. Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases. Synopsis Upon damage to bacteria‐containing vacuoles sphingomyelin transits from the luminal to the cytosolic face of the membrane. Here we show that TECPR1 detects cytosolically exposed sphingomyelin and directs conjugation of the autophagy effector protein LC3 to those membranes. TECPR1 is a novel danger receptor that detects sphingomyelin exposed on the cytosolic face of damaged membranes. The N‐terminal DysF domain of TECPR1 binds sphingomyelin and recruits TECPR1 to damaged membranes. TECPR1 recruits ATG5 to sphingomyelin‐positive membranes. The TECPR1‐ATG5‐ATG12 complex is a sphingomyelin‐activated E3 ligase catalyzing the lipid conjugation of LC3. TECPR1 detects cytosolically‐exposed sphingomyelin and recruits ATG5/ATG12‐E3 ligase to damaged membranes to mediate lipid conjugation of LC3 independently of ATG16L. Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases. Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases. image Upon damage to bacteria‐containing vacuoles sphingomyelin transits from the luminal to the cytosolic face of the membrane. Here we show that TECPR1 detects cytosolically exposed sphingomyelin and directs conjugation of the autophagy effector protein LC3 to those membranes. TECPR1 is a novel danger receptor that detects sphingomyelin exposed on the cytosolic face of damaged membranes. The N‐terminal DysF domain of TECPR1 binds sphingomyelin and recruits TECPR1 to damaged membranes. TECPR1 recruits ATG5 to sphingomyelin‐positive membranes. The TECPR1‐ATG5‐ATG12 complex is a sphingomyelin‐activated E3 ligase catalyzing the lipid conjugation of LC3. Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases. Synopsis Upon damage to bacteria‐containing vacuoles sphingomyelin transits from the luminal to the cytosolic face of the membrane. Here we show that TECPR1 detects cytosolically exposed sphingomyelin and directs conjugation of the autophagy effector protein LC3 to those membranes. TECPR1 is a novel danger receptor that detects sphingomyelin exposed on the cytosolic face of damaged membranes. The N‐terminal DysF domain of TECPR1 binds sphingomyelin and recruits TECPR1 to damaged membranes. TECPR1 recruits ATG5 to sphingomyelin‐positive membranes. The TECPR1‐ATG5‐ATG12 complex is a sphingomyelin‐activated E3 ligase catalyzing the lipid conjugation of LC3. Graphical Abstract TECPR1 detects cytosolically‐exposed sphingomyelin and recruits ATG5/ATG12‐E3 ligase to damaged membranes to mediate lipid conjugation of LC3 independently of ATG16L. Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin‐8 triggers anti‐bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta‐propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N‐terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent‐exposed tryptophan (W154) essential for binding to sphingomyelin‐positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12‐E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin‐specific TECPR1, in an arrangement reminiscent of certain multi‐subunit ubiquitin E3 ligases. TECPR1 detects cytosolically‐exposed sphingomyelin and recruits ATG5/ATG12‐E3 ligase to damaged membranes to mediate lipid conjugation of LC3 independently of ATG16L. |
| Author | Randow, Felix Boyle, Keith B Grimes, Krista Sasakawa, Chihiro Ellison, Cara J Dionne, Marc S Munro, Sean Elliott, Paul R Schuschnig, Martina Martens, Sascha |
| AuthorAffiliation | 6 Center for Molecular Biology, Department of Biochemistry and Cell Biology University of Vienna Vienna Austria 8 Present address: Department of Biochemistry University of Oxford Oxford UK 2 Max Perutz Labs, Vienna BioCenter (VBC) University of Vienna Vienna Austria 7 Department of Medicine, Addenbrooke's Hospital University of Cambridge Cambridge UK 5 Nippon Institute for Biological Science Ome Japan 4 Medical Mycology Research Center Chiba University Chiba Japan 1 Division of Protein and Nucleic Acid Chemistry MRC Laboratory of Molecular Biology Cambridge UK 3 MRC Centre for Molecular Bacteriology and Infection Imperial College London London UK |
| AuthorAffiliation_xml | – name: 8 Present address: Department of Biochemistry University of Oxford Oxford UK – name: 4 Medical Mycology Research Center Chiba University Chiba Japan – name: 6 Center for Molecular Biology, Department of Biochemistry and Cell Biology University of Vienna Vienna Austria – name: 3 MRC Centre for Molecular Bacteriology and Infection Imperial College London London UK – name: 7 Department of Medicine, Addenbrooke's Hospital University of Cambridge Cambridge UK – name: 1 Division of Protein and Nucleic Acid Chemistry MRC Laboratory of Molecular Biology Cambridge UK – name: 2 Max Perutz Labs, Vienna BioCenter (VBC) University of Vienna Vienna Austria – name: 5 Nippon Institute for Biological Science Ome Japan |
| Author_xml | – sequence: 1 givenname: Keith B orcidid: 0000-0002-0745-3964 surname: Boyle fullname: Boyle, Keith B email: kboyle@mrc-lmb.cam.ac.uk organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology – sequence: 2 givenname: Cara J surname: Ellison fullname: Ellison, Cara J organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Department of Biochemistry, University of Oxford – sequence: 3 givenname: Paul R surname: Elliott fullname: Elliott, Paul R organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Department of Biochemistry, University of Oxford – sequence: 4 givenname: Martina surname: Schuschnig fullname: Schuschnig, Martina organization: Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna – sequence: 5 givenname: Krista surname: Grimes fullname: Grimes, Krista organization: MRC Centre for Molecular Bacteriology and Infection, Imperial College London – sequence: 6 givenname: Marc S orcidid: 0000-0002-8283-1750 surname: Dionne fullname: Dionne, Marc S organization: MRC Centre for Molecular Bacteriology and Infection, Imperial College London – sequence: 7 givenname: Chihiro surname: Sasakawa fullname: Sasakawa, Chihiro organization: Medical Mycology Research Center, Chiba University, Nippon Institute for Biological Science – sequence: 8 givenname: Sean orcidid: 0000-0001-6160-5773 surname: Munro fullname: Munro, Sean organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology – sequence: 9 givenname: Sascha orcidid: 0000-0003-3786-8199 surname: Martens fullname: Martens, Sascha organization: Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna – sequence: 10 givenname: Felix orcidid: 0000-0003-0694-5315 surname: Randow fullname: Randow, Felix email: randow@mrc-lmb.cam.ac.uk organization: Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37409490$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1v1DAQtVAR3RbunFAkLly2jB3HTiQkBKvlS4tAqIij5TiT1KvEDnYC7L_Hy5aWVgJOtjTvY968E3LkvENCHlI4owUr2FMc6u0ZA8YozYGyO2RBuYAlA1kckQUwQZecltUxOYlxCwBFKek9cpxLDhWvYEG-nK9XHz_RzHi3nTs9Ycw2qzybfNboQXfYZOgaPySfoF0azqN3WYMTmsmmn2-zOF5Y1_lhh711Gf4YfZwD3id3W91HfHD5npLPr9bnqzfLzYfXb1cvNktTlIItdZWLWjAJpTZG1kALWdGWVYZhk7cpmGSmrBAKKZgGKhtdi4bnuua64Fjq_JQ8P-iOcz1gY9BNQfdqDHbQYae8turmxNkL1flvigKXgkqWFJ5cKgT_dcY4qcFGg32f8vo5KlbmPF2OM5Ggj29Bt34OLuVLKAGsAsr3go_-XOlql99HTwA4AEzwMQZsryAU1K9e1b5Xdd1roohbFGMnva8ghbL9v4jPDsTvtsfdf43U-v3Ldzfo9ECPiek6DNeJ_2r5Exszx_E |
| CitedBy_id | crossref_primary_10_1016_j_jmb_2024_168532 crossref_primary_10_1038_s41556_023_01329_z crossref_primary_10_1146_annurev_biochem_030222_102505 crossref_primary_10_1016_j_tcb_2025_02_007 crossref_primary_10_1097_HEP_0000000000001000 crossref_primary_10_1038_s41594_025_01530_8 crossref_primary_10_15252_embr_202356841 crossref_primary_10_15252_embj_2022113105 crossref_primary_10_1016_j_bbrc_2025_151384 crossref_primary_10_1007_s00109_023_02411_7 crossref_primary_10_3389_fcell_2025_1559125 crossref_primary_10_1038_s41594_025_01581_x crossref_primary_10_1080_27694127_2025_2542904 crossref_primary_10_1242_jcs_260891 crossref_primary_10_1038_s41580_025_00873_w crossref_primary_10_1083_jcb_202503166 crossref_primary_10_1016_j_chembiol_2025_02_003 crossref_primary_10_1038_s44318_025_00543_9 crossref_primary_10_1080_15548627_2025_2469206 crossref_primary_10_15252_embr_202357300 crossref_primary_10_3389_fcell_2025_1518991 crossref_primary_10_1083_jcb_202409039 crossref_primary_10_7554_eLife_100928 crossref_primary_10_1242_jcs_261031 crossref_primary_10_15252_embj_2023115210 crossref_primary_10_1073_pnas_2317680121 crossref_primary_10_1002_jcp_70044 crossref_primary_10_1126_sciadv_adt3311 crossref_primary_10_3389_fcell_2025_1532050 crossref_primary_10_1080_27694127_2025_2476218 crossref_primary_10_1038_s44318_024_00292_1 crossref_primary_10_1083_jcb_202310150 crossref_primary_10_7554_eLife_100928_3 |
| Cites_doi | 10.15252/embj.2022113105 10.1107/S0907444909047374 10.1091/mbc.e07-12-1257 10.1186/s12915-021-00972-y 10.1038/ni.1800 10.1038/s41467-020-16689-5 10.1007/978-1-4939-8873-0_45 10.1126/science.1233028 10.1038/s41590-020-00824-x 10.1016/j.tim.2014.01.003 10.1073/pnas.1520699113 10.1002/humu.24036 10.1107/S0907444910007493 10.1186/1472-6807-14-3 10.1038/ncb3192 10.1016/j.molcel.2014.05.021 10.1074/jbc.M117.809293 10.4161/15548627.2014.984277 10.1016/j.mam.2021.100987 10.1016/j.molcel.2015.09.010 10.15252/embj.2020106922 10.1083/jcb.201912098 10.1107/S0907444909052925 10.1038/emboj.2013.8 10.1371/journal.ppat.1007959 10.1016/j.celrep.2021.109899 10.1091/mbc.e10-11-0893 10.1038/s41577-019-0215-7 10.1083/jcb.202105112 10.1371/journal.pone.0270188 10.1111/cge.14216 10.3390/cells9030534 10.1016/j.cell.2019.05.056 10.1038/nature21032 10.1016/j.tibs.2021.01.004 10.1016/j.cub.2017.12.034 10.1016/j.cub.2020.05.083 10.1016/j.jmb.2008.04.046 10.1016/j.jmii.2019.09.005 10.1083/jcb.202009128 10.1038/nature10744 10.1016/j.ejpn.2015.10.003 10.1016/j.cell.2019.06.007 10.1111/cmi.12558 10.1107/S0907444913000061 10.1038/317262a0 10.1111/j.1462-5822.2009.01415.x 10.1016/j.chom.2011.04.010 10.4161/15548627.2014.984276 10.1016/j.molcel.2019.01.041 10.1016/0092-8674(87)90335-7 10.1016/j.chom.2009.07.005 10.1107/S0021889807021206 10.1146/annurev-cellbio-092910-154005 10.1038/s41467-022-29481-4 10.1038/nri.2016.100 10.1016/j.molcel.2011.12.036 |
| ContentType | Journal Article |
| Copyright | MRC Laboratory of Molecular Biology and The Author(s) 2023 2023 MRC Laboratory of Molecular Biology and The Authors. Published under the terms of the CC BY 4.0 license. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: MRC Laboratory of Molecular Biology and The Author(s) 2023 – notice: 2023 MRC Laboratory of Molecular Biology and The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.15252/embj.2022113012 |
| DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| DocumentTitleAlternate | Keith B. Boyle et al |
| EISSN | 1460-2075 |
| EndPage | n/a |
| ExternalDocumentID | PMC10476172 37409490 10_15252_embj_2022113012 EMBJ2022113012 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust (WT) grantid: 222503/Z/21/Z funderid: 10.13039/100010269 – fundername: UKRI | Medical Research Council (MRC) grantid: U105170648 – fundername: UKRI | Medical Research Council (MRC) funderid: U105170648 – fundername: Wellcome Trust (WT) funderid: 222503/Z/21/Z – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MC_U105170648 – fundername: Austrian Science Fund FWF grantid: W 1261 – fundername: Medical Research Council grantid: MC_U105178783 – fundername: ; grantid: 222503/Z/21/Z |
| GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AAMMB AASML AAYXX ABZEH AEFGJ AGXDD AIDQK AIDYY AJAOE CITATION NAO O8X CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K ESTFP FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5862-a936b62708acc7b015791f29c2ed3f20272c89e05762a017dab6d43ab4a54e8a3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022705600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0261-4189 1460-2075 |
| IngestDate | Tue Sep 30 17:12:41 EDT 2025 Sun Nov 23 09:46:09 EST 2025 Mon Oct 06 18:13:03 EDT 2025 Mon Jul 21 06:07:09 EDT 2025 Tue Nov 18 22:28:36 EST 2025 Sat Nov 29 03:03:11 EST 2025 Wed Jan 22 16:16:48 EST 2025 Fri Feb 21 02:36:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | DysF sphingomyelin autophagy membrane damage ATG5‐ATG12 E3 ligase ATG5-ATG12 E3 ligase |
| Language | English |
| License | Attribution 2023 MRC Laboratory of Molecular Biology and The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5862-a936b62708acc7b015791f29c2ed3f20272c89e05762a017dab6d43ab4a54e8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0745-3964 0000-0001-6160-5773 0000-0003-0694-5315 0000-0003-3786-8199 0000-0002-8283-1750 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022113012 |
| PMID | 37409490 |
| PQID | 2860290142 |
| PQPubID | 35985 |
| PageCount | 24 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10476172 proquest_miscellaneous_2834000426 proquest_journals_2860290142 pubmed_primary_37409490 crossref_primary_10_15252_embj_2022113012 crossref_citationtrail_10_15252_embj_2022113012 wiley_primary_10_15252_embj_2022113012_EMBJ2022113012 springer_journals_10_15252_embj_2022113012 |
| PublicationCentury | 2000 |
| PublicationDate | 4 September 2023 |
| PublicationDateYYYYMMDD | 2023-09-04 |
| PublicationDate_xml | – month: 09 year: 2023 text: 4 September 2023 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
| PublicationTitle | The EMBO journal |
| PublicationTitleAbbrev | EMBO J |
| PublicationTitleAlternate | EMBO J |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
| References | Chen, Fan, Lu, Ding, Chen, Zhong (CR10) 2012; 45 Cadwell (CR8) 2016; 16 Dupont, Lacas‐Gervais, Bertout, Paz, Freche, Nhieu, van der Goot, Sansonetti, Lafont (CR15) 2009; 6 Wetzel, Blanchard, Rama, Beier, Kaufmann, Wollert (CR58) 2020; 11 Schaible, Haas (CR49) 2019 Martinez, Malireddi, Lu, Cunha, Pelletier, Gingras, Orchard, Guan, Tan, Peng (CR38) 2015; 17 Gong, Liu, Jiang, Zhou (CR25) 2020; 20 Ivanova, Smirnikhina, Lavrov (CR31) 2022; 102 Ogawa, Yoshikawa, Kobayashi, Mimuro, Fukumatsu, Kiga, Piao, Ashida, Yoshida, Kakuta (CR44) 2011; 9 Ravenhill, Boyle, von Muhlinen, Ellison, Masson, Otten, Foeglein, Williams, Randow (CR48) 2019; 74 Florey, Gammoh, Kim, Jiang, Overholtzer (CR21) 2014; 11 Nieto‐Torres, Leidal, Debnath, Hansen (CR43) 2021; 46 Kabsch (CR33) 2010; 66 Münz (CR41) 2021; 82 Isberg, Voorhis, Falkow (CR30) 1987; 50 Fujita, Itoh, Omori, Fukuda, Noda, Yoshimori (CR24) 2008; 19 Falcon, Noad, McMahon, Randow, Goedert (CR19) 2018; 293 Heckmann, Teubner, Tummers, Boada‐Romero, Harris, Yang, Guy, Zakharenko, Green (CR26) 2019; 178 Heimer, Oz‐Levi, Eyal, Edvardson, Nissenkorn, Ruzzo, Szeinberg, Maayan, Mai‐Zahav, Efrati (CR27) 2016; 20 Isberg, Falkow (CR29) 1985; 317 Domingues, Ismail, Charro, Rodríguez-Escudero, Holden, Molina, Cid, Mota (CR11) 2016; 18 Hooper, Jacquin, Li, Goodwin, Brumell, Durgan, Florey (CR28) 2022; 221 Wang, Lin, Chang, Urbina, Assavalapsakul, Thitithanyanont, Chen, Liu, Wang (CR57) 2020; 53 Lau, Haeberle, O'Keeffe, Latomanski, Celli, Newton, Knodler (CR37) 2019; 15 Izumi, Takahashi, Suzuki, Niihori, Ono, Nakamura, Katada, Kato, Warita, Tateyama (CR32) 2020; 41 Bulankina, Thoms (CR7) 2020; 9 Fredlund, Enninga (CR23) 2014; 22 Canton, Blees, Henry, Buck, Schulz, Rogers, Childs, Zelenay, Rhys, Domart (CR9) 2021; 22 Xu, Zhou, Cheng, Lu, Nowak, Hopp, Li, Shi, Zhou, Gao (CR59) 2019; 178 Zhen, Radulovic, Vietri, Stenmark (CR60) 2021; 40 Ellison, Kukulski, Boyle, Munro, Randow (CR16) 2020; 30 Niekamp, Scharte, Sokoya, Vittadello, Kim, Deng, Südhoff, Hilderink, Imlau, Clarke (CR42) 2022; 13 Fischer, Wang, Padman, Lazarou, Youle (CR20) 2020; 219 Kim, Hong, Lee, Han, Roh, Lee, Kim, Choi, Song (CR36) 2014; 11 Randow, MacMicking, James (CR47) 2013; 340 Kaur, de la Ballina, Haukaas, Torgersen, Radulovic, Munson, Sabirsh, Stenmark, Simonsen, Carlsson (CR35) 2023 Thurston, Wandel, von Muhlinen, Foeglein, Randow (CR55) 2012; 482 Fracchiolla, Chang, Hurley, Martens (CR22) 2020; 219 Emsley, Lohkamp, Scott, Cowtan (CR17) 2010; 66 CR53 Andrews, Corrotte (CR3) 2018; 28 Kageyama, Omori, Saitoh, Sone, Guan, Akira, Imamoto, Noda, Yoshimori (CR34) 2011; 22 Dominguez, McCord, Sutton (CR12) 2022; 17 Staring, von Castelmur, Blomen, van den Hengel, Brockmann, Baggen, Thibaut, Nieuwenhuis, Janssen, van Kuppeveld (CR51) 2017; 541 Du, Reeves, Klein, Twedt, Knodler, Lesser (CR14) 2016; 113 Stadel, Millarte, Tillmann, Huber, Tamin‐Yecheskel, Akutsu, Demishtein, Ben‐Zeev, Anikster, Perez (CR50) 2015; 60 Ammendolia, Bement, Brumell (CR2) 2021; 19 Boyle, Randow (CR6) 2019; 1880 Paz, Sachse, Dupont, Mounier, Cederfur, Enninga, Leffler, Poirier, Prevost, Lafont (CR46) 2010; 12 Sula, Cole, Yeats, Orengo, Keep (CR52) 2014; 14 Ulferts, Marcassa, Timimi, Lee, Daley, Montaner, Turner, Florey, Baillie, Beale (CR56) 2021; 37 Mizushima, Yoshimori, Ohsumi (CR40) 2011; 27 Evans, Murshudov (CR18) 2013; 69 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse‐Kunstleve (CR1) 2010; 66 Thurston, Ryzhakov, Bloor, von Muhlinen, Randow (CR54) 2009; 10 Dooley, Razi, Polson, Girardin, Wilson, Tooze (CR13) 2018; 55 Bento, Renna, Ghislat, Puri, Ashkenazi, Vicinanza, Menzies, Rubinsztein (CR4) 2015; 85 Boada‐Romero, Letek, Fleischer, Pallauf, Ramón‐Barros, Pimentel‐Muiños (CR5) 2013; 32 McCoy, Grosse‐Kunstleve, Adams, Winn, Storoni, Read (CR39) 2007; 40 Patel, Harris, Geddes, Strehle, Watson, Bashir, Bushby, Driscoll, Keep (CR45) 2008; 379 2010; 12 2012; 482 2013; 69 2021; 22 2020; 20 2019; 15 2020; 11 2019; 1880 2014; 22 2014a; 14 2010; 66 2021; 37 2009; 10 2018; 293 2020; 53 2015; 85 2020; 9 2016; 113 2011; 22 2011; 27 2021; 82 2021; 40 2020; 219 2014; 11 2021; 46 2018; 28 2015; 17 1987; 50 2020; 41 2019; 74 2008; 19 2013; 340 2016; 18 2016; 16 2011; 9 2022; 221 2023 2015; 60 2013; 32 2020; 30 2021; 19 2016; 20 2022; 13 2019 2009; 6 2008; 379 2007; 40 2014b 1985; 317 2018; 55 2017; 541 2012; 45 2022; 17 2019; 178 2022; 102 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Bento CF (e_1_2_9_5_1) 2015; 85 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Schaible UE (e_1_2_9_50_1) 2019 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 37638605 - EMBO J. 2023 Oct 4;42(19):e115210. doi: 10.15252/embj.2023115210. |
| References_xml | – volume: 50 start-page: 769 year: 1987 end-page: 778 ident: CR30 article-title: Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells publication-title: Cell – volume: 113 start-page: 4794 year: 2016 end-page: 4799 ident: CR14 article-title: The type III secretion system apparatus determines the intracellular niche of bacterial pathogens publication-title: Proc Natl Acad Sci USA – volume: 46 start-page: 673 year: 2021 end-page: 686 ident: CR43 article-title: Beyond autophagy: the expanding roles of ATG8 proteins publication-title: Trends Biochem Sci – volume: 85 start-page: 1 year: 2015 end-page: 29 ident: CR4 article-title: Mammalian autophagy: how does it work? publication-title: Annu Rev Biochem – volume: 379 start-page: 981 year: 2008 end-page: 990 ident: CR45 article-title: Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2B publication-title: J Mol Biol – volume: 27 start-page: 107 year: 2011 end-page: 132 ident: CR40 article-title: The role of Atg proteins in autophagosome formation publication-title: Cell Dev Biol – year: 2023 ident: CR35 article-title: TECPR1 is activated by damage-induced sphingomyelin exposure to mediate noncanonical autophagy publication-title: EMBOJ doi: 10.15252/embj.2022113105 – volume: 11 start-page: 88 year: 2014 end-page: 99 ident: CR21 article-title: V‐ATPase and osmotic imbalances activate endolysosomal LC3 lipidation publication-title: Autophagy – volume: 11 start-page: 2993 year: 2020 ident: CR58 article-title: TECPR1 promotes aggrephagy by direct recruitment of LC3C autophagosomes to lysosomes publication-title: Nat Commun – volume: 28 start-page: R392 year: 2018 end-page: R397 ident: CR3 article-title: Plasma membrane repair publication-title: Curr Biol – volume: 41 start-page: 1540 year: 2020 end-page: 1554 ident: CR32 article-title: The genetic profile of dysferlinopathy in a cohort of 209 cases: genotype–phenotype relationship and a hotspot on the inner DysF domain publication-title: Hum Mutat – volume: 12 start-page: 530 year: 2010 end-page: 544 ident: CR46 article-title: Galectin‐3, a marker for vacuole lysis by invasive pathogens publication-title: Cell Microbiol – volume: 102 start-page: 465 year: 2022 end-page: 473 ident: CR31 article-title: Dysferlinopathies: clinical and genetic variability publication-title: Clin Genet – volume: 219 year: 2020 ident: CR20 article-title: STING induces LC3B lipidation onto single‐membrane vesicles via the V‐ATPase and ATG16L1‐WD40 domain publication-title: J Cell Biol – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: CR1 article-title: PHENIX: a comprehensive python‐based system for macromolecular structure solution publication-title: Acta Crystallogr Sect D Biological Crystallogr – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: CR39 article-title: Phaser crystallographic software publication-title: J Appl Cryst – volume: 22 start-page: 140 year: 2021 end-page: 153 ident: CR9 article-title: The receptor DNGR‐1 signals for phagosomal rupture to promote cross‐presentation of dead‐cell‐associated antigens publication-title: Nat Immunol – volume: 22 start-page: 128 year: 2014 end-page: 137 ident: CR23 article-title: Cytoplasmic access by intracellular bacterial pathogens publication-title: Trends Microbiol – volume: 9 start-page: 376 year: 2011 end-page: 389 ident: CR44 article-title: A Tecpr1‐dependent selective autophagy pathway targets bacterial pathogens publication-title: Cell Host Microbe – volume: 13 start-page: 1875 year: 2022 ident: CR42 article-title: Ca2 −activated sphingomyelin scrambling and turnover mediate ESCRT‐independent lysosomal repair publication-title: Nat Commun – volume: 10 start-page: 1215 year: 2009 end-page: 1221 ident: CR54 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin‐coated bacteria publication-title: Nat Immunol – volume: 482 start-page: 414 year: 2012 end-page: 418 ident: CR55 article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion publication-title: Nature – volume: 11 start-page: 75 year: 2014 end-page: 87 ident: CR36 article-title: Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners publication-title: Autophagy – volume: 45 start-page: 629 year: 2012 end-page: 641 ident: CR10 article-title: A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12‐Atg5 conjugate publication-title: Mol Cell – volume: 40 year: 2021 ident: CR60 article-title: Sealing holes in cellular membranes publication-title: EMBO J – volume: 1880 start-page: 679 year: 2019 end-page: 690 ident: CR6 article-title: Autophagy, methods and protocols publication-title: Methods Mol Biology – volume: 20 start-page: 95 year: 2020 end-page: 112 ident: CR25 article-title: DAMP‐sensing receptors in sterile inflammation and inflammatory diseases publication-title: Nat Rev Immunol – volume: 178 start-page: 552 year: 2019 end-page: 566.e20 ident: CR59 article-title: A bacterial effector reveals the V‐ATPase‐ATG16L1 axis that initiates xenophagy publication-title: Cell – volume: 17 year: 2022 ident: CR12 article-title: Redefining the architecture of ferlin proteins: insights into multi‐domain protein structure and function publication-title: PLoS One – volume: 55 start-page: 238 year: 2018 end-page: 252 ident: CR13 article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12‐5‐16L1 publication-title: Mol Cell – volume: 541 start-page: 412 year: 2017 end-page: 416 ident: CR51 article-title: PLA2G16 represents a switch between entry and clearance of Picornaviridae publication-title: Nature – volume: 340 start-page: 701 year: 2013 end-page: 706 ident: CR47 article-title: Cellular self‐defense: how cell‐autonomous immunity protects against pathogens publication-title: Science – volume: 14 year: 2014 ident: CR52 article-title: Crystal structures of the human Dysferlin inner DysF domain publication-title: BMC Struct Biol – volume: 22 start-page: 2290 year: 2011 end-page: 2300 ident: CR34 article-title: The LC3 recruitment mechanism is separate from Atg9L1‐dependent membrane formation in the autophagic response against salmonella publication-title: Mol Biol Cell – volume: 19 start-page: 71 year: 2021 ident: CR2 article-title: Plasma membrane integrity: implications for health and disease publication-title: BMC Biol – ident: CR53 – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: CR17 article-title: Features and development of Coot publication-title: Acta Crystallogr D Biol Crystallogr – volume: 74 start-page: 320 year: 2019 end-page: 329 ident: CR48 article-title: The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol‐invading bacteria publication-title: Mol Cell – volume: 9 start-page: 534 year: 2020 ident: CR7 article-title: Functions of vertebrate Ferlins publication-title: Cells – volume: 69 start-page: 1204 year: 2013 end-page: 1214 ident: CR18 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr D Biol Crystallogr – volume: 317 start-page: 262 year: 1985 end-page: 264 ident: CR29 article-title: A single genetic locus encoded by permits invasion of cultured animal cells by K‐12 publication-title: Nature – volume: 219 year: 2020 ident: CR22 article-title: A PI3K‐WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy publication-title: J Cell Biol – volume: 37 year: 2021 ident: CR56 article-title: Subtractive CRISPR screen identifies the ATG16L1/vacuolar ATPase axis as required for non‐canonical LC3 lipidation publication-title: Cell Rep – volume: 293 start-page: 2438 year: 2018 end-page: 2451 ident: CR19 article-title: Galectin‐8–mediated selective autophagy protects against seeded tau aggregation publication-title: J Biol Chem – volume: 82 year: 2021 ident: CR41 article-title: Non‐canonical functions of autophagy proteins in immunity and infection publication-title: Mol Aspects Med – volume: 60 start-page: 89 year: 2015 end-page: 104 ident: CR50 article-title: TECPR2 cooperates with LC3C to regulate COPII‐dependent ER export publication-title: Mol Cell – volume: 18 start-page: 949 year: 2016 end-page: 969 ident: CR11 article-title: The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells publication-title: Cell Microbiol – volume: 19 start-page: 2092 year: 2008 end-page: 2100 ident: CR24 article-title: The Atg16L complex specifies the site of LC3 Lipidation for membrane biogenesis in autophagy publication-title: Mol Biol Cell – volume: 17 start-page: 893 year: 2015 end-page: 906 ident: CR38 article-title: Molecular characterization of LC3‐associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins publication-title: Nat Cell Biol – volume: 16 start-page: 661 year: 2016 end-page: 675 ident: CR8 article-title: Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis publication-title: Nat Rev Immunol – volume: 53 start-page: 925 year: 2020 end-page: 935 ident: CR57 article-title: The role of galectins in virus infection – a systemic literature review publication-title: J Microbiol Immunol Infect – volume: 20 start-page: 69 year: 2016 end-page: 79 ident: CR27 article-title: TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability publication-title: Eur J Paediatr Neurol – volume: 6 start-page: 137 year: 2009 end-page: 149 ident: CR15 article-title: Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy publication-title: Cell Host Microbe – volume: 178 start-page: 536 year: 2019 end-page: 551 ident: CR26 article-title: LC3‐associated endocytosis facilitates β‐amyloid clearance and mitigates neurodegeneration in murine Alzheimer's disease publication-title: Cell – volume: 221 year: 2022 ident: CR28 article-title: V‐ATPase is a universal regulator of LC3‐associated phagocytosis and non‐canonical autophagy publication-title: J Cell Biol – volume: 32 start-page: 566 year: 2013 end-page: 582 ident: CR5 article-title: TMEM59 defines a novel ATG16L1‐binding motif that promotes local activation of LC3 publication-title: EMBO J – year: 2019 ident: CR49 publication-title: Intracellular niches of microbes – volume: 30 start-page: 2974 year: 2020 end-page: 2983 ident: CR16 article-title: Transbilayer movement of sphingomyelin precedes catastrophic breakage of Enterobacteria‐containing vacuoles publication-title: Curr Biol – volume: 66 start-page: 133 year: 2010 end-page: 144 ident: CR33 article-title: Integration, scaling, space‐group assignment and post‐refinement publication-title: Acta Crystallogr D Biol Crystallogr – volume: 15 year: 2019 ident: CR37 article-title: SopF, a phosphoinositide binding effector, promotes the stability of the nascent salmonella‐containing vacuole publication-title: PLoS Pathog – volume: 221 year: 2022 article-title: V‐ATPase is a universal regulator of LC3‐associated phagocytosis and non‐canonical autophagy publication-title: J Cell Biol – volume: 102 start-page: 465 year: 2022 end-page: 473 article-title: Dysferlinopathies: clinical and genetic variability publication-title: Clin Genet – volume: 46 start-page: 673 year: 2021 end-page: 686 article-title: Beyond autophagy: the expanding roles of ATG8 proteins publication-title: Trends Biochem Sci – volume: 66 start-page: 133 year: 2010 end-page: 144 article-title: Integration, scaling, space‐group assignment and post‐refinement publication-title: Acta Crystallogr D Biol Crystallogr – volume: 379 start-page: 981 year: 2008 end-page: 990 article-title: Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2B publication-title: J Mol Biol – volume: 60 start-page: 89 year: 2015 end-page: 104 article-title: TECPR2 cooperates with LC3C to regulate COPII‐dependent ER export publication-title: Mol Cell – volume: 40 start-page: 658 year: 2007 end-page: 674 article-title: Phaser crystallographic software publication-title: J Appl Cryst – volume: 27 start-page: 107 year: 2011 end-page: 132 article-title: The role of Atg proteins in autophagosome formation publication-title: Cell Dev Biol – volume: 22 start-page: 128 year: 2014 end-page: 137 article-title: Cytoplasmic access by intracellular bacterial pathogens publication-title: Trends Microbiol – volume: 113 start-page: 4794 year: 2016 end-page: 4799 article-title: The type III secretion system apparatus determines the intracellular niche of bacterial pathogens publication-title: Proc Natl Acad Sci USA – volume: 178 start-page: 536 year: 2019 end-page: 551 article-title: LC3‐associated endocytosis facilitates β‐amyloid clearance and mitigates neurodegeneration in murine Alzheimer's disease publication-title: Cell – volume: 22 start-page: 2290 year: 2011 end-page: 2300 article-title: The LC3 recruitment mechanism is separate from Atg9L1‐dependent membrane formation in the autophagic response against salmonella publication-title: Mol Biol Cell – volume: 74 start-page: 320 year: 2019 end-page: 329 article-title: The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol‐invading bacteria publication-title: Mol Cell – volume: 9 start-page: 376 year: 2011 end-page: 389 article-title: A Tecpr1‐dependent selective autophagy pathway targets bacterial pathogens publication-title: Cell Host Microbe – volume: 340 start-page: 701 year: 2013 end-page: 706 article-title: Cellular self‐defense: how cell‐autonomous immunity protects against pathogens publication-title: Science – volume: 66 start-page: 213 year: 2010 end-page: 221 article-title: PHENIX: a comprehensive python‐based system for macromolecular structure solution publication-title: Acta Crystallogr Sect D Biological Crystallogr – volume: 11 start-page: 2993 year: 2020 article-title: TECPR1 promotes aggrephagy by direct recruitment of LC3C autophagosomes to lysosomes publication-title: Nat Commun – volume: 28 start-page: R392 year: 2018 end-page: R397 article-title: Plasma membrane repair publication-title: Curr Biol – volume: 30 start-page: 2974 year: 2020 end-page: 2983 article-title: Transbilayer movement of sphingomyelin precedes catastrophic breakage of Enterobacteria‐containing vacuoles publication-title: Curr Biol – volume: 19 start-page: 2092 year: 2008 end-page: 2100 article-title: The Atg16L complex specifies the site of LC3 Lipidation for membrane biogenesis in autophagy publication-title: Mol Biol Cell – volume: 40 year: 2021 article-title: Sealing holes in cellular membranes publication-title: EMBO J – volume: 219 year: 2020 article-title: A PI3K‐WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy publication-title: J Cell Biol – volume: 219 year: 2020 article-title: STING induces LC3B lipidation onto single‐membrane vesicles via the V‐ATPase and ATG16L1‐WD40 domain publication-title: J Cell Biol – volume: 178 start-page: 552 year: 2019 end-page: 566.e20 article-title: A bacterial effector reveals the V‐ATPase‐ATG16L1 axis that initiates xenophagy publication-title: Cell – volume: 41 start-page: 1540 year: 2020 end-page: 1554 article-title: The genetic profile of dysferlinopathy in a cohort of 209 cases: genotype–phenotype relationship and a hotspot on the inner DysF domain publication-title: Hum Mutat – volume: 20 start-page: 95 year: 2020 end-page: 112 article-title: DAMP‐sensing receptors in sterile inflammation and inflammatory diseases publication-title: Nat Rev Immunol – volume: 66 start-page: 486 year: 2010 end-page: 501 article-title: Features and development of Coot publication-title: Acta Crystallogr D Biol Crystallogr – volume: 82 year: 2021 article-title: Non‐canonical functions of autophagy proteins in immunity and infection publication-title: Mol Aspects Med – volume: 37 year: 2021 article-title: Subtractive CRISPR screen identifies the ATG16L1/vacuolar ATPase axis as required for non‐canonical LC3 lipidation publication-title: Cell Rep – volume: 1880 start-page: 679 year: 2019 end-page: 690 article-title: Autophagy, methods and protocols publication-title: Methods Mol Biology – volume: 9 start-page: 534 year: 2020 article-title: Functions of vertebrate Ferlins publication-title: Cells – volume: 69 start-page: 1204 year: 2013 end-page: 1214 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr D Biol Crystallogr – volume: 14 year: 2014a article-title: Crystal structures of the human Dysferlin inner DysF domain publication-title: BMC Struct Biol – volume: 482 start-page: 414 year: 2012 end-page: 418 article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion publication-title: Nature – volume: 22 start-page: 140 year: 2021 end-page: 153 article-title: The receptor DNGR‐1 signals for phagosomal rupture to promote cross‐presentation of dead‐cell‐associated antigens publication-title: Nat Immunol – volume: 293 start-page: 2438 year: 2018 end-page: 2451 article-title: Galectin‐8–mediated selective autophagy protects against seeded tau aggregation publication-title: J Biol Chem – year: 2019 – volume: 15 year: 2019 article-title: SopF, a phosphoinositide binding effector, promotes the stability of the nascent salmonella‐containing vacuole publication-title: PLoS Pathog – volume: 6 start-page: 137 year: 2009 end-page: 149 article-title: Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy publication-title: Cell Host Microbe – volume: 45 start-page: 629 year: 2012 end-page: 641 article-title: A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12‐Atg5 conjugate publication-title: Mol Cell – volume: 55 start-page: 238 year: 2018 end-page: 252 article-title: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12‐5‐16L1 publication-title: Mol Cell – volume: 50 start-page: 769 year: 1987 end-page: 778 article-title: Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells publication-title: Cell – volume: 12 start-page: 530 year: 2010 end-page: 544 article-title: Galectin‐3, a marker for vacuole lysis by invasive pathogens publication-title: Cell Microbiol – volume: 541 start-page: 412 year: 2017 end-page: 416 article-title: PLA2G16 represents a switch between entry and clearance of Picornaviridae publication-title: Nature – volume: 13 start-page: 1875 year: 2022 article-title: Ca2 −activated sphingomyelin scrambling and turnover mediate ESCRT‐independent lysosomal repair publication-title: Nat Commun – volume: 17 start-page: 893 year: 2015 end-page: 906 article-title: Molecular characterization of LC3‐associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins publication-title: Nat Cell Biol – volume: 11 start-page: 88 year: 2014 end-page: 99 article-title: V‐ATPase and osmotic imbalances activate endolysosomal LC3 lipidation publication-title: Autophagy – year: 2023 article-title: TECPR1 is activated by damage-induced sphingomyelin exposure to mediate noncanonical autophagy publication-title: EMBOJ – volume: 19 start-page: 71 year: 2021 article-title: Plasma membrane integrity: implications for health and disease publication-title: BMC Biol – volume: 10 start-page: 1215 year: 2009 end-page: 1221 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin‐coated bacteria publication-title: Nat Immunol – year: 2014b – volume: 20 start-page: 69 year: 2016 end-page: 79 article-title: TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability publication-title: Eur J Paediatr Neurol – volume: 317 start-page: 262 year: 1985 end-page: 264 article-title: A single genetic locus encoded by permits invasion of cultured animal cells by K‐12 publication-title: Nature – volume: 32 start-page: 566 year: 2013 end-page: 582 article-title: TMEM59 defines a novel ATG16L1‐binding motif that promotes local activation of LC3 publication-title: EMBO J – volume: 17 year: 2022 article-title: Redefining the architecture of ferlin proteins: insights into multi‐domain protein structure and function publication-title: PLoS One – volume: 53 start-page: 925 year: 2020 end-page: 935 article-title: The role of galectins in virus infection – a systemic literature review publication-title: J Microbiol Immunol Infect – volume: 16 start-page: 661 year: 2016 end-page: 675 article-title: Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis publication-title: Nat Rev Immunol – volume: 18 start-page: 949 year: 2016 end-page: 969 article-title: The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells publication-title: Cell Microbiol – volume: 11 start-page: 75 year: 2014 end-page: 87 article-title: Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners publication-title: Autophagy – volume: 85 start-page: 1 year: 2015 end-page: 29 article-title: Mammalian autophagy: how does it work? publication-title: Annu Rev Biochem – ident: e_1_2_9_34_1 doi: 10.1107/S0907444909047374 – ident: e_1_2_9_25_1 doi: 10.1091/mbc.e07-12-1257 – ident: e_1_2_9_3_1 doi: 10.1186/s12915-021-00972-y – ident: e_1_2_9_55_1 doi: 10.1038/ni.1800 – ident: e_1_2_9_59_1 doi: 10.1038/s41467-020-16689-5 – ident: e_1_2_9_7_1 doi: 10.1007/978-1-4939-8873-0_45 – ident: e_1_2_9_48_1 doi: 10.1126/science.1233028 – ident: e_1_2_9_10_1 doi: 10.1038/s41590-020-00824-x – ident: e_1_2_9_24_1 doi: 10.1016/j.tim.2014.01.003 – ident: e_1_2_9_15_1 doi: 10.1073/pnas.1520699113 – ident: e_1_2_9_33_1 doi: 10.1002/humu.24036 – ident: e_1_2_9_18_1 doi: 10.1107/S0907444910007493 – ident: e_1_2_9_53_1 doi: 10.1186/1472-6807-14-3 – ident: e_1_2_9_39_1 doi: 10.1038/ncb3192 – ident: e_1_2_9_14_1 doi: 10.1016/j.molcel.2014.05.021 – ident: e_1_2_9_20_1 doi: 10.1074/jbc.M117.809293 – ident: e_1_2_9_22_1 doi: 10.4161/15548627.2014.984277 – ident: e_1_2_9_42_1 doi: 10.1016/j.mam.2021.100987 – ident: e_1_2_9_51_1 doi: 10.1016/j.molcel.2015.09.010 – ident: e_1_2_9_61_1 doi: 10.15252/embj.2020106922 – ident: e_1_2_9_23_1 doi: 10.1083/jcb.201912098 – ident: e_1_2_9_2_1 doi: 10.1107/S0907444909052925 – ident: e_1_2_9_6_1 doi: 10.1038/emboj.2013.8 – ident: e_1_2_9_38_1 doi: 10.1371/journal.ppat.1007959 – ident: e_1_2_9_57_1 doi: 10.1016/j.celrep.2021.109899 – ident: e_1_2_9_35_1 doi: 10.1091/mbc.e10-11-0893 – ident: e_1_2_9_26_1 doi: 10.1038/s41577-019-0215-7 – volume-title: Intracellular niches of microbes year: 2019 ident: e_1_2_9_50_1 – ident: e_1_2_9_29_1 doi: 10.1083/jcb.202105112 – ident: e_1_2_9_13_1 doi: 10.1371/journal.pone.0270188 – ident: e_1_2_9_32_1 doi: 10.1111/cge.14216 – ident: e_1_2_9_8_1 doi: 10.3390/cells9030534 – ident: e_1_2_9_27_1 doi: 10.1016/j.cell.2019.05.056 – ident: e_1_2_9_36_1 doi: 10.15252/embj.2022113105 – ident: e_1_2_9_52_1 doi: 10.1038/nature21032 – ident: e_1_2_9_44_1 doi: 10.1016/j.tibs.2021.01.004 – ident: e_1_2_9_4_1 doi: 10.1016/j.cub.2017.12.034 – ident: e_1_2_9_17_1 doi: 10.1016/j.cub.2020.05.083 – ident: e_1_2_9_46_1 doi: 10.1016/j.jmb.2008.04.046 – ident: e_1_2_9_58_1 doi: 10.1016/j.jmii.2019.09.005 – volume: 85 start-page: 1 year: 2015 ident: e_1_2_9_5_1 article-title: Mammalian autophagy: how does it work? publication-title: Annu Rev Biochem – ident: e_1_2_9_21_1 doi: 10.1083/jcb.202009128 – ident: e_1_2_9_54_1 – ident: e_1_2_9_56_1 doi: 10.1038/nature10744 – ident: e_1_2_9_28_1 doi: 10.1016/j.ejpn.2015.10.003 – ident: e_1_2_9_60_1 doi: 10.1016/j.cell.2019.06.007 – ident: e_1_2_9_12_1 doi: 10.1111/cmi.12558 – ident: e_1_2_9_19_1 doi: 10.1107/S0907444913000061 – ident: e_1_2_9_30_1 doi: 10.1038/317262a0 – ident: e_1_2_9_47_1 doi: 10.1111/j.1462-5822.2009.01415.x – ident: e_1_2_9_45_1 doi: 10.1016/j.chom.2011.04.010 – ident: e_1_2_9_37_1 doi: 10.4161/15548627.2014.984276 – ident: e_1_2_9_49_1 doi: 10.1016/j.molcel.2019.01.041 – ident: e_1_2_9_31_1 doi: 10.1016/0092-8674(87)90335-7 – ident: e_1_2_9_16_1 doi: 10.1016/j.chom.2009.07.005 – ident: e_1_2_9_40_1 doi: 10.1107/S0021889807021206 – ident: e_1_2_9_41_1 doi: 10.1146/annurev-cellbio-092910-154005 – ident: e_1_2_9_43_1 doi: 10.1038/s41467-022-29481-4 – ident: e_1_2_9_9_1 doi: 10.1038/nri.2016.100 – ident: e_1_2_9_11_1 doi: 10.1016/j.molcel.2011.12.036 – reference: 37638605 - EMBO J. 2023 Oct 4;42(19):e115210. doi: 10.15252/embj.2023115210. |
| SSID | ssj0005871 |
| Score | 2.5807633 |
| Snippet | Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria‐containing vacuoles (BCVs) and subsequent rupture of the BCV membrane,... Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane,... |
| SourceID | pubmedcentral proquest pubmed crossref wiley springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e113012 |
| SubjectTerms | Animals ATG5‐ATG12 E3 ligase Autophagy Autophagy-Related Protein 5 - metabolism Autophagy-Related Proteins - metabolism Bacteria Carrier Proteins - metabolism Cellular stress response Conjugation Crystal structure Crystallography Cytosol Damage detection DysF EMBO07 EMBO20 Exposure Life Sciences Lipids Mammals membrane damage Membranes Microtubule-Associated Proteins - metabolism Polysaccharides Receptors Sphingomyelin Sphingomyelins Tryptophan Ubiquitin Ubiquitin-protein ligase Ubiquitin-Protein Ligases - metabolism Vacuoles |
| Title | TECPR1 conjugates LC3 to damaged endomembranes upon detection of sphingomyelin exposure |
| URI | https://link.springer.com/article/10.15252/embj.2022113012 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022113012 https://www.ncbi.nlm.nih.gov/pubmed/37409490 https://www.proquest.com/docview/2860290142 https://www.proquest.com/docview/2834000426 https://pubmed.ncbi.nlm.nih.gov/PMC10476172 |
| Volume | 42 |
| WOSCitedRecordID | wos001022705600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1460-2075 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQBmIvfIyPBcZkJF5AitbYruM8QmkFaFTTtGl9i_wVsYkm1dIi9t9z53yUMgES4iWKZTuOz3f2_c72HSGvpEnkUGc6TpzksWA6jTUAkVhZY6UThZDKhWAT6XSqZrPs57swjX-I3uCGkhHmaxRwbeouYg96DfVzcwkAjwGEAS6FaXgbXlLkbCaO18c8VABdwc4iEpW1W5X4jcNfvrC5NN3QN28em-z3Tjc127A0Te7_j049IPdaxZS-bTjpIbnly11ypwlVeb1L7o66yHCPyPnpeHR8klCA0pcrNMPV9GjE6bKiTs9hfnLUl66aQyOwEELmalGV1PllOPVV0qqg9QINX9X8Gm_DU_99UaGh8jE5m4xPRx_iNkBDbIeAhGKdcWkkSwdKW5sa0CzSLClYZpl3vECzCrMq86ASSqZB9J02MP5cG6GHwivNn5Ctsir9HqEWYJhh3jjQB0UhtXJKWsY84GRfwCIbkcNubHLbei_HIBpfc0QxSLwcSZevSReR132NReO54w9l97vhzlsZrnOG4blwlxmyX_bZQGrcUgHyVSssw8Ug4NCIPG24o2-Mp4ids0FE1Abf9AXQs_dmTnnxJXj4Rv8ZqFpG5E3HYuv_-n0nhoG1_trbfPz53ad18tk_1ntOdiDBw4E7sU-2llcr_4Lctt-WF_XVQZBCeKYzdUC2359Mzo4gdf5x-gO3GjIU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9NAzRe-BgMAgOMxAtI0RrHdZxHiDoN6KoKFbG3yLEdsYkm1doi9t9z53xUZQIkxGN0dhJf7nz3O1_uAF7JIpJDneowsjIOBddJqBGIhMoURlpRCqmsbzaRTCbq7Cyd7kDW_QvT1IfoA26kGX6_JgWngHTXsofKhrp5cYEIjyOGQTHFffiGQONEeX1cTDd5HsqjLh9oEZFK27NKusfRL3fYtk3XHM7reZP94em2a-tt0_Hd_7Kqe3CndU3Z20aW7sOOq_bhVtOs8mof9rKuN9wD-DIbZdNPEUMwfbGmQNySjbOYrWpm9Rx3KMtcZes5PgRNIRLXi7pi1q183lfF6pItFxT6qudX9D88cz8WNYUqH8Ln49EsOwnbFg2hGSIWCnUay0LyZKC0MUmBvkWSRiVPDXc2Limwwo1KHTqFkmtUfqsLlIBYF0IPhVM6PoDdqq7cY2AGgVjBXWHRIxSl1MoqaTh3iJRdiWY2gKPu4-SmrV9ObTS-5YRjiHk5sS7fsC6A1_2MRVO74w9jD7vvnbdavMw5Neiic2Ykv-zJyGo6VEH21WsaE4uBR6IBPGrEo39YnBB6TgcBqC3B6QdQbe9tSnX-1df4pgoa5FwG8KaTsc17_X4RQy9bf11tPjp992Fz-eQf572AvZPZ6Tgfv598fAq3kRD79DtxCLury7V7BjfN99X58vK5V8mf6kMyYQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9N4_OFjwEjMMBIvIAUrXFcx3mE0orBqCo0tL1Fju2ITWsSrS1i_z13zkdVJkBCPCb-SHy-s-93Pt8BvJJ5JIc61WFkZRwKrpNQIxAJlcmNtKIQUlmfbCKZTtXJSTrbglF3F6aJD9Eb3Egy_HpNAu5qW3QpeyhsqJvnZ4jwOGIYZFNch68JVMfJr-v4YLr281AedXlDi4hU2p5VUh_7v_SwuTddUTiv-k32h6ebqq3fmyZ3_8uo7sGdVjVlbxteug9brtyBG02yyssduDXqcsM9gOOj8Wj2JWIIps9WZIhbsMNRzJYVs3qOK5RlrrTVHD-CWyEWruqqZNYtvd9XyaqCLWoyfVXzS7oPz9yPuiJT5UP4OhkfjT6EbYqG0AwRC4U6jWUueTJQ2pgkR90iSaOCp4Y7GxdkWOFGpQ6VQsk1Cr_VOXJArHOhh8IpHT-C7bIq3WNgBoFYzl1uUSMUhdTKKmk4d4iUXYHbbAD73eRkpo1fTmk0zjPCMUS8jEiXrUkXwOu-Rd3E7vhD3b1uvrNWihcZpwRddM6MxS_7YiQ1Haog-aoV1YnFwCPRAHYb9ug_FieEntNBAGqDcfoKFNt7s6Q8_eZjfFMEDVIuA3jT8dj6v34_iKHnrb-ONht_fvdx_fjkH9u9gJuz95Ps8GD66Sncxvex974Te7C9vFi5Z3DdfF-eLi6ee4n8CQjdMlI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TECPR1+conjugates+LC3+to+damaged+endomembranes+upon+detection+of+sphingomyelin+exposure&rft.jtitle=The+EMBO+journal&rft.au=Boyle%2C+Keith+B&rft.au=Ellison%2C+Cara+J&rft.au=Elliott%2C+Paul+R&rft.au=Schuschnig%2C+Martina&rft.date=2023-09-04&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=42&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.2022113012&rft.externalDBID=10.15252%252Fembj.2022113012&rft.externalDocID=EMBJ2022113012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |