Technical Note: Computing Strategies in Genome-Wide Selection

Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of dairy science Ročník 91; číslo 1; s. 360 - 366
Hlavní autoři: Legarra, A, Misztal, I
Médium: Journal Article
Jazyk:angličtina
Vydáno: Savoy, IL Elsevier Inc 01.01.2008
American Dairy Science Association
Am Dairy Sci Assoc
Témata:
ISSN:0022-0302, 1525-3198, 1525-3198
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n3. Computing times per round are proportional to mn2 in matrix-free Gauss-Seidel, to n2 for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1h for half-stored Gauss-Seidel, 2h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.
AbstractList Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n³. Computing times per round are proportional to mn² in matrix-free Gauss-Seidel, to n² for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1 h for half-stored Gauss-Seidel, 2 h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.
Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n3. Computing times per round are proportional to mn2 in matrix-free Gauss-Seidel, to n2 for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1 h for half-stored Gauss-Seidel, 2 h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.
Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n super(3). Computing times per round are proportional to mn super(2) in matrix-free Gauss-Seidel, to n super(2) for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1 h for half-stored Gauss-Seidel, 2 h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.
Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n3. Computing times per round are proportional to mn2 in matrix-free Gauss-Seidel, to n2 for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1 h for half-stored Gauss-Seidel, 2 h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n3. Computing times per round are proportional to mn2 in matrix-free Gauss-Seidel, to n2 for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1 h for half-stored Gauss-Seidel, 2 h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.
Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n3. Computing times per round are proportional to mn2 in matrix-free Gauss-Seidel, to n2 for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1h for half-stored Gauss-Seidel, 2h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.
Author Legarra, A
Misztal, I
Author_xml – sequence: 1
  fullname: Legarra, A
– sequence: 2
  fullname: Misztal, I
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19953383$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18096959$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02658143$$DView record in HAL
BookMark eNqF0s-L1DAUB_AgK-4PPXrVIih46PqSNG0ieFgG3RUGPcwuHkMmfZ3J0CazSWfF_96UGV1YWPYUGj59fX3ve0qOfPBIyGsK55zW8tOmTecMoCmhAv6MnFDBRMmpkkfkBICxEjiwY3Ka0iY_UgbiBTmmElSthDohX67Rrr2zpi9-hBE_F7MwbHej86tiMUYz4sphKpwvLtGHActfrsVigT3a0QX_kjzvTJ_w1eE8Izffvl7Prsr5z8vvs4t5aYUUY2naClm1NJUVnbE11LxGRCoNbVqlaNtJurSibTpkRiGvuOjQGFUzRm2HkvEz8nFfd216vY1uMPGPDsbpq4u5nu6A1ULSit_RbD_s7TaG2x2mUQ8uWex74zHskm6AivwJ9iSsmhpELZ6umIcNvGJVhu8ewE3YRZ8nk42QjHI2VXtzQLvlgO3_3_m3kwzeH4BJeS9dNN66dO-UEpxLnl25dzaGlCJ29wT0lA2ds6GnbOgpG9nzB9660UxrzIt2_aNvHbpZu9X6t4uo02D6PjdPJ6mopprXkN3bvetM0GYVc8c3CwaUA0iuKhBZNHuBOSl3DqNO1qG32OaqdtRtcI_08BceGuIb
CODEN JDSCAE
CitedBy_id crossref_primary_10_3168_jds_2009_2064
crossref_primary_10_1186_1471_2156_13_100
crossref_primary_10_1186_1471_2156_15_53
crossref_primary_10_1038_s41467_024_46421_6
crossref_primary_10_1038_ng_3190
crossref_primary_10_1186_s12864_017_3715_5
crossref_primary_10_1093_bib_bbac067
crossref_primary_10_1186_s12859_017_1582_3
crossref_primary_10_4141_cjas_2014_091
crossref_primary_10_1007_s10681_017_1915_3
crossref_primary_10_1017_S0016672312000274
crossref_primary_10_1186_1753_6561_3_S1_S10
crossref_primary_10_1534_g3_118_200336
crossref_primary_10_3168_jds_2007_0980
crossref_primary_10_1007_s10681_017_2018_x
crossref_primary_10_1111_j_1439_0388_2012_01019_x
crossref_primary_10_3168_jds_2008_1646
crossref_primary_10_3389_fpls_2022_1089937
crossref_primary_10_3389_fgene_2021_742752
crossref_primary_10_1134_S1022795409060015
crossref_primary_10_1186_1297_9686_46_24
crossref_primary_10_1186_s12711_022_00705_x
crossref_primary_10_1002_jsfa_4041
crossref_primary_10_1007_s12041_016_0705_3
crossref_primary_10_2527_jas_2007_0324
crossref_primary_10_1007_s13253_015_0225_2
crossref_primary_10_1017_S0016672310000613
crossref_primary_10_1134_S1022795413100104
crossref_primary_10_1017_S0016672310000534
crossref_primary_10_1371_journal_pgen_1000231
crossref_primary_10_1186_s12859_016_0899_7
crossref_primary_10_3168_jds_2014_7924
crossref_primary_10_3168_jds_2012_6013
crossref_primary_10_4081_ijas_2009_s2_117
crossref_primary_10_1111_2041_210X_12113
crossref_primary_10_1186_s12711_014_0052_x
crossref_primary_10_1186_1297_9686_41_11
crossref_primary_10_1186_s12711_014_0057_5
crossref_primary_10_1534_genetics_114_163683
crossref_primary_10_1186_1297_9686_41_56
crossref_primary_10_1016_j_ajhg_2015_09_001
crossref_primary_10_1534_genetics_108_088575
crossref_primary_10_1186_s12711_017_0355_9
crossref_primary_10_1016_j_compag_2020_105594
crossref_primary_10_1534_g3_119_400728
crossref_primary_10_1186_1297_9686_41_3
crossref_primary_10_1038_hdy_2014_36
crossref_primary_10_1111_jbg_12161
crossref_primary_10_1186_1471_2105_11_529
crossref_primary_10_1007_s11295_012_0516_5
crossref_primary_10_2135_cropsci2015_02_0111
crossref_primary_10_1007_s00122_016_2750_y
crossref_primary_10_17221_43_2015_CJAS
crossref_primary_10_1017_S175173111700283X
crossref_primary_10_2527_jas_2011_5061
crossref_primary_10_3168_jds_2011_4223
crossref_primary_10_3168_jds_2011_4982
crossref_primary_10_1017_S1751731109991352
crossref_primary_10_1093_genetics_iyae179
crossref_primary_10_1186_1297_9686_43_26
crossref_primary_10_1186_s12711_022_00730_w
crossref_primary_10_1007_s13353_015_0305_6
crossref_primary_10_1534_g3_113_005975
crossref_primary_10_1186_1753_6561_4_S1_S6
crossref_primary_10_1186_s12711_015_0117_5
crossref_primary_10_1590_1984_70332021v21sa15
crossref_primary_10_3168_jds_2014_8951
crossref_primary_10_1007_s00122_015_2607_9
crossref_primary_10_1016_j_ajhg_2015_10_002
crossref_primary_10_3168_jds_2011_4274
crossref_primary_10_1007_s10709_018_0027_x
crossref_primary_10_1007_s13353_011_0047_z
crossref_primary_10_1111_age_12280
crossref_primary_10_1038_s42003_022_03624_1
crossref_primary_10_1186_1297_9686_43_19
crossref_primary_10_1007_s13353_017_0409_2
crossref_primary_10_1017_S1751731116002366
crossref_primary_10_1038_ng_3431
crossref_primary_10_1093_bib_bbp050
Cites_doi 10.3168/jds.S0022-0302(87)80063-2
10.1023/A:1011094131273
10.1038/ng1840
10.3168/jds.S0022-0302(99)75536-0
10.1093/genetics/157.4.1819
10.3168/jds.S0022-0302(99)75535-9
10.2527/2001.7951166x
10.1186/1297-9686-28-1-121
ContentType Journal Article
Copyright 2008 American Dairy Science Association
2008 INIST-CNRS
Copyright American Dairy Science Association Jan 2008
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2008 American Dairy Science Association
– notice: 2008 INIST-CNRS
– notice: Copyright American Dairy Science Association Jan 2008
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X2
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
M0K
M0S
M1P
M7S
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
S0X
7TM
8FD
FR3
P64
RC3
7S9
L.6
7X8
1XC
DOI 10.3168/jds.2007-0403
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Agricultural Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
SIRS Editorial
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
Genetics Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3198
EndPage 366
ExternalDocumentID oai:HAL:hal-02658143v1
1478079141
18096959
19953383
10_3168_jds_2007_0403
jds91_1_360
US201300839405
S0022030208714711
Genre Evaluation Studies
Journal Article
Comparative Study
General Information
GroupedDBID ---
--K
-~X
.GJ
0R~
0SF
186
18M
1B1
29K
2WC
36B
3V.
4.4
457
4G.
53G
5GY
5VS
7-5
7X2
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
8FW
8R4
8R5
8VB
AABVA
AAEDT
AAEDW
AAFTH
AAIAV
AALRI
AAQFI
AAQXK
AAWRB
AAXUO
ABCQX
ABJCF
ABJNI
ABUWG
ABVKL
ACGFO
ACGFS
ACIWK
ADBBV
ADMUD
ADPAM
AEGXH
AENEX
AESVU
AFKRA
AFKWA
AFRAH
AFTJW
AGZHU
AHMBA
AI.
AIAGR
AITUG
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALXNB
AMRAJ
ASPBG
ATCPS
AVWKF
AZFZN
BELOY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
D-I
DU5
E3Z
EBS
EBU
EDH
EJD
EMB
F5P
FDB
FEDTE
FGOYB
FYUFA
GBLVA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HZ~
K1G
L6V
L7B
M0K
M1P
M41
M7S
N9A
NCXOZ
NHB
O9-
OK1
P2P
PATMY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
QII
QWB
R2-
ROL
RWL
S0X
SEL
SES
SSZ
SV3
TAE
TDS
TWZ
U5U
UHB
UKHRP
VH1
WOQ
XH2
XOL
ZGI
ZL0
ZXP
~KM
AAHBH
ABWVN
ACRPL
ADMHG
ADNMO
ADVLN
AEUYN
AFJKZ
AFPKN
AKRWK
ALIPV
FBQ
PHGZT
-
0R
AALRV
ABFLS
ABPTK
ACVYA
ADKZR
AQIPR
BBAFP
HZ
K
K-O
KM
LA8
O0-
PQEST
PQUKI
PRINS
UNR
X
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFFHD
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
7TM
8FD
FR3
P64
PUEGO
RC3
7S9
L.6
7X8
1XC
ID FETCH-LOGICAL-c585t-ad4e24ba4c5fac60636eee18a17d991df81bc5d7fe2a9e3435feaa96221cfe823
IEDL.DBID M7S
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000251800200041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0302
1525-3198
IngestDate Tue Oct 14 20:46:13 EDT 2025
Thu Oct 02 09:39:18 EDT 2025
Thu Sep 04 18:03:53 EDT 2025
Fri Sep 05 09:07:59 EDT 2025
Mon Oct 06 17:24:49 EDT 2025
Wed Feb 19 01:48:34 EST 2025
Mon Jul 21 09:12:02 EDT 2025
Sat Nov 29 05:39:14 EST 2025
Tue Nov 18 21:46:31 EST 2025
Tue Nov 10 19:22:07 EST 2020
Thu Apr 03 09:43:12 EDT 2025
Fri Feb 23 02:33:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords genomic selection
marker-assisted selection
genetic evaluation
genome-wide selection
Evaluation
Genomics
Dairy industry
Marker assisted selection
Genetics
Strategy
Computing
Genome
Genome-wide selection, genomic selection, genetic evaluation, marker-assisted selection
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-ad4e24ba4c5fac60636eee18a17d991df81bc5d7fe2a9e3435feaa96221cfe823
Notes SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Undefined-3
ORCID 0000-0001-8893-7620
OpenAccessLink http://www.journalofdairyscience.org/article/S0022030208714711/pdf
PMID 18096959
PQID 195821321
PQPubID 34471
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_02658143v1
proquest_miscellaneous_70153432
proquest_miscellaneous_47605651
proquest_miscellaneous_19803424
proquest_journals_195821321
pubmed_primary_18096959
pascalfrancis_primary_19953383
crossref_primary_10_3168_jds_2007_0403
crossref_citationtrail_10_3168_jds_2007_0403
highwire_smallpub1_jds91_1_360
fao_agris_US201300839405
elsevier_sciencedirect_doi_10_3168_jds_2007_0403
PublicationCentury 2000
PublicationDate January 2008
2008
20080101
2008-01-00
2008-Jan
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: January 2008
PublicationDecade 2000
PublicationPlace Savoy, IL
PublicationPlace_xml – name: Savoy, IL
– name: United States
– name: Champaign
PublicationTitle Journal of dairy science
PublicationTitleAlternate J Dairy Sci
PublicationYear 2008
Publisher Elsevier Inc
American Dairy Science Association
Am Dairy Sci Assoc
Publisher_xml – name: Elsevier Inc
– name: American Dairy Science Association
– name: Am Dairy Sci Assoc
References Legarra, A., C. Robert-Granié, E. Manfredi, and J. M. Elsen. 2007. Does genomic selection work in a mice population? Pages 66–74 in Proc. XI QTLMAS (workshop on QTL and marker-assisted selection) 2007, Toulouse, France.
García-Cortés, Sorensen (bib2) 1996; 28
Tsuruta, Misztal, Strand (bib13) 2001; 79
Solberg, Sonesson, Wooliams, Meuwissen (bib10) 2006
April 18, 2007.
Schaeffer, Kennedy (bib9) 1986
Janss, L., and G. de Jong. 1999. MCMC based estimation of variance components in a very large dairy cattle data set. Pages 62–67 in Proc. Computational Cattle Breeding 1999, Tuusula, Finland.
Strandén, Lidauer (bib12) 1999; 82
Sorensen, Gianola (bib11) 2002
Meuwissen, Hayes, Goddard (bib7) 2001; 157
Misztal, Gianola (bib8) 1987; 70
Lynch, Walsh (bib6) 1998
Galli, Gao (bib1) 2001; 33
Lidauer, Strandén, Mäntysaari, Pösö, Kettunen (bib5) 1999; 82
Valdar, Solberg, Gauguier, Burnett, Klenerman, Cookson, Taylor, Rawlins, Mott, Flint (bib14) 2006; 38
Misztal (10.3168/jds.2007-0403_bib8) 1987; 70
10.3168/jds.2007-0403_bib4
Lidauer (10.3168/jds.2007-0403_bib5) 1999; 82
10.3168/jds.2007-0403_bib3
Valdar (10.3168/jds.2007-0403_bib14) 2006; 38
García-Cortés (10.3168/jds.2007-0403_bib2) 1996; 28
Tsuruta (10.3168/jds.2007-0403_bib13) 2001; 79
Solberg (10.3168/jds.2007-0403_bib10) 2006
Meuwissen (10.3168/jds.2007-0403_bib7) 2001; 157
Galli (10.3168/jds.2007-0403_bib1) 2001; 33
Schaeffer (10.3168/jds.2007-0403_bib9) 1986
Lynch (10.3168/jds.2007-0403_bib6) 1998
Strandén (10.3168/jds.2007-0403_bib12) 1999; 82
Sorensen (10.3168/jds.2007-0403_bib11) 2002
References_xml – year: 1998
  ident: bib6
  article-title: Genetics and Analysis of Quantitative Traits
– volume: 82
  start-page: 2779
  year: 1999
  end-page: 2787
  ident: bib12
  article-title: Solving large mixed linear models using preconditioned conjugate gradient iteration
  publication-title: J. Dairy Sci.
– volume: 38
  start-page: 879
  year: 2006
  end-page: 887
  ident: bib14
  article-title: Genome-wide genetic association of complex traits in heterogeneous stock mice
  publication-title: Nat. Genet.
– year: 2006
  ident: bib10
  article-title: Genomic selection using different marker types and density
  publication-title: Proc. Eighth World Congr. Genet
– reference: April 18, 2007.
– volume: 28
  start-page: 121
  year: 1996
  end-page: 126
  ident: bib2
  article-title: On a multivariate implementation of the Gibbs sampler
  publication-title: Genet. Sel. Evol.
– volume: 70
  start-page: 716
  year: 1987
  end-page: 723
  ident: bib8
  article-title: Indirect solution of mixed model equations
  publication-title: J. Dairy Sci.
– volume: 33
  start-page: 653
  year: 2001
  end-page: 677
  ident: bib1
  article-title: Rate of convergence of the Gibbs sampler in the Gaussian case
  publication-title: Math. Geol.
– reference: Legarra, A., C. Robert-Granié, E. Manfredi, and J. M. Elsen. 2007. Does genomic selection work in a mice population? Pages 66–74 in Proc. XI QTLMAS (workshop on QTL and marker-assisted selection) 2007, Toulouse, France.
– volume: 79
  start-page: 1166
  year: 2001
  end-page: 1172
  ident: bib13
  article-title: Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications
  publication-title: J. Anim. Sci.
– volume: 157
  start-page: 1819
  year: 2001
  end-page: 1829
  ident: bib7
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
– reference: Janss, L., and G. de Jong. 1999. MCMC based estimation of variance components in a very large dairy cattle data set. Pages 62–67 in Proc. Computational Cattle Breeding 1999, Tuusula, Finland.
– volume: 82
  start-page: 2788
  year: 1999
  end-page: 2796
  ident: bib5
  article-title: Solving large test-day models by iteration on data and preconditioned conjugate gradient
  publication-title: J. Dairy Sci.
– start-page: 382
  year: 1986
  end-page: 393
  ident: bib9
  article-title: Computing solutions to mixed model equations
  publication-title: Proc. Third World Congr. Genet. Appl. Livest. Prod. XII
– year: 2002
  ident: bib11
  article-title: Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics
– volume: 70
  start-page: 716
  year: 1987
  ident: 10.3168/jds.2007-0403_bib8
  article-title: Indirect solution of mixed model equations
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(87)80063-2
– volume: 33
  start-page: 653
  year: 2001
  ident: 10.3168/jds.2007-0403_bib1
  article-title: Rate of convergence of the Gibbs sampler in the Gaussian case
  publication-title: Math. Geol.
  doi: 10.1023/A:1011094131273
– ident: 10.3168/jds.2007-0403_bib3
– volume: 38
  start-page: 879
  year: 2006
  ident: 10.3168/jds.2007-0403_bib14
  article-title: Genome-wide genetic association of complex traits in heterogeneous stock mice
  publication-title: Nat. Genet.
  doi: 10.1038/ng1840
– volume: 82
  start-page: 2788
  year: 1999
  ident: 10.3168/jds.2007-0403_bib5
  article-title: Solving large test-day models by iteration on data and preconditioned conjugate gradient
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(99)75536-0
– volume: 157
  start-page: 1819
  year: 2001
  ident: 10.3168/jds.2007-0403_bib7
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– year: 2002
  ident: 10.3168/jds.2007-0403_bib11
– volume: 82
  start-page: 2779
  year: 1999
  ident: 10.3168/jds.2007-0403_bib12
  article-title: Solving large mixed linear models using preconditioned conjugate gradient iteration
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(99)75535-9
– ident: 10.3168/jds.2007-0403_bib4
– volume: 79
  start-page: 1166
  year: 2001
  ident: 10.3168/jds.2007-0403_bib13
  article-title: Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications
  publication-title: J. Anim. Sci.
  doi: 10.2527/2001.7951166x
– year: 2006
  ident: 10.3168/jds.2007-0403_bib10
  article-title: Genomic selection using different marker types and density
– year: 1998
  ident: 10.3168/jds.2007-0403_bib6
– start-page: 382
  year: 1986
  ident: 10.3168/jds.2007-0403_bib9
  article-title: Computing solutions to mixed model equations
– volume: 28
  start-page: 121
  year: 1996
  ident: 10.3168/jds.2007-0403_bib2
  article-title: On a multivariate implementation of the Gibbs sampler
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/1297-9686-28-1-121
SSID ssj0021205
Score 2.2128844
Snippet Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
highwire
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 360
SubjectTerms Agricultural sciences
Algorithms
Animal productions
Animals
artificial selection
Biological and medical sciences
Body Weight
cattle
Cholesky decomposition
Computational Biology
Computational Biology - methods
computer software
covariance
equations
Female
Food industries
Fundamental and applied biological sciences. Psychology
Gauss-Seidel
Gauss-Seidel with residuals update
genetic evaluation
genetic markers
genome
genome-wide selection
genomic selection
genomics
Genomics - methods
Life Sciences
Male
marker-assisted selection
mathematical models
matrix free Gauss-Seidel
methods
Mice
Milk and cheese industries. Ice creams
Models, Genetic
Polymorphism, Single Nucleotide
preconditioned conjugate gradients
selection criteria
single nucleotide polymorphism
Terrestrial animal productions
variance
Vertebrates
Title Technical Note: Computing Strategies in Genome-Wide Selection
URI https://dx.doi.org/10.3168/jds.2007-0403
http://jds.fass.org/cgi/content/abstract/91/1/360
https://www.ncbi.nlm.nih.gov/pubmed/18096959
https://www.proquest.com/docview/195821321
https://www.proquest.com/docview/19803424
https://www.proquest.com/docview/47605651
https://www.proquest.com/docview/70153432
https://hal.inrae.fr/hal-02658143
Volume 91
WOSCitedRecordID wos000251800200041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1525-3198
  dateEnd: 20100228
  omitProxy: false
  ssIdentifier: ssj0021205
  issn: 0022-0302
  databaseCode: M0K
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1525-3198
  dateEnd: 20100228
  omitProxy: false
  ssIdentifier: ssj0021205
  issn: 0022-0302
  databaseCode: M7S
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1525-3198
  dateEnd: 20100228
  omitProxy: false
  ssIdentifier: ssj0021205
  issn: 0022-0302
  databaseCode: PATMY
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1525-3198
  dateEnd: 20100228
  omitProxy: false
  ssIdentifier: ssj0021205
  issn: 0022-0302
  databaseCode: 7X7
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1525-3198
  dateEnd: 20100228
  omitProxy: false
  ssIdentifier: ssj0021205
  issn: 0022-0302
  databaseCode: BENPR
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6RlgM98C41hWAhxAmr3vVj10gIBdRSiRJVhIrcVuvdMQ1K7RKn_f3M-FVxSC9cLCWZxGvPl51vdsffMPYmgbSAPHaBciCDWNg0yAvFA-SmGL-jFKK8eVD4RE6naj7PTrvanLorq-znxGaidpWlNfIDEkURmDrxj5d_AmoaRZurXQeNEdsmkQTRVO7NhnyLi7aCkQrWEcuildikTk0Hv10j1S0DxHC0KSSNClPh8ZwqJAf1YCqeNDXev6JtfLGZmTYR6ujBf17bQ3a_o6b-pMXSI3YHysdsZ_Jr1clzwBP2oVmJJ7_602oN7_22KQSGP7-XuYXaX5T-FyirCwh-Lhz4s6bVDvr_KTs7Ovzx-TjoGjAEFrOIdWBcDCLOTWyTwlhMddB3AFwZLh3ySodOzW3iZAHCZBAh8yrAmCwVgtsClIh22VZZlbDH_Cy0xhrBjXKYkyQIHSdkCDaRJkzzDDz2rveBtp06OTXJWGrMUshlGl1GPTOlJpd57O1gftnKcmwyDHuH6o5TtFxBY8jY9JU9dLw2eHtrfTYTtLeLRDVDauux14iG4YwkzX08OdH0HuayiULyec09Nu7BousLs1wiKDidIuOa6ygN0eAfCN1cQUbFvgpHsN_jRHdTSq0HkHjs1fApzgW0wWNKqK7IRJGiY7zZIpaYvqbJLb8hkR_Sw8Yee9aC-WZ0CtPdLMme3zq6fXavLamhVaoXbGu9uoKX7K69Xi_q1ZiN5Fw2RzVm258Op6ff8dW38Ou4-ev-BQVwRGA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQceENNobUQcMKqd_1YG6lCEVBSNURIbdXclvXuGIJSu8RpET-K_8iMXxGH9NYDlxySTTzxfjP7jXf2G8ZeRhDnkIXWSyxILxQm9rI84R5yU1y_gxiCrD4oPJLjcTKZpF_W2J_uLAyVVXYxsQ7UtjT0jHyHRFEEpk783dlPj5pG0eZq10GjQcUB_P6FGVu1u_8Bp_eVEHsfj94PvbapgGeQGS88bUMQYaZDE-XaIH1HewB4orm0yJUsGpqZyMochE4hQDaRg9ZpLAQ3OSSkc4AR_zqGcUkVZHKyzO-4aComqUAefUc0kp7UGWrnh62lwaWHPhOsWgKv5brE1-9UkdmrFVOxpq5wvvKm0cZqJlyviHt3_7N7eY_daam3O2h85T5bg-IBuz34Nm_lR-Ah2613Ggi37rhcwFu3aXqBy7vbyfhC5U4L9xMU5Sl4J1ML7mHdSgjx_YgdX4n9j9l6URawwdzUN9powXViMeeK0DWskD6YSGo_zlJw2JtuzpVp1depCchMYRZGEFEIEeoJKhVBxGGv--FnjezIqoF-ByDVcqaGCylcEld9ZQOBpjTe3kodHwrau0YiniJ1d9gLRF9_RZIeHw5Git7DXD1KkFxfcIdtdeBU1amezRCEnC6RcsVVEPs44B_ILv9BSsXMCVqw2eFStSGzUj0oHbbdf4qxjjawdAHlOQ1JSLEyXD0ilJiex9ElvyGR_9Jhaoc9aZxnaV2C6XwapU8vtW6b3RwefR6p0f74YJPdasqH6IncM7a-mJ_Dc3bDXCym1XyrDg4u-3rVHvQX-rigDQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFiE48IaaQmsh4ISV7PqxNlKFAm1o1SiKKFV7W9a7YwhK7RKnRfw0_h0zflUc0lsPXHJINvHE-83sN97Zbxh7FUKUQRpYL7YgvUCYyEuzmHvITXH99iPw0-qg8EiOx_HJSTJZYX_aszBUVtnGxCpQ28LQM_IeiaIITJ14L2uqIiY7w_dnPz1qIEUbrW03jRohB_D7F2Zv5fb-Dk71ayGGu18-7nlNgwHPIEteeNoGIIJUBybMtEEqj7YB8FhzaZE3WTQ6NaGVGQidgI_MIgOtk0gIbjKISfMAo_-aRI6BzrX2YXc8-dxle1zU9ZNULo-eJGqBT-oT1fthK6Fw6aEH-csWxBuZLvD1O9VndtrFVLqpS5y9rG67sZwXV-vj8N5_fGfvs7sNKXcHtRc9YCuQP2R3Bt_mjTAJPGLb1R4EIdodFwt459btMHDhd1uBXyjdae5-grw4Be94asE9rJoMIfIfs6Nrsf8JW82LHNaZm_SNNlpwHVvMxkJ0GitkH0wodT9KE3DY23b-lWl02ak9yExhfkZwUQgX6hYqFcHFYW-64We1IMmygf0WTKphUzVLUrhYLvvKOoJOaby9pTo6FLSrjRQ9QVLvsJeIxO6KJEq-Nxgpeg-z-DBG2n3BHbbZAlWVp3o2Q0ByukTCFVd-1McB_8D38h8kVOYcowUbLUZVE0xL1QHUYVvdpxgFaWtL51Cc05CYtCyD5SMCiYl7FF7xGxKZMR2zdtjT2pEurYsx0U_C5NmV1m2xW-g4arQ_Pthgt-u6InpU95ytLubn8ILdNBeLaTnfbCKFy75etwv9Bfjlqi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+Note+%3A+Computing+Strategies+in+Genome-Wide+Selection&rft.jtitle=Journal+of+dairy+science&rft.au=LEGARRA%2C+A&rft.au=MISZTAL%2C+I&rft.date=2008&rft.pub=American+Dairy+Science+Association&rft.issn=0022-0302&rft.volume=91&rft.issue=1&rft.spage=360&rft.epage=366&rft_id=info:doi/10.3168%2Fjds.2007-0403&rft.externalDBID=n%2Fa&rft.externalDocID=19953383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0302&client=summon