Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests

Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been developed in sufficient detail. In this research, allometric equations are presented based on the genera of commercial species and mixed species....

Full description

Saved in:
Bibliographic Details
Published in:Forest ecology and management Vol. 257; no. 8; pp. 1684 - 1694
Main Authors: Basuki, T.M., van Laake, P.E., Skidmore, A.K., Hussin, Y.A.
Format: Journal Article
Language:English
Published: Kidlington Elsevier B.V 31.03.2009
[Amsterdam]: Elsevier Science
Elsevier
Subjects:
ISSN:0378-1127, 1872-7042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been developed in sufficient detail. In this research, allometric equations are presented based on the genera of commercial species and mixed species. Separate equations are developed for the Dipterocarpus, Hopea, Palaquium and Shorea genera, and an equation of a mix of these genera represents commercial species. The mixed species is constructed from commercial and non-commercial species. The data were collected in lowland mixed Dipterocarp forests in East Kalimantan, Indonesia. The number of trees sampled in this research was 122, with diameters (1.30 m or above buttresses) ranging from 6 to 200 cm. Destructive sampling was used to collect the samples where diameter at breast height (DBH), commercial bole height (CBH), and wood density were used as predictors for dry weight of total above-ground biomass (TAGB). Model comparison and selection were based on Akaike Information Criterion (AIC), slope coefficient of the regression, average deviation, confidence interval (CI) of the mean, paired t-test. Based on these statistical indicators, the most suitable model is ln(TAGB) = c + αln(DBH). This model uses only a single predictor of DBH and produces a range of prediction values closer to the upper and lower limits of the observed mean. Model 1 is reliable for forest managers to estimate above-ground biomass, so the research findings can be extrapolated for managing forests related to carbon balance. Additional explanatory variables such as CBH do not really increase the indicators’ goodness of fit for the equation. An alternative model to incorporate wood density must be considered for estimating the above-ground biomass for mixed species. Comparing the presented equations to previously published data shows that these local species-specific and generic equations differ substantially from previously published equations and that site specific equations must be considered to get a better estimation of biomass. Based on the average deviation and the range of CI, the generalized equations are not sufficient to estimate the biomass for a certain type of forests, such as lowland Dipterocarp forests. The research findings are new for Dipterocarp forests, so they complement the previous research as well as the methodology of the Good Practice Guidance for Land Use and Land Use Change and Forestry (GPG-LULUCF).
AbstractList Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been developed in sufficient detail. In this research, allometric equations are presented based on the genera of commercial species and mixed species. Separate equations are developed for the Dipterocarpus, Hopea, Palaquium and Shorea genera, and an equation of a mix of these genera represents commercial species. The mixed species is constructed from commercial and non-commercial species. The data were collected in lowland mixed Dipterocarp forests in East Kalimantan, Indonesia. The number of trees sampled in this research was 122, with diameters (1.30m or above buttresses) ranging from 6 to 200cm. Destructive sampling was used to collect the samples where diameter at breast height (DBH), commercial bole height (CBH), and wood density were used as predictors for dry weight of total above-ground biomass (TAGB). Model comparison and selection were based on Akaike Information Criterion (AIC), slope coefficient of the regression, average deviation, confidence interval (CI) of the mean, paired t-test. Based on these statistical indicators, the most suitable model is ln(TAGB)= c + αln(DBH). This model uses only a single predictor of DBH and produces a range of prediction values closer to the upper and lower limits of the observed mean. Model 1 is reliable for forest managers to estimate above-ground biomass, so the research findings can be extrapolated for managing forests related to carbon balance. Additional explanatory variables such as CBH do not really increase the indicators' goodness of fit for the equation. An alternative model to incorporate wood density must be considered for estimating the above-ground biomass for mixed species. Comparing the presented equations to previously published data shows that these local species-specific and generic equations differ substantially from previously published equations and that site specific equations must be considered to get a better estimation of biomass. Based on the average deviation and the range of CI, the generalized equations are not sufficient to estimate the biomass for a certain type of forests, such as lowland Dipterocarp forests. The research findings are new for Dipterocarp forests, so they complement the previous research as well as the methodology of the Good Practice Guidance for Land Use and Land Use Change and Forestry (GPG-LULUCF).
Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been developed in sufficient detail. In this research, allometric equations are presented based on the genera of commercial species and mixed species. Separate equations are developed for the Dipterocarpus, Hopea, Palaquium and Shorea genera, and an equation of a mix of these genera represents commercial species. The mixed species is constructed from commercial and non-commercial species. The data were collected in lowland mixed Dipterocarp forests in East Kalimantan, Indonesia. The number of trees sampled in this research was 122, with diameters (1.30 m or above buttresses) ranging from 6 to 200 cm. Destructive sampling was used to collect the samples where diameter at breast height (DBH), commercial bole height (CBH), and wood density were used as predictors for dry weight of total above-ground biomass (TAGB). Model comparison and selection were based on Akaike Information Criterion (AIC), slope coefficient of the regression, average deviation, confidence interval (CI) of the mean, paired t-test. Based on these statistical indicators, the most suitable model is ln(TAGB) = c + ¿ln(DBH). This model uses only a single predictor of DBH and produces a range of prediction values closer to the upper and lower limits of the observed mean. Model 1 is reliable for forest managers to estimate above-ground biomass, so the research findings can be extrapolated for managing forests related to carbon balance. Additional explanatory variables such as CBH do not really increase the indicators¿ goodness of fit for the equation. An alternative model to incorporate wood density must be considered for estimating the above-ground biomass for mixed species. Comparing the presented equations to previously published data shows that these local species-specific and generic equations differ substantially from previously published equations and that site specific equations must be considered to get a better estimation of biomass. Based on the average deviation and the range of CI, the generalized equations are not sufficient to estimate the biomass for a certain type of forests, such as lowland Dipterocarp forests. The research findings are new for Dipterocarp forests, so they complement the previous research as well as the methodology of the Good Practice Guidance for Land Use and Land Use Change and Forestry (GPG-LULUCF)
Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been developed in sufficient detail. In this research, allometric equations are presented based on the genera of commercial species and mixed species. Separate equations are developed for the Dipterocarpus, Hopea, Palaquium and Shorea genera, and an equation of a mix of these genera represents commercial species. The mixed species is constructed from commercial and non-commercial species. The data were collected in lowland mixed Dipterocarp forests in East Kalimantan, Indonesia. The number of trees sampled in this research was 122, with diameters (1.30 m or above buttresses) ranging from 6 to 200 cm. Destructive sampling was used to collect the samples where diameter at breast height (DBH), commercial bole height (CBH), and wood density were used as predictors for dry weight of total above-ground biomass (TAGB). Model comparison and selection were based on Akaike Information Criterion (AIC), slope coefficient of the regression, average deviation, confidence interval (CI) of the mean, paired t-test. Based on these statistical indicators, the most suitable model is ln(TAGB) = c + αln(DBH). This model uses only a single predictor of DBH and produces a range of prediction values closer to the upper and lower limits of the observed mean. Model 1 is reliable for forest managers to estimate above-ground biomass, so the research findings can be extrapolated for managing forests related to carbon balance. Additional explanatory variables such as CBH do not really increase the indicators’ goodness of fit for the equation. An alternative model to incorporate wood density must be considered for estimating the above-ground biomass for mixed species. Comparing the presented equations to previously published data shows that these local species-specific and generic equations differ substantially from previously published equations and that site specific equations must be considered to get a better estimation of biomass. Based on the average deviation and the range of CI, the generalized equations are not sufficient to estimate the biomass for a certain type of forests, such as lowland Dipterocarp forests. The research findings are new for Dipterocarp forests, so they complement the previous research as well as the methodology of the Good Practice Guidance for Land Use and Land Use Change and Forestry (GPG-LULUCF).
Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been developed in sufficient detail. In this research, allometric equations are presented based on the genera of commercial species and mixed species. Separate equations are developed for the Dipterocarpus, Hopea, Palaquium and Shorea genera, and an equation of a mix of these genera represents commercial species. The mixed species is constructed from commercial and non-commercial species. The data were collected in lowland mixed Dipterocarp forests in East Kalimantan, Indonesia. The number of trees sampled in this research was 122, with diameters (1.30m or above buttresses) ranging from 6 to 200cm. Destructive sampling was used to collect the samples where diameter at breast height (DBH), commercial bole height (CBH), and wood density were used as predictors for dry weight of total above-ground biomass (TAGB). Model comparison and selection were based on Akaike Information Criterion (AIC), slope coefficient of the regression, average deviation, confidence interval (CI) of the mean, paired t-test. Based on these statistical indicators, the most suitable model is ln(TAGB)=c+aln(DBH). This model uses only a single predictor of DBH and produces a range of prediction values closer to the upper and lower limits of the observed mean. Model 1 is reliable for forest managers to estimate above-ground biomass, so the research findings can be extrapolated for managing forests related to carbon balance. Additional explanatory variables such as CBH do not really increase the indicators' goodness of fit for the equation. An alternative model to incorporate wood density must be considered for estimating the above-ground biomass for mixed species. Comparing the presented equations to previously published data shows that these local species-specific and generic equations differ substantially from previously published equations and that site specific equations must be considered to get a better estimation of biomass. Based on the average deviation and the range of CI, the generalized equations are not sufficient to estimate the biomass for a certain type of forests, such as lowland Dipterocarp forests. The research findings are new for Dipterocarp forests, so they complement the previous research as well as the methodology of the Good Practice Guidance for Land Use and Land Use Change and Forestry (GPG-LULUCF).
Author van Laake, P.E.
Basuki, T.M.
Hussin, Y.A.
Skidmore, A.K.
Author_xml – sequence: 1
  givenname: T.M.
  surname: Basuki
  fullname: Basuki, T.M.
  email: basuki@itc.nl, tmbasuki@yahoo.com
– sequence: 2
  givenname: P.E.
  surname: van Laake
  fullname: van Laake, P.E.
– sequence: 3
  givenname: A.K.
  surname: Skidmore
  fullname: Skidmore, A.K.
– sequence: 4
  givenname: Y.A.
  surname: Hussin
  fullname: Hussin, Y.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21344179$$DView record in Pascal Francis
BookMark eNqFkc1u1DAUhS1UJKaFN0AiG9glXDtOnLBAqsqvVIkFdG3Zjj14lLFTO-mob88NKUJiQVdXlr9zfHzPOTkLMVhCXlKoKND27aFyMVkTKwbQV0ArYOIJ2dFOsFIAZ2dkB7XoSkqZeEbOcz4AQNPwbkeGy3GMRzsnbwp7u6jZx5ALtCtsnv0Rz2FfzD9toXS8s-U-xSUMhfbxqHIufCjmFCdv1FiM8TQqvPvgp9mmaFSaVh-0yc_JU6fGbF88zAty8-njj6sv5fW3z1-vLq9L03TNXNYOascEAGtbGBwFMEK1rRKd67TuG2U60L1TTujGtY3TrONcNwbhQdhW1xfk3eZ7UnsbMLkNMqhkfJZReTl6nVS6l6clyTCuY1p0lrXoewEofrOJpxRvF4wtjz4bO-KnbFyy5C2rGeOPgwx4LWrOEXz9AKqMG3JJhTXKlHCvGINRhKjo_8Y2KeacrJPGz7-bmJPyo6Qg15rlQW41y7VmCVRizSjm_4j_-D8ie7XJnIpS7RPmuvnOgNaooNDRDon3G2GxsTtvk8zG22Ds4NFtlkP0_3_iFyG30qU
CODEN FECMDW
CitedBy_id crossref_primary_10_1016_j_foreco_2013_09_045
crossref_primary_10_1007_s42965_022_00280_8
crossref_primary_10_1007_s10457_014_9734_1
crossref_primary_10_1016_j_biombioe_2024_107420
crossref_primary_10_1093_forsci_fxac021
crossref_primary_10_1088_1755_1315_1181_1_012001
crossref_primary_10_1038_s41598_023_28843_2
crossref_primary_10_1016_j_foreco_2013_09_040
crossref_primary_10_1016_j_jag_2019_102014
crossref_primary_10_1007_s42965_020_00098_2
crossref_primary_10_3390_f11091018
crossref_primary_10_1007_s11676_018_0603_z
crossref_primary_10_1007_s11056_021_09844_3
crossref_primary_10_1016_j_foreco_2009_11_007
crossref_primary_10_1155_2023_5572048
crossref_primary_10_1007_s11676_017_0534_0
crossref_primary_10_1016_j_heliyon_2020_e04581
crossref_primary_10_1080_10106049_2016_1178814
crossref_primary_10_1080_21580103_2025_2497246
crossref_primary_10_1016_j_rsase_2019_100284
crossref_primary_10_1016_j_foreco_2013_05_038
crossref_primary_10_3390_f8040114
crossref_primary_10_1080_21580103_2024_2366831
crossref_primary_10_1002_2688_8319_12301
crossref_primary_10_3390_f16081225
crossref_primary_10_1016_j_foreco_2013_05_036
crossref_primary_10_1080_01431161_2017_1421793
crossref_primary_10_1371_journal_pone_0151527
crossref_primary_10_2134_agronj2013_0015
crossref_primary_10_1038_s41598_024_53162_5
crossref_primary_10_4236_ojf_2025_153011
crossref_primary_10_1016_j_foreco_2010_07_040
crossref_primary_10_1007_s00468_015_1196_1
crossref_primary_10_1016_j_jag_2012_01_010
crossref_primary_10_1016_j_biombioe_2013_02_011
crossref_primary_10_1186_s13021_019_0127_7
crossref_primary_10_1016_j_biombioe_2018_04_022
crossref_primary_10_1016_j_forpol_2016_06_032
crossref_primary_10_1016_j_csr_2024_105299
crossref_primary_10_1100_2012_790219
crossref_primary_10_1007_s11273_020_09772_7
crossref_primary_10_3390_f14040725
crossref_primary_10_1016_j_actao_2018_02_003
crossref_primary_10_1080_10549811_2018_1449122
crossref_primary_10_1016_j_foreco_2018_07_030
crossref_primary_10_1029_2022EA002261
crossref_primary_10_1007_s44415_025_00036_x
crossref_primary_10_1002_ecs2_3893
crossref_primary_10_3390_ijgi11030174
crossref_primary_10_1111_sjtg_12215
crossref_primary_10_1186_s40663_020_00250_3
crossref_primary_10_1080_11263504_2021_1985002
crossref_primary_10_1093_forsci_fxad013
crossref_primary_10_1016_j_foreco_2019_01_038
crossref_primary_10_1007_s11368_017_1718_0
crossref_primary_10_1186_s13021_016_0058_5
crossref_primary_10_1080_03650340_2018_1434718
crossref_primary_10_3390_f13071057
crossref_primary_10_1016_j_ecofro_2024_05_010
crossref_primary_10_1007_s11056_023_09963_z
crossref_primary_10_3390_f7080180
crossref_primary_10_1007_s10457_016_0023_z
crossref_primary_10_2989_00306525_2019_1581498
crossref_primary_10_1007_s10457_018_0213_y
crossref_primary_10_1155_ijfr_8109041
crossref_primary_10_3390_f10100862
crossref_primary_10_3390_f12091210
crossref_primary_10_3832_ifor2204_010
crossref_primary_10_1016_j_foreco_2013_12_007
crossref_primary_10_1186_s13705_021_00310_8
crossref_primary_10_1007_s10457_020_00578_3
crossref_primary_10_1038_s41598_024_65138_6
crossref_primary_10_1007_s10342_016_0987_2
crossref_primary_10_1080_10106049_2020_1756461
crossref_primary_10_1007_s11676_015_0053_9
crossref_primary_10_1080_20964129_2019_1591169
crossref_primary_10_17533_udea_acbi_14306
crossref_primary_10_1016_j_biombioe_2019_105353
crossref_primary_10_1371_journal_pone_0029642
crossref_primary_10_1111_gcb_13201
crossref_primary_10_1016_j_foreco_2014_06_026
crossref_primary_10_1088_1755_1315_1315_1_012043
crossref_primary_10_1007_s11629_019_5968_8
crossref_primary_10_3390_f6041239
crossref_primary_10_1038_s41598_023_51002_6
crossref_primary_10_1093_forestry_cps069
crossref_primary_10_3832_ifor0899_006
crossref_primary_10_1016_j_foreco_2020_118485
crossref_primary_10_1016_j_foreco_2017_02_022
crossref_primary_10_1007_s10661_017_6307_6
crossref_primary_10_1007_s40808_022_01611_3
crossref_primary_10_15446_ga_v22n2_80639
crossref_primary_10_3390_ijgi11030199
crossref_primary_10_1007_s10668_022_02725_5
crossref_primary_10_1659_MRD_JOURNAL_D_16_00052_1
crossref_primary_10_1016_j_foreco_2009_07_019
crossref_primary_10_3390_f15061059
crossref_primary_10_1016_j_biortech_2019_122195
crossref_primary_10_1007_s11676_019_00955_4
crossref_primary_10_1016_j_foreco_2015_05_003
crossref_primary_10_1016_j_foreco_2014_09_002
crossref_primary_10_1080_20964129_2018_1433951
crossref_primary_10_2989_20702620_2020_1818535
crossref_primary_10_1080_21580103_2023_2256355
crossref_primary_10_1016_j_foreco_2011_10_016
crossref_primary_10_1080_21580103_2020_1801526
crossref_primary_10_1016_j_soilbio_2016_12_014
crossref_primary_10_1080_02827581_2015_1060257
crossref_primary_10_1088_1755_1315_1452_1_012017
crossref_primary_10_1016_j_ecolmodel_2011_11_022
crossref_primary_10_1080_02827581_2013_786126
crossref_primary_10_3390_f7110259
crossref_primary_10_1016_j_biombioe_2016_03_020
crossref_primary_10_3390_f15101829
crossref_primary_10_1080_10106049_2021_1990419
crossref_primary_10_2478_jlecol_2024_0018
crossref_primary_10_1371_journal_pone_0079868
crossref_primary_10_1109_JSTARS_2023_3271186
crossref_primary_10_1016_j_foreco_2013_10_029
crossref_primary_10_1016_j_ecoinf_2024_102621
crossref_primary_10_1016_j_foreco_2020_118384
crossref_primary_10_1016_j_ecoinf_2023_102218
crossref_primary_10_1016_j_jaridenv_2020_104264
crossref_primary_10_1080_10549811_2018_1450155
crossref_primary_10_1007_s41748_021_00277_8
crossref_primary_10_1016_j_foreco_2010_08_034
crossref_primary_10_1016_j_foreco_2013_08_054
crossref_primary_10_1016_j_foreco_2013_07_013
crossref_primary_10_2989_20702620_2019_1686688
crossref_primary_10_1007_s13595_015_0507_4
crossref_primary_10_1371_journal_pone_0151858
crossref_primary_10_3389_fpls_2025_1521596
crossref_primary_10_1007_s11053_013_9216_6
crossref_primary_10_1007_s11056_016_9527_7
crossref_primary_10_3390_f12050586
crossref_primary_10_1016_j_ecolind_2016_10_001
crossref_primary_10_3390_f11121332
crossref_primary_10_1016_j_ecoinf_2024_102712
crossref_primary_10_1093_forestry_cpz041
crossref_primary_10_2989_20702620_2012_701432
crossref_primary_10_2989_20702620_2018_1512795
crossref_primary_10_1186_s40663_019_0195_x
crossref_primary_10_1007_s13157_015_0660_4
crossref_primary_10_1016_j_foreco_2017_01_030
crossref_primary_10_1016_j_isprsjprs_2012_03_011
crossref_primary_10_1007_s10342_020_01333_0
crossref_primary_10_1007_s11676_018_0590_0
crossref_primary_10_1016_j_foreco_2015_07_029
crossref_primary_10_1088_1755_1315_18_1_012151
crossref_primary_10_3390_f8030086
crossref_primary_10_1007_s11676_018_0707_5
crossref_primary_10_5194_bg_10_8385_2013
crossref_primary_10_3390_rs14092146
crossref_primary_10_1016_j_biombioe_2012_10_006
crossref_primary_10_1038_s41598_022_11394_3
crossref_primary_10_1890_13_0070_1
crossref_primary_10_1007_s10457_018_0245_3
crossref_primary_10_3390_f10121114
crossref_primary_10_3390_rs13234827
crossref_primary_10_1007_s13595_013_0356_y
crossref_primary_10_1007_s12665_014_3805_5
crossref_primary_10_1016_j_foreco_2016_10_021
crossref_primary_10_3390_f10040316
crossref_primary_10_1080_22797254_2019_1605624
crossref_primary_10_1007_s40333_019_0023_8
crossref_primary_10_1016_j_foreco_2019_05_048
crossref_primary_10_1016_j_foreco_2022_120031
crossref_primary_10_1007_s11676_019_00881_5
crossref_primary_10_1093_forestry_cpx003
crossref_primary_10_1007_s10310_009_0149_1
crossref_primary_10_1139_cjb_2015_0078
crossref_primary_10_1080_21580103_2011_594613
crossref_primary_10_1139_cjfr_2020_0215
crossref_primary_10_1007_s13595_014_0434_9
crossref_primary_10_1016_j_gecco_2015_05_004
crossref_primary_10_1659_MRD_JOURNAL_D_14_00083_1
crossref_primary_10_1371_journal_pone_0322025
crossref_primary_10_1007_s10441_018_9317_z
crossref_primary_10_1016_j_biombioe_2017_12_025
crossref_primary_10_15446_caldasia_v44n1_88198
crossref_primary_10_3390_f9040168
crossref_primary_10_1007_s11676_014_0437_2
crossref_primary_10_3390_f3030818
crossref_primary_10_1371_journal_pone_0314405
crossref_primary_10_1371_journal_pone_0226341
crossref_primary_10_1007_s10342_021_01354_3
crossref_primary_10_3390_f11080874
crossref_primary_10_1007_s11368_014_1050_x
crossref_primary_10_1016_j_rser_2017_05_214
crossref_primary_10_1088_1755_1315_487_1_012004
crossref_primary_10_3390_f14030646
crossref_primary_10_1007_s10457_011_9429_9
crossref_primary_10_1111_gcb_12979
crossref_primary_10_3390_f8090327
crossref_primary_10_1186_s40663_016_0087_2
crossref_primary_10_1111_2041_210X_12759
crossref_primary_10_1139_cjfr_2014_0266
crossref_primary_10_1186_s13021_019_0134_8
crossref_primary_10_1007_s11676_013_0406_1
crossref_primary_10_1007_s11676_015_0143_8
crossref_primary_10_17221_39_2014_JFS
crossref_primary_10_1007_s10457_023_00942_z
crossref_primary_10_1007_s42535_023_00679_1
crossref_primary_10_1016_j_ecolind_2025_113294
crossref_primary_10_1080_00207233_2023_2202546
crossref_primary_10_1088_2752_664X_acf9a9
crossref_primary_10_1002_jgrg_20109
crossref_primary_10_1016_j_foreco_2011_07_018
crossref_primary_10_1016_j_indic_2025_100618
crossref_primary_10_1007_s00468_016_1490_6
crossref_primary_10_1371_journal_pone_0156827
crossref_primary_10_3390_f11020210
crossref_primary_10_1080_10549811_2020_1795688
crossref_primary_10_48130_forres_0025_0017
crossref_primary_10_1007_s13157_013_0505_y
crossref_primary_10_3390_rs9090935
crossref_primary_10_1139_cjfr_2013_0520
crossref_primary_10_1016_j_ecolmodel_2019_01_002
crossref_primary_10_1080_10549811_2019_1607754
crossref_primary_10_1155_2023_4901521
crossref_primary_10_3389_ffgc_2024_1352265
crossref_primary_10_1016_j_foreco_2021_118920
crossref_primary_10_3390_agronomy10030382
crossref_primary_10_3390_f7020032
crossref_primary_10_3390_f10080686
crossref_primary_10_1016_j_envc_2024_101063
crossref_primary_10_1016_j_catena_2021_105375
crossref_primary_10_1016_j_agrformet_2024_110301
crossref_primary_10_1007_s10668_021_01996_8
crossref_primary_10_1016_j_biombioe_2015_08_017
crossref_primary_10_1093_forestry_cpw025
crossref_primary_10_1016_j_foreco_2017_10_007
crossref_primary_10_3389_ffgc_2020_00012
crossref_primary_10_1007_s12524_022_01664_y
crossref_primary_10_1007_s13595_015_0481_x
crossref_primary_10_1007_s13595_017_0618_1
crossref_primary_10_1007_s11676_022_01500_6
crossref_primary_10_1007_s11273_019_09677_0
crossref_primary_10_1007_s11676_020_01268_7
crossref_primary_10_1007_s12518_014_0126_z
crossref_primary_10_1155_2023_3838404
crossref_primary_10_1590_0001_3765201720170047
crossref_primary_10_3390_f12121800
crossref_primary_10_3390_f15040652
crossref_primary_10_1007_s10661_014_4248_x
crossref_primary_10_3390_f13030486
crossref_primary_10_1016_j_enbuild_2017_02_010
crossref_primary_10_1016_j_foreco_2016_06_031
crossref_primary_10_1016_j_rse_2017_09_011
crossref_primary_10_3390_land11060811
crossref_primary_10_1080_10106049_2019_1573855
crossref_primary_10_1007_s13595_015_0456_y
crossref_primary_10_3159_TORREY_D_15_00056_1
crossref_primary_10_3390_f13020325
crossref_primary_10_1007_s00468_015_1314_0
crossref_primary_10_1186_s13717_018_0130_z
crossref_primary_10_3390_rs15184407
crossref_primary_10_1007_s10457_012_9529_1
crossref_primary_10_3390_f12091269
crossref_primary_10_2989_20702620_2018_1488209
crossref_primary_10_1007_s10457_013_9611_3
crossref_primary_10_1080_01431161_2013_777486
crossref_primary_10_3390_f11040397
crossref_primary_10_1088_1748_9326_ac31ee
crossref_primary_10_1016_j_foreco_2015_09_016
crossref_primary_10_1016_j_jaridenv_2017_07_002
crossref_primary_10_1890_14_0175_1
crossref_primary_10_3832_ifor3492_013
crossref_primary_10_1007_s42965_021_00140_x
crossref_primary_10_1016_j_foreco_2014_08_031
crossref_primary_10_1088_1755_1315_540_1_012039
crossref_primary_10_1016_j_eiar_2022_106960
crossref_primary_10_1038_srep34644
crossref_primary_10_1016_j_foreco_2021_119011
crossref_primary_10_1016_j_ecolind_2019_02_030
crossref_primary_10_3390_plants10081519
crossref_primary_10_3390_fire7060204
crossref_primary_10_1139_X10_139
crossref_primary_10_1155_2014_714734
crossref_primary_10_1007_s10457_017_0109_2
crossref_primary_10_1016_j_foreco_2011_12_013
crossref_primary_10_1007_s40333_020_0082_x
crossref_primary_10_3390_f12040470
crossref_primary_10_1007_s11676_019_00924_x
crossref_primary_10_3390_f14102095
crossref_primary_10_3390_land9060193
crossref_primary_10_1080_10106049_2011_634928
crossref_primary_10_1016_j_foreco_2021_119262
crossref_primary_10_1016_j_foreco_2019_117701
crossref_primary_10_3390_rs10050749
crossref_primary_10_1007_s11056_012_9359_z
crossref_primary_10_1100_2012_405084
crossref_primary_10_1371_journal_pone_0254231
crossref_primary_10_1016_j_foreco_2021_119816
crossref_primary_10_3390_f13101672
crossref_primary_10_1007_s10530_020_02235_3
crossref_primary_10_1007_s11676_017_0410_y
crossref_primary_10_3390_f7070136
crossref_primary_10_1016_j_bamboo_2025_100139
crossref_primary_10_1080_02827581_2015_1089932
crossref_primary_10_1371_journal_pone_0310780
crossref_primary_10_1890_15_0017
crossref_primary_10_2989_20702620_2021_1934180
crossref_primary_10_1016_j_agee_2012_05_011
crossref_primary_10_1007_s13762_017_1518_5
crossref_primary_10_1016_j_rsase_2022_100821
crossref_primary_10_3390_data4030104
crossref_primary_10_3390_rs13224516
crossref_primary_10_1016_j_ecolind_2021_107951
crossref_primary_10_3832_ifor1449_007
crossref_primary_10_1186_s40068_019_0155_z
crossref_primary_10_1371_journal_pone_0158198
crossref_primary_10_5194_bg_9_3381_2012
crossref_primary_10_1007_s12524_024_02104_9
crossref_primary_10_1016_j_agrformet_2025_110595
crossref_primary_10_1109_TGRS_2023_3335197
crossref_primary_10_3390_land7040124
crossref_primary_10_1890_ES14_00251_1
crossref_primary_10_5558_tfc2022_011
crossref_primary_10_3832_ifor2758_011
crossref_primary_10_1007_s10457_011_9434_z
crossref_primary_10_3390_rs12122008
crossref_primary_10_1007_s10457_012_9490_z
crossref_primary_10_1088_1755_1315_905_1_012002
crossref_primary_10_3390_f7050096
crossref_primary_10_17221_49_2016_JFS
Cites_doi 10.1016/S0378-1127(00)00591-0
10.1111/j.1365-2486.2004.00751.x
10.1016/S0378-1127(00)00460-6
10.1016/S0378-1127(01)00509-6
10.1007/BF00045057
10.1016/S0378-1127(02)00489-9
10.1017/S0266467401001055
10.2307/1937343
10.1016/S0378-1127(01)00627-2
10.1016/j.foreco.2007.04.047
10.1139/b85-010
10.1016/S0378-1127(98)00475-7
10.1016/S0378-1127(03)00229-9
10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2
10.1016/j.foreco.2004.12.007
10.1016/S0960-8524(01)00012-8
10.1088/1748-9326/2/4/045023
10.1007/s00442-005-0100-x
10.1016/S0378-1127(99)00104-8
10.1016/j.agrformet.2005.09.011
10.1016/S0378-1127(98)00470-8
10.1016/j.rse.2005.12.001
10.1016/j.foreco.2004.07.059
10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2
10.1016/j.foreco.2006.12.018
ContentType Journal Article
Copyright 2009 Elsevier B.V.
2009 INIST-CNRS
Wageningen University & Research
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2009 INIST-CNRS
– notice: Wageningen University & Research
DBID FBQ
AAYXX
CITATION
IQODW
7SN
7ST
7U6
C1K
7S9
L.6
QVL
DOI 10.1016/j.foreco.2009.01.027
DatabaseName AGRIS
CrossRef
Pascal-Francis
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Ecology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Forestry
EISSN 1872-7042
EndPage 1694
ExternalDocumentID oai_library_wur_nl_wurpubs_379970
21344179
10_1016_j_foreco_2009_01_027
US201301610818
S0378112709000516
GeographicLocations Indonesia
Borneo, Kalimantan
GeographicLocations_xml – name: Indonesia
– name: Borneo, Kalimantan
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIDBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
NCXOZ
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
VH1
WH7
WUQ
Y6R
ZKB
ZY4
~02
~G-
~KM
ABPIF
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SN
7ST
7U6
C1K
7S9
L.6
08R
AALMO
AAPBV
ABQIS
ADALY
IPNFZ
QVL
ID FETCH-LOGICAL-c585t-3f03f27002660df100c7a66a78f8bb95ac80b9faf7b5f65fb2844b5c60dd7e6b3
ISICitedReferencesCount 421
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265342200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-1127
IngestDate Thu Oct 13 09:30:53 EDT 2022
Sun Sep 28 08:50:19 EDT 2025
Tue Oct 07 09:29:10 EDT 2025
Mon Jul 21 09:17:14 EDT 2025
Tue Nov 18 22:18:30 EST 2025
Sat Nov 29 03:52:12 EST 2025
Wed Dec 27 19:14:58 EST 2023
Fri Feb 23 02:30:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Carbon stock
Destructive sampling
DBH
Site specific equation
Non metal
Forests
Epigeal
Tropical zone
Samplings
Forest ecology
Equation
Group IVA element
Physical environment
Biomass
Allometry
Dipterocarpaceae
Carbon
Site specificity
Dicotyledones
Angiospermae
Spermatophyta
Sampling
Lowland
Stock
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c585t-3f03f27002660df100c7a66a78f8bb95ac80b9faf7b5f65fb2844b5c60dd7e6b3
Notes http://dx.doi.org/10.1016/j.foreco.2009.01.027
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378112709000516
PQID 20437344
PQPubID 23462
PageCount 11
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_379970
proquest_miscellaneous_46232240
proquest_miscellaneous_20437344
pascalfrancis_primary_21344179
crossref_citationtrail_10_1016_j_foreco_2009_01_027
crossref_primary_10_1016_j_foreco_2009_01_027
fao_agris_US201301610818
elsevier_sciencedirect_doi_10_1016_j_foreco_2009_01_027
PublicationCentury 2000
PublicationDate 2009-03-31
PublicationDateYYYYMMDD 2009-03-31
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-31
  day: 31
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Forest ecology and management
PublicationYear 2009
Publisher Elsevier B.V
[Amsterdam]: Elsevier Science
Elsevier
Publisher_xml – name: Elsevier B.V
– name: [Amsterdam]: Elsevier Science
– name: Elsevier
References Intergovernmental Panel on Climate Change (IPCC), 2003. In: Penman, J., Gystarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (Eds.), Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF). IPCC National Greenhouse Gas Inventories Programme.
Berau Forest Management Project (BFMP) (bib3) 1999
Sokal, Rohlf (bib31) 1995
Hashimotio, Kojima, Tange, Sasaki (bib19) 2000; 126
Sprugel (bib33) 1983; 64
Gibbs, Brown, Niles, Foley (bib17) 2007; 2
(bib30) 1993; vol. 5 (1)
Wahyuningum, N., 2005. Foliage biomass estimation in tropical logged over forest East Kalimantan, Indonesia. MSc Thesis, ITC, Enschede, 54 pp.
Mantel, S., 1999. Development of environmental framework: Soils and terrain conditions of Labanan. Summary Report. Berau Forest Management Project. European Union – Ministry of Forestry and Estate Crops, Jakarta, 14 pp.
Cordero, Kanninen (bib14) 2002; 165
Clark, Brown, Kicklighter, Chambers, Thomlinson, Ni, Holland (bib13) 2001; 11
Samalca, I., 2007. Estimation of forest biomass and its error: A case in Kalimantan, Indonesia. MSc thesis, ITC, Enschede, 74 pp.
Brand, Smith (bib4) 1985; 63
Tyrie (bib36) 1999
Baker, Phillips, Malhi, Almeida, Arroyo, Di Fiore, Killeen, Laurance, Laurance, Lewis, Lloyd, Monteagudo, Neill, Patiño, Pitman, Silva, Martínez (bib2) 2004; 10
Stewart, J.L., Dunsdon, A.J., Hellin, J.J., Hughes, C.E., 1992. Wood biomass estimation of Central American dry zone species. Tropical Forestry Papers 26. Oxford Forestry Institute, Department of Plant Sciences, University of Oxford.
Myeong, Nowak, Duggin (bib24) 2006; 101
Chiesi, Maselli, Bindi, Fibbi, Cherubini, Arlotta, Tirone, Matteucci, Seufert (bib12) 2005; 136
Chave, Riéra, Dubois (bib9) 2001; 17
Sah, Ross, Kaptur, Snyder (bib28) 2004; 203
Araújo, Higuchi, de Carvalho Júnior (bib1) 1999; 177
Ketterings, Coe, van Noordwijk, Ambagau, Palm (bib22) 2001; 146
Keller, Palace, Hurtt (bib21) 2001; 154
Burnham, Anderson (bib6) 2002
Cairns, Olmsted, Granados, Argaez (bib7) 2003; 186
FAO, 2004. National forest inventory: Field manual template, Rome.
UNFCCC (United Nations Framework Convention on Climate Change), 2008. Report of the Conference of the Parties on its thirteenth session, held in Bali from 3 to 15 December 2007. Addendum, Part 2. Document FCCC/CP/2007/6/Add.1. UNFCCC, Bonn, Germany.
De Gier (bib15) 2003
Nogueira, Nelson, Fearnside (bib26) 2005; 208
Chambers, dos Santos, Ribeiro, Higuchi (bib8) 2001; 152
Gunawan, Rathert (bib18) 1999
Tan, Piao, Peng, Fang (bib35) 2007; 240
Wang, Hall, Scatena, Fetcher, Wu (bib39) 2003; 179
Nelson, Mesquita, Pereira, de Souza, Batista, Couta (bib25) 1999; 117
Nogueira, Fearnside, Nelson, França (bib27) 2007; 248
Yamakura, Hagihara, Sukardjo, Ogawa (bib40) 1986; 68
Son, Hwang, Kim, Lee, Kim (bib32) 2001; 78
Chave, Muller-Landau, Baker, Easdale, Steege, Webb (bib11) 2006; 16
Chave, Andalo, Brown, Cairns, Chambers, Eamus, Fölster, Fromard, Higuchi, Kira, Lescure, Nelson, Ogawa, Puig, Riéra, Yamakura (bib10) 2005; 145
(accessed 02.01.07).
Brown, S., 1997. Estimating biomass and biomass change of tropical forests: a primer. FAO. Forestry Paper 134, Rome, 87 pp.
Clark (10.1016/j.foreco.2009.01.027_bib13) 2001; 11
De Gier (10.1016/j.foreco.2009.01.027_bib15) 2003
Gibbs (10.1016/j.foreco.2009.01.027_bib17) 2007; 2
Sprugel (10.1016/j.foreco.2009.01.027_bib33) 1983; 64
Cordero (10.1016/j.foreco.2009.01.027_bib14) 2002; 165
Myeong (10.1016/j.foreco.2009.01.027_bib24) 2006; 101
Tan (10.1016/j.foreco.2009.01.027_bib35) 2007; 240
(10.1016/j.foreco.2009.01.027_bib30) 1993; vol. 5 (1)
10.1016/j.foreco.2009.01.027_bib37
10.1016/j.foreco.2009.01.027_bib16
10.1016/j.foreco.2009.01.027_bib38
Brand (10.1016/j.foreco.2009.01.027_bib4) 1985; 63
10.1016/j.foreco.2009.01.027_bib34
Sah (10.1016/j.foreco.2009.01.027_bib28) 2004; 203
Chambers (10.1016/j.foreco.2009.01.027_bib8) 2001; 152
Chave (10.1016/j.foreco.2009.01.027_bib11) 2006; 16
Chiesi (10.1016/j.foreco.2009.01.027_bib12) 2005; 136
Chave (10.1016/j.foreco.2009.01.027_bib9) 2001; 17
Burnham (10.1016/j.foreco.2009.01.027_bib6) 2002
Hashimotio (10.1016/j.foreco.2009.01.027_bib19) 2000; 126
Cairns (10.1016/j.foreco.2009.01.027_bib7) 2003; 186
Sokal (10.1016/j.foreco.2009.01.027_bib31) 1995
Gunawan (10.1016/j.foreco.2009.01.027_bib18) 1999
Araújo (10.1016/j.foreco.2009.01.027_bib1) 1999; 177
10.1016/j.foreco.2009.01.027_bib5
Nelson (10.1016/j.foreco.2009.01.027_bib25) 1999; 117
Nogueira (10.1016/j.foreco.2009.01.027_bib27) 2007; 248
Yamakura (10.1016/j.foreco.2009.01.027_bib40) 1986; 68
10.1016/j.foreco.2009.01.027_bib29
Son (10.1016/j.foreco.2009.01.027_bib32) 2001; 78
Baker (10.1016/j.foreco.2009.01.027_bib2) 2004; 10
Tyrie (10.1016/j.foreco.2009.01.027_bib36) 1999
Ketterings (10.1016/j.foreco.2009.01.027_bib22) 2001; 146
Wang (10.1016/j.foreco.2009.01.027_bib39) 2003; 179
Keller (10.1016/j.foreco.2009.01.027_bib21) 2001; 154
Nogueira (10.1016/j.foreco.2009.01.027_bib26) 2005; 208
10.1016/j.foreco.2009.01.027_bib23
Berau Forest Management Project (BFMP) (10.1016/j.foreco.2009.01.027_bib3) 1999
Chave (10.1016/j.foreco.2009.01.027_bib10) 2005; 145
10.1016/j.foreco.2009.01.027_bib20
References_xml – reference: Intergovernmental Panel on Climate Change (IPCC), 2003. In: Penman, J., Gystarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (Eds.), Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF). IPCC National Greenhouse Gas Inventories Programme.
– reference: Stewart, J.L., Dunsdon, A.J., Hellin, J.J., Hughes, C.E., 1992. Wood biomass estimation of Central American dry zone species. Tropical Forestry Papers 26. Oxford Forestry Institute, Department of Plant Sciences, University of Oxford.
– year: 1999
  ident: bib36
  article-title: Ten years of tropical lowland rainforest research in Labanan, East Kalimantan the STREK plots. Berau Forest Management Project
– year: 1999
  ident: bib18
  article-title: Monitoring, Data Management and Analysis of the BFMP Permanent Sample Plots (STREK plots) at Berau. Berau Forest Management Project
– reference: (accessed 02.01.07).
– volume: 203
  start-page: 319
  year: 2004
  end-page: 329
  ident: bib28
  article-title: Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys Pine forests
  publication-title: Forest Ecology and Management
– reference: Brown, S., 1997. Estimating biomass and biomass change of tropical forests: a primer. FAO. Forestry Paper 134, Rome, 87 pp.
– year: 1999
  ident: bib3
  article-title: The climatic and hydrology of Labanan concession
– reference: Mantel, S., 1999. Development of environmental framework: Soils and terrain conditions of Labanan. Summary Report. Berau Forest Management Project. European Union – Ministry of Forestry and Estate Crops, Jakarta, 14 pp.
– volume: 136
  start-page: 22
  year: 2005
  end-page: 34
  ident: bib12
  article-title: Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements
  publication-title: Agricultural and Forest Meteorology
– volume: 117
  start-page: 149
  year: 1999
  end-page: 167
  ident: bib25
  article-title: Allometric regressions for improved estimate of secondary forest biomass in the Central Amazon
  publication-title: Forest Ecology and Management
– volume: 177
  start-page: 43
  year: 1999
  end-page: 52
  ident: bib1
  article-title: Comparison of formulae for biomass determination in a tropical rain forest site the state of Pará, Brazil
  publication-title: Forest Ecology and Management
– year: 2002
  ident: bib6
  article-title: Model selection and multimodel inference. A practical information-theoretic approach
– volume: 63
  start-page: 64
  year: 1985
  end-page: 67
  ident: bib4
  article-title: Evaluating allometric shrub biomass equations fit to generated data
  publication-title: Canadian Journal of Botany
– volume: 248
  start-page: 119
  year: 2007
  end-page: 135
  ident: bib27
  article-title: Wood density in forests of Brazil's ‘arc of deforestation’: Implications for biomass and flux of carbon from land-use change in Amazonia
  publication-title: Forest Ecology and Management
– reference: Wahyuningum, N., 2005. Foliage biomass estimation in tropical logged over forest East Kalimantan, Indonesia. MSc Thesis, ITC, Enschede, 54 pp.
– year: 1995
  ident: bib31
  article-title: Biometry. The Principles and Practice of Statistic in Biological Research
– volume: 152
  start-page: 73
  year: 2001
  end-page: 84
  ident: bib8
  article-title: Tree damage, allometric relationship, and above-ground net primary production in central Amazon forest
  publication-title: Forest Ecology and Management
– volume: 17
  start-page: 79
  year: 2001
  end-page: 96
  ident: bib9
  article-title: Estimation of biomass in a Neotropical Forest of French Guiana: spatial and temporal variability
  publication-title: Journal of Tropical Ecology
– volume: 11
  start-page: 371
  year: 2001
  end-page: 384
  ident: bib13
  article-title: Net primary production in tropical forests: an evaluation and synthesis of existing field data
  publication-title: Ecological Application
– volume: 154
  start-page: 371
  year: 2001
  end-page: 382
  ident: bib21
  article-title: Biomass estimation in the Tapajos National Forest, Brazil examination of sampling and allometric uncertainties
  publication-title: Forest Ecology and Management
– volume: 146
  start-page: 199
  year: 2001
  end-page: 209
  ident: bib22
  article-title: Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests
  publication-title: Forest Ecology and Management
– volume: 64
  start-page: 209
  year: 1983
  end-page: 210
  ident: bib33
  article-title: Correcting for bias in log-transformed allometric equations
  publication-title: Ecology
– volume: 16
  start-page: 56
  year: 2006
  end-page: 2367
  ident: bib11
  article-title: Regional and phylogenetic variation of wood density across 2,456 Neotropical tree species
  publication-title: Ecological Applications
– volume: 101
  start-page: 277
  year: 2006
  end-page: 282
  ident: bib24
  article-title: A temporal analysis of urban forest carbon storage using remote sensing
  publication-title: Remote Sensing of Environment
– volume: 68
  start-page: 71
  year: 1986
  end-page: 82
  ident: bib40
  article-title: Aboveground biomass of tropical rainforest stands in Indonesian Borneo
  publication-title: Plant Ecology
– volume: 186
  start-page: 125
  year: 2003
  end-page: 132
  ident: bib7
  article-title: Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico's Yucatan Peninsula
  publication-title: Forest Ecology and Management
– volume: 10
  start-page: 545
  year: 2004
  end-page: 562
  ident: bib2
  article-title: Variation in wood density determines spatial patterns in Amazonian forest biomass
  publication-title: Global Change Biology
– volume: 78
  start-page: 251
  year: 2001
  end-page: 255
  ident: bib32
  article-title: Allometry and biomass of Korean pine (
  publication-title: Bioresource Technology
– reference: FAO, 2004. National forest inventory: Field manual template, Rome.
– volume: 165
  start-page: 1
  year: 2002
  end-page: 9
  ident: bib14
  article-title: Wood specific gravity and above ground biomass of
  publication-title: Forest Ecology and Management
– year: 2003
  ident: bib15
  publication-title: A New Approach to Woody Biomass Assessment in Woodlands and Shrublands
– volume: 2
  start-page: 13
  year: 2007
  ident: bib17
  article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality
  publication-title: Environmental Research Letters
– volume: 208
  start-page: 261
  year: 2005
  end-page: 286
  ident: bib26
  article-title: Wood density in dense forest in central Amazonia, Brazil
  publication-title: Forest Ecology and Management
– volume: 145
  start-page: 87
  year: 2005
  end-page: 99
  ident: bib10
  article-title: Tree allometry and improved estimation of carbon stocks and balance in tropical forests
  publication-title: Oceologia
– volume: 126
  start-page: 331
  year: 2000
  end-page: 337
  ident: bib19
  article-title: Changes in carbon storage in fallow forests in the tropical lowlands of Borneo
  publication-title: Forest Ecology and Management
– reference: Samalca, I., 2007. Estimation of forest biomass and its error: A case in Kalimantan, Indonesia. MSc thesis, ITC, Enschede, 74 pp.
– volume: vol. 5 (1)
  year: 1993
  ident: bib30
  publication-title: Plant Resources of South-East Asia (PROSEA). Timber trees: Major Commercial Timbers
– volume: 240
  start-page: 114
  year: 2007
  end-page: 121
  ident: bib35
  article-title: Sattellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999
  publication-title: Forest Ecology and Management
– reference: UNFCCC (United Nations Framework Convention on Climate Change), 2008. Report of the Conference of the Parties on its thirteenth session, held in Bali from 3 to 15 December 2007. Addendum, Part 2. Document FCCC/CP/2007/6/Add.1. UNFCCC, Bonn, Germany.
– volume: 179
  start-page: 69
  year: 2003
  end-page: 94
  ident: bib39
  article-title: Modeling the Spatial and temporal variability in climate and primary productivity across the Luquillo mountains, Puerto Rico
  publication-title: Forest Ecology and Management
– ident: 10.1016/j.foreco.2009.01.027_bib20
– volume: 152
  start-page: 73
  year: 2001
  ident: 10.1016/j.foreco.2009.01.027_bib8
  article-title: Tree damage, allometric relationship, and above-ground net primary production in central Amazon forest
  publication-title: Forest Ecology and Management
  doi: 10.1016/S0378-1127(00)00591-0
– volume: 10
  start-page: 545
  year: 2004
  ident: 10.1016/j.foreco.2009.01.027_bib2
  article-title: Variation in wood density determines spatial patterns in Amazonian forest biomass
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2004.00751.x
– volume: 146
  start-page: 199
  year: 2001
  ident: 10.1016/j.foreco.2009.01.027_bib22
  article-title: Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests
  publication-title: Forest Ecology and Management
  doi: 10.1016/S0378-1127(00)00460-6
– volume: 154
  start-page: 371
  year: 2001
  ident: 10.1016/j.foreco.2009.01.027_bib21
  article-title: Biomass estimation in the Tapajos National Forest, Brazil examination of sampling and allometric uncertainties
  publication-title: Forest Ecology and Management
  doi: 10.1016/S0378-1127(01)00509-6
– volume: vol. 5 (1)
  year: 1993
  ident: 10.1016/j.foreco.2009.01.027_bib30
– volume: 68
  start-page: 71
  issue: 2
  year: 1986
  ident: 10.1016/j.foreco.2009.01.027_bib40
  article-title: Aboveground biomass of tropical rainforest stands in Indonesian Borneo
  publication-title: Plant Ecology
  doi: 10.1007/BF00045057
– volume: 179
  start-page: 69
  year: 2003
  ident: 10.1016/j.foreco.2009.01.027_bib39
  article-title: Modeling the Spatial and temporal variability in climate and primary productivity across the Luquillo mountains, Puerto Rico
  publication-title: Forest Ecology and Management
  doi: 10.1016/S0378-1127(02)00489-9
– volume: 17
  start-page: 79
  year: 2001
  ident: 10.1016/j.foreco.2009.01.027_bib9
  article-title: Estimation of biomass in a Neotropical Forest of French Guiana: spatial and temporal variability
  publication-title: Journal of Tropical Ecology
  doi: 10.1017/S0266467401001055
– volume: 64
  start-page: 209
  issue: 1
  year: 1983
  ident: 10.1016/j.foreco.2009.01.027_bib33
  article-title: Correcting for bias in log-transformed allometric equations
  publication-title: Ecology
  doi: 10.2307/1937343
– year: 2002
  ident: 10.1016/j.foreco.2009.01.027_bib6
– volume: 165
  start-page: 1
  year: 2002
  ident: 10.1016/j.foreco.2009.01.027_bib14
  article-title: Wood specific gravity and above ground biomass of Bombacopsis quinata plantation in Costa Rica
  publication-title: Forest Ecology and Management
  doi: 10.1016/S0378-1127(01)00627-2
– volume: 248
  start-page: 119
  year: 2007
  ident: 10.1016/j.foreco.2009.01.027_bib27
  article-title: Wood density in forests of Brazil's ‘arc of deforestation’: Implications for biomass and flux of carbon from land-use change in Amazonia
  publication-title: Forest Ecology and Management
  doi: 10.1016/j.foreco.2007.04.047
– volume: 63
  start-page: 64
  year: 1985
  ident: 10.1016/j.foreco.2009.01.027_bib4
  article-title: Evaluating allometric shrub biomass equations fit to generated data
  publication-title: Canadian Journal of Botany
  doi: 10.1139/b85-010
– volume: 117
  start-page: 149
  year: 1999
  ident: 10.1016/j.foreco.2009.01.027_bib25
  article-title: Allometric regressions for improved estimate of secondary forest biomass in the Central Amazon
  publication-title: Forest Ecology and Management
  doi: 10.1016/S0378-1127(98)00475-7
– volume: 186
  start-page: 125
  year: 2003
  ident: 10.1016/j.foreco.2009.01.027_bib7
  article-title: Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico's Yucatan Peninsula
  publication-title: Forest Ecology and Management
  doi: 10.1016/S0378-1127(03)00229-9
– volume: 16
  start-page: 56
  year: 2006
  ident: 10.1016/j.foreco.2009.01.027_bib11
  article-title: Regional and phylogenetic variation of wood density across 2,456 Neotropical tree species
  publication-title: Ecological Applications
  doi: 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2
– volume: 208
  start-page: 261
  year: 2005
  ident: 10.1016/j.foreco.2009.01.027_bib26
  article-title: Wood density in dense forest in central Amazonia, Brazil
  publication-title: Forest Ecology and Management
  doi: 10.1016/j.foreco.2004.12.007
– volume: 78
  start-page: 251
  year: 2001
  ident: 10.1016/j.foreco.2009.01.027_bib32
  article-title: Allometry and biomass of Korean pine (Pinus koraiensis) in Central Korea
  publication-title: Bioresource Technology
  doi: 10.1016/S0960-8524(01)00012-8
– ident: 10.1016/j.foreco.2009.01.027_bib34
– ident: 10.1016/j.foreco.2009.01.027_bib38
– year: 1999
  ident: 10.1016/j.foreco.2009.01.027_bib3
– volume: 2
  start-page: 13
  year: 2007
  ident: 10.1016/j.foreco.2009.01.027_bib17
  article-title: Monitoring and estimating tropical forest carbon stocks: making REDD a reality
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/2/4/045023
– volume: 145
  start-page: 87
  year: 2005
  ident: 10.1016/j.foreco.2009.01.027_bib10
  article-title: Tree allometry and improved estimation of carbon stocks and balance in tropical forests
  publication-title: Oceologia
  doi: 10.1007/s00442-005-0100-x
– volume: 126
  start-page: 331
  year: 2000
  ident: 10.1016/j.foreco.2009.01.027_bib19
  article-title: Changes in carbon storage in fallow forests in the tropical lowlands of Borneo
  publication-title: Forest Ecology and Management
  doi: 10.1016/S0378-1127(99)00104-8
– ident: 10.1016/j.foreco.2009.01.027_bib5
– volume: 136
  start-page: 22
  year: 2005
  ident: 10.1016/j.foreco.2009.01.027_bib12
  article-title: Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2005.09.011
– year: 1995
  ident: 10.1016/j.foreco.2009.01.027_bib31
– volume: 177
  start-page: 43
  year: 1999
  ident: 10.1016/j.foreco.2009.01.027_bib1
  article-title: Comparison of formulae for biomass determination in a tropical rain forest site the state of Pará, Brazil
  publication-title: Forest Ecology and Management
  doi: 10.1016/S0378-1127(98)00470-8
– year: 1999
  ident: 10.1016/j.foreco.2009.01.027_bib18
– ident: 10.1016/j.foreco.2009.01.027_bib23
– ident: 10.1016/j.foreco.2009.01.027_bib29
– volume: 101
  start-page: 277
  year: 2006
  ident: 10.1016/j.foreco.2009.01.027_bib24
  article-title: A temporal analysis of urban forest carbon storage using remote sensing
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.12.001
– volume: 203
  start-page: 319
  year: 2004
  ident: 10.1016/j.foreco.2009.01.027_bib28
  article-title: Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys Pine forests
  publication-title: Forest Ecology and Management
  doi: 10.1016/j.foreco.2004.07.059
– volume: 11
  start-page: 371
  issue: 2
  year: 2001
  ident: 10.1016/j.foreco.2009.01.027_bib13
  article-title: Net primary production in tropical forests: an evaluation and synthesis of existing field data
  publication-title: Ecological Application
  doi: 10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2
– ident: 10.1016/j.foreco.2009.01.027_bib37
– year: 1999
  ident: 10.1016/j.foreco.2009.01.027_bib36
– volume: 240
  start-page: 114
  year: 2007
  ident: 10.1016/j.foreco.2009.01.027_bib35
  article-title: Sattellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999
  publication-title: Forest Ecology and Management
  doi: 10.1016/j.foreco.2006.12.018
– ident: 10.1016/j.foreco.2009.01.027_bib16
– year: 2003
  ident: 10.1016/j.foreco.2009.01.027_bib15
SSID ssj0005548
Score 2.4843771
Snippet Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been...
Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been...
SourceID wageningen
proquest
pascalfrancis
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1684
SubjectTerms allometry
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
biomass
borneo
brazil
carbon
Carbon stock
carbon storage
central amazon
DBH
Destructive sampling
diameter at breast height
Dipterocarpaceae
Dipterocarpus
equations
estimation
Forestry
Fundamental and applied biological sciences. Psychology
Hopea
Indonesia
net primary production
Palaquium
prediction
sampling
Shorea
Site specific equation
site specific equations
statistical models
stocks
Synecology
temporal variability
Terrestrial ecosystems
tree biomass
tropical forests
wood density
Title Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests
URI https://dx.doi.org/10.1016/j.foreco.2009.01.027
https://www.proquest.com/docview/20437344
https://www.proquest.com/docview/46232240
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F379970
Volume 257
WOSCitedRecordID wos000265342200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7042
  dateEnd: 20150930
  omitProxy: false
  ssIdentifier: ssj0005548
  issn: 0378-1127
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DdBeEAzQymX4gbcpUe5OHgvqxHWa1A6NJ8tOHNSRJaXpZftL_EqOL0laVdMAiZe2cpPUyff5-Nj9zjkIvSFCeCLmnsWSLLeCKBIWB-Qt34_AW3Ainqr9jq-fyelpfHGRnPV6v5pYmGVByjK-vk6m_xVqaAOwZejsX8DdXhQa4DOADq8AO7z-EfCDoqiuZJ2s9Fj8XBilm0rsDaNZ-qcmPgrQXwpLRnWU4IROpE5IaWPns2qqkCuqVaGEymBWBMxzbDaV14HL1Osu7YlqOhZpl83paktT85bVC10ge2x_sZtWVTOYMa0POrOH7RejH5OsVQDbn-yOfDCElZ38Zg_sjR2LpAnha7bRtkJpdPiWXM66OlGALbQ1jgm4_06wYa49ndDa8DJeM75upKvNmYncjXT55K1JQu9XXNrykaWVyVkqU7eSblJspYoj2THZL0eVV3WjHbTnkTABC7o3-DC8-NgJikJVq629kSZQU6kJt3_rNkdoJ2eVVOiyGqDOdXWVjeXP_grurlShd2uu0PgRemjWMHigufcY9UR5gO7rqqY3B-iBZsTs5gnKOjLilowYeok7MmIgI14nIzZkxJMSN2TEhox4jYzYkPEpOj8Zjt-9t0xdDyuFxenc8nPHz6XgAZxDJ8tdx0kJiyJG4jzmPAlZGjs8yVlOeJhHYc7BhQp4mMLBGRER95-h3bIqxSHCTDA_4i7zfMYDmDB56jGR-Vko_ew49vvIbx4yTU3Se1l7paCNuvGSamhkPdaEOi4FaPrIas-a6qQvdxxPGvyocVy1Q0qBcneceQhwU_YdZnR6PvKkjgDWYDLPZB8dbXCg7YnMwSjrBvbR64YUFOYE-UcfK0W1qKmnEpYFwe1HBLDqkc48PJ-OTbSU5ctqKjPOmz1kulrMaFnINxi6NfVJkhDn-T_f7wu031mEl2h3PluIV-heupxP6tmRGVG_AX_S_dc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allometric+equations+for+estimating+the+above-ground+biomass+in+tropical+lowland+Dipterocarp+forests&rft.jtitle=Forest+ecology+and+management&rft.au=Basuki%2C+T.M.&rft.au=van+Laake%2C+P.E.&rft.au=Skidmore%2C+A.K.&rft.au=Hussin%2C+Y.A.&rft.date=2009-03-31&rft.pub=Elsevier+B.V&rft.issn=0378-1127&rft.eissn=1872-7042&rft.volume=257&rft.issue=8&rft.spage=1684&rft.epage=1694&rft_id=info:doi/10.1016%2Fj.foreco.2009.01.027&rft.externalDocID=S0378112709000516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1127&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1127&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1127&client=summon